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ENERGY ESTIMATES RELATING DIFFERENT LINEAR ELASTIC
MODELS OF A THIN CYLINDRICAL SHELL
I. THE MEMBRANE-DOMINATED CASE*

JYRKI PIILAT AND JUHANI PITKRANTAT

Abstract. Three different linear models describing the elastic deformation of a thin cylindri-
cal shell are analyzed under a given smooth normal pressure distribution. A model problem with
membrane-dominated state of deformation is considered. The models studied are (1) the standard
three-dimensional model, (2) the classical shell model of Koiter-Sanders-Novozhilov, and (3) the
asymptotic membrane theory of the shell. Estimates are derived relating the deformations fields
according to different models in relative energy norm.
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1. Introduction. In this paper, which is the first part in a series of three pa-
pers, we compare three linear elastic models, describing the membrane-dominated
deformation state of a finite, thin cylindrical shell. As a model problem we study a
shell occupying, in Cartesian coordinates, the region

a= (xl,x2,x3) eR3 [0<xl <H, R- < +x<R+
We will further choose H R 1 and assume that thickness t of the shell is small,
i.e., t << 1. The shell is assumed to be loaded by a smoothly varying normal pressure
distribution on the surface

r+ (Xl,X2,X3) e 10 < Xl < 1, + x 1 +

The boundary at Xl 0 is sumed to be clamped, i.e., the displacements vanish at
Xl 0, where the boundary at Xl 1 may be either clamped or free.

The three shell models to be considered are:

(1) The standard three-dimensional eltic model;
(2) The dimensionally reduced shell model of Koiter-Sanders-Novozhilov; and
(3) The ymptotic membrane theory of the shell.
We point out that shell problems fall, in general, into two categories depending

on whether the membrane or bending deformations dominate. Here we concentrate on
the membrane-dominated ce. The bending-dominated ce, closely related to the so-
called inextensional shell theory, is the subject of Part II. In Part III we finally study
another type of membrane-dominated situation referred to the "soft" membrane
ce. In all three parts of the paper, the geometry of the shell is the same, and also
the load is assumed to be of the same form here, i.e., a smoothly varying normal
pressure distribution. Thus only the boundary conditions and the shape of the load
vary.
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Here, in Part I, we take only the classical shell model of Koiter-Sanders-Novozhilov
(as we have decided to call it; cf. [12], [20], [16]) as the representative of dimensionally
reduced shell models. In Parts II and III we call this a model of Kirchhoff type and
consider in addition what we call a model of Reissner-Mindlin type. The terminology
here refers to the classical models of plate bending.

As is well known (cf. [14]), the displacement field --v3D --k{u3D1 U32D,vD) mini-
mizes the total energy

F"(V) 1/2A"(V, U) Q"(V),

where the quadratic part ,A3D (V, U) represents the deformation energy and the lin-
ear part Q3D(U) is the potential energy due to the external load. A dimensionally
reduced shell model is obtained in this formulation by assuming that the displace-
ments vary quadratically along directions normal to the midsurface of the shell. By
dropping out certain "small" terms (see 3 below), the Koiter-Sanders-Novozhilov
model is obtained. Finally, if the load is appropriately scaled in terms of t, we obtain
a nontrivial and finite deformation state as t --. 0. In the present situation the limit
state corresponds to the membrane theory of the shell, and it is obtained by letting
the pressure distribution be proportional to t.

Let Vg stand for the displacement field corresponding to the shell model with
positive thickness, and let U denote the membrane theory limit of Ug. Our main
results are estimates for.[l[U3D --uK[[[3D and IllUg --U0[[[3D, where [1[" 11[3D is the
relative energy norm corresponding to the three-dimensional model. In particular, we
show that in both the clamped-clamped and the clamped-free case

(l.la)
(l.lb) IIIUK __UIII3D

where , 0 <_ < , is the Poisson ratio of the material and

6-{0 if-0,
1 otherwise.

We also show that (1.1b) is the best possible estimate.
Estimates (1.1) are proved by splitting the displacement fields as

3D 3D 3D 3D 3D KV VA --VB --UC and Ug VI-]UKB, where VA and VA are both close to
0 3D 3D KU and VB VC and UB are residual fi---ids arising because of the incompatibility

of boundary conditions in different models. The residual fields satisfy homogeneous
three-dimensional elastic/shell equations with certain inhomogeneous boundary con-
ditions, see 4 below. In fact, we show that, with an appropriate splitting,

The main difficulty in deriving energy estimates of the above type is to estimate
the residual fields containing the (leading) boundary layer effects. So far we are
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only able to treat the simple geometry and boundary conditions considered. Yet, the
results appear to be new even in this relatively simple case. For previous studies of
the convergence of dimensionally reduced models for both plates and shells the reader
is referred to [1]-[13], [15], [17]-[21]. Further references can be found, e.g., in [4], [6].

We point out that since ]ll(UD --UD) --___UBKI]I3D is asymptotically smaller than

II I--UD + U3cDI113D in view of the estimates stated, this indicates that the (nonasymp-
totic) shell model does capture some of the leading boundary layers in the original
three-dimensional formulation. This is in contrast to plate bending problems, where
the Reissner-Mindlin model apparently does not exhibit such a superiority over the
asymptotic Kirchhoff model [1], [21, [3].

Finally, let us mention that although the energy norm is certainly a "convenience
norm" in our studies, the results are relevant from the numerical point of view since
finite element approximations effectively generate best approximations in this norm;
cf. [17], where the numerical aspects are discussed in the bending-dominated context.

The plan of the paper is as follows. Proceeding from the main notation in 2, we
derive the dimensionally reduced shell models in 3 and also state some existence and
convergence results of general nature. In 4 we prove convergence rate estimates (1.1)
in the clamped-clamped case, and finally in 5 the clamped-free case is considered. In
the Appendix we derive some regularity results for the displacement field UK needed
in estimating Il__V3D VKIII3D. The need of such estimates is the main obstacle in
extending the present results to more general situations.

Throughout the paper, the analysis is based on the energy principle or its vari-
ational form, i.e., we do not introduce the stresses at all. We depart here somewhat
from the classical tradition where the stresses and the associated complementary en-
ergy principle usually play a vital role (cf. [13], [15], [21], [3], [11], [9]). In the sub-
sequent Parts II and III we use the same analysis technique, except for one point in
Part II where we still need the complementary energy principle.

2. Preliminaries. We summarize in this section the main notation to be used
in the sequel. We work in a cylindrical coordinate system (0/1,0/2, 0/3), where the shell
occupies the region

(0/1,0/2,

Here (0/1,0/2) is a parametrization of the midsurface of the shell, with

02- {(0/1,0/2) E R2 10 < 0/1 < 1, -r < 0/2 < r}.

In the three-dimensional model of elasticity the strain tensor corresponding to a dis-
placement field V is then defined as _e(V) {eij 3}i,j=l, where (cf. [14])

ell Vl,1,
e12 (V1,2 t_ V2,1),

(Ul,a +

x(1/2,: +
1/2 +

e33 V3,3.

Here the components V refer to the local orthonormal basis that corresponds to the
curvilinear coordinate system; ,j stands for 0/00/j and X 1/(1 + 0/3). In the
dimensionally reduced shell models the strain tensor is replaced by membrane strains
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/3- {flij}i2,j:l and bending strains __a- {aij}i2,j:l depending only on (0/1,0/2). These
have the expressions (cf. [16])

/11 U,1, /12 1/2 (U,2 --V,1 ), /22 V,2 -W,
/11 W11 /12 W12 --Vl /22 W22 --V2

where u (u, v, w) is the displacement vector of the middle surface.
We introduce the bilinear forms

A3D(u, V)
3 (V)ei/ (Y) }x-1 do/1 d0/2 d0/3,o-1 f{ (v)(y) +,,:

corresponding to the three-dimensional and dimensionally reduced formulations, re-
spectively. Here tre_ ell + e22 "- e33 tr =/11 +/22 tr5 all + a22 Further,
and # are material parameters depending on the Young modulus E > 0 and the

Poisson ratio , and D is a scaling factor. These are defined as

Eu E Et
D=A

(1 + u)(1 2u)’ # 1 + u’ 12(1

In the above notation, the scaled total energy to be minimized according to the
three-dimensional model takes the form (cf. [14])

F3D (U) 1/2A3D (U, U) Q3D (U), where

Q3D(U) f(0/1,0/2)" U3 0/1,0/2, 1 + do/1 d0/2.

Here f D-F is the scaled load. We assume below that the actual load F is
proportional to t, so f is independent of t. We see as well that this scaling assures (in
the present membrane-dominated case) the existence of a nontrivial and finite limit
deformation state as t -- 0.

Similarly, in the shell model of Koiter-Sanders-Novozhilov [16], the total energy
is expressed as

F(u) {t: (_, _) + u (u, u) } q(u),

q(u) fw fw d0/1 d0/2,

where

and f is as before. By taking the limit as t --, 0 we get formally the energy according
to the membrane theory of the shell. This is denoted by F"
(2.1) F (u_) ulK (U__, __) q(u_).
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The energy norms in the above three models are denoted by II1" II 13o, II1" II Ig,,
and II1" III0, respectively:

II IUIII3D /t3(U, U),

IIlullIK, V/2AK (u, u) + K(u, u),

The corresponding energy spaces are denoted similarly by 3D, UK, and /2. Here

/g3D ={U C [Hl(fl)]3 [U(.,-r, .) U(., 7r, .), U(cl,., .) 0

at a E {0, 1} in the clamped-clamped case or

at a 0 in the clamped-free case},
and

u --! (u, v, w) e H(w) x H(w) x H.(w)

(u. v. )(., -) (u. , )(., ),
o

)
o-- (., --; (., 1,

Ow
(u. , )(,,.) , (, .) o

at al E {0, 1} in the clamped-clamped case or

at a 0 in the clamped-free case},
where Hp() and Hp(w) stand for the usual Sobolev spaces. To define L/, we note
that if u is any smooth function vanishing at a 0, then lij(u) 0, i,j 1, 2,
implies u 0. Hence II1" I} 10 defines a norm over such a set of functions and accordingly
L/ is well defined as the closure ofL/g with respect to II1" II 10. A partial characterization
of/20 is given in Lemma 3.3 below.

In the following analysis we assume throughout that f is a restriction to w of a
smooth function f-- f(a, a2) defined on R2 and 2r-periodic in a2. The set of such
functions is denoted by C’r(). It would in fact suffice to assume a finite, sufficiently
high degree of smoothness.

By C or c we denote various constants taking different values on different usage.
The constants are independent of parameter t except when indicated explicitly. Fur-
ther, we use the abbreviation O((t)) for a quantity whose absolute value is bounded
by c(p)(t)llfllp, for some finite p, where now and in the sequel I1" IIp,u stands for the
norm of the Sobolev space Hp(w). Finally, the inner product of L2()) is denoted by
(.,.).

3. The shell models. The shell models to be considered can be derived from
the basic assumption that the displacement field, expressed in terms of the curvilinear
coordinates (al, O2, a3), is a quadratic function of d3 for each (a, O2). In particular
we assume that

(3.1)
Vl (01, (22, oz3) u(ol, oz2) (301 (1, oz2),
v(..,) (,,) 0(... ),
U3(01,02, c3) w(ol, 02) + 031/)1 (Ogl, 02) -{- 1/2c321/)2(1, og2).
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Displacement fields of this type were apparently first considered in [12]. Here u
(u, v, w) may be interpreted as the displacements of the midsurface of the shell along
the coordinate axes; (1, 2) are the so-called rotations, and (1, 2) are auxiliary
functions. The second-order terms relating U1 and U2 are skipped because they don’t

(U3D U), which alone causes the error of orderhave any influence on the term e33
0(tl/2). (See Theorem 4.3.)

Upon making ansatz (3.1) in F3D, expanding 1/(1 +(3) into a Taylor series, and
integrating with respect to (3, we obtain

(3.2)

where ij and q are as in 2,

and the remainder R(U) is expanded as R(U) -i=0 tiRi(U), where

Ro (__.U) =3(1- v) P+p22+
1-2v 1+ 1-v

R1 (V) f. (w A- 1) dcl dc2,

R:(U)

etc., where pl =-01 + w,1 and p2 ---02 A-w,2-v.
The Koiter-Sanders-Novozhilov model is now obtained formally as the following.
Step 1. With u _ug fixed (to be defined in Step 3), minimize R(U) approx-

imately with respect to (01,02) by imposing the so-called Kirchhoff-Love constraints

Pl P2 0, i.e.,

(3.3) 01g Ow----g 02g
OwK

Vg

0( 0(2
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Step 2. Minimize R(U) approximately with respect to (1, 2). Our choice is

b’ treK b2K
12 trKK"(3.4) K= 1-- 1--

Step 3. Drop R(U) and define UK as the minimizer of the remaining part of the
energy under constraints (3.3). So, Ug minimizes Fg(u) as defined in 2.

In the above formalism, the asymptotic membrane theory is obtained by setting
t 0 in (3.2) and minimizing what is left. Thus, u0 minimizes F(u) as defined by
(2.1), 0 w,, 020 w,2-v, and 01 -utr[3_/(1 u). In this case we may set

=0.
Remark 3.1. Suppose that we do not drop the residual term R1 (U) above, so that

,g is the minimizer of

t2fltK (u_, u_) + BK (_u, u) 2(u_), where

t ut try=) d0/1 d0/2(u__) f(w (i+-) 2(i__u)

It is easy to verify that Ill_0K Ug 11]3D o(), so that this change has no effect on
the main results (1.1a) and (1.1b).

Regarding the solvability of the above dimensionally reduced problems, we note
first that, due to the well-known Korn inequality,

2K(u,u) + K(u, U) --> 2([lull, + [Ivll, + lIwl122,),
the existence and uniqueness of UK is guaranteed by the Riesz representation theorem.
Also u exists and is unique by the same argument, for we have the following.

LEMMA 3.1. For any f e Cper(), q is a bounded linear functional on U.
Proof. Let u E Ug. Integrating by parts, we get

Iq(u_)] fw (f/22 211 If,2 ]/12 -+- 12[f,22 ]11) d0/1 d0/2 cIIfll2,lllulllo,

where In[g](0 is defined as

In[g](0 g(xn, 0/2) dxn dxn-1. dxl.

Since Ug is dense in/go, the assertion follows. E]

We can characterize u as follows.
LEMMA 3.2. For any f e CpCr(), u (u,v,w) e [C’r()]3 and u

v 0 at the clamped ends of the cylinder.
Note that since (u, v, w) -+ { Ilull 2 2 2

1,w "-I-Ilvlll,., + II }1/2IIL.(,) is a stronger norm

than II1" I]10, we cannot impose any boundary conditions on w at the clamped ends.
In the proof of Lemma 3.2 we need the following characterization of the energy space
u0"

LEMMA 3.3.

/A n [C’r ()]3 {u [C’r ()]3 I o at the clamped ends of the cylinder}.
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Proof. Let (un}n__i { (un, vn, wn)}nc=l be a sequence in U fq [Cr ()]3 such
that un u e U f)[C’r ()]3 in the norm [[[. [[[0 and such that un Vn 0 for all n
at the clamped ends. Then, assuming a Fourier expansion ofu with respect to O2 as
in the Appendix, it follows that each Fourier component ofu and v, converges to the
corresponding component of u, respectively, v in HI(0, 1). Accordingly, each Fourier
component of u and v vanishes at the clamped ends and hence so do u and v. On the
other hand, if u e [C’r ()]3 is given such that u v 0 at the clamped ends, then
we can find a sequence (Wn}n=l of smooth functions such that Wn OWn/Oal 0 at
the clamped ends and such that Wn - w in n2(w). Then (u, v, Wn) -+ (u, v, w) in the
norm of/0, and accordingly, u E/o. vl

Proof ofLemma 3.2. We simply solve u0 explicitly. First note that u must satisfy
the Euler equations

/11,1 -I- /1/22,1 -I- (1 /1)/12,2 0,
/,: +/:,: + (1 )/, 0,

12villi + 12fl22 f,

and if the end at cl 1 is free, also the natural boundary conditions

If u0 is smooth, we can impose the boundary condition u(0, .) v(0,-) 0 by
Lemma 3.3. Then u must be of the form

u0 C’(I3[f,22 vll[f]} ce2,1 --I- CelT],

v --5{/4[f,222 + (2 + v)/2[f,2 ]) + /’ + 4(1 +/1)o/1

f
W0 --/lUll --V2 12’

where now 5 1/(12(1 u2)),

In[g](cl, c2) g(xn, c2) dxn dxn-1. dxl,

and and r/ are functions of c2 only. In the clamped-clamped case and are
determined by solving the system

1,, 4(1 r/’=’-=gl, + +v)-1/2 g2, where

gl 5{I3[f,22 ](1, .) ull[f](1,-)},
g2 5{I4[f,222 ](1, .) + (2 + u)I2[f,2 ](1, .)},

under the boundary conditions (-Tr) (Tr), ’(-Tr) ’(Tr), y(-Tr) (Tr). In the
clamped-free case and r/are defined so as to satisfy the mentioned natural boundary
conditions at l 1. Obviously, and y are in both cases restrictions to [-Tr, 7r] of
smooth 27r-periodic functions defined for all Ce2 E R. We have thus found a solution
of the desired type to the limit variational problem that is in b/ by Lemma 3.3.
It follows from Lemma 3.1 that this solution is unique in the sense of the norm of

So far we have defined u_0 only as a formal limit of _g as t -- 0. We show next
that u_K actually converges to u_U_ in the norm II1" II K,t. The proof is a restatement of
the classical regularization argument of Tihonov [22].
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THEOREM 3.1. II[_uK u[llK,t --+ 0 as t - O.
Proof. We note first that for all _u E UK,

t2AK 1 1 t2AKF(_) F0(_) + (_,u) tllu- -111- lllulll + y (-,u).

Let (Un}n= C Ug be a sequence such that Illu, -ulll0 -. 0 as n -- c. Then since
Fg(u_.K)

_
Fg(u_.n) for all n, it follows that

[[[ltK U0[[[ _}_ t24K(uK,_K) <__ IliOn _0[[[ _]_ t2.AK(Un, Un).

We can now fix first n and then t so that the right-hand side is arbitrarily small and
hence the assertion follows easily.

4. Convergence rate estimates the clamped-clamped case. We start by
splitting the displacement fields Vg and V3D First Vg is rewritten as Ug

U +U, where U is defined in terms of u (u, v, w) according to (3.1),
(3.3), and (3.4), and further u minimizes Fg under periodic boundary condition at
a2 E {-r, r} and under the inhomogeneous boundary conditions

Ow Ow(a ,.) at C1 e {0, 1}(1, ") 0(1, "), --i (CII, ")

The remaining part UBK is then likewise defined in terms of _BK according to (3.1),
(3.3), and (3.4), where _BK minimizes the homogeneous functional

_
--+ 1/2 {t24K (_u, _)+

BK(u__,u_) } under the periodic boundary condition at a2 {-r, r} and under the
boundary conditions

Ow Ow
U(OI,’) =--U0(OI,’), 001(O1,’)-- 001

(O1,’) at O1 e {0, 1}.

(This factor is needed essentially to compensate for the dis-Next, let 1 + .
symmetry of the loading with respect to the shell midsurface; see the proof of Theorem
4.1 below.) We split the three-dimensional displacement field U3D corresponding to
a given load f as U3D U4D +Uv +UD, where U4D minimizes F3D under the pe-
riodic boundary condition at a2 {-zr, zr} and under the inhomogeneous boundary
conditions

U(CgI, ", ") /U(oI, ", "), CI E {0, 1}.
The remaining parts U3Bv and Uv minimize the homogeneous functional U --xji3v (U, U) under the boundary conditions2

U(oI, ", ")-" "fU" (c1, ", ")and

( (a3tr(u--g)--a]tr--(ug))) (hi’’’)U(al,.,.)= O, O, "1-
respectively, at O/1 {0, 1}.

Our aim is to prove that

(4.1)
(4.2)
(4.3)
(4.4)
(4.5)

IliUm Ulll:so o(t), II1 -111,
IIIMIII:o o(/4), II1111, o(/4),

II1 MIII:, o(),
IIIM _.Ul I1:,

I__.u’l I:z
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The main results (1.1) are obviously consequences of these estimates. We will also
prove that (4.2) and thus (1.1b) is the best possible estimate. Note that in view of
(4.1)-(4.5), the leading irregularities of V3D and Vg due to the clamped boundaries
are contained in UD +UD and USK, respectively. Moreover, we conclude that

so UBK is a "good" approximation ofUv +UD in the sense of relative energy norm.

Estimates (4.1) and (4.2) follow immediately from Lemmas h.1 and A.2 of the
Appendix. Note that the second parts of (4.1) and (4.2) sharpen the result of Theorem
3.1. It thus suffices to prove (4.3) through (4.5). We start by proving (4.4). By Lemma
A.2, UBK E [C’r()]3, and for any multi-index T (T1, T2),

IlDu 11- t-O(t/4 +
IlDvg II t-nO(tl/4 + t(5-2rl)/4),

where a 0 if [[. II" II/() and a 1/4 if [[. I[" II/<), Applying these regularity
estimates we can prove the following.

THEOREM 4.1. Ill_UD Ulll Co(ta/4).
3D

Proof. Let B be the solution of the variational problem A3D(D, y) 0 for

all y e D with boundary conditions D(al,’,’) U(a,’,.) at al e {0, 1}.
Then by linearity UD -3D

B and it follows from the triangle inequality that

t

Since Il__UKIlleD o(1) at most, it obviously suffices to prove the assertion with UD

3D
replaced by U By a simple calculation,

11(UBK) 11 O/311,

13(Ug)-- R13,

23(U) R23,

el2(VBK) X]12 X20/312 -- R12,
(trZ- 3r_)e33(UBK)

1 -’

where throughout this proof/ij /ij (uBK), aiy aiy (ug).
remainder terms Rij Rii(UBK) can be easily estimated as

Applying (4.6), the

(4.7)

We note that since _UBK minimizes t2.4K (u, U) + BK (u_, u), we have the Euler equations

(4.8a)

(4.8b)

(4.8c)

11,1 -- /2fl22,1 -- (1 )312,2 0,
t2

/2]11,2 -[-/22,2 -- (1 -/2)12,1 i-" K1 0,

12p/31 + 12fl22 + t2. K2 0,
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where
K1 v/11,2 -- 2(1 v)12,1 --K2 11,11 -- vt22,11 -- 2(1 u)12,12 + VEll,22 + 22,22.

Let E D. Integrating by parts and applying (4.8a) and (4.8b), we have

(1- U)l, (1 +

t(K1, V2)

where the estimate follows from (4.6) and (4.7). Next, again integrating by parts and
recalling (4.6), we find that

(4.10)
12t jf(ll +22)V3 d0/1 d0/2 03 (0/3+ -)

:L(12u11+1222)V3 (.,-)d0/1d0/2 +R2(V),

IR(V)I _< C(f). t/4. III_VIII3D.

The remaining terms on the right side of (4.9) can be handled in a similar manner.
As the details get here more complicated, we collect the required results first in the
following.

LEMMA 4.1. Let V E 13D. Then

(4.11)

(4.12)
12( 0/3V1,2
t

(1 )a12, (1 +
t2 2(1 z)g12,12V3 ", d0/1 d0/2 q- R4(V),

(4.13)

where IR(V)I C(f). t3/4. IIIVIIIaD,J 3, 4, 5.
End of the proof of Theorem 4.1. It follows from (4.8c) and (4.9)-(4.13) that

for all V lgaD AaD(U 3D
Ej--1 Rj(V). By the above estimates, the

assertion of Theorem 4.1 follows.
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Thus it suffices to prove Lemma 4.1.
Proof of (4.11).

By (4.6),)Ra(V)I aEi=I ri(V)] <_ c(y). t3/4. IIIVIll and the assertion follows.
Proof of (4.12).

t2

Taking into account that Yl,3 2e13 Y3,1 and also that

[IVIIIL2()
__

I[Ell(__V)IIL2(f),

we have integrating by parts;

I= 12(1-p) ( (at a12,12, V3 2 8
-r2

--t2jf(l-v)e;12,12V3(’,-) daldce2+r2-br3,

where the last equality follows in the same way as in the previous proof. Similarly,

t
(1 ) g12,1, (2(1 + a3)e23(_V) V3,2) a2

----t2 ](1- tz)g12,12V (’, )dcexdce2-l-r4.
By (4.6) IR4(V)[ 4Ei=I ri(V)l <- c(f). t/4. II1111, and also this part of the proof
is complete.
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Proof of (4.13).

where

Rewriting -t(K, V2) -t(al + 422, V3) + r3, we have

II t(K, V2)
t

(b’gll + 422)V3 d(x dc203 c2 t28 2c3
t/[2 (/;11 -l-/22)V3 do/1 dc2 03(c3) -+- r3 r3 + r4.

Defining Rs(V) 4-i= ri, we again conclude from (4.6) that

4

i--1

< C(f). t5/4. IIIVIIIzD,

and so, combining the above identities, the last part of Lemma 4.1 is proved.
To prove (4.3) we cite first from Lemma A.1 that u e [C’r()]3 and that

(4.14) 11115, + IIvl16, + IIwl14, 0(1).

THEOREM 4.2. II lUg4D Ul113D
3D KProof. First of all, we can replace U3AD by 3AD rr3D so that UA UA is

kinematically admissible. Proceeding then exactly in the’ same way as in the previous

proof, we find that ,A3D(U"- 3D
UA V) di(V) for all V E L/3D. Using estimates (4.14)

we can easily verify that in this case 16(V)I _< C(f). t. IIIVIII3D. Hence the assertion
follows.

THEOREM 4.3. IIIuDIIIaD 0(tl/2).
Proof. Let U (U, U2, U3), where U1 U2 0 and

lctre;(uK))u
c3trfl(uK)_ -U3 =71_ u

Then by the definition of UD, and by (4.6) and (4.14),

IIIuDIIIzD < IIIUIIIzD
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Remark 4.1. Let us show that (4.2), and thus (1.1b), is the best possible es-
timate. We assume that f 1. In that case the solution of (4.8) is of the form
(UBg(al), 0, WB

g(al)). After a simple computation, we get

(4.15) WKB Co + Cle-AI cos Aal + C2e-Aal sin Aal
+ C3eAa cos Acl + C4eAa sin Aal,

where A (3(1 ))1"4t-1/2. Taking into account the desired boundary conditions
and also the constraint

1(12w + (wBK) (4)) dcl O,

which follows from (4.8c), we get five linearly independent equations for the coeffi-
cients Ci in (4.15). Using symbolic calculus (MATHEMATICA) we obtain the exact
estimates

(4.16) Co 0(5tl/2), C1 O(1), C2 O(1), C3 O(e-A), Ca O(e-A).

Further, u can be solved from (4.8a):

(4.17) UKB --l] W(7") dT -t- l]Oll WI (’r) dT.

By (4.15), (4.16), and (4.17),

lim t-1/4lluUllL.( 0(1)tolimt-a/alleu(U)llL(n t-,o

and hence (4.2) cannot be improved.
Next, let us define the interior domain of the cylinder,

0<5<,

and also the corresponding energy norm

It follows from (4.15), (4.16), and (4.17) that

(4.18) IIIuKIII O(tl/4e-St-/ + tl/2).

This shows that UBK is a true bondary layer only if u 0. Anyhow, it follows from
(4.1)-(4.5) and (4.18)that

(4.19) IlluK uLIII <_ c(f)(t + 5utl/2), 5 >_ tl/2 In(t-3/4),

so the interior convergence rate is faster than the global one.
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5. The clamped-free case. In this last section we consider the case where the
boundary at c1 1 is free. The splitting of Ug and V3D is otherwise similar to the
previous chapter, but now the boundary values are only fixed at the clamped end.

We are going to prove that (4.1)-(4.5) still hold with one exception, namely, that
the second part of (4.1) must be rewritten as

Again (4.1’) and (4.2) are consequences of Lemmas A.1 and A.2, respectively. To prove
the rest, we proceed exactly in the same way as in 4. Using the natural boundary
conditions

Z + Zg o,
(5.1) t + a2K2 0,

6Z t.5 o,
a,l + t2, + 2(1 p)al,2 0

at the free end, we find that

t-(_u - fUx ,__V)= 5x(__V)- gX. __V(1,.,.) da2 da3
Jr

for all V e 3D, where X stands for either A or B, F {(1, a2, a3) e },

t2

and where 5x (V) Y:I Rj (V) consists of the same residual terms as in the proofs
of Theorems 4.1 and 4.2. It follows from Lemma A.1 that u_ E [Cr()]3 and that

II DuIIIL(,) (9(1 + t(7-2r)/4),
]l DvI]L(.) (9(1 + t(9-2)/4),
lID’wll(.,) 59(1 + t(5-2rl)/a)

for every multi-index T (T1, T2). Using (5.2) and (4.6), which is valid also in the
clamped-free case, we get, as in the previous section,

(5.3) IA(V)I _< C(y). t. IIIVIIIaD, laB(V)l <_ C(f). ta/4. IIIVIIIaD..
We need finally an estimate for the displacement field Ux UaD defined so that

(5.a) 43D(UX, V) J(F gX. __V(1,., .) da2 da3, V 3D.

In the Appendix (see Lemma A.4) we prove that

(5,5) II IuXll ID
After these preliminaries, the main result of this chapter can be stated.

THEOREM 5.1. Theorems 4.1, 4.2, and 4.3 hold also in the clamped-free case.

Proof. Observing that

A3D (UxK -}- aX 3D aX 3D aX 3D-Ux,U+ -Ul=e(u+ -u),
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the assertions of Theorems 4.1 and 4.2 follow from (5.3), (5.5), and the triangle in-
equality. Theorem 4.3 can be proved in the same way as before. 0

Remark 5.1. Let us assume that f _-- 1 as we did in Remark 4.1. Solving (4.8)
under the relevant natural boundary conditions at c1 1, we find that

u. (.)
_ .() ,

and Ws
g is of the form (4.15), where this time

CO 0, C1 O(1), C2 O(1), C3 O(e-2A), C4 O(e-2A).
It turns out easily that (4.2) cannot be improved, but now UBK is a pure boundary
layer. Estimate (4.19) can this time be rewritten as

IllUK -Ulll o(t), >_ tl/2 In(t-3
where now gte {_a e ft O1 > (} and Ill" ll is the corresponding norm.

Appendix. Here we (1) study the regularity properties of the displacement field
u_K as defined according to the Koiter-Sanders-Novozhilov shell model, and (2) prove
estimate (5.5) related to the three-dimensional model. The analysis is based on Fourier
expansions.

First consider the dimensionally reduced model. Here we expand the load and
the displacement field as

It is easy to check that the energy is then split orthogonally as

(u) +
k=0 k=l

where co=2r, Ck=r for k_>l, and

where further

foqF fckw F fskwck(u) dcl, qsk(U) dl

,,4(_u,_u) Jo u(tra=k)2 + (1 ,) E (aikj)2 dOl,
i,j=l

Bf (_u, _u) 12 Jo u(trk)2 + (1 u) E (/)2 dol
i,j=l

with
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Zl u,, Z1% (- + ’), ZL k +
I’kll W", I’kl2 -kw’ v’, tk22 -k2w kw.

Due to the orthogonality of the above, splitting it suffices to consider one Fourier com-
ponent ofUg at a time in proving regularity estimates. Thus assume f g(cl) cos kce2
or f g(cl)sin kc2 define the energy space

U- {u e [HI(I)] 2 x H2(I) u- w’- 0 at the clamped endpoints},

where u-- (u, v, w) and I- (0, 1), and consider the variational problem.
Find uk E U such that

(A.1) t2A(uk, ) + B(uk, ) fI gCv da for all e U.

Below we denote by II1" Ilk the corresponding energy norm and by I1" Is,I, s >_ O, the
norm of the Sobolev space Hs(I).

Next, we denote by u0
k the limit of uk as t -- 0 and split then uk as uk u+UkB,

where u satisfies (A.1) together with the inhomogeneous boundary conditions

u=u0k, v-v0k, w=w0k (w)’=(w0k)’

at the the clamped ends. Then UkB satisfies (A.1) with g 0, together with the
boundary conditions

Uks =--Uko, Vks =--Vko, WkB =--Wko, (Wks)’=--(w0k)

at the clamped ends.
In the four lemmas below we use the abbreviation O((t)) for a quantity bounded

by c(p,k)(t)llgllp, for some finite p, where the dependence on parameter k is alge-
braic, i.e., there exists m m(p) i such that, c(p, k) <_ c(p)km.

LEMMA A.1. For any s >_ O,

IIw wool I,i t-o(t(a-)/e),

where cr 0 in the clamped-clamped case and a in the clamped-free case.
LEMMA A.2. For any s >_ 0,

IlUkB II t-"O(tX/4 + t(3-2)/4),
IIV II t-"O(tl/4 + t(5-28)/a),
IIwll- t-ao(t(1-2s)/4),

where cr 0 if II-- Ils,I and a 1/4 if Ilu]] Em< ]]OmUllL(I)"
LEMMA A.3. Assume the clamped-free case. Then for 0 < m < 3,

(UkB)(’)(1) O(1), (V)(m)(1) O(1), (WkB)(’)(1) O(1).

Proof of Lemma A. 1. Setting u ut -u0k L/, we have integrating by parts that
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(A.2)
t2A(u, 0__)+ BkF(u,)= t2 {/(hlO + h2)dal+ 5(Afff(l)+Bv(l)+ C(1)) }

for all v_- (fi, ,) E /g, where hi and h2 are t-independent smooth functions,
A, B, and C t-independent scalars and either 5 0 (clamped-clamped case) or 5 1
(clamped-free case). Noting that

(A.3a)

(A.3b)

for all

_
E U, we get the energy estimate

(A.4) Illulllk o(t2) in the clamped-clamped case.

Further,

(A.ba)

and thus by interpolation,

(A.5b)

Next, writing

11 ( )) 11 {1 T--i-be(J)(1) 0
v- 1 + e(j)(T (J)(T) + t(i+)(T) dT

and using the Cauchy-Schwarz inequality, we get

/ 2el/(A.6) ]z0(j)(1)l 2 <
2

[@(J)(T)] 2 dT+ (T)] 2 dT.

Substituting e- ti/2 and recalling (A.3a), (A.ba), and (A.bb), we have

(A.Ta)
(A.7b)

I(1)1 _< ck=t-1/allllll,

By (A.2), (A.3a), (A.3b), (A.Ta), and (A.7b) we get as a counterpart to (A.4),

(A.8) Illulll o(t/a) in the clamped-free case.

By (A.3), (A.4), (A.5), and (A.8) we further get the a priori estimates

Ilulll, O(t2-), ]lvlll,z O(t2-), Ilwll,z O(t(--2)/2), 0 < < 2,

with a as in Lemma A.1. Applying these results in the Euler equations

(A.9a) u" 1/2k2(1 u)u- 1/2k(1 + u)v’- uw’,
(A.9b) v" c {t2hl 6k((1 -4- u)u’ + 2(kv + w)) + kt2 ((2 u)w" k2w kv) }
(A.9c) w(4) h2 + 2k2w" k4w + k(2 v)v" k3v 12t-2(u + kv + w),
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where c -1/(2(1 v)(3 + t2)), we get the a posteriori estimates for Ilul12,i IIv}12,i
and lwl14,i. Finally, differentiating in (A.9), the proof is completed by induction and
interpolation. D

Proof ofLemma A.2. Let u e/d be such that u v 0 and w -Wo(l).p(l),
where in the clamped-clamped case

p(Ol) (--t-’/2c1(1--c1) (CO8--1/201(1 1) 4- sin t-1/2Cl (1

and in the clamped-free case

p(Cl) e-t-1/2 (cos t-i/2 + sin t-/2l).

Then t2,4(u, u)+ B(u, u) O(tl/2) and since Uks minimizes in ld this functional,
we get the a priori estimates

Applying these results in Euler equations (A.9), where now and in the sequel h
h2 0, the assertion with I1" II I1" IIs,I follows. Noting that (A.6) holds with 1 and
@ replaced by any ( E I and smooth function g, the second part of the assertion
follows by recalling the Sobolev-norm estimates already obtained.

Proof of Lemma A.3. In this proof we use the notation (u, v, w) ,-- (Uks, Vks, wk).
Furthermore, we make change of variable c .-- 1- c so as to switch the clamped
and free ends.

By (A.6) and Lemma A.2, w(0) (9(1). By the same argument u(J)(0) (.9(1)
for j 0, 1 and v(J)(0) (.9(1) for j 0, 1, 2. Taking into account equations (A.9),
the natural boundary conditions

(A.10) ,,(0) (.(0)+ v(0)), (0) (- )(,(0)+ ,(0)),
and the equation

Cl

u’= -vw k(1 ,) fl2(T) dT- kv

obtained from (A.9a) using the boundary condition fl (0) 4- fl22(0) 0, it is enough
to prove that w’(0) O(1). Substituting the last equation into (A.9c), we get the
equation of the form

(A.11) w(4) + 4Aaw g, where A (3(1 ,2)t-2 + 1/4ka) 1/a (O(t_l/2)

and where by Lemma A.2, g satisfies the estimate;

max {Ig()l + Ig’()l} o(-=).
e[o,]

By (A.11) and (A.10), we have

(A.12) W(O/1) a(3) (o{1). w(O) 4- a’!(01). w!(0) 4- b(al), where
1

(sin Aa cosh Aa cos Aa sinh Aa),

b(/= ( -(0 e- + ’(1. "(o/+(/ ,,,(o).
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By (A.10), w"(0) O(1) and, also applying (A.6), w’"(0) O(t-1/2) at most. Taking
into account that w(1)- --w0k(1) and w’(1) --(w0k)’(1), it follows from (A.12) that

[w(0)] [ a(3) (1) -a"(1) l [b(1)+w0k(1) ](A.13) w’ (0) -2 cosh-2 A -(() (() ’(1) + (0)’(1)

Noting that a(4)(al) -4A4a(al) and also that a(3)(0) 1, we have, integrating by
parts,

g(0)a(3)(1) + O(tl/2ea)b(1) 4A4

On the other hand, b’(1) g(O)a(1) + O(e), and thus

-a(4)(1)b(1) + a(3)(1)b’(1) 4A4a(1)b(1) + a(3)(1)b’(1) O(e2A).

The assertion follows now from (A.13). D
We prove finally the energy estimate (5.5) for the solution of (5.4). In the same

way as above, the solution of (5.4) can be expanded into Fourier series

uX ---E vk(Ol’ C3)COS ko2, vk((l, 03)sin ka2, uk((l, O3) COS ko2)
k=O

+ E(Uf(al’ a3)sin kc, -Uk(al, a3) cos kay, U:k(al, aa)sin kc).
k=l

Each component (Uik, Uk, Uk) E ,2D satisfies the variational equation

where (-t/2, t/2), t I , e_ is the strain tensor corresponding to V,

ell TI,1,
e12-- (-x.kVl z_ V2,1),

(V1 -- V3,1e13 ,3 ),

e: x(kV + 1/2),
(v, x(v + v)),

e33 V3,3,

and finally

(_gX(a3 12(1 u)aS(1)t 0, a3 + 2a32 -, k
2 8

Above, is the Fourier component of corresponding to f.k. Due to the orthog-
onality of the basis functions, (5.5) holds if we prove the following.

LEMMA A.4. I[IuXI[12D (9(t).
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Proof. It follows from Lemmas A.1 (in the spirit of (A.6)) and A.3 that indepen-
dently of X,

(A.14) IIqXIIL() o(t/),

Further, we obtain easily the estimates

(A.15a)
(A.15b)

IIVIIL:<) --< II,IIL:() --< ckt/lllVIIl,

for all V E 2D. Then, if V E 2D, let

e(-, 1/2):=J.

Using the Korn inequality, we get

9f 1
(V1,3 -- g3,1 )2 g,.2(Vl + + ,)

/ (712,1 + t--2(1,3-- 3,1)2 + t--43)dal d3
J

__> ct (lll,/xj + 1321,IxJ)
3,1 + t4V3) dal da3,

where c is independent of V and t. Thus,

(A.16) IIVa,llls.() _< Ct-1/2 IIIVIIl.v, Y e u=v.
Proceeding as in (A.6), we have

2e /IV (T, o3)12 dT.It(1, aa)l _< 2 I(T, c3)12 dT + - ,1

Then, integrating with respect to a3, recalling (A.15) and (A.16) and substituting
e=l if i=2 ande=t ifi=3, weobtain

live.(1, ")IIL.() -- cktl/=lllVIIlD, IIV3(1, ")IIL.() --< ckelIIVIIID

for all V /2D. The assertion now follows from these inequalities, together with
(A.14).
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WEAK SOLUTIONS OF SOME QUASILINEAR ELLIPTIC EQUATIONS
WITH DATA MEASURES*

NOUR EDDINE ALAA? AND MICHEL PIERRE?

Abstract. Existence and uniqueness of weak solutions for some quasilinear elliptic equations with data
measures and arbitrary growth with respect to the gradient are studied. Usual techniques based on a priori
L-bounds for the solutions and its gradient do not apply so that a new approach is needed. Various
necessary or sufficient conditions are obtained on the data for existence. Relationship between existence of
supersolutions and solutions is considered. Finally, sharp uniqueness results for weak solutions are given.
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1. Introduction. This paper describes some results concerning existence and
uniqueness of weak solutions for equations of the form

(1.1) au-Au=j(x,u, Vu)+Af, u-->0 onO

(1.2) u=0 on t12,
where f is a bounded open set in E n, a, A are nonnegative real numbers, j" f I x E -[0, ) measurable and continuous with respect to u and V u, and f: f-[0, ) a
nonnegative integrable function or, more generally a given finite nonnegative measure
on f. We are particularly interested in situations where f is irregular and where the
growth ofj with respect to Vu is arbitrary and, in particular, larger than IVul for large
IVul. The fact that f is not regular requires that one deals with "weak" solutions for
which Vu and even u itself are not bounded. As a consequence the techniques usually
used to prove existence and based on a priori L-estimates on u and Vu fail. Let us
make this more precise on a model problem like

(1.3)
u W’P(f),
au-Au=IVulp+hf onlY,

where[. denotes the -euclidian norm and p > 1.
If p _-< 2, the method of sub- and supersolutions can be used to prove existence in

(1.3) if f is regular enough. For instance, if a>0 and f L(f), then (1.3) has a
solution since Ul-=0 is a subsolution and u2=-[[f[l/a is a supersolution (see, e.g.,
[10], [4], [3]). The situation is quite different if p > 2: for instance a size condition is
necessary on hf to have existence in (1.3) even iff is very regular. If a 0, the situation
is even more different since the critical value is then p- 1. Indeed, as proved in next
section, existence in (1.3) with a 0 and p > 1 requires that f be small enough and
regular enough.

It is proved in Lions [12] that, if (1.3) has a nonnegative supersolution in Won’t(12),
then (1.3) has a solution (no matter the value of p). Note that here the supersolution
is required to vanish at the boundary. This provides an a priori pointwise estimate for
Vu at the boundary. The boundedness on Vu on the whole set f is then obtained by
a maximum principle applied to the equation satisfied by [Vu[ 2. The convexity of r [rl p
is there an essential ingredient.
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Obviously this approach fails to provide existence when f is not regular enough
to expect Wl’-solutions and new techniques have to be used. We describe some of
them here.

Another difficulty is that uniqueness does not hold in general for weak solutions
(although it does for regular solutions): iff-=0 and is a ball, (1.3) can have nonzero
solutions (see 3). Moreover, they are not regular: this proves that, even for good f,
good a priori estimates can only be obtained for some of the solutions.

We prove in 3 that uniqueness of solutions of (1.3) hold if and only if p <
N/(N-1) and that uniqueness of "strong" (i.e., in W1’) solutions hold. Section 2
is devoted to necessary conditions on the data to get existence of weak solutions in
(1.1). Section 3 deals with uniqueness. Section 4 presents an existence result based on
an isoperimetric inequality, for linear growth and any finite measure f In the last
section, we prove that existence of weak supersolutions implies existence of weak
solutions in the case of (sub)quadratic growth. The difficulties in this section are similar
to those in [8], and the techniques are of the same spirit.

2. Necessary conditions for existence. Throughout this paper, we denote by 1 a
bounded open set in N with regular boundary. In this section, we are given

(2.1)

and

f a nonnegative finite measure on

j: ) xN ._) [0, OO[ such that

(2.2) j is measurable, a.e. x, r-j(x, r) is convex, continuous,

(2.3) Vr

(2.4) j(x, 0)=rain {j(x, r), r [N} 0.

For A , we consider the problem

(2.5)
u W’(I)), j(., Vu) 6 toc(n),
-Au>=j(.,Vu)+hf in @’(f).

We first state that, if j(., r) is superlinear at infinity, then there exists h*< ee such
that (2.5) does not have any solution for h > h*. Moreover, f should also be regular
enough. A rather sharp superlinearity condition on j is given next where the x-
dependence is taken into account. We assume

(2.6) there exists to open in f and J: - [0, oe) convex, continuous with J(0)=
J’(0+) :0

and

(2.7) j(x, r) >= J(Irl) a.e. x to,

+o ds
(2.8) j(s---< oe,

(2.9) f,of>O.
TheOReM 2.1. Assume (2.1)-(2.4), (2.6)-(2.9) hold. Then there exists A* < c such

that (2.5) does not have any solution for A > A*. Moreover, when (2.5) has a solution,
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then for all nonnegative q in C(to),

where J* is the convex conjugate function of J.
Remarks. The growth condition (2.8) is sharp (see remarks in 3). The introduc-

tion of to allows the growth ofj(x, r) in r to depend on x. In particular, j(x, r) can be
sublinear for some x. However, it should be superlinear on some part of the support
off. Examples can be easily constructed in dimension 1, showing the necessity of (2.9)
(see [2]).

The condition (2.10) is at the same time a size and a regularity condition on f. It
is similar to those obtained in [6] for semilinear problems of the form "-Au u p + Af".
We refer to [6], [1] for various discussions on the meaning of (2.10) (in particular for
the power case) and for its relationship with nonlinear capacities.

Proof of Theorem 2.1. Assume u is a solution of (2.5). By (2.5)-(2.7), we have

(2.11) -Au>-J(IVul)+AT in @’(to).

Let C(to), =>0. Multiply (2.11) by and integrate to obtain

(2.12) ,A I, qf-< f VuVq- qJ(,Vu,)_-< f, q[,Vu, ’Vq---[ J(lVu,) 1
If we recall that the conjugate function of J is defined by

(2.13) Vsu, J*(s)=sup{as-J(a),aff},

we see that (2.12) implies

.(2.14) Vp C(to),

This proves (2.10).
Let us now prove that this implies that A is finite (whence the existence of A*).

By density, (2.12) and (2.14) remain valid for p W’(to). By (2.14) and (2.9), the
existence of A* as in Theorem 2.1 will be proved if we can construct q such that

(2.15) q Wo’ (to),cp>0 on to, CJ*(Ivl/o)<.

Without loss of generality, it can be assumed that to is a ball and, by translation, the
ball B(0, e). We set

F(r)=
J(s)+M’

where M > 0 is chosen large enough so that (see (2.8))

r/= F(+)_<- e.

We then introduce

x(r)= F-’(r),x: [0, r/) [0, c),

1

(2.16) ((x) J(x(lx[))+ M
0

0 <- r <-

rl<=r<--e.
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Writing q(x)= h(Ixl), we check that

h’(r) -h(r)J’(x(r))

I qJ* tON rN-’h(r)J*(J’(x(r))) dr.

But, J*(J’(x(r)))=x(r)J’(x(r))-J(x(r) so that

I<tONr N-1 -h’x-hJ(x)=tONr- [hx] r= -t- h(x’-J())

Using (2.16), lim s/J(s) 0, X’= J(X) + M, we deduce

I N-M h(r) dr < +.

This proves (2.15) with B(0, e) and Theorem 2.1.
We now look at the problem (1.3) when > 0. As noticed in the introduction, if

f is regular and 1 < p < 2, then (1.3) has a solution. In other words, no size condition
is required on However,

-a regularity condition is required on f as soon as p > 1,
-if, moreover, p > 2, then a size condition is also required.

This is the purpose of the two following results stated for data j satisfying (2.1)-(2.4)
and

(2.17) p > 1, C, C> 0, j(x, r) Cllrlp C.
We consider the following problem when 0:

(2.18) u

(2.19) u-u ej(., Vu)+ af in ’(a).

Pooso 2.2. Assume (2.1)-(2.4), (2.17) hold. Assume (2.18), (2.19) has a
solution for some > 0. en the measurefdoes not chaNe the sets of W’P’-capacit ero.

Remark. We recall that a compact set K is of W’P’-capacity zero if there
exists a sequence of C-.functions greater than on K and converging to zero in
W’p’. The above statement means that

(2.20) (K compact, W’P’-capacity (K)=0)[ f=0.
K

Obviously, this is not true for any measure f as soon as N > p’ or p > N(N- 1) (see,
e.g., [7] and the references there for more details).
Pooso 2.3. Assume (2.1)-(2.4) and (2.17) hoM wich p > 2. en there exists

* < such that (2.18), (2.19) does not have any solution for > *.
Proof of Proposition 2.2. From (2.19), (2.17), we get the following inequality:

(2.21)

Let K be a compact set of W"’- capacity zero and , on a sequence of C-functions
such that

(2.22) q,>-I on K, 0<_-q,_--<l.
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Multiplying (2.21) by Xn qP’ leads to

We use VX, =p’P’-Vn and Young’s inequality to treat the last integral above:

Due to (2.22), passing to the limit in (2.23), (2.24) with e small enough easily leads to

(2.25) Af f0.
K

ProofofProposition 2.3. Let us consider a nonnegative function W’(O) such
that there are constants k, k2 with

(2.26) kt d(x, 60) (x) k2 d(x, 60) Vx .
Let us also introduce the solution of

0 Wo’
-A0= on .

Multiply inequality (2.21) by and integrate by pas to obtain

Again we prove, as in Theorem 2.1, existence of * by showing that the last integral
is bounded. But due to (2.26), -P’ is integrable on if p’-1 < 1 or p > 2. On the
other hand, V 0, V are in L(O).

Remark. A sharper result can be obtained in the same way for functions j satisfying
j(x, r) CJ(lr])- C:, where J is a convex function such that , J*(C/)< for C
large.

3. An existence result for any finite measure.
TOM 3.1. Letj sati@ (2.2)-(2.4) and assume there exist C in L+"(), > 0

and C2 in L(O) such that

(3.1) p.p.x Vr j(x, r) C(x)lr[+ C(x).

en for all O, all finite measure f and all A , the problem (2.18), (2.19) has a
solution.

The main ingredient in the proof is the isoperimetric inequality that we use under
the following form (see, e.g., [13], [14] and the references there).

LzMa 3.2. Let u W’(O). en

(3.2) -d I-I>,

where is the measure of the unit ball and

(3.3) (t) measure {x : lu(x) > t}.
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Proof of Theorem 3.1. We regularize the problem (2.18), (2.19) by taking regular
functions f converging to f in the sense of measures, j (x, a regular approximation
of j(x,. satisfying (3.1) uniformly. Then, for all e > 0, there exists u solution of

lcx

(3.4) u Wo’ (f),
(a+e)u-Au=j(x, Vu)+Af in f.

Indeed, the constant function AIILII)/(/) is a supersolution of (3.4), and a
subsolution is given by w solution of

(3.5) w W’(O),
(a + e)w

which satisfies w A llLIIm)/( + e). Since the growth of j with respect to r is
subquadratic, the classical theory applies (see [4])" there exists u solution of (3.4).

We will prove the existence of M independent of e such that

(3.6) f Vuq M, q (N + )’.

Let us first show how the existence of u solution of (2.18), (2.19) follows from (3.6)
by passing to the limit in (3.4). From (3.6), since u 0 on , we first deduce

u ’ M1, independent of e.

From (3.6) again and (3.4), (3.1), we obtain IIull M,. This yields compactness of
u in w’r() for all r < N/(N- 1) (this can be obtained by duality of the compactness
of h v from Lr() into L(O) for r> N, where v is the solution of

v

See, e.g., [11], [9]). We then pass to the limit in (3.4) to conclude.
We now drop the e-dependence in (3.4) to make estimates on Vu and reach (3.6).

For 0 < < + h, we introduce the function z(. defined by

1 rt+h,
(r-t)+/h trt+h,

(3.7) z(r)=
0 Or t,
-z(-r) r<0.

We multiply (3.4) by z(u) and integrate by parts to obtain

Using the growth assumption (3.1) and the definition of z, we deduce

I f ’Vu’2 < f CllVU’+ C2+A[lfllL’()<Cq (I ]vulq)
1/q

+C,(3.8)

where q=(N+n)’=N/(N-1)-e(n), e(n)>0, Cq=llC, ll+, and C=
llCll,m)+Xllf[lm). We now assume N2 so that q<2 and use that

1
iVulO iv.i .(t)-.(t+h) (2--q)/2

(3.9)
t<ll<,+h ,<ll<,+h h

1
Iv.l ivulq .(t)-.(t+h) (.--l)/q

(3.1o)
,<<,+h ,<<,+h h
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where /x( t) measure ([lul> t]). We take the qth power of (3.10), multiply by the
square of (3.9) to obtain

Ivul Ivul ----< [Vul2 br(t)-Ix(t+h)
<lu]<t+h t<lul<t+h <lul<t+h h

We now plug (3.8) into the above inequality, and by letting h go to zero, we obtain a
differential inequality for g(t) l,l>t Iv ul, namely,

d
IVul (_g,(t))(Cqg(t)/q+f)q(_,(t))(Dqg(t)+D)(_,(t)).- l>t

By the isoperimetric inequality (3.2), this also gives

g’(t) + Cg(t)’(t)(t)--/-’(t)(t)--/

with C Dq(N S)-q, A Da(Nw S)-q. This can be rewritten as

d (e_k(t) d AN N-
> 0, ka CN.g(t))[e-k"t)] a 1 q

dt N

Integrating from t=0 to t= Ilull leads to (using

Since/x(0) <= I1, this yields

e_k.(O,g(O < h
CN

q ekll,, A
C’

which is (3.6). The adaptation is obvious if N 1.
Remark. It is very likely that (3.1) can be replaced by a more general condition

of the form

j(x, r) <= C1J( r) + C2

where (ds/J(s)) (see (2.7), (2.8)). But adapting directly the above proof to that
case does not seem straightforward.

4. About uniqueness of weak solutions. Although uniqueness and order-preserving
hold for regular solutions (say, in W’) of (2.19), they completely fail for solutions
in the weaker sense (2.18), as proved by the following simple examples.

Example 4.1. Let N > 2, II B(0, 1) and u(x)=-(N-2) In Ixl. Then
u wU(),

(4.1)
-Au=lVul inf,,

and u 0 is also solution of (4.1).
Example 4.2. Let N > 1, f B(0, 1), p > N/(N 1), p 2, and

(p-)u(x)-c(1-1l) with a-(p_l), aC=N-2+a(>O).

Then

(4.2) u w,.(a),- au Iv,,["
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Next, we make precise the class of solutions for which order-preserving and
uniqueness hold. We consider the following problem wheref,j are defined in (2.1)-(2.4)
and a -> 0:

(4.3)

(4.4)

U E w’l(), j( *, Vu) E L’(I),
au-Au=j(.,Vu)+f in ’(f).

We call subsolution (respectively, supersolution) of (4.3), (4.4) a function u satisfying
(4.3) and (4.4) with "=" replaced by "=<" (respectively, >=). We will say that u is a
regular subsolution, supersolution, or solution of (4.3), (4.4) if, moreover,

(4.5) ::le>0, zIELN+(,RN), (x)EcSj(x, Vu(x)) a.e. xEf,

where 6j(x,. is the subditterential of j(x,. ).
THEOREM 4.3. Let u be a supersolution of (4.3), (4.4), and. let be^ a r,,egular

subsolution of (4.3), (4.4) associated with j, f satisfying (2.1)-(2.4) andj>-j,f>=f Then
u>=.

COROLLARY 4.4. Under assumptions (2.1)-(2.4), regular solutions of (4.3), (4.4)
are unique. Moreover, the regular solution is the smallest solution when it exists.

COROLLARY 4.5. Assume (2.1)-(2.4) and

(4.6) lp<
N

C,, C2>O,j(x, r) <- C, Irl +c.(- 1)’
Then solutions of (4.3), (4.4) are unique.

Remark. According to Examples 4.1, 4.2, the condition p < N/(N-1) is sharp
for the uniqueness of (weak) solutions of (4.3), (4.4). So is the assumption on ti in
the next lemma.

LEMMA 4.6. Let E LN/(f, R), e > O, and w a solution of
(4.7) w E W’(12), Aw E L(f),
(4.8) aw-Aw<-’Vw in @’(f).
Then w <-- O.

Remark. Similar results can be found in [11] for wE W’2(f) in a quite more
general framework. However, the weaker assumption wE W’ makes a significant
difference. Note that wEWo’ and AwEL imply that wEW"p for all pE
1, N/(N- 1)[ (see, e.g., [9]). It follows that ti. V w is in L1+" for some r/> 0.

Proof of Lemma 4.6. We give here a direct proof using the same isoperimetric
inequality as in 3. First, by elementary regularization argument, we prove w/

E W0’(O)
and

aw+-A(w+)<--.V(w+)=.Vw ltw>o] in 9’(12).
In other-words, w >= 0 can be assumed in Lemma 4.6, without loss of generality.

Letf, be a regular smooth approximation in L(f) of aw-Aw. By classical results
(see, e.g., [9]), the solution of

w. w,(n) c(n),
(4.9)

converges in W"v to w for all p[1, N/(N-1)] (note that this requires uniqueness
for the Dirichlet problem in W’I()). Multiplying (4.9) by z(w,), where z is defined
as in (3.7) leads to

t<wn<t+h
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Passing to the limit, we obtain that V w L2([ < w < + h]) and

(4.10)

where p=(N+e)’=N/(N-1)-,(e), V(e)>0 and c= Ilall+. We now assume
N2 and argue exactly like in the proof of Theorem 3.1 (see (3.9), (3..10)). We use

1
ivwl(4.11)

,<w<,+h ,<w<,+h h

f (f )l/P((t)-(t+h)) (p-1)/p

(4.12)
,<w<,+, ,<w<,+, h

where (t)=measure ([w> t]). We take the pth power of (4.12), multiply by the
square of (4.11) and use (4.10) to obtain

t<wt+h t<w<t+h wt h

By letting h go to zero, we obtain a differential inequality for g(t) Jw>, lwl p, namely,

(4.13) - >,

(-g’()) N Cg(t)(-

By the isoperimetric inequality (3.2), this writes

or

d N-1
>0, =c/.dt

(e-"(’g(t))NO, p
N

Since () g() 0, this implies g(0) 0, that is,
W’(). The adaptation is obvious if N 1.

Proofofeorem 4.3. By difference between (4.3), (4.4) applied to u and a, we have

(4.14)
Since is a regular solution and bythe convexity ofj(x, ), there exists e L+(,)
such that

Since j(., Vu)Nj(., Vu), we obtain from (4.14), (4.15),

(a- u) -(a u) a(a- u).

Therefore, w -u satisfies the assumptions of Lemma 4.6. The conclusion follows.
Proof of Corollary 4.4. It is a direct consequence of Theorem 4.3 and definition

(4.5) of regular solutions.
Proof of Corollary 4.5. It is sucient to prove that any solution is regular in the

sense of (4.5). Since, for all r, s e N,
j(x, r+ s-j(x, rl e j(x, rl s,

we deduce from (4.6) that

(x, . clr+ + c
and

(4.
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Now, if u is solution of (4.3), (4.4), then VuLq() for all q[1, N/(N-1)[. But
from (4.16),

[6j(x, vu)[+ -<_ clvul("-’(+ + c.
Since p < N N 1 ), p 1) N + e < N N 1 for e small enough. This yields (4.5).. An existence result for (sb)qdmtie growth. We consider here the more general
problem

(5.1) u6 Wlo"(l), j(’,u, Vu)6Lloc(l),

(5.2) -Au =j(., u, Vu)+f in ’(f),

where f is as in (2.1) and j: 1 xu [0, oo) satisfies

(5.3) j is measurable, a.e. x, (s, r)j(x, s, r) is continuous,

(5.4) j is nondecreasing in s and convex in r,

(5.5) j(x, s, 0)= min {j(x, s, r), r N} O.

As proved in 2, if j is superlinear in r, existence does not always hold since a
size condition is required on f A natural question is whether the existence of a
nonnegative supersolution implies existence of a solution. This is well known in the
"regular" case when moreover the growth ofj is at most quadratic. However the proof
relies on a priori W’-estimates for the solution. This cannot be expected when f is
only a measure. Therefore, a quite different technique has to be used. This is what we
do next whenj is at most quadratic. The same question remains open for superquadratic
growth.

We will assume

(5.6) j(x, s, r) <= c,([sl)(lrl / 1)

(5.7) C: [0, o) [0, ) is nondecreasing.

THEOREM 5.1. Assume (2.1), (5.3)-(5.7). Assume there exists w in W’2(Y) such that

(5.8) -Aw>=j(., w, Vw)+f in @’(1).

Then, there exists u solution of. wU(a)
(5.9)

-Au =j(., u, Vu)+Af in ’(1)

for all , [0, 1 ].
For the proof of Theorem 5.1, we introduce regularized versions of (5.9) with

smaller j, with linear growth. The corresponding solutions u,which exist by 3are
such that

0 <- u, <- Un+ <- W.

For this, we use the monotonicity result of the previous section. The convergence of
u, to a solution of (5.9) will then follow from the next two lemmas.

LEMMA 5.2. Let u W’(f), v w’Z(f) such that

(5.10) 0 <-u<=v in 1, O<-_-Au.
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Then, u W"2(1) and

(5.11)

12Remarks. If v W,;(f) only, (5.11) can be replaced by local estimates.
Obviously Lemma 5.2 will provide W’-estimates for the approximate solution

u.. But, we need a strong convergence in W’ to pass to the limit in the nonlinear
terms. It will be a consequence of the following lemma.

LEMMA 5.3 Let U W’2(’-) converging weakly in Wo’ (1) to u and such that

(5.12) Ouu,-uO in ’().

en u, converges to u strongly in W’(O).
Proof of Lemma 5.2. Let u, be a sequence of regular functions converging to u

and such that -u, 0. We write

The result follows.
Proof of Lemma 5.3. We write

Iv(-): vv(-)- vv
and we bound the last integral as follows:

We now use the W’-weak convergence of u, towards u to conclude.
Proofofeorem 5.1. For n 1, we introduce j,(x, s,. the Yosida-approximation

of j(x, s,. ), which increases pointwise to j(x, s,. as n tends to and satisfies

(5.13) j, IIj,,(x, s, )1] n

where j, denotes a section of the subdifferential of j, with respect to r. Then we set

(5.14) j(x, s, r)= j(x, s, r). ltw<,,
where w is defined in (5.8). We check that j, satisfies (5.3), (5.5), is convex in r, and

(5.15) j,j.ltw<,,
We consider the sequence defined by

(5.7) u.+, w,’(o), -au.+, =j.(-, u., Vu.+,) +

Let us prove by induction that

(5.18) u, min (w, n) for all n.

Indeed, if w, min (w, n), from (5.8) we easily deduce that

(5.9) aw. j(., w., Vw.). tw<.+
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For n 1, -A(w u) _--> 0=:> u --<_ wl. Let us assume un ----< wn. Then, from (5.19) and the
monotonicity ofj in s, we have

-Aw, =>j(’, u,, Vw,)" l[w<,+ Af" l[w<,],

which by (5.13) implies

(5.20) -Aw, =>j,(., u,, Vw,)+ Af. ltw<,.
Now, the monotonicity result of Theorem 4.3 can be applied with the function
J:(x, r)-L(x, u,(x),r), which satisfies (2.2)-(2.4). For this, we have to check that
u,+ is a regular solution of (5.17), that is, (see (4.3), (4.5))

(5.21) J(’, Vu,+l) LI(),

(5.22) Jr(’, Vu.+,) e LU+(fl, ).
Since J is linear at infinity by (5.13), (5.21) comes from u. e W’(f/). Now by definition
ofj.,

whence (5.22). Therefore, Theorem 4.3 applies and we deduce w, -> U,+l, which proves
(5.18) by induction.

By Lemma 5.2 and estimate (5.18), un is bounded in Wo’2(l)). Therefore, there
exists u in W’2(I) such that (up to a subsequence)

(5.23) u,- u strongly in L2, a.e. and weakly in W’2.

By Lemma 5.3, the convergence holds strongly in W’.
We will now pass to the limit in (5.17). We only have to prove that

(5.24) j,( ,j(’,U, VU).

The convergence holds almost everywhere in (5.24) (up to a subsequence) by construc-
tion of j. and by strong convergence of u. and V u. in L2(). Since

for all t>0,

fu o, 0o(5.25) IJ.(" u,, Vu,+I)-j( u, Vu)l

On the other hand, multiplying (5.17) by u, leads to

fu.J.(’,u.,VU.+l)<= fVu.Vu.+,<-C (independent of n)

Therefore, for e > 0 there exists t (e.g., t C/e) such that

dn

By Fatou’s lemma, we also have

(5.27 j
U>

But (5.25)-(5.27) imply (5.24). This finishes the proof.
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Remark. A natural question is now the following. Let p > 2. Assume there exists
a solution of

w -Aw_-> Ivwl" +f.
Then, does there exist u solution of

(5.29) u W’P(II), - Xu IVul +f?.
Essentially, the approach above applies except for Lemma 5.3" we do not know

whether it extends to p > 2. Therefore, strong convergence of u, in WI’p is lacking.
The limit u that is obtained is only a supersolution of the problem. The existence of
such a supersolution is actually a very general fact, as proved in [5].

Remark. We refer to P. L. Lions [Journal d’Analyse Mathdmatique, 45 (1985), pp.
234-254] for results related to those in {} 2.
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EXISTENCE OF GLOBAL WEAK SOLUTIONS TO THE DYNAMICAL
PROBLEM FOR A THREE-DIMENSIONAL ELASTIC BODY WITH

SINGULAR MEMORY*

HAMID BELLOUT, FREDERICK BLOOM$, AND JINDRICH NECAS

Abstract. A three-dimensional elastic body with memory is considered, for which the memory term is
generated by a singular but integrable kernel; the existence of a global weak solution to an associated
initial-boundary value problem is established by constructing Galerkin approximations and deriving suitable
energy estimates.

Key words, singular viscoelasticity, energy estimates
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1. Introduction. In spite of intense efforts by many outstanding mathematicians,
most questions concerning the global existence of both weak and classical solutions
to the mixed problem, with large data, for the nonlinear wave equation governing the
evolution of the displacement vector u in an elastic body, i.e.,

(1.1) P Ot Ox
=pf/, i=1,2,3,

remain open. Equations (1.1) are set in an open domain

_
R’, n->_2, with e0-

1/2((Ou/Oxy) + (Ou/Ox)) the components of the infinitesimal strain tensor. The evolution
equation (1.1) reflects only the presence of an instantaneous elastic response governed
by the stress tensor that applies in the case of small strains, namely,

OW
(1.2) i

Oei
where W W(ey), the stored energy function, is supposed (as it will be in this paper)
to be twice continuously differentiable, with bounded second derivatives, and positive
definite, i.e., for some a 0 and all symmetric n x n matrices,

O2W
ijl I1 11 =,(1.3)

OeiO
We also suppose that W(0)=0 and (0 W/Oeo)(O)=0.

For dynamic nonlinear elasticity problems of the type (1.1) in one-space dimension
it is well known, e.g., Lax [16], Klainerman and Majda [17], that solutions develop
singularities in finite time even for data that are small and compactly supposed;
existence of weak solutions for such problems follows from the recent work of DiPerna
18] and is based on compensated compactness arguments. For spatial dimension n 2

there are many paaial results for the dynamic problem, e.g., local (in time) existence
of classical solutions 19] and formation of singularities in finite time; excellent surveys
of progress to date on problems involving but small and finite strain may be found,
for example, in the expository paper [20] and the text [21].
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In this paper we consider an elastic material with memory for which the Cauchy
stress has the form

(1.4) o’0 cr/ + o’/
In (1.4), r is still given by (1.2), while

(1.5) 0"2=- h(t-r)
OV

Oe--- (e(’)-e(t)) dr,

with V V(e) an energy function possessing bounded second derivatives and positive
definite, i.e., for some/3 > 0

O:V
_-> II ll =(1.6)

OeoOekt
for all symmetric n n matrices ; as was the case with the stored energy function W,
we also assume that V(0) =0 and (OV/Oeo)(O)=O. The kernel h(t) in (1.5) is singular
but integrable and assumed to have (a nonlinear version of) a form due to Boltzman,
namely, h(t) Aho(t) with ho(t) -a(t) + r(t), 0 < v <, and A > 0. Both a(t) and
r(t) are suciently smooth, decreasing, nonnegative functions on [0, ) with a(t)> 0
in some neighborhood of the origin. We suppose, additionally, that o h(r)dr<
Moreover we take the density p 1, which opens the door to the possibility of using
a Galerkin approximation scheme, and we employ throughout the Langrangian descrip-
tion of the motion relative to the Cartesian coordinates x.

Elastic materials with singular memories of the type described by (1.5) have been
considered in several recent pieces of work, e.g., Londen 1], Renardy [2], Hrusa and
Renardy [3], Hannsgen and Wheeler [4], Hrusa and Renardy [5], Hrusa and Renardy
[6], and Renardy [7]. In [1] the author establishes the existence of weak solutions to
an abstract integrodifferential equation; the result applies to the one-dimensional
viscoelastic model equation

(1.7)

provided @ and the memory function has a singularity that is stronger than
logarithmic In [2] it is shown that certain singular kernels do not permit the propagation
of singularities and have a smoothing effect; these ideas were fuher expounded upon
in [3], all within a one-dimensional framework. The authors in [4] consider the constant
coecient linear problem on a bounded domain and show that the evolution operator
is compact for positive time if and only if the kernel of the integral operator is singular;
results such as these, of course, point towards the fact that the models with singular
kernels should have nicer existence properties than those with regular kernels. In [5]
local and global existence in time (for small data) is established for the history-value
problem associated with (1.7) when a’(t) -t-", 0< < 1, as t-0+; the equation (1.7)
is approximated by equations with regular kernels, and energy estimates are used to
prove convergence of the corresponding approximate solutions. The work in [6] differs
from that in [5] in that (t) is allowed to have an integrable singularity at =0, and
local (but not global) existence of regular solutions for small data is established. In
[7] the author provides an alternative existence proof based on coercive properties of
the linearized problem; global existence for small data and local existence for large
data (of smooth solutions) is proved for a(t) having a singularity at 0 at least as
strong as a negative power of t. We note, in passing, that viscoelastic response, of the
Boltzmann variety, governed by kernels that are singular at zero, has been noted by
several investigators in the area of polymer physics, e.g., Doi and Edwards [8], Rouse
[9], Zimm [10], and Laun [11].



38 H. BELLOUT, F. BLOOM, AND J. NECAS

The method that we use in the work reported here is very close in spirit to that
employed recently by Milota, Neas, and Sveak [12], where the scalar equation on
cR

(1.8)

is studied, with h(t) e-’t-, a > 0, 0 < < 1. After the work was completed we
received a copy of a preprint of [13], where a model viscoelastic problem similar to
the one considered here is treated for a scalar displacement u (as opposed to our
vector u). In [13] analogous results to those obtained here are produced by use of an
entirely different approximation scheme, one that involves adding the term eAu to the
left-hand side of (2.2) and studying the limit of u as e 0 (i.e., by use of the viscosity
method).

We note here that the work in [13] is somewhat flawed: from Lemma A.2 in [13],
and the estimate ]]w-v]. C, therein, it follows only that ]Jv-v,
(s)+ for some C > 0 and not that Jv v. (s), uniformly in n, for some
: [0, 1][0, ), with (s)0 as 0, as stated by the author in equation (3.26) of
13]. The lemma following (3.27) is then correct, but vacuous, as one of the hypotheses,

i.e., (3.26) of [13], is not satisfied. If (3.26) in [13] is replaced by the somewhat weaker
statement alluded to above, a lemma corresponding to that which follows (3.27) in
[13] may be stated in a manner suciently strong, so as to salvage the rest of the
argument in 3 of 13].

Remarks.
1. It is well known (e.g., Coleman [14]) that, for a viscoelastic body of the type

under consideration here, the following condition must be satisfied: in an isothermal
process staing from equilibrium, the integral of the stress power around a closed
path in strain space must be nonnegative. In the present situation this condition is
equivalent to the statement that

tl
(1.9) ieq dt 0 Vei cl([to, t]), ei(x, to) ei(x, tl),

to
t (0 W/Oei)(e( t))k( t) dtwhere x . For such a closed strain path, of course, o

W(e(t))]’,=0; if we take a closed strain path ei C([to, t]) and extend it to the
interval [0, to) by setting eo(x t) eo(x to), for 0 < to, x , then we may compute
that

(t) h(-r) (e(r)-e.t)) dr dt
Oeij

fo" (;’ 0
V(e(r)-e(t)) dr) dt(1.10) h(t-r)

d h(t-) V(e(r)-e(t)) dt

and (1.9) is, therefore, satisfied.
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2. We emphasize here that the operator (O/Oxs)o is continuous in the same
topology, i.e., in L2((0, T); W1’2(11; R")) as (O/Oxs)o and is even compact in time;
this result will be established in the analysis that follows. A key point to be noted is
that the memory part of the stress tensor.r allows us to establish an estimate of the
form

(1.11) ][UIIw"/2,2((O,T).,W’.2(a.,R"))<= C(t),
for any T> 0, which, together with various energy estimates, and an interpolation
lemma, yields an estimate of the type

for 1/(1+ v/2)<a <1. The estimates (1.11), (1.12) are key ingredients in our global
existence result.

2. Galerkin approximations and basic estimates. We assume in all that follows that
l-I is a bounded domain, with Lipschitz continuous boundary 012, and begin by choosing
a basis {wi}il in the space W’2(fl; R"); a natural choice for such a basis would consist
of the set of eigenfunctions for the problem

( OW (0)Ou___k)+ hUi =0 in 12,
0

(2.1) Ox \OeijOekl OXl]

u W’(12; R").

In any case we suppose that the basis chosen is orthonormal in the space L:(12; R").

,_ 0___cr=f inQ=12x(O, oo),(2.2) //i-Ox o" o Oxs
(2.3) u=O on01)x(0, oo),

(2.4) u(0," I10, i(O, ") II

with u z W’2(; "), u z L(; "), is a function u L((0, ); W’2(fl; ")), for
which ti L((0, ); L2(D; R")),// L((0, ); W-’2(12; R")) and such that for
almost all T> 0, and all v W’(12; R"),

(2.5’ Ig iiividx+In ’*ijeij(v’dx+I eij(v) dx=f-z fividx.
T

In (2.2), (2.5)

(2.6) f L((0, oo); L2(12; [n)) (-] L2((0, oo); L2(12; R")),

while 12r (0, T) x 12. For integer k, the W’2 are, of course, the Sobolev spaces of L2

functions with square integrable derivatives up to order k, while the zero subscript
denotes those functions with vanishing traces on 012 up to order k-1; via duality
W-’2= (Wo’2) *. Spaces of fractional derivatives will be introduced below.

If we construct Galerkin approximations of the solution of (2.2)-(2.4) of the form
un-" Ek=l ei(t)wi(x), we then find that for all Wk, k 1, 2,... ,n and all > 0,

Iaii’]wki dx+ f O---W(e(u"))eis(w) dx
Oeo

(2.7)

In (fo h(t-r) O---V (e(u"(r))-e(u"(t))) d’) eis(wk) dx= Ifwki dx,
O eis

DEFINITION 2.1. A weak solution to the mixed problem
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(2.8) u,(O, )w/kdx Ia o k
I,[ W dx,

l’ f, ’wi dx"(2.9) /i(0,. )wf dx--- u

The problem (2.7)-(2.9) clearly possesses a unique solution on some interval [0, to],
and for this solution we may state the following.

LEMMA 2.1. For any T, 0 <= T < T, T being the maximal time of existence of the
solution of (2.7)-(2.9), the solution u satisfies, for some cl > O,

lla fa I f Ile(un(’))-e(un(t))’[2
dx dt d"I1" = dx+ W(e(u")) dx+ c

(2.10)

fu7 dx dt+ [[2dx+ W(e(u")) dx,

where

MT-. {(t, )10< < T, 0<< T, t-g< ’< t+, 5 > 0}.

Proof. We replace wk in (2.7) by fin and then integrate the equation over [0, T];
there results

I111dx- II"(0)l[ dx+ W(e(u"))dx

[ W(e(u"(O))) dx

(2.1)

Io f.(fo’ )dt h(t-r) O(e(u’(r))-e(u’(t))) dr e(u’(t)) dx
Oeq

dt d dr.

Denoting by u--(u,, u) the outer normal to OMT, where

MT {(t, ’)[0 < < ’, O< < ’},

we compute that for some cl > O,

0 OV
H(t_,r)_t(eij(un(t))-eij(un(7.)) Oe--(e( (,r)-e(u’(t))) dtd

MT

f h(t--)V(e(u"(r))-e(un(t))) dtd-

(2.12) h(t -) V(e((’))-e((t))),,ds

-I h(t-r)V(e((r))-e(n(t))) dtd-

->_ c,A f e(u"(’))-e(u"(t))lla
a4-i; it ,rl 1+,

dt d’r.
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Combining (2.11) with (2.12) we find the estimate (2.10). !-1
In what follows we will assume that besides (2.6), f satisfies the condition

(2.13) f folio llf(r)-f(t)l[2
ii-_; dtd-dx<

It follows from Lemma 2.1 that the Galerkin approximants u" are defined on the
entire interval [0, oo]. We now make the following definition.

DEFINITION 2.2. Let B be a Banach space, f(t) B, 0 < < T, and 0 </z < 1. Then
we define

(2.14) W’2((0, T); B): f L((0T); B) IIf(t)ll dt+ it_l,+=

IIfll 2 }W,2 00

and we have the following.
LZMMA 2.2. For each T> O, C*(T) > 0 such that the Galerkin approximants u

satisfy

(2.15) I1" -,o,);-",u")) C*(T),

Proof Let +6 W’2(f;"), and let R, be the projection operator mapping
W’z(; ") to the subspace spanned by (w,..., w"). Then

II()-(t)ll -,,2 sup

(2.16)
II+llw,.2,

sup [(7(r)-,(t))(R.+),dx.
IIllw,2

We now employ (2.7) so as to estimate the right-hand side of (2.16); it is sufficient to
look at the term in (2.7) generated by the memory portion of the stress , as the
estimates for the other terms follow in a straightforward fashion. We have

f fo’ --(e(u ())-e(u(tl)))dOVsup ei(R.) dx h(tl- )
OeiIIll w,2,

e() h (t-r)
(.7

i,j 0ij

h(t-.)(e(())-e((t))) d d

for some c > 0. For 0 < t < h < T, we may write the terms within the square bracket,
on the right-hand side of the above estimate, in the form

’h(s) OV
(e((_s))_e(.(t)))_Oe
OV

(e(u"(h-s))-e(u"(h))) ds.+ h(s) Oet2
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Using Schwarz’s inequality on the first integral in this last expression we find that

Iofo fo fo[" .’, ’2
(e(u t- s))-e(u"(t)))dx dt It- t2[ l+v Oeij

OV

-Oe---- (e(u"(t2-s)-e(u"(t2-s)-e(u"(t2))) as

f Ior Ioq dt2fo’ [[[e(u (fi-s))-e(u"(t2-s))l] 2(2.19) < c2(T) dx dtl ]tl- t2] 1+

+ lle(u"(h))-e(u"(t=))[l] ds

c3(T) forforf.’le(u"(t’))-e(u"(t))lldtldtdX,lt_t2l,+
while for the second integral in (2.18) we have the estimates

Oeo

(2.20). c4(r) h(s) ds Ile(( s)) -e(())ll ds
2

5 c,(r)[(tl t)+ (h )-] Ile(( s) -e(())ll &.
f2

However,

(2.21)

dx dt, [(t t2) + (tl t2)It -t l

Ile(u (t S)) --e(un (tl)) 2 ds
t2

c6(T) sup Ilu’(t)ll V’’2.
O<=t= T

So for some c(T) > 0,

t tl+ h(s)
w

t2 Oeo
<=c.(T) sup Ilu"(t)[Iv,,2.

Ot<--T

(2.22)
(e(u" (tl- s)) -e(u" (tl))) dsl

Combining (2.16), (2.17), (2.18), (2.19), and (2.22), with the obvious estimates generated
by the terms in (2.7), other than the one engendered by o-, and using the definition
(2.14), with = v/2, we are led to (2.15).

3. An interpolation lemma. Let v be an orthonormal basis in L2(fl) formed by
the eigenfunctions for the problem

(3.1) Av+ Av =0, in f; V W’2(-).
Let0=< r/_-<, -1 =< 0=< 1, and consider an element ve L2((0, T); W-’2(I))), T> 0. Then
v may be expanded in a double Fourier series

(3.2) v= Y Chi(t)vi(x),
i-0j=l
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where ho(t) 1/v/-, h,(t)=x//T cos (iTr/T)t. We define

w,((o, r); w,-())
(3.3) L2 i2)nA n,o <cx3u ((o,r); w-’,()) ci(1 + Ilull =

i=Oj=l

For 1 < n <, a norm equivalent to ]lull ,o is given by

(3.4) I111o,.-’,(m + it_ ll+(n_ d dt

For the spaces defined by (3.3) we may state the following.
LEMMA 3.1. Let 0 N N 1, 0 <. en there exists C > 0 such that

(3.5) II,ll

Proof We compute directly that

I111 ,,((o, Z); W-,2())

=e0(l+i) ..,
i,j

2 i2 2(1-)Zc, (1+) a co
i,j

4. Eseee f e slt. We begin by first proving that the operator
(O/Ox) is Lipschitz continuous, as indicated in the remarks of 1; this result is the
essential content of the following theorem.

THEOREM 4.1. ere exiss p > 0, independent of T, such that

(4.1)

Proo A direct computation yields the following series of estimates"

d ((1))_(()) d

d dt (h(t-))[le(u())-e(u())l]+l]e(u(t))-e(u(t))ll] d dx

d2 dt Ile(ul(t))- e(u(t))ll = dx

;o )(Io )(4.2) +d3 dt h(t-r) d h(t+)[le(u())-e(u())[ dr dx

d4 dt Ile(u(t))-e(u=(t))ll dx

+ds dr Ile(u’())-e(u())ll dx h(t-r) dt
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THEOREM 4.2 (Global existence of a weak solution). The initial boundary value
problem (2.2)-(2.4) possesses, under the conditions (1.2)-(1.6), with W(0)= V(0)=
(OW/Oeo)(O)=(OV/Oeij)(O)=O u W’2(1; Rn), ul6 L2(1; n), and (2.6), (2.13), a
weak solution on (0, ) for Ap < 3 and , < 1/2. The solution u satisfies
(4.3a) (i)

(4.3b) (ii)

(4.3c) (iii)

(iv)
(4.3d)

u L((0, c); W,2(f; R")),

u W"/:’2((O, T); Wo’(l; R")) VT>0,

f"l L2((0, T); W-1/(l+("/2)(f; ")) VT>0.

Remark. The condition hp<c yields the result that the operator (O/Oxj)oij=
(O/Oxj)r +(O/Ox)cri is strongly monotone.

Proof Let 1/(1 +(,/2))<a <1. Then it follows from our interpolation Lemma
3.1, with v= ti’, that ti’ is a bounded sequence in w(l+(v/z))a’2((O, T)’ W-a’2(-)),
which, in turn, is compactly embedded in W’2((0, T); W-l’z(f)). Therefore, we may
choose a subsequence u("k), such that for each T> 0, and some u satisfying (4.3a-d),

(4.4a) u" u,

(4.4b) ti"k fi,

(4.4c) u"k- u,

(4.4d) iin ii,

(4.4e) ii"k ii,

in L2((0, T) ,.2 .;Wo (a; )),

in L2((0, T); L(2; ")),

in W"/2’:((0, T); WI’(O; ")),

in W"/:’:((0, T); W-":(O; ")),

in L((0, T); W-"(O; R")).

Now, let Pn be the projection operator from L2((0, T); W’2("; n)) to the space
spanned bythe vectors q(t)w(t), where, forj 1,..., n, the c e L2((0, T)). From (2.7)
we obtain

IoTyaii((ii-Pu)i)dxdt
+ (e("))eo(" P.,) dx dt

Oeo
(4.5)

h(t-,) O(e(u"(r))-e(u"(t))) dr %(u"-P.u) dx dt
Oeo

f(uT-(P,u),) dx at.

For u e W’(O; N"), Korn’s inequality, i.e.,

(4.6) ei(u) e(u) dx

holds for some

(4.7)

Therefore, both

(4.8)

Pnu-u, in L:((0, T); W’2(12; R")).

Ior I O(e(P.,,u))eij(u’" P.u) -* 0
W

dx dt
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and

(4.9) h( r)
0 V

Oe- (e(P,,ku)(r))-e(Pnku(t)) dr eij(u"k-Pu) dx dt-O

as nk-o. By virtue, therefore, of (4.8), (4.9), (4.4e), and (4.1), with Ap < a, we find
that as nk o

(4.10) u"-+u, in L2((0, T); W’:(f; E")),

and the existence of the required global weak solution follows as a direct consequence
of (2.7). U
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WEAK SOLUTION TO AN EVOLUTION PROBLEM
WITH A NONLOCAL CONSTRAINT*

PETER SHIf

Abstract. A parabolic problem is considered with a nonlocal constraint in place of one of the
standard boundary conditions. Well-posedness of the problem is proved in a weighted, fractional
Sobolev space with the problem data proposed in related weighted spaces. This comes as an intrinsic
requirement of the problem. The proof uses an interpolation inequality for norms of fractional Sobolev
spaces and is based on an interesting choice of the test function.

Key words, nonlocal condition, weighted Sobolev space
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1. Introduction. In this paper, we are concerned with one-dimensional parabolic
equations with a nonlocal conditionmthe so-called energy specification. This is a lin-
ear constraint having the form

b

(1.1) 0(, t)d E(t),

where b e (0, 1] is a constant and E(.) is a given function. Coupled with a one-
dimensional parabolic equation, condition (1.1) is quite different from usual semilocal
boundary conditions such as

(1.2) -0 f(O). 0 on the boundary,

where f is some nonlinear functional. The latter, though difficult to handle in its own
right, can always be tied into weak formulations of the problem upon integration by
parts, while condition (1.1) may not be the case using the stardard method. Our main
tool used in this paper is an interpolation inequality (Lemma 3.1, .3) combined with
the basic methods described in Yurchuk [11] and in Ladyzhenskaya et al. [4, Chap. 3].

Evolution problems with linear constraint (1.1) have received attention in the
last twenty years. Most of the work was directed to classical solutions, and these were
carried out mostly by Cannon and his co-workers. We refer the reader to Cannon et
al. [2] and references therein. We mention that a mathematical model with constraint
(1.1) was recently derived in Shi and Shillor [8] in the context of thermoelasticity.

In contrast to previous work devoted to classical solution, we consider weak so-
lutions. Let tT t X (0, T) with T > 0 and (0, 1). We shall consider the
problem

(1.3) Ot- 0xz fl -- f2z, (X, t) e T,

(1.4) 0(1, t) 0, 0 < t < T,

(1.5) O(x, O) (x), 0 < x < 1,
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(1.6) f: 0(, t)d E(t), 0 < t < T.

Our interest lies in the well-posedness of the problem (1.3)-(1.6) in a weighted frac-
tional Sobolev space under compatible assumptions on data. In particular, we do not
assume any classical differentibility of E. For other data , fl, and f2, we only assume
their membership in certain weighted L2-spaces. In order to keep the exposition from
technical cumbersomeness, we restrict our discussion to linear equations with constant
coefficients, although the method is not limited to this case by itself.

The first study of evolution problems involving energy specification goes back to
Cannon [1] 1963. There the author considered the problem

(1.7) Ot-Ozz=O, x>O, t>O,

(1.8) O(x, O) , x > O,

(1.9) f(t) O(x, t) dx E(t), t > O,

where x(t) is a given function. Introducing f 0(0, t) as the unknown, it is proved
in [1] that (1.7)-(1.9) is equivalent to a Volterra integral equation of the second kind
for f. The existence and uniqueness of the solution is proved with the aid of the
integral equation. The author also proved that if the spacial domain is finite, then the
problem reduces to an integral equation of Fredholm type whose kernel is generated by
the Green’s function for the heat equation. Recently, problems similar to (1.3)-(1.6)
but involving nonlinearities in the equation have been treated in Lin [6] and Cannon
et al. [2].

Along a different line, the problem was considered by Ionkin [3], Makarov and
Uulyev [5], and Yurchuk [11]. The method in [11] is most innovative. The author
established the existence of a weighted strong solution to the problem

(1.10) Ot- Oxx f, (x, t) e T,

(1.11) 0(1, t) 0, 0<t<T,

(1.12) O(x, O) (x), 0 < x < 1,

(1.13) f 0(, t)d O, 0 < t < T,

under certain assumptions on data. Unlike most cases where a weighted space appears
either because of singular coefficients of the equation or because of an unbounded
domain, here the weight comes to place for the annihilation of inconvenient terms
during integration by parts. The result and the method in the present paper are
further elaboration of those in [11].

We now introduce appropriate function spaces. Let L2(T; x) be the weighted
L2-space with finite norm

(1.14) Ilfl]L I jf x2f2 dxdt)
T

1/2

Let W1,0(T; X) be the subspace of L2(T) with finite norm

(1.15) IlUllw1,O -- U2 dx dt + x2u2 dx dt
T T

i/2
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W2,1 (’T; x) is the subspace of Wl,(ftT; x) whose elements satisfy at, uxx E L2(FtT; x).
In general, a function in the space Wk,h(T; X), with k, h nonnegative integers, pos-
sesses x-derivatives up to kth order in L2(T; X), and t-devivatives up to hth order in

L2(tT; x). In this paper, we also use weighted spaces on the interval ft (0, 1) such
as L2(ft;x) and Hl(f;x), whose definitions are analogous to the spaces on fT. For
example, H(ft; x) is the subspace of L2(0, 1) with the finite norm

(1.16)
1/2

The following theorem is proved in [11].
THEOREM 1.1. Assume that H(ft;x) and f L2(T;X). Then problem

(1.10)-(1.13) admits a solution in W2,1(ftT;X).
To state the result of the present paper, we require the definition of the fractional

Sobolev space W,a(ftT; x), 0 < c < 1, which is a subspace of W,(ftT; x) having the
finite integral

Iw(u) x21w~12(x, s)(1 + s2)a dx ds

for each w C(R2) whose restriction to -T equals u. Here and in the rest of the
paper, the tilde sign (.)~ denotes the Fourier transform of the underlying function.
The norm of Wl,a(ftT;.X) is given by

(1.17)
W

The space WO,a(-T; X) and Ha(0, T) are analagously defined. We refer the reader to
[7] and [9] for more details on fractional Sobolev spaces.

We are now in a position to state the main result of this paper.
THEOREM 1.2. Assume that fl, f2 L2(fT;X) with f2 continuous in a neigh-

borhood of x 1, L2(f; x), and E H(+’)/2(0, T), where > O. Then problem
(1.3)-(1.6) admits a unique solution 0 in W,/2(2T;X), provided that, in addition,
one of the following conditions holds:

(i) b 1;
(ii) q Ul(b a, 1) and f2x i2(b if, 1) for some small a > O.
Moreover, we have the estimates

c IIOllw:, / .
if b=l,

ifO<b<l,

where E IlfxlIL + IIf211L + II IIL + IIEIIH (O,T), (b-o",1) (0, T), and
C > 0 depends , c, a, b, and T only.

2. Weak formulation. In general, a Wl,1/2(-T;X solution to problem (1.3)-
(1.6) can be understood in sense of distributions and traces, but we prefer a variational
formulation in which the nonlocal constraint (1.6) does not explicitly appear. Follow-
ing the idea of [11], we introduce the operators

J(v) v(, t) d,

M(v) x2v(x, t)+ 2xJ(v).
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For any function v E CI(’T), it is easy to check that the following holds:

(2.3) J(v)(1, t) O, M(v)(O, t) O,
and

(2.4) 2 xvJ(v) dx IJ(v)l u dx

for all t E [0, T]. These equalities can be extended to functions in Wl,0(12V; x) by a
density argument. Let Lu ut-uzz. We next compute the integral fT (Lu).M(v)dx.
We first work with the special case, where

(2.5) b=l and E(t)=O /te(O,T).

Thus in the following computations we assume u, v CI(T), uz(1, t) O, u(x, O)
(x), and both u and v satisfy the homogeneous integral condition

(2.6) u(, t) d v(, t) d 0.

In light of the above assumptions, we obtain

x--1x2uv dx x2vu]z=o uz[2xv + x2vz] dx
(2.7)

=0 [J(v) x] dx

=1
2 J(v)u =0 + vu dz 2 zw dz

2 v dz 2 zw dz.

It follows from (2.7) and (2.8) that

To compute the integral tM(v), we sume in addition, v(.,T) 0. The standard
integration by parts leads

(.10) M()

Thus from (2.9) and (2.10) we obtain

(2.11)
[ [-( + +1eet.
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Returning to the general case, without assuming (2.5), we introduce the transform

(2.12) u=O- E- Od,

where is a classical solution of (1.3)-(1.6). It is easy to check that u thus defined
in (2.12) satisfies (2.6) and other conditions that lead to (2.11). Moreover, u satisfies
the equation

(2.13) Lu fl + f2- (E + f: Od).
Substituting (2.12) and (2.13) into (2.11), after appropriate integration by parts, yields

T

jo fO
T

+ [o E(O)- g o(() d(] M(v(x,O))dx + f(1,t)v(1,t)dt,

which in turn, by virtue of a straightforward simplification, gives

[jiM(v) + f(v + 2J(v))] dxdt f(1,t)v(1,t)dt

01
DEFINITION 2.1. We say that 0 E WI,(T) is a weak solution to problem (1.3)-

(1.6) if (2.14) holds for all v C(T) such that

1

(2.15) v(., T) 0 and v(, .)d 0.

The above computations leading to (2.14) have shown that any classical solution
to (1.3)-(1.6) is also a weak solution. Reversing the steps above, we can also prove
that a sufficiently smooth weak solution is a classical solution.

We remark that each term in (2.14) is well defined if the problem data satisfies
the requirement of Theorem 1.2.

3. A priori estimates. In this section we derive estimates for classical solutions
to problem (1.3)-(1.6) in the WI,1/2(T; X) norm. The existence of a weak solution is
obtained by subtracting a convergent subsequence, once a priori estimates are estab-
lished. Regularity assumptions on problem data are not important for our purpose in
this section since they can be approximated by smooth functions.

We use to denote the smooth solution to (1.3)-(1.6), and u is determined by
the transform (2.12). These conventions will be in force throughout this section unless
otherwise specified.



PARABOLIC EQUATION WITH NONLOCAL CONSTRAINT 51

We first prove an interpolation inequality, which plays a crucial role in the sub-
sequent estimates. The inequality may also be of interest by itself.

LEMMA 3.1. For any 1/2 < a < 1, there exists a constant Ca > 0 such that for
any w, v E C [0, T],

(3.1) w’v dt < CallWllH.(O,T ]IVllHI-,(O,T).

For any 0 < < 1 and 5 > O, there exists C, > 0 such that

(3.1’) IIVlIH,(O,T) < 5]IVlIH(O,T) + C,]]vlI(O,T) v H(O,T).

Proof. A simple proof of (3.1) can be made by contrapositive argument, using
the fact of compact imbeddings

Hi(0, T) -, S(0, T) -, 52(0, T).
Since (3.1) is essentially known, we omit the proof.

To prove (3.1) we choose f Ha(R), g U-a(R) such that fl(O,T) w, gl(O,T)
V. Fix T < T. Then for all h > 0 sufficiently small, we get by the Plancherel theorem
that

fo (t + h)h (t) v(t) dt

oo f(t + h) f(t) g(t)dt
(3.2)

h

f f(t + h)- f(t) (xg)(t) dt
h

ehs 1

o h
](s)(xg)~(s)ds’

where X is the characteristic function of (0, T). Now

eihs 1 < 21sl Vh > O,
h

and
eihs 1

lim =is sR.
h---0 h

Thus for all h > 0 the modulus of the integrand in the last integral in (3.2) is dominated
by

and k e LI(R) since f e Ha(R), g e H-a(R). Hence by the dominated convergence
theorem,
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where the last inequality follows from the fact that multiplication by X is a bounded
operator on H1-a (R) with operator norm bounded by a constant C > 0 that does not
depend on T (Strichartz [9, Cor. II. 3.7]). Thus by definition of the norm in Ha(0, T)
we get that

o
w’v dt <

The result follows by letting T --, T.
LEMMA 3.2. For each 1/2 < a < 1, > O, there exists a constant C > O that

depends only on a and e such that

[lU][w, C{Ilfl[[L2--][f2][L2 "J-I]E][H(O,T)--[[][L " Ill: Od[IH(O,T)}

Proof. By virtue of (2.9) in which we set v u, we obtain

-uxxM(u) dx x2u2 dx + 2 u2 dx;

Adding to both sides of the above equality by f utM(u)dx and integrating the result
over (0, T), give

r (ut M(u) + x2u2 + 2u2) dx dt r Lu M(u) dx dt.

Invoking (2.12) and (2.13), and carrying out appropriate integration by parts, we
obtain

(3.3)

where

(3.4) F -E- f: 0 d.

The first term of the integral on the left-hand side of (3.3) is controlled from below
by the integral

2xut u(, t) d dx dt - x22 dx.

Therefore, using the definition for the WI,(T; x) norm, we infer from (3.3),
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where C1 > 0, C2 > 0, are fixed constants. The calculations from,(3.3) to (3.5) are
straightforward but somewhat tedious. We only illustrate a typical step below.

2 f2J(u) dx dt -2 J(u) dJ(f2) dx dt
T

-2 uJ(f2) dx dt

<- 4- j2 f2 dx dt + e u dx dr,
T

where e > 0 is sufficient small. In light of the inequality

j(01 foj2 (f2) dx <_ 4 x2f dx,

the term 2 fnT f2J(u)dx dt in (3.4) is then dominated by

(3.6) 1 x2fdxdt/e u2dxdt
" T T

where the second term will be absorbed in the left-hand side of (3.3).
We now estimate the integrals on both sides of (3.5). In light of Lemma 3.1, we

have

(3.7)
1

FM(u)dxdt -< IIFII.(O,T)+ llull2W2,-,
where e > 0 is sufficiently small. The integral on the left-hand side of (3.5) can be
estimated in virtue of the following identity:

(3.8) x [uJ(v) / vJ(u)] dx J(u)J(v) dx Vu, v e C[0, 1].

For this, we assume, without loss of generality, f2(1, .) 0. Indeed, replacing u by
v by u, in (3.8), and integrating the result over [0, T], yield

(3.9)

Substituting (3.7) and (3.9) into (3.3)-(3.5), we obtain the desired result.
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The next lemma improves the estimates in Lemma 3.2.
LEMMA 3.3. For each 1/2 < c < 1 there exists a constant C C(c) > O, such

that

(3.1o) IIllwx,/. C{llfxllL + IIfllL + IIIIL + IIEII.(0,T) + f Od

Proof. Following the method in Ladyzhenskaya et al. [4, p. 161] we extend the
domain of u first to (0, 1) (0, /oo) such that u vanishes for sufficiently large t. Then
we extend the function to Q _= (0,1) (-oo, +oo) by reflection. More precisely, once
u is extended to (0, 1) (0, oo), we set

u(z,t), t >_ o,
Ul

U(X,--t), t < 0.

For the derivative of u we introduce a similar extension, namely,

u(x, t), t >_ o,
U2

-u(x,-t), t < o.
The minus sign is designated to coping with the differential equations. In the same
way, the problem data are extended as follows.

fl(x,t),
-fl(x,-t),
f2x(x, t),

f --f2x(x, --t),

F*
F(x, t),
F(x, -t),

With the above extensions, (2.13) reads

t>0,

t<0.
t>0,

t<0.
t>0,

t<0.

(3.11) Ult U2x f* +f+Ft* a.e inQ=(0,1)

Let 5 > 0 and choose any w E C(-cx), +oc) such that w 1 on [0, T] and supp(w) c
[-5, T + 5]. Then (3.11) implies

(W Ul )t Wt Ul + W Ult

(3.12) wtu + (wu:) + wy; + wf; + (wF*)t wtF*.

We now let be any function in C[0, 1], possibly complex valued, such that

(a.la) (1) 0, ()a 0.

Multiplying on both sides of (a.l) by M() and integrating each term over [0, 1] with
respec to , taking care of f(w)M()d via integration by parts, yield

((e (1(e+ (+J())

(a.14) + Irw M()z + IwM()

+ (*) M(e)a *M(el.
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Applying the Fourier transform on both sides of (3.14), we obtain

(3.15) ]o
1 ]01-is(wul)~(x, s) M() dx Z~(s) + -is(wF*)~(x, s) M() dx

where

(3.16)
Z~(s) (wtul + f;w / f -wtF*) M()dx

+ (~(,( +(1).
In (3.14), (3.15) we put

i complex conjugate of (wu])~(x, s), if s > 0,
(3.17) (x)

-i complex conjugate of (wu)~(x, s), if s < 0.

Clearly such choice of satisfies (3.13). We integrate the result with respect to s to
obtain

(3.18)
/Q lSl (WU)~ M [(wul )~] dx ds

//f Z~(s)dS + /QlSl (wF*)~(x,s)M[(wul)~] dxds.

The integral on the left-hand side of (3.18) is equal to, by virtue of the identity (2.4)
and the Plancherel theorem [10],

(3.19) lSlX21(WUl)12 dxds A-/Q Isl [J((wul))12 dxds.

Using the Plancherel theorem again and integration by parts, as in the proof of Lemma
3.2, the first integral on the right-hand side of (3.18) can be estimated by a constant
times

(3.20) 2 dx dt +/Q Iwu212 dx dt + IIFIIL(O,T) + N(fl, f2, 99),

where N(fi, f2, 99) is bounded as long as {fi, f2, 99} remain bounded in their L2(T; x)
and L2(; x) norms, respectively. It then follows from (3.18)-(3.20) that

(3.21)

ll
x21(wu)l2 dx dt

<_ C /Q (]WUl ]2 _f_ x2]wu212) dx dt + IIF]]L2(O,T) A- N(fl, f2, 99)

+ /QIsI(wF*)~(x,s)M[(wuI)~]dxds,
where C > 0 depends only on the choice of w. In light of the definitions for U and
u2 the first integral on the right-hand side of (3.21) is controlled by Cllullv1



56 PETER SHI

for some constant C > 0, depending only on w. The left-hand side of (3.21) is greater
or equal to Ilullvl,1/2(nr;x by the definition of the fractional Sobolev space. Based on

these estimates, (3.21) implies

(3.22)

Finally, we estimate the right-hand side of (3.22) as follows:

(3.23)

[sl (wF*)(x,s) M[(wu)~] dxds

_< /Q [(1 + Isl2)"/2(wF*)~] (1 + 112) (-")/ M[ (wul) dxds

1 /Q(l+s2)’(wF*)~12dxds+efQ(l+s2)l-al(WUl)~12dxds< 4-7
1<
2, IlfllSo(0,T) / 211112,_ + N(fl, A, ),

where in the last inequality it is necessary to choose w properly so that

Q(1 + s2)l(wF*)l2 dxds <_ 211FII+(0,T) + N(fl,f2,#).

We now conclude from (3.22), (3.23), and Lemma 3.2 that

(3.24) u 2 < N(fl f2, q) + IIFIIH:(O,T> + llullIIw:,:+:- w2,-.

In view of (3.3), Lemma 3.3 follows by choosing 0 < e < 1 in (3.24).
Proof of Theorem 1.2. The result of Theorem 1.2 follows almost immediately from

Lemma 3.3. If b 1, then (3.10) and (2.12)imply

(3.25) IlOllw=,:/: < c{ IISII== + II/11=: + I1+11== + IIEII-:(O,T)}.
Consequently, a weak solution in W1,1/2(’T; x) is obtained by extracting a convergent
subsequence of these classical solutions and taking the limit in (2.14). Since the
problem is linear, uniqueness of the solution follows from (3.25). The case when
0 < b < 1 needs a bit more effort. Instead of (3.25), we have

(3.26)
IlOllw,,/: <_ c{IISII + II/11 + I1+11 + IIEIIx:(o,r>

where t,T (b- a, 1) (0, T). To derive (3.26) we employ cutoff functions. Let
w e C2[0, 1] such that w 1 on [b, 1] and w 0 on [0, b a]. Let

o o(:)o(:, t)-,, A>0.
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By straightforward computations using (1.3)-(1.6), we obtain

(3.27) Ot -Ozz + AO fe-, (x, t) E Ft,,T,
(3.28) Oz(1, t) 0, 0 < t < T,

(3.29) O(b- a, t) 0, 0 < t < T,

(3.30) o(, 0) , - < < ,
where

(I1 + I)- (:0 + 0).
Following standard W2,1 (gt,T) estimates, squaring both sides of (3.27) and integrating
by parts, we obtain

(3.31)

where C > 0 is independent of f and A. In light of Lemma 3.3, f can be further
controlled by

(3.32)
IlfllL(C,,,,) I[fllILZ(,T) -t-

+ III[HI(b_,,,1)IIEI[H,(O,T) + C 0d
Ha(O,T)

Now applying (3.1’) of Lemma 3.1 to f: 0(, .)d yields

(3.33) Ha(O,T) L2 (0,T)
<_ 5 O d + C 0d

52(0,T)

where 5 > 0 is arbitrary and C > 0. It follows from (3.31)-(3.33) that, by setting
sufficiently small and A sufficiently large,

(3.34)

IIOIIw,(,T)

<_ C IIfIIL=(.,T) / IIf2IIL=(.,T) / IIllH(b-,.,X)/ IIEIIH(O,T) ,
)

where C > 0 is independent of problem data. Hence (3.26) follows from (3.34) and
Lemma 3.3.

Remark. If (1.3) is replaced by

Ot a(x, t)Ox f(x, t, u),

the existence of a solution can be proved by the same method, provided that a E
Cl(gtT) and f is continuous in its arguments and satisfies a growth condition such
that

If(x, t, u)l < g(x, t) / C lul.
By the aid of local estimates of the equation, the particular type of the boundary
condition at x 1 is not important for the method. Let us elaborate on this point
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a little more. Suppose a proper boundary condition for 0 is given at x 1. Then
we have local estimates for in a neighborhood of x 1. Once local estimates are
established, it remains to give estimates on (0, 1 -e) x (0, T) for sufficiently small e.
This leads to the exact situation discussed in this paper once we consider the new
function 0, where 0 on (1 -e, 1) and 1 on [0, 1 2e). This is also the
viewpoint when we treat the case 0 < b < 1 in the proof of Theorem 2.1.
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ON THE RIEMANN PROBLEM FOR A COMBUSTION MODEL*

TONG LI

Abstract. This paper studies the Riemann problem for a combustion model and proves that the solution
exists globally and the solution converges uniformly, away from the shock, to a travelling wave solution as
+. The results are obtained by using the method of characteristics, a maximum principle and that the

equation is a nonlinear conservation law.

Key words, detonation, conservation law, characteristic, maximum principle, shock wave, travelling
wave, asymptotic behavior
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1. Introduction. We consider a combustion model

(1) u,+(1/2uZ-qoz)=O

(2) zx=K(u)z.

introduced by Rosales and Majda [7]. The system can be considered as a simplified
model for compressible Euler equations for reactive mixture if u is interpreted as a
lumped variable with some features of pressure or temperature and z as the mass
fraction of unburnt gas. In this interpretation, (1) and (2) describe a one-step irreversible
chemical reaction, where qo> 0 is the amount of heat released by the reaction, K is
the reaction rate, and (u) has the ignition form

(3) (u) {10 u>=u

here the ignition temperature ui satisfies 0 < ui < 2riCo.
The problem is well posed when the data are given by

(4) u(x,O)=uo(x),

(5) z(+c, t)= 1.

In this paper we consider the Riemann problem (1), (2), (5), and

Uo x--<O,
(6) Uo(X)

0 x > O.

Riemann problems are important because they are building blocks for solutions with
general initial data and they also provide us a way to do numerical simulations.

One expects the solution of the Riemann problem to converge to a travelling wave
(when it exists as --> +. That is, the initial shock discontinuity triggers a detonation
wave. In fact, the numerical results of Bourlioux [1] showed the convergence.

In this paper, we prove global existence of solutions to the Riemann problems
and that the solutions converge to travelling wave solutions. The results are proved
by using the method of characteristics, a maximum principle and the conservation
property of (1). Independently, Levy obtained a similar result for a similar model in [4].
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The main difficulty in the proof is that there is a shock discontinuity in the solution.
One important aspect of the proof is to understand the evolution in time of the
discontinuity.

The existence of the Riemann problem is established using a fixed point theorem
based on an iteration procedure which is due to Ying and Teng [9]. Properties of the
shock front s(t) C1[0, +), namely that s’ is bounded and s is convex, are obtained
by employing a maximum principle and the method of characteristics. From these
properties, we prove our a priori estimates for the solution which are needed for the
convergence.

To prove that the solution ofthe Riemann problem converges to a shifted travelling
wave, we use the conservation law (1) and the initial data to determine the shift. This
technique was used before by Liu in the study of stability of shock waves [5]. It is
used not only to identify the shift but also to obtain information which helps the
convergence proof. The conservation laws and the comparison principle give us global
LI control over the solution.

In 2 we summarize results about travelling wave solutions for (1) and (2) by
Rosales and Majda [7]. Section 3 is the proof of the global existence. Convergence is
proved in 4.

2. Travelling wave solutions. A travelling wave solution is a solution of the follow-
ing form

(u(x, t), z(x, t)) ((x- Dt), z(x- Dt)),

where D is the speed of the travelling wave solution. Let x- Dt. Plugging (u(x, t),
z(x, t)) (q,(:), z(:)) into (1) and (2), we have that (q, z)(:) solves ordinary differential
equations

(7) Dq,’ + q,q, qoz’,

(8) z’ (q)z.

We impose boundary conditions

(9) lim (q,, z)(:) (Uo, 0),

(10) (, z)()= (0, 1), >-0.
Integrating (7) from : < 0 to 0 and noticing that there is a shock discontinuity at : 0,
we have

(11) q,(:) D+(D2-2qo(1-z())) ’/2, <0.
Letting :-->- in the above equation and using (9), we get

(12) D D(uo) q__o +_ Uo.
Uo 2

Integrating (8) and using (10), we have
K#Z e

Inserting into (11), we get our travelling wave solution

(0,1)
((), z())= (D+(D2_2qo(l_eK))/2,

It is easy to see that for the travelling wave to exist we have to require

(13) u)>=Zqo.
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We assume (13) throughout this paper. Corresponding to Uo x/-q0, we have D x/qo,
which is the minimum travelling wave speed. The solution for the minimum value of
D is called the Chapman-Jouguet (or CJ) detonation. A CJ detonation is characterized
by being sonic with respect to the flow behind [2]. Because of this property, the CJ
detonation plays a very special role in the stability theory. We will investigate this in
a forthcoming paper.

From the explicit expression ofthe solution we see that the structure of a detonation
wave is an ordinary nonreactive shock wave followed by a chemical reaction zone,
which is the ZND (Zeldovich-Neumann-Doering) theory predicted.

3. Global existence. In this section we prove global existence and give global a
priori estimates for solutions of the Riemann problem. We get the existence by means
of a fixed point method based on an iteration procedure. A maximum principle and
the method of characteristics enable us to get properties of the shock front. From these
properties, we obtain our a priori estimates for the solution.

There is a shock discontinuity in the solution initiated from the Riemann initial
data. Denote the shock wave position by x- s(t). From the Rankine-Hugoniot condi-
tion and the initial condition, we have

ds 1
(14) dt-2u(s(t),t),
(15) s(O) =0.

Writing (1) in characteristic form, we have

u(x, ),
dt

du
dt

qozx.

Hence,

d2x du
dt2 dt

qoz) qoKq (u)z >- O.

Therefore, every characteristic line x x(t) is convex in and u increases along each
characteristic line.

Let us simplify the problem by solving (2) in terms of the shock wave position.
For characteristic lines such that x(t)_-< s(t), it follows from the admissible condi-

tions for shock waves [3] that x(0) =<0. Furthermore, u(x(t), t)>= u(x(O), 0)= Uo> ui,

q(u(x(t), t))= l.
Similarly, for characteristic lines such that x(t)> s(t), we have x(0)> 0. Further-

more, u(x(t), t)= u(x(O), 0)-0< ui, (u(x(t), t)) 0.
Plugging the value of into (2), we have that

Kz x<=s(t),
z= 0 x> s(t).

Noticing that lim,_+ z(x, t)= 1, z can be solved as

e/((x-’(’)) x<=s(t),
(16) z(x, t)

1 x > s(t).
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Plugging z into (1), the system is reduced to

qoK e’-’)) x <- s( t),
(17) ut+uu,=

0 x> s(t),

where s(t) satisfies (14) and (15).
We now construct the solution by the iteration.
Consider first the following auxiliary problem.

(18) u, + uu, qoK e K(x-j(’)),

(19) u(x,O)=uo,

where j E, and

E {j :j C’[0, T],j(0) 0,j’(0) =1/2uo,j’(t) <= D(uo),j convex}.

Clearly, E is a closed bounded subset of C[0, T].
We then iterate on j to find a fixed point of s’(t)=1/2u(j(t), t) such that it is a

solution of (14) and u is a solution of (17).
LEMMA 3.1. There exists a unique smooth solution u ofproblem (18) and (19) for

all > O, which satisfies

(20) ox

d
(21) d-- u(j( t) + c, t) >= O, c-<O.

Proof The classical solution of (18) and (19) can be constructed through its
characteristic lines. Global solution exists if two characteristic lines never intersect.

Take any two characteristic lines x(t) and x2(t) of u(x, t), where x(0)<x2(0).
We claim that the two characteristic lines x(t) and x(t) never intersect.

To prove the claim, suppose for the contrary that at time to > 0 they intersect.
We have x(to) x2(to) and x(t) < xz(t), 0 <= < to. Hence, dZx/dt < dZxz/dt2,
0=<t<to.

By Taylor expansion with remainder, there is some s [0, to] such that

0 X, (to) X2(to)

d2(Xl- x2)()d (Xl x2)(0)
to +- t(x, x2)(0) 4

dt 2 dt

<= (x, x2)(O) + (u(x,(O), 0)- u (x2(0), 0))to

(x, x)(o)

<0,

which is a contradiction. Thus x(t) and x2(t) never intersect.
Given any two points (Xo, to) and (X2o, to), to> 0 and Xo < X2o, draw characteristic

lines x(t) and x2(t) backwards in time. Since any two characteristic lines never intersect,
we have

x,( t) < x2( t), 0 <- <= to.

Integrating (18) along the characteristic lines, we have

u(x,(to), to) < u(x2(to), to).
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Noticing that u is smooth, we have

Ou

Ox
for t>0.

This proves (20).
To prove (21) we need a transformation

y=x-j(t).

Then (18) becomes

u, + (u -j ’) Uy qoK e Ky.

Let p =Ou/Or. Differentiating the above equation with respect to r, we have

au aur+ oy P --y J ",

p( y, O) qoK e Ky > O,
where d/dr= (O/Or)+(u-j’) (O/Oy) is derivative in the characteristic direction.

Assuming that j is smooth for the moment, we have j"=>0. From (20), Ou/Oy
Ou/Ox >= O. Now applying a maximum principle in the above equations for p, we have
that p(y, r)>-0 for any r => 0 and any y. That is

Ou Ou+j Ou
’>=0.P Or Ot Ox

In particular, this holds at y c, c =< 0, i.e., at x =j(t)+ c, we have

0 0
u(j( t) + c, t) +j’( t) _--- u(j( t) + c, t) >- O.

Ot ox

That is,

d
d--- u(j( t) + c, t) >- O.

Ifj is not smooth enough, we arrive at our conclusion by approximating j by smooth
functions and passing to the limit, since the result only involves the first derivative
ofj. FI

We next prove a comparison principle for solutions of (1) and (2), which will be
useful for qualitative study of the solutions.

In the following theorem the initial value has the following form:

Uo(X) x<-_s(O),
u(x, o) o x > s(O),

where Uo(X) >- 0 is a nondecreasing function and s(0) is the initial shock wave position.
TrEOREM 3.2 (A comparison principle). Suppose that u(x, t) and u2(x, t) are

solutions of (1) and (2) with nondecreasing initial data Uo(X) and U2o(X) and shock
wave positions s(t) and s2(t), respectively. If

s,(0) < s(0)
and

Uo(X) >- Uo(X), x <-_ s,(0),
then there is some T > 0 such that for 0 < < T, we have

u,(x, t)> u2(x, t), x <- s,( t).
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Proof Since sl(0)< $2(0), there exists a T> 0 such that

s,( t) < s2( t), 0<t< T.

From point (x, to), 0< to< T, draw characteristic lines xl(t) and x2(t) of u and u2
backwards, respectively.

Step 1. Suppose that (x, to) is the first intersection point of the two characteristic
lines. Then we claim u(x, to)> u2(x, to).

Suppose for the contrary that u(x, to) <= u2(x, to). Then, x(t) > x(t), for 0 -<_ < to.
We also know that s(t) < s(t), for 0 <_- < to. So, x(t) s(t) > Xz(t) Sz(t). Integrating
the equations for u and uz along their characteristic lines xl(t) and x(t), respectively,
we have that

U,(X, to)> U_(X, to),

which contradicts our assumption that u(x, to)<= u(x, to). Thus, u(x, to)> u2(x, to).
Step 2. We claim that any two characteristic lines of u and u intersect at most

once. If two characteristic lines intersect at to, by Step 1, we have

dx dx
dt

u(x, to) u2(x, to)
dt

We thus have

x, (to) x(to).

x,(t)>x2(t), to<t<to+6
for some 6 > 0.

Claim. x(t) > xe(t) for all > to.
If this is not true, then there is a t > to such that x(tl) x(t) and x(t) > x(t),

to < < t. It follows that dx/dt > dx2/dt, to < < t. By Taylor expansion with
remainder, there is to < < t such that

0 x(tl) xe(tl)

d(x,-xz)(to)
x,(to) x2(to) + (t, to)

dt

d2(x,-xz)()
2 dt

a contradiction. Hence, no two characteristic lines of u and u intersect more than once.
By Step 1, we have

/l(X, to)> u2(x, to)

for all x =< s(to), and 0 < to < T.
Using the comparison principle, we get upper bound on the solution in the

following lemma.
LEMMA 3.3.

(22) 1/2u(j(t), t)<O(uo), t>0.

Proof From point (j(to), to), draw a straight line with slope D(uo). Since j’(t)=<
D(uo) (by the choice of j), we have

x(t)=j(to)+D(uo)(t-to)<j(t) for0=<t<to.
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X( t) =j( to) + D(uo)(t-to) can be viewed as the shock wave position of the travelling
wave @(x Dt + c), where c -j( to) + Dto> O. Comparing initial data of t(x Dt + c)
and u(x, t), we have

q(x + c) >- u(x, 0), x + c <-_ o.
Applying the comparison principle in Theorem 3.2 to q(x- Dt + c) and u(x, t), we get

l,(x-Dt+c)>u(x,t), x-Dt+c<-O for 0_-< t_-< to.
In particular, at point (j(to), to),

2D(uo) q,(0) > u(j(to), to).
That proves the lemma.

Let s be the solution of

By Lemma 3.3,

By Lemma 3.1,

s(0) =o,
s’(t) =’u(j(t),t).

s’(t)<D(uo).

1 d
s"(t)=-- u(j(t), t)>=O.

Hence, s E and is twice differentiable.
Define an operator A:E- C[0, T]

s--Aj.

Clearly, AE E, i.e., A maps E into itself.
LEMMA 3.4. The mapping A has a fixed point.
Proof By the Arzela-Ascoli theorem, it is enough to prove that s"=(Aj)" is

bounded for all j E (since then AE will be a bounded subset of C2[0, T], and hence,
a compact subset of E c C[0, T]). This will assure the compactness necessary for the
Schauder fixed point theorem.

By Lemma 3.3,

O<=j’(t)<=D.

A straightforward calculation from conditions (12) and (13) yields

Uo D.

Finally, using ux => 0 from Lemma 3.1, we have

0<s,
1 d

=--tu(j(t),t)
1

,(=- (ut +j t)ux)

1- (u, + uux) +- (j ’(t) u)ux

1 1
<--- qoK + (D-Uo)U
-2 -<=- qoK,

2
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which is bounded uniformly with respect to j E. Hence, by the Schauder fixed point
theorem A has a fixed point. [3

Using this fixed point, we construct the following solution of Riemann problem
(1), (2), (6), and (5):

u(x, t) x <= s( t),
(23) u(x,t)=

0 x>s(t),

(24) z(x, t)=
x<-- s(t),

1 x>s(t),

where uj is the solution of (18) and (19).
It is easy to check that (u, z) is a solution.
Next, we prove that the above-defined solution is unique. This allows us to extend

the solution to
LFMMA 3.5. Solutions ofform (23) and (24) are unique.
Proof Suppose that there are two solutions u(x, t) and v(x, t) with shock wave

positions Sl (t) and s2(t), respectively.
Because of the uniqueness of solutions of (18) and (19), we need only to show

that s(t) s2(t).
Translate s along the x axis to the right of sl until they just touch. If the lowest

touch point is (sl(to), to), then to O.
Suppose for the contrary that to > O. Let s + be the translation of s such that

(s(to), to) is on s+6. Then 6>0 and Sl(t)<s(t)+ for 0< t<to.
Let

then (vl, zl) satisfies

Vl(X,t)=v(x-6, t),

z(x,t):z(x--6, t),

I)1 -[" 1)1 l)lx qoZlx,

Z,x qo6( Vl)Z,

VI(/, O) {0 X < l’
x>8,

z(x, 0) 1.

In fact,

At time 0, we have

zl(x,t)=
1 X>Sz(t)+6.

(25) (1,/ Vl)(X O) dx --(l,I0 < O.

It is easy to check that the conditions for the comparison principle hold. Applying the
comparison principle in Theorem 3.2 to u and v, we have u(x, to)> v(x, to) for
x -< sl(to) s(to) + 6. But this implies

(u v,)(x, to) dx (u /)I)(X, to) dx > O,
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which contradicts (25) since by the conservation law (1)

I+(u-vl)(x,t)dx_
is a constant independent of t.

Hence, to 0, which implies that 6 0. It follows that s(t) _-< s2(t). Similarly,
s2(t) Sl(t). Hence s2(t) sl(t). [-I

A nice property of the solution is given in the next lemma.
LEMMA 3.6. The solution of the Riemann problem is convex in x, that is,

oZu.
xX, -0 forx().

Proof. Differentiating equation (1) with respect to x twice, we have

u, + uu + 3uu qoz.

Rewriting the above equation in the characteristic form, we have

du -3uu qoK3 e:-> O.
dt

Initially,

Uxx(x,O)=O for x_-<0.

Using a maximum principle along the characteristic direction, we have

Uxx(X, t) >- 0 for x

Now we have the following theorem.
THEOREM 3.7. Solution of (1), (2), (6), and (5) exists globally and satisfies

O<-u<=m, O<=u,<-m, [u,l<=M, Ux>=O,

0__<z__<1, O<=z<-K, ]z,l<-_m,

where M depends only on qo, K, Uo. All the estimates involving derivatives are valid away
from the shock curve (s(t), t).

Furthermore, s( t) satisfies

and

s">= 0

lim s’(t)

dt
q- a2= qoK2 eK(X-(t))da

exists.

Proof From Lemmas 3.1 and 3.5, u(x, t) and s s(t) are defined for all >0.
Therefore, the solution of (1), (2), (6), and (5) exists for all t>0 by the construction
(23) and (24).

It follows from (20), u => 0, that u(x, t) <= u(s(t), t) for x_-< s(t). Furthermore,
u(s(t), t)<-2D by Lemma 3.3. Hence, u is bounded.

Let a u. Differentiating equation (1) with respect to x and writing the resulting
equation in characteristic form, we get
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Integrating along the characteristic line x x(t) from 0 to t, we obtain

O<_a(x(t), t)<_a(x(O), O)+ qoK e(X(’-(’ dt

K(u(x(t), t)-u(x(O), 0))<= M.

Using (17),

ut qoK e K(x-s(t))

we can get the desired bound for u,. From (24), clearly, z and z,, satisfy the above
estimates. As for z,, we have

z,(x, t)= -Ks’(t) e t((-(’)), x < s(t)

which is bounded.
By definition of s and Lemma 3.1, we have

s’(t) =’-u(s(t), t) <- D(uo),

s"(t)>=O.

Hence, lim,_+ s’(t) exists.

4. Convergence to travelling waves. In this section we prove that the solution of
the Riemann problem (1), (2), (6), and (5) converges to a shifted travelling wave. The
shift is determined from the initial data. This technique was used before by Liu [5].
We use it not only for identifying the shift but also for showing the convergence. The
conservation laws and the comparison principle give us global L control over the
solution.

Let

(26) Xo
1 I{u(x,O)-q(x)}dx.bl0

From the initial data, Xo> 0.
Our final goal is to show that the solution (u, z) (x, t) converges to (q,, z) (x- Dt +

Xo) as t--> +oo. This means that the final wave front is determined by its initial total
mass. We note that the mass difference between any two solutions is a conserved
quantity.

LEMMA 4.1. If XO is determined as above, then

(27)

Proof First of all,

O>f+(u(x,O)-(x))dx_

1" (Uo- q,(x)) dx

-o 2qo e

(D2-2qo)’/2+(D2-2qo(1-e)) ’/2 dx

>=-I_ (2qoeKX)’/2dx>-oo.
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Thus u(x, 0) (x) is integrable and so is (x + Xo) (x).

(6(x + Xo)- 6(x)) dx + (g,(x + Xo)- g,(x)) dx

(6(X+Xo)-Uo)+(Uo-4,(x)) dx+ [(Uo-6(x))-Uo] dx

(4,(X+Xo)-Uo) x+ (Uo- 4(x)) X-XoUo

f2(d/(x)-uo) dx+ f:(Uo-P(x)) dx-xoUo

--XoUo"

The conclusion then follows easily from (26).
For the travelling wave (d/, z) (x- Dt + Xo), its equations in characteristic form are

dx
b,

dt

dt- qoK e

where s(t)= Dt-xo is the shock wave position for the travelling wave. In the next
lemma, we use the conservation law to estimate the lower bound of s(t).

LEMMA 4.2. Let s( t) Dt- xo and s( t) be the shock wave positions for d/(x- Dt +
Xo) and u (x, t), respectively.

Then s( t) < s( t) for > O.
Proof. First, since s(0) -Xo < 0 s(0), we have s(t) < s(t) for < 8, where 8 > 0.
Let T=sup {t[s(z)<s(z)for -< t}. We want to prove T= +c. If this is not true,

we have that T--to < +. Hence

s(to) S(to),

s(t)<s(t) fort<to.
Applying the comparison principle Theorem 3.2 to and u, we see that

6(x-Dto+Xo)> u(x, to) for x<=s(to) S(to),

and hence

[6(x-Dto+Xo)-U(X, to)] dx= [6(x-Dto+Xo)-U(X, to)] dx>O.

Using the conservation property of (1) and also the identity (27), we have

O< f"[(x-Dto+Xo)-U(X, to)] dx= I[q’(X+Xo)-U(x, O)]

a contradiction. Therefore, s(t) < s(t) for all > 0. [-I

LEMMA 4.3.

0< q(X-- Dt + Xo)- u(x, t) < C e :’-o’+x)/

for x- Dt + Xo < O.
Proof For x Dt + Xo < 0, we have x < s(t) Dt Xo < s(t) by Lemma 4.2. Using

the comparison principle Theorem 3.2, we have

b(x Dt + Xo) > u(x, t) > Uo for x < s(t).
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Therefore,

0 < d,J(x- Dt + Xo)- u(x, t)

< (x- Dt + Xo)- Uo

2qo e t: (x--Ot-l-Xo)

(D2 2qo)1/2 + (D2 2qo( e ("-t+"o)))
<- 2x/o et (x-Dt+’o)/.

This lemma implies that the difference between u and the travelling wave is
integrable.

Next, we prove that x s(t) has an asymptotic line x Dt 6 as - +oo. Eventually
we will show 6 Xo.

LEMMA 4.4.

for some 6, 0 < 6 <= Xo.

lim s (t) Dt + 6) O,

lim s’(t) D(uo)

Proof. Let E(t)=s(t)-Dt+xo. Then E(t)>0 and E’(t)=s’(t)-D<-O by
Lemmas 4.2 and 3.3. Therefore, lim,_,/oo E(t) exists. Hence, there is some constant 6,
with 0 < 6 -< Xo, such that

lim s Dt + 6 O.

By Theorem 3.7, lim,_.+oo s’(t) exists. Therefore,

lim s’(t) D.

Next, we prove that the solution to the Riemann problem are asymptotically
functions of one variable x- Dt + 6.

LEMMA 4.5. There are Lipschitz functions uoo() and zoo() such that

Proofi Let

lim sup [(u,z)(x,t)-(Uoo, Zoo)(x-Dt+6)l=O.
t-,,+oo x--Dt+O

, x- Dt + 6,

u(x,t)=U(,t),

z(x,t)=Z(,t).

Let E(t)= s(t)-Dt+6. By Lemma 4.4, E(t) decreases to zero and s’(t) increases to
D as t-+ +oo.

For any e > 0, there is a T> 0, such that if t, t, t2 > T,

O<E(t)<e,
(28)

2ls’(t) s’(t2)l < e,

(29) 1 e < e-K(’) < 1.

Since E(t)> 0=> , we have s(t)> x. By (24),

Z(se, t) z(x, t)= e(‘-s’)) et e-tce’).
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Using (29),

Letting

we have

(l-e) eK <z(, t)< eK,

z(sC)=eK, sc=<O,

lim sup Iz(, t)- z()l 0.
+cx3 0

We now look at the characteristic lines of U(sc, t) given by

d dx
D=U-D

dt dt

and

d2 d2x du
dt2 dt2 dt

qoz, qoK eK e-Ke (,).

Multiplying both sides of the above equality by d/dt and using inequality (29), we have

eqoK eK dsc< d d2 qoK eK d< O.
dt dt dt2 dt

Integrating the above inequalities from tl to t and using (29), we see that

( K[ < O.-eqo eKe],, - -qo e ,,
Noticing that d/dt U-D, we have

(30) 11/2( U((t), t)-D)-qo eKe )11,, < qo.

Draw characteristic lines sol(t) and sc2(t) from (, t) and (sc, t), respectively. Let t*
and t* be the time at which sc(t) and 2(t) intersect s(t), respectively. It follows from
(28) that

U(:2(t2*), t2*)- U(,(t*), t*)[

(3) -lu(s(t*), t*)-u(s(t*,), t,*)l

2ls’(t*) s’(t*)l < e.

We then estimate

where the last inequality follows from (30), (31), and (29).
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Therefore, lim,_+o 1/2( U(s, t) D) exists and so does lim,_+c, U(s, t). Denote this
limit by u(:). By Theorem 3.7, u, z, and their first derivatives are bounded. Hence
u(s), z(s) are Lipschitz, and

LEMMA 4.6.

lim suplU(: t)-u(s:)]=0.
t+oo 0

lim (U,Z)(, t)=(0, 1) (uo(:), zoo(:)),

where x- Dt + 6 > O.
Proof If > 0, i.e., x- Dt + 6 > 0, there is a T > 0, such that for > T,

0<E(t) s(t)- Dt + 6 < x- Dt + 6.

That is,

x-s(t)>o.

From (24) and (23), we have that

z(, t)= z(x, t)= , u(, t)= u(x, t)=o,

provided > Z
Taking

u, z)() (0,

where > 0, the lemma is proved.
LMMA 4.7. (U, Z)(() is a travelling wave solution (, z)() of (1) and (2), i.e.,

u, z)()

Proof (u, z) is a weak solution of (1) and (2) if and only if

for any smooth function with compact support in {(x, t)l > 0}.
Taking 4(x-DT, t-T) as the test function in the above equation, then

A change of variables in the above integral gives

Hence

f [ Ct(x, t) U(x- Dt + 8, t+ T)
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Letting T +oe,

4),(x, u(x-D++4)x(X, -u(x-D+-qoz(x-D+ dxd=O

for all b.
Using Lemmas 4.5 and 4.6,

zx(x-Dt+)=
1

x-Dt+6<-O
=K(uo)z.

x-Dt+>O

Thus, (uo,z)(x-Dt+6) is indeed a weak solution of (1) and (2).
We now show that (uoo, z)(x-Dt + 3) satisfies (7)-(10), which are equations for

the travelling wave solution.
Clearly, z(sc) satisfies (8) and is smooth for sc-<0. By Lemma 4.5 (u, z)(sc) is

Lipschitz for sc-< 0, and hence absolutely continuous. Furthermore, (u, zoo) satisfies
(7) almost everywhere. Using Lemma 4.6, we get

(uo, z)(x- Dt + 6) (0, 1)= (q, z)(x- Dt + 6),

That is, (uoo, z) satisfies (10).
By Lemma 4.2,

Uo < u(x, t) < b(x- Dt + Xo),

Noticing that $(-oe)= Uo, we get

From Lemma 4.5,

x-Dt+6<O.

lim z(x Dt + O.
Dt+6-

Hence (9) is satisfied.
Using the uniqueness of solution of (7)-(10),

(u,z)(x-Dt+6)=(d/,z)(x-Dt+t), O<6<-Xo
LEMMA 4.8.

( Xo.

That is, (u, z)(x, t) converges to the travelling wave (O, z)(x-Dt + Xo).
Proof From Lemma 4.1, we have

I+[(X+Xo)-U(x,O)]dx=O._
Using the conservation law and Lemma 4.3, we have that for any > 0,

I+(b(x-Dt+xo)-U(X,t))dx=O’_
Hence,

That is,

f (q(x-Dt+xo)-d/(x-Dt+6)) dx=O.

x-Dt+6>O.

lim u(x- Dt + 6) Uo.
Dt+
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We summarize our results in. the following theorem.
THEOREM 4.9. The solution of (1), (2), (6), and (5) converges uniformly to the

travelling wave solution and the shock front is asymptotically linear"

and

where Xo satisfies

lim sup ](u,z)(x, t)-(,z)(x-Dt+xo)]=O,
t-+oo x--Dt+xo<=O

lim (u,z)(x,t)-(O, 1) forx-Dt+xo>O

lim (s( Dt + Xo) O,

0)-,(x)] dx =-UoXo.

We also have the convergence result in Lp norm (p _-> 1). This is a consequence of the
conservation law and the above result.

COROLLARY 4.10.

lim I(u,z)(x, t)-(,z)(x-Dt+xo)lp=O,

Proof We only prove the results for p 1. Results for p > 1 are easy consequences
of p 1 and Theorem 4.9.

Let s(t)= Dt-xo. By Lemma 4.3 and the conservation law,

6(x Dt + Xo) u(x, t)] dx 6(x Dt + Xo) u(x, t)] dx.
(t)

Therefore,

lu(x, t)- O(x- Dt + Xo)ll

[O(x- Dt + Xo)- u(x, t)] dx +
( t)

s(t)

2 [u(x, t) (x- Dt + Xo)] dx
d st(t)

_-< 2(s(t) s(t))2D - 0, -
[u(x, t)-O(x-Dt+xo)] dx

A similar result for z directly follows from s(t) s(t)
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CLASSIFICATION OF THE RIEMANN PROBLEM FOR
TWO-DIMENSIONAL GAS DYNAMICS*

CARSTEN W. SCHULZ-RINNEt

Abstract. The Riemann problem for two-dimensional gas dynamics with isentropic and poly-
tropic gas is considered. The initial data is constant in each quadrant and chosen so that only a

rarefaction wave, shock wave or slip line connects two neighboring constant initial states. With this

restriction, the existence of sixteen (respectively, fifteen) genuinely different wave combinations for
isentropic (respectively, polytropic) gas is proved. For each configuration the relations for the initial
data and the symmetry properties of the solution are given. This paper corrects the conjectured
classification presented in T. Zhang and Y. Zheng [SIAM J. Math. Anal., 21 (1990), pp. 593-630].

Key words. Riemann problem, gas dynamics, initial data, compatibility conditions, self-
similar solution

AMS(MOS) subject classifications. 35L65, 35L67, 76N15

1. Introduction. The study of the Riemann problem for gas dynamics has a
long tradition, starting with the work of Riemann himself in the last century. In the
last twenty years the Riemann problem for one-dimensional gas dynamics has been
studied, and the results have been published in [6], [7], and [9] (they also contain
further references). More recently the research was extended toward two-dimensional
scalar conservation laws [2]-[4], [8], [10]. aiemann problems for two-dimensional gas
dynamics were considered in [1] and [11].

Under certain assumptions, Zhang and Zheng [11] conjectured the existence of
seventeen reasonable combinations of initial data (counting two subcases individually).
Six of their configurations contain no slip lines. In this paper we analyze the same
problem more thoroughly. We are able to prove that for isentropic gas one of these six
configurations does not exist and one is centrally symmetric. For polytropic gas both
cannot exist. Moreover, one of the remaining four configurations is always axially
symmetric.

After exposing the problem in the following section, we classify the Riemann
problem according to the combination of the elementary waves in 3. There it is shown
that only sixteen (respectively, fifteen) genuinely different configurations for isentropic
(respectively, polytropic) gas exist, compared to seventeen found by Zhang and Zheng
[11]. These numbers are based on the same method of counting. In particular, those
combinations which can be obtained by coordinate transformations are not counted.

Numerical solutions for each configuration have recently been computed by the
author in joint work with Collins and Glaz. The wave structures are analyzed and
illustrated by contour plots in [5].

2. Problem definition. The Euler equations of inviscid compressible isentropic
flow consist of the continuity equations for the conservation of mass and momentum.
For polytropic gas we have an additional equation for the conservation of energy.

*Received by the editors May 13, 1991; accepted for publication (in revised form) March 11,
1992.

Seminar fiir Angewandte Mathematik, Eidgenhssische Technische Hochschule Ziirich, 8092
Ziirich, Switzerland.
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The conservation form of these equations in Cartesian coordinates, together with the
equation of state, is

(2.1) Ut + F(U) + G(U)u O,

where

U- pu F(U) pu2 +p G(U) puv p= Ap
pv puv pv2 + p

for isentropic gas and

U pu F(U) pu2 + p G(U) puv
flV pUV pV2 + p
pS u(pS + p) v(pW + p)
1 p u2 /v2

(V- 1) p 2

for polytropic gas. Here p is the density, u the x-velocity component, v the y-velocity
component, p the pressure, E the energy, V > 1 the ratio of specific heats of the gas,
and A > 0 a constant.

The characteristic speeds of (2.1) in x- (or y-) direction, i.e., the eigenvalues of
the Jacobian matrix VuF (or VuG) are A_ u- c, A0 u, and + u + c (or_

v- c, A0 v, and + v + c). Here the sound speed c is defined by c2 VP/P.
The Riemann problem in the (x,y)-plane is the initial value problem for (2.1)

with initial data

(2.2) (p, u, v)(x, y, O) (pi, ui, vi), i 1,..., 4

for isentropic gas and

(2.2’) (p, p, u, v)(x, y, 0) (pi, pi, ui, vi), i 1,..., 4

for polytropic gas, where denotes the ith quadrant.
The solution is a function of the similarity variables x/t and y/t and is

called pseudostationary flow. Far enough away from the origin, the general solution
consists of four planar waves, each parallel to one of the coordinate axes, between
the four constant initial states. In general, a planar wave is formed by up to three
elementary waves corresponding to the eigenvalues _, 0, and +: a backward rar-

efaction wave R or shock wave S, a slip line (respectively, a contact discontinuity)
for isentropic (respectively, polytropic) gas J, and a forward rarefaction wave R or

shock wave . This study of the two-dimensional Riemann problem is restricted to
situations where each planar wave consists of a single elementary wave. Thus the
initial data has to be chosen so that only a rarefaction wave, shock wave or slip line
connects two neighboring constant initial states.

1From here on the use of the term slip line always denotes a slip line for isentropic gas and a

contact discontinuity for polytropic gas.
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Before we start with the classification of the two-dimensional Riemann problem,
the formulas for the one-dimensional elementary waves between two constant states
are briefly reviewed.

Across a backward (respectively, forward) rarefaction wave
the corresponding Riemann invariants are constant. They are w / (2/(/- 1))c (re-
spectively, w (2/(-- 1))c) for isentropic gas and, additionally, the entropy s for
polytropic gas, where w is the velocity. For a given left and right state (denoted by
the indices and r), we thus have

wr wl (I)lr (respectively, w wr
/-1

for (respectively, ). For polytropic gas we further find

pr

using the additional Riemann invariant s.
The Rankine-Hugoniot conditions for the system of equations (2.1) give the re-

lations between the states on each side of a shock wave S. From these conditions we

> 0)
PlPr

can derive

p_ (p+(-1))/(1+ (-Pr (9’ + 1) (9’ + 1)
=: IIr

and, additionally,

for polytropic gas.
The type of elementary wave is determined by the pressure and the velocity

inequalities:

pl Pr wl Wr R Pl Pr, Wl wr -,
Pl < Pr, w > wr -, p > p, w > wr -.

Across a contact discontinuity J the (normal) velocity and the pressure are con-
stant, but the density can jump arbitrarily. For isentropic gas a slip line J only occurs
in two-dimensional flow when the density and the normal velocity are constant and
the tangential velocity is discontinuous.

3. Classification. In the following we assume that the initial data (2.2) or
(2.2’) are chosen so that only one elementary wave connects two neighboring constant
states. First we consider all combinations that involve rarefaction and shock waves
exclusively. Thereafter, all combinations involving slip lines are considered. For all
possible configurations we give the relations that have to be satisfied by the initial
data and the symmetry properties of the solution.

Configurations without slip lines. Here we consider the configurations that
only involve rarefaction and shock waves. Then there exist only three distinct relations
between the pressure values in the four quadrants:

p2 pl p2 ( pl p2 pl

V V A V V V

P3 ( P4 P3 > P4 P3 > P4



TWO-DIMENSIONAL RIEMANN PROBLEM 79

The remaining relations can be derived from the above by coordinate transformations.
For the velocities four different relations are possible:

U2 ?23 < ?24 Ul
and

Vl V2 > V3 V4

U2 t3 > ?24 721
and

Vl V2 < V3 V4

U2 ?23 < U4 Ul
and

Vl V2 V3 V4

?22 ?23 > ?24 Ul
and

Vl V2 V3 V4.

Altogether we get twelve configurations:

Pl > V2, V4 > P3: +21 +32+34+41 -21-32-3441
Pl P2 P4 P3: +213234+41 -21 ’32 --34-41
Pl P2 P3 P4: +21 +3234+41 -21-32 +3441

+21’32+3441
+21 -’3234-41
+21-3234-41

21+32-34+41
-2132 +34+41
-21 +32 ’34+41

In this table and in the following Eij with E e {J, , , , } and i, j e {1, 2, 3, 4}
denotes an elementary wave E between the ith and jth quadrant.

Obviously, exchanging the axes in the right column gives the neighboring one.
Examination of the configurations in the last row shows that they are impossible.

For +21R32R34+41 we have v4- Vl (1)41, v3- v2 (I)32, v2 Vl, v3 v4.
This implies p2/p2- P/pl P3/P3- pa/pa in contradiction to the pressure

inequalit
For S 232 S 3aa and 2 S 32R 3a S a we have va v a, v3 v2 32,

v2 v, v3 va yielding al 32. Since the pressure inequality gives pa- p <
p3 -p2 and 1/p 1/pc < l/p2- l/p3, this is a contradiction, too.

At this point six configurations are remaining which are examined individually in
the following.

Configuration 1.
We have

and

+21R 32R 34R 41.

P >P2, P4 >P3

U2 Ul (I)21 ?23 U4 (I)34 U3 U2 U4 Ul

V4 Vl (1)41 V3 V2 (1)32 V2 Vl V3 V4.

This gives the so-called compatibility condition (I)21 (I)34. For polytropic gas we
have to include the following equations:

for (i,j) e {(2, 1), (3, 4), (3, 2), (4, 1)}.

Configuration 2.
We have

32R 3aR

Pl >P2, P4 <P3

and

U2 Itl (1)21 t4 U3 (1)34 ?23 U2 U4 Ul

V4 Vl (I)41 V2 V3 (1)32 V2 Vl V3 V4

so that the compatibility conditions are (I)21 -(I)34 and (I)41 -(1)32. For polytropic
gas we append the same equations as in Configuration 1.
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Thus we must have pl p3 and p2 pa implying ul- u2 vl- v4 and
ua u3 v2 v3. Consequently, the solutions are symmetric to y vl U and
+=u+v.

Configuration 3. S 21 S 32 S 3a-al.
We have

(3.1) pl > p2, P4 > P3

and

t2 Ul 1121, U3 U4 1134, U3 U2, /,4 tl,

V4 Vl 1/41, V3 V2 11/32, V2 Vl, V3 V4.

This gives the compatibility conditions

(3.2) I/21 34 and I/41

For polytropic gas the following equations must be added:

(3.3) P-- Hj
Py

for (i,j)e {(2, 1), (3,4), (3,2), (4, 1)}.

Due to the compatibility conditions we have to choose p4 p2 (which implies
p4 p2) according to the Theorem 1. Then the compatibility conditions (3.2) become
a single equation, and we have u2 -ul v4 -Vl. Consequently, the solutions are
symmetric to

THEOREM 1. The inequality (3.1), the compatibility conditions (3.2) and the
additional equations .for polytropic gas (3.3) can only be satisfied if p4 p2. (For
polytropic gas it is assumed that 1 < " <_ 3 holds.)

Proof. For isentropic gas we apply the equation of state to the compatibility
conditions (3.2) and set

Pl xp3, P2 YP3, and p4 zp3,

getting

1 /1 1 1
(x-y) ( ) (z 1) -), (x-z) ( ) (y-l) (1- )
We define f(z, y) as the difference of the left- and right-hand side of the last equation
(assuming x to be fixed). Now we have to prove that f(y, z) 0 and f(z, y) 0 for
x>y,z>lonlyify=z.

We find that
z 1- f(y,z)+z(1-z)f(z,y)

is a quadratic polynomial in z with the roots

xy
and z2(y)- x(x- 1)

Z1 (y)
y(x -- 1) X y(x- 1) + X X"
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By construction, these roots are the only candidates for the roots of f(y, z) and f(z, y).
After replacing z by zl in f(y, z) and f(z, y), we multiply both of them by a positive
factor that has no influence on the roots of a function:

(y(x + 1) x)"/f(y, zl)
(y(x + 1) x)gl(y)

y"i(y--1 __x--l) y(1 y--).

1) (y(x + 1) x) xT.

f(zl,y)

Since g(1) gl(x) 0 and g(y) has its extremum for y.r+l x(x7 + 1)/(x + 1),
there exists no root y E (1, x) of gl(y) and, consequently, of f(y,z) or f(z,y).

Now we define

g2(y) (y’r(x 1) + x’r x)’ [f(y, z2) + f(z2, y)]

(y(x l) + x’r x)e ((x’r -1) x’r-l + l) x(x l) (l )
The common roots of .f(y, z2) and f(z2, y) are a subset of the roots of g2(y). As before,
we have g2(1) g2(x) 0, and we compute the first derivative of g2(y)"

(1_ )g(y) --’72yr-(x- 1)(y(x- 1) + x x)- .(x 1) x-1 + 1

1
(y (x 1) + x x) __-7 (x 1).

y

In order to show that g(y) has at most two roots in (1, x), we examine

g2(y) y2(y’r(x 1) + x7 x)l-"g(y),

which has the same roots as g(y) in (1, x). (y) is only extremal at y (1-’7-)(x7
1)/(x7-- 1). Thus g(y) has no more than two roots, and, consequently, g2(y) has
at most one root in (1, x).

On the other hand, f(1,1)f(x,x) < 0 and f(y,y) is smooth, so that a root of
f(y,y) does exist in (1, x). This must be the unique root of g2(y) in (1, x), showing
that y z is required as claimed. Moreover, for given x we can compute y by solving

For polytropic gas we rewrite the compatibility conditions (3.2) to get

Then we use the additional equations (3.3) to eliminate pi, i 1,...,4 in these
equations. Setting

p xp3 p2 YP3 P4 zp3 and e
(’7+ 1)’
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the compatibility conditions are equivalent to

( )( +)( + ) ( )( + )( + ),
(x- z)2(1 + z)(y + ) (y- 1)2(z + s)(x + z).

We define f(z, y) as the difference of the left- and right-hand side of the last equation
(assuming x to be fixed). Now we have to prove that f(y, z) 0 and f(z, y) 0 for
x > y, z > 1 only if y-- z.

The resultant r(z) of f(y, z) and f(z, y) has the following roots:

zo=-, zl=x, z2=l,

z3:e 2(1 +1 2) ((x / 1)+ V/2(x / 1)2 + 4(1 / 2)x)

2s(2e + ex x)
-2sa + (1 + e 6e + 2ea)x + (1 3e + 2e)

+ /x 1 V/2ea(x- 1) + (1 e- 2e)x

v/-( + a- .-1/- (1 ).
By the definition of the resultant, the common roots of J’(, z) and I(z, ) are a
subset of the roots of r(z). Obviously, z0, z, z and - are not in the interval (1, x).z isUnder the assumption for 7, we have 0 < _< . Then well defined and its
discriminant is negative because x- 1 and 2e3(x 1) + (1 e 22)z are positive and
-(1 + 3 22 23x-1)x (1 )x2 is negative since

1 + 3 22 23x-t > 1 + 3 2 2 1 > 0.

Thus z is complex, and z3+ is the only positive root of r(z). It is easy to verify that

z3+ (1, x) and that f(z+3, z+3) O.
Co,aton . SS.
We have

Pl > P2,P4 P3

and the same equations and compatibility conditions as in Configuration 3.
Necessarily we must have p p3 and p2 p4 (which implies pl p3 and

p2 p4) yielding u2 Ul V4 Vl and u3 u4 v3 v2. Consequently, the solutions
are symmetric to r/- vt u and + u2 + v2.

Configuration 5. +21-32 "-R.
We have

(3.4) pl > p2, pa > p3

and
U2 Ul (I)21 U3 U4 (I)34 U3 U2 U4 Ul

V4 Vl 1/41 V3 V2 11/32 V2 Vl V3 V4.

This gives the compatibility conditions

(3.5) (I)21 (I)3a and 4 32.
For polytropic gas the equations

(3.6) P3=H32, P4=H41, p2 p2
and p3_ p3

1/

P2 Pl /91 P4 44
are added.

We can prove that this configuration is impossible.
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THEOREM 2. There exist no pi, 1,..., 4 satisfying the inequality (3.4), the
compatibility conditions (3.5) and the additional equations for polytropic gas (3.6).

Proof. For isentropic gas we apply the equation of state to the compatibility
conditions (3.5), getting

plpa p2P3

Now we show that for any pi, 1,..., 4 satisfying the inequality (3.4) and the first
compatibility condition, the second is violated. Defining

2 1/ i 1, 4,= (’)’-1)
and Ri p

the first compatibility condition is equivalent to R R2 R4 R3. Introducing
A R R2 > 0, we have

(3.7) R=R2+A and Ra=R3+A.

Then the second compatibility condition can be written as

[(R: + + + +
(R: + A)(Ra +

[R R][R2 R]
R2R3

We define f(i) as the difference of the left- and right-hand side of the last equation.
Obviously, f(0) 0. Now we have to prove that f(A) does not vanish for any positive
R2, R3 and A. We differentiate f with respect to A. Using 5 i + 2 and (3.7), this
yields

Of 1 [R+ R45+1]0A --++ ((ti + 2)RRa [R R4]
1 4

([RS+2 R45+2][R51+ R45+1] }.

Introducing R RI/Ra (R2 + A)/(R3 + A) > 1, this derivative becomes

0A
R4 (R+ 1) {(i + 2)R (R 1) i (R+2 1)}R+I ."

=hi[R)

In order to show that Of/OA is negative for all positive R2, R3, and A, it is equivalent
to show that the function h(R) defined above is negative for all R strictly greater than
one. Since h(1) 0 we differentiate h with respect to R and get

h’(R) ( + 2) {(ti + 1)R 1 5R+1}.

Observing that h’(1) 0, we compute h"(R) to find

h"(R) (5 + 2)(5 + 1)5R5-{1 R}.

Obviously, h’(R) is negative for R strictly greater than one. Thus we have proved
that f(A) is negative for all positive R2, R3 and A.
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For polytropic gas we use the additional equations (3.6) to derive the following
equation, which is independent of pi, i 1,..., 4:

P2 1-[32 II41.

Introducing

(p+ (-1))/( (’- 1)p)(/+ 1)
1 + (,), + 1)

this can be written as

Since f(P) is strictly decreasing for P E (0, oo), the last equation implies that

(3.8) p3

P2
p4, which is equivalent to

p3 p2

pl p4 pl

Again using the additional equations, we eliminate pi, i 1,..., 4 in the first com-
patibility condition and get

q4 1- -((P2) (’r-)/2"r) P((Pa)(’-)/2"r)1--4
With our previous result (3.8), it follows that this is equivalent to 1141 P4/Pl. The
only admissible solution p p4 violates the inequality (3.4).

Configuration 6. +21 S 32R 34 S 41.

We have

(3.9) pl > p2, p4 < pa

and

t2 Ul (I)21 t4 U3 (1)34 U3 /,2 t4 Ul

V4 Vl /I/41 V3 V2 II/32 V2 Vl V3 V4

so that the compatibility conditions are

(3.10) (I)21 =-(I)a4 and I/41 11/32.

For polytropic gas we have the same additional equations as in Configuration 5, and
this configuration is impossible, too.

THEOREM 3. For polytropic gas there exist no pi, i 1,..., 4 satisfying the
inequality (3.9), the compatibility conditions (3.10), and the additional equations for
polytropic gas (3.6).

Proof. As in the preceding proof, we use the additional equations (3.6) to derive
that p3/p2 p4/pl. This is in contradiction to the inequality (3.9), which implies that
Pa/P2 > 1 > P4/Pi. Wi

For isentropic gas the following theorem states that we have to choose p3 pl

and p4 p2 (which implies p3 pl and p4 p2). Thus the solutions are symmetric
with respect to the point ({, ?) (1/2 (u + u2), 1/2 (v + v3)).
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THEOREM 4. For isentropic gas the inequality (3.9) and the compatibility condi-
tions (3.10) can only be satisfied if p3 pl and p4 p2.

Proof. We apply the equation of state to the compatibility conditions (3.10),
getting

PlP4 P3P2

Defining
2 1/ i 1, 4,i=

(3_1)
and Ri=pi

the first compatibility condition becomes R1 R2 R3 R4, which is equivalent to
R1 R3 R2 Ra. Introducing k R1 R3, we have R1 R3 +A and Ra R2 A.
Then the second compatibility condition can be written as

[(R +) -(R )][(R +) (R )]
(R3 -t- A)(R2 A)$

[R R][R3 R2]
R3R2

We define f(A) as the difference of the left- and right-hand side of the last equation.
Obviously, f(0) 0. Now we prove that f(A) is strictly increasing for any positive
R2, R3 and A E (-R3, R2). We differentiate f with respect to A. Using 7 5 + 2
and introducing R (R3 + A)/(R2 A) R1/Ra > 1, this yields

of
OA

Ra (R+ 2)R + 1)} > 0.R+ + ) {( + (R l) (R+

Hence f is strictly increasing and A 0 is its unique root, i.e., P3 pl and p4 p2

is necessary to satisfy the compatibility conditions. [3

Configurations involving slip lines. Now we consider all combinations in-
volving slip lines J. There are two genuinely different configurations with four J’s,
one where all the J’s are moving clockwise and one where two J’s are moving in the
opposite direction.

Three J’s imply pl p2 p3 p4 in contradiction to the pressure inequality of
the fourth wave.

Two J’s are either neighbors or not. In the first case we assume that the J’s
are between the third quadrant and its neighbors. Then we find the following eight
configurations:

Pl > P2 --P3 -’P4: 21J32J3441 -21J32J34-41 +21J32J34-41 -21J32J34+41
pl < p2 p3 p4" R 21 J32 J34R 41 S 21 J32 J34 -41 21 J32 J34 -’41 S21J32J34R41.6--

As before, exchanging the axes in the right column gives the neighboring one.
In the case where the J’s are not neighbors, three different combinations are

possible:

pl p2 > p3 pc" J21R 32J3441 J21 -32J34 S 41 J21 ’ 32J3441.
A case with one J would imply u u2 u3 u4 or vl v2 v3 v4 in

contradiction to the existence of three shock and rarefaction waves.
In the following, these eleven configurations involving slip lines are listed with

their relations for the initial data and their symmetry properties. For polytropic gas
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we have to include additional equations. Namely, for a rarefaction or a shock wave
between the ith and jth quadrant (i, j (1,..., 4) we add

pi pi Pior ---1-Iij
P P

respectively.

Configuration A. J21 J32J3a
We have p p2 p3 p4 and

(motion in opposite directions).

Ul /,2 /,3 4 Vl V4 V3 V2.

The solutions are symmetric with respect to the point (, r) (1/2(ul + u3), 1/2(Vl "- V2))
for isentropic gas.

Configuration B. J21J32J3aJ4 (clockwise motion).
We have p p2 p3 p4 and

Ul U2 U3 U4 Vl V4 V3 V2.

The solutions have the same symmetry properties as in Configuration A.
Configuration C. 2J32J34
We have pl > p2 p3 pa and

U2 Ul (1)21 U3 U4 Ul V4 Vl (1)41 V3 V2 Vl.

The solutions are symmetric to
Configuration D. 21 J32J3441.

We have Pl < P2 P3 P4 and

Ul U2 (1)21 ?3 U4 Ul Vl V4 (1)41 V3 V2 Vl.

The solutions are symmetric to v] v u.
Configuration E. S 21J32J344.
We have pl > p2 p3 p4 and

U2 Ul 1/21 U3 U4 Ul V4 Vl I/41 V3 V2 Vl.

The solutions are symmetric to y -___ Vl Ul.

Configuration F. S--21J32 J34 S 41.

We have pl < p2 p3 p4 and the same equations as in Configuration E.
Configuration G. 2J32J34-al.
We have p > p2 p3 p4 and

Configuration H. 21 J32 J34 -41.
We have pl < p2 p3 p4 and

V4 Vl I/41 V3 V2 Vl.

Ul U2 (1)21 U3 U4 Ul V4 Vl 11/41 V3 V2 Vl.
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Configuration I. J21R 32 J3aR al.

We have pl p2 > p3 pa and

Ul /,2 U3 U4 V4 Vl (I)41 V3 V2 (1)32.

Configuration J. J21-32J34-41.
We have pl p2 > p3 pa and

Ul U2 U3 t4 V4 Vl I/41 V3 V2 1/32.

Configuration K. J21 -32J3441.
We have Pl P2 P3 P4 and

Ul U2 U3 U4 V4 Vl --(1)41 V3 V2 1/32.

Conclusion. Combining the results of this section, we have sixteen (respectively,
fifteen) different configurations for the Riemann problem for isentropic (respectively,
polytropic) gas in two space dimensions:

4 R" R 21R 32R 3441 R 21R 32R 3441
4 S" S 21 S 32 S.34-41 S 21 S 32 S 34 S 41

2 R + 2 S: R 1SaRa S1 (only for isentropic gas)
(...

4J" J21 J32 J34 J41 J21 J32 J34 J41

2 J + 2 R" R 1 Ja Ja1 1 Ja JaR1 J1Ra Ja1
2J / 2S" -21 J32 J34-41 S21 J32 J34 41 J21 S32 J34-41
2J 4- R 4- S" R21 J32 J3a-41 21 J32 J34 -41 J2-32 J34’41.
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THRESHOLD BEHAVIOR AND PROPAGATION FOR A
DIFFERENTIAL-DIFFERENCE SYSTEM*
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Abstract. This paper uses a comparison principle to study the long time behavior of a certain class of
nonlinear difference-differential systems. These systems are motivated by certain models of heart tissue and
myelinated axon. The main concern is to find steady state solutions, determine threshold properties, and
study aspects of propagation. The theorems obtained are supported by numerical simulations.

Key words, threshold, comparison principle, myelinated axon, propagation
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1. Introduction. Below we study a class of problems that are motivated by the
structure of certain mathematical models, among them models of myelinated axon and
heart tissue. The myelinated axon can be modeled by an electrical circuit. Based on
current conservation from this circuit, we can set up the mathematical model to have
the form

d
(1.1) d- u d(uj+ 2Uj + U-l) +f(uy),

where u is the membrane potential at the jth node, f(u) represents a current-voltage
relation, and d is a constant [2], [3]. The simplest current-voltage relation is to let f
be a cubic-shaped function. After appropriate scaling, we can assume

0_-<Ui -<-1 for alljZ.

Bell [2] studied this system. He proved that there exists a constant a, 0< a < 1,
such that if the initial condition Ui(0)< a holds for all j, then the solution u(t)- 0 as
t--> for all j. He calls this a subthreshold phenomenon. Under certain conditions,
u(t) does not go to zero as t- for at least one j. This is called a superthreshold
phenomenon. Under certain conditions on f, if uy(0) is greater than a particular value
for at least one j, then u(t)-> 1 for all j as t-, and this process is in a form of
propagating wave front. Keener [6] proved that propagation fails when the coupling
is weak, i.e., when d is small. Zinner [8] proved that (1.1) has a traveling wavefront
solution under certain conditions, and in [9] has shown that such a wavefront solution
is globally stable.

To model a sheet of heart tissue, we need at least two spatial dimensions (Keener
[7]). One possible mathematical model of a thin heart tissue is

d
d--t lli’j dl(Ui+l’J--2tli’J d- l,li_l,j)

(1.2) + d2(ui,j+1-2ui, + ui,j_l)Wf(ui,j),
where ui.(t) represents the potential in the (i,j) cell at time t.

In this paper, we study the threshold behavior and propagation of a more general
semidiscrete dynamic system

d
d--- u( t) Ad U( t) f(u) 0,
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where

aua=- Y dt3_a(ut3-ua) foraKZa,
d /3 C,,

K and Ca are defined in 2. This system includes (1.1) and (1.2) as special cases.
Various results obtained here are parallel to Bell’s results [2].

(1) There exists some constant q such that if 0< ua(0)=< q for all a, then ua(t)->O
as t-> for all ce Zd (Theorem 4.2). This is a subthreshold result.

(2) Under certain conditions on fa, there exists a constant b, such that ua(0)=>0
for all a and u(0) _-> b for some 3’ guarantee that limt_, ua 1 for all a Zd (Theorem
4.5). This is a superthreshold result.

(3) Under the conditions stated in (2), ua - 1 in a form of a traveling wavefront.
This behavior is studied in 5. Estimation of the lower bound _c and the upper bound
t? of the propagation speed are obtained (Theorems 5.1 and 5.2).

The above theoretical results are supported by numerical simulations that are
discussed in 6.

2. Model and comparison theorem. Let K Zd. K . We define the boundary of
K as

OK={azdl=lfleK and ::ly K such that II-[I- 1 and II-ll- 1}.

We also assume that Int K K\0K , where Int K is the interior of K. Furthermore,
for any a e Zd we define

Ca { zd[ 1o/-/3il- 0 or 1, i= 1,..., d, fl a},

where a (al, a2,.. Cd),/3 (fl, f12,..., /3d). There are Nd 3d 1 elements in Ca.

R+= {tlO< < o},

Rff {tlO<= < },

X {q CI(R+) fq C(R-) q’(0+) exists}.

Consider the system

d

where

(2.2) Aua=- Y dt3_a(ut-ua) for aK,
d /3 Ca

and the diffusion coefficients d_->0, 6=/3-c, with /3 Ca, have the following
properties:

(i) Symmetric with respect to a"

(2.3a) d=d_;

(2.3b) (ii) d > O;

(2.3c) (iii) d dt_a is independent of a.
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Below, when we write t3_c,, d(ut Us), we will mean that 3 =/3 a. For a given
dimension d, the operator Aa is uniquely determined by one particular set of d’s. We
also suppose fs C1[0, 1] has the following properties:

(i)

(ii)

(2.4)

where

f(0) =f(as)=f (1)=0,

fs(u) < 0 for 0<u <as
f(u)>0 foras<u<l,

where as (0, 1),

and

0 < _a =< as -<_ i < l, _a=inf{as}, a=sup{as};

(iii) Assume

rs inf {0< s < as [f (u)-<f (P)
lO< u<=p, s<=p<-_as} <_a

for each a, ?-- sups rs <_a, and supsz {fs(q)/q}<O for q<_a;
(iv) dfs/du is uniformly bounded over 0 =< u =< 1.
The assumptions (i), (ii) on fs may be dropped for some theorems and lemmas.
We first consider some examples of system (2.1).
Example 2.1. Special case of dimension d 1.
Where a,/3 are scalar, let ,a -= i; then [fl a[ _-< 1 implies/3 i, + 1, so, Cs {i- 1,

i+ 1}. There are two diffusion coefficients, d(_l)_ d_ and d(+)_ d. Equations
(2.3a), (2.3b) imply that d_ d d > 0. Therefore, the operator AdU is determined as

Aui d,(ui+,- ui) + d_,(u,_,- u,)
d

=d(ui+-2ui+ui-l),

and (2.1) becomes

d
(2.6) d- ui d (u,+, 2u, + u,-1) +f(ui).

This is the prototypical example of system (2.1), and it has been studied extensively
[2], [3].

Example 2.2. Special case of dimension d 2.
,In this case, K

_
Z2; if a (i, j), then

C(i,j)={(i+l,j), (i,j+/- 1), (i+l,j+/-l)}.

See Fig. l(a). There are eight d’s: d+l,o, do,+, d+,+. Different operators AclUi, can
be obtained by choosing different sets of d’s.

(1) For any (i, j) Z2, choosing

d,o d-l,o d > 0, do,1 do,- d2 > 0,

d+,+ 0; see Fig. 1 (b),

and with conditions (2.3a), (2.3b), and (2.3c) satisfied, we obtain

(2.7) A ui,; d(u+,; -2u,; + ui-,;)+ d2(ui,j+l -2ui, + u,;_),
d
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(a)

(i,j)

.(b)

(c)

FIG 1. Some examples of operator A for d 2.

dl
t

(i,j)

(d)

and (2.1) becomes

d
(2.8)

This is the standard two-dimensional analogue of (2.6).
(2) For any (i, j) Z2, choosing

d,o=d>O, do,+/---d2>O, d, =d_,_--d3>O

and d,_ d-,t =0

(see Fig. l(c)), (2.3a) to (2.3c) are also satisfied, and (2.1) becomes

d
d-t ui, d,(ui+,,j -2ui, + ui_,,j)+ dz(u,,.j+-2u,,j + ui,j_l)

(2.9)
+ d3(Ui+l,j+ 2u,,,j + Ui_l,j_l) +f,j(ui,j).

(3) Similarly, if we choose

do,+ d > O, dl, d_,_ d2 > O,

d+/-,o=O, and d,_=d_,=O
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(see Fig. l(d)), (2.1) becomes

(2.10)
d
-l ui’j dl(Ui’j+1-2ui’j -+- ui’j-1) + d2(gi+l’j+1-2ui’j "+- Ui-l’j-1)+fi’j(ui’J)"

Our main mathematical tool is the comparison theorem, which is stated as Lemma 2.2.
Let qs X, fs, gs C(R2); we define

(2.11a)
d

Pqs(t)=- qs(t)- Z d(qt-kqs)-f(t,
C,

(2.11b)
d

Pqs(t)=--d qs(t)- d(q-kqs)-gs(t, qs),
3C

where a K, k R is a constant, and the d’s satisfy (2.3).
LEMMA 2.1. Assume {us(t)}s, {vs(t)}s with us, vs X, fs, gs C(R2), and

for all a K the following conditions are satisfied"

(2.12) (i) Pus >- vs in R+, a : OK;

(2.13) (ii) Us(0) => vs (0);

(2.14) (iii) f(t,z)>--gs(t,z) fort, zR;

(2.15)

(iv)

(v)

If K has a boundary 0K, assume that

uv( t) >- vv( t) in R-
sup {(Ofs/Oz)( t, z)} M <, where the sup is taken over all z R,

aK, and >- O.

Then

us t) => v t) in R- for all aK.

Proof of this lemma is similar to the proof of Theorem 2.3 in [6]. The following
comparison result is a special case of Lemma 2.1, where k= 1, and fs(t, z)=f(z).
This lemma is the main tool for studying system (2.1)-(2.4).

LEMMA 2.2. Assume {Us(t)}sg, {Vs(t)}sx with Us, Vs 6X, fs, gs C(R), and
for all a K the following conditions are satisfied:

d d
(i) ’Us-aUs-f"(Us)>---vs-Aa vs-gs(Vs) in R+,

(ii) f(z) >- gs(z) for z R;

(iii) For some M < oe, sups SUpzR { dL(z)
dz

(iv)
(v)

Then
Boundary condition (2.15) holds.

+ for fill a 6K.us(t) >- vs(t) in Ro
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3. Steady state solutions. Before we go into the discussion of the threshold
behavior, let us find some steady state solutions of (2.1)-(2.4) first, i.e., solutions to
the system

au+L(u):o,
d

or more explicitly,

(3.1) L d(ut-u)+f,(us)=O.

3.1. Trivial steady state solutions. Trivial steady state solutions are {us} {0}, {1}
because fs(0) =fs(1) 0 for all a Za. If as a for all a, then fs(a)=fs(as)=O for
all a, which implies {us} {a} is also a steady state solution.

We are interested in finding some nontrivial steady state solutions of system (2.1)
with operator Aa given in (2.7). We consider the special case wheref =f for all c, i.e.,

(3.2) dl(tli+l,j -2ui, + ui-,,j)+ d2(ui,j+, -2tli, + tli,j-1)+f(ui,j) --0,

where dl >0, d2>0, and f(tli,j) satisfies (2.4). Function f(bli,j) is shown in Fig. 2.

3.2. A particular class of nontrivial symmetric solutions of (3.2). Let us see an
example first.

Example. Let p, q be constants satisfying

O<p<a<q<l (sof(p)<O, f(q)>O),

and

(3.3)
2(q-p)(dl + d)+f(p)=0,

2(p q)(dl + de)+f(q) O.

Let

qo,o p,

p if }il/lJl is even,(3.4)
q"i

q if Iil+lJl is odd.

f(u)

u

FIG. 2. Typicalform off(u).
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FIG. 3

Then {qi,}, defined by (3.4), is a (nontrivial) steady state solution of (2.1) and is given
schematically in Fig. 3. This can be checked easily. For example, if for some i, j Z
Iil + IJl- even, then + 11 + IJ[, i[ + [j + 1[ are both odd, so

qi, P, qi+l,j qi-l,j qi,j+l qi, j-1 q.

Therefore, by (3.3),

d qi+ ,i 2qi, + q ,-, + d2 q i,i+1 2 qi,i + q,.i- +f( q,,.j 2 q p d + de) +f(p O.

We now consider two particular cases.
(i) f(u)=-(d +de) sin (27ru), d>0, de>0 are arbitrary, f meets conditions of

(2.4) with a 1/2. Let p -, q , then

2(q-p)(d, + dz)+f(p)=(d, + de)-(d, + d2) sin () =0,

2(p-q)(d+dz)+f(q)=-(d,+dz)-(d+de) sin ()=0,
so (3.3) is satisfied. From (3.4),

[- if Iil/ljl is even (include 0),
q’ -] if Iil / IJl is odd,

so that {qi,.i} is a nontrivial steady state solution.
(ii) f(u)=O.5.e" sin [27r(1-u)3], d= 1, de=2.
Here a 1 2 -1/3 0.2063. This time p, q can be obtained by solving the nonlinear

system that is represented in (3.3), namely,

6(q-p)+0.5 e5p sin [27r(1 _p)3]--0,

6(p-q)+0.5 e5q sin [27r(1-q)3] =0.
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The solution of this system is

Again, from (3.4) let

P
qi,;=

q

if lil + IJl is even (include 0),
if il / IJl is odd,

Then {qi,;} is a nontrivial steady state solution.
In the above example, the steady state {q,;} is "diamond-symmetrically" dis-

tributed with respect to the "origin" (i, j)= (0, 0), and attains values p and q alterna-
tively. It is easy to prove that if the steady state solution {q,;} has such a symmetric
property and d d2, then it must be obtained by the repeating of two values.

3.3. Some "special" steady state solutions of (2.1). There are some "special kinds"
of steady state solutions of system (2.1). For example, let K be a bounded set centered
at a =0, i.e., K= Co {0} (Cs is defined in 2); therefore, (2.1) only holds at one
point c 0, we can denote fs f, and as a. Assume further that there exists b, such
that

2 dtb -f(b) O;
3eCo

then Uo(t) b, us (t) 0 for all a 0K Co is a steady state solution. This follows from
(3.1),

E d,(ut Uo)+f(uo)
Co

E d, (0- Uo) +f(uo)
13 Co

E db+f(b)
Co

This kind of steady state solution will be used when we discuss a superthreshold
result.

4. Threshold results. We now investigate the sub- and superthreshold behavior of
the system (2.1)-(2.4).

LEMMA 4.1. Suppose {us(t)}, a Za is a solution to (2.1)-(2.4) with us(O) <= q for
all a Za. If 0 < q <= _a, then us (t) <= q for all a Za, and for all >= O.

Proof. Let

w(t)=--q Va6Zd.

Then

d d
d--t W’ --AdWs --f(w)=--f"(q)>=O=- U --Au"

w(O) q >= u,(O)

By Lemma 2.2 u,(t)<=Ws(t)=q, for all aZd and for all t->0.
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THEOREM 4.2. Suppose {us(t)} is a solution to (2.1)-(2.4) with O<=us(O)<-q for
all a Zd. If O<-q<_a, then limt_, us(t)=O uniformly for a Zd.

Proof If q 0, then us (t)--0 for all a because zero is a steady state solution. We
now assume q > 0, and ?=< q < _a ( is defined in (2.4)). Let

(4.1) r/= su_p,
/"l(fs<q) <0 ((iii)in (2.4)),

sz q

(4.2) ws(t)=e";

then ws(0)= 1 and

d
dt WS Ad WS rlws

d
-dt Ws- d(w-ws)-rlws

Co,

1 e’t-O-rl

Suppose us(t) solves (2.1)-(2.4) with O<-us(O)<-_q for all a. Then,

d d
d-- Us bd us fs us O - ws Ad ws rlws,

O<--us(O)<--_q<=l=ws(O).

Furthermore, us(O)<=q for all a, implies, by Lemma 4.1, us(t)<=q for all a, and for
all => O. For such us (t)

The first inequality comes from the assumption that q_>-. Therefore, the conditions
of Lemma 2.2 are satisfied, so

O<--_us(t)<=ws(t)=-e ’’ Vt>-O and VaZd.

Finally, lim,_. e"=0 (since r/<0) implies lim,_. us(t) =0 for all c Zd.
If q<?, then, let vs(t) be the solution of (2.1)-(2.4) with ?=<vs(0)<_a-e for

some e > 0. By Lemma 2.2, us(t)-< vs(t). But from the above discussion, vs(t) 0 as, for all a, therefore, again we have lim,_. us (t) 0 for all a Zd. This completes
the proof.

The following corollary gives us a superthreshold result.
COROLLARY 4.3. Suppose {us(t)} is a solution to (2.1)-(2.4) with p <- us(O) <- 1 for

all o Zd. Ifp > , then u, (t) --> 1 as for all a Zd.
Proof This is a direct result of Theorem 4.2. Suppose {us(t)} satisfies the above

conditions. Define ws(t)=l-u,(t), a*= 1-a,, q==l-p, and F,(w)=-f,(1-w);
then Fs (w) satisfies (2.4) with as replaced by a*. It can be checked easily. For example,
Fs(O)=-f.(1-O)=-f.(1)=O, and F,(a*) F.(1-a,)=-f.(a.)=O. Further, if
(0, a*), then 0< w < a*--- 1 -a,, which implies a, < 1 w < 1, so F.(w) -f,(1 w) <
0. Similarly, it can be shown that Fs(w) > 0 for w (a* 1) Furthermore, let a* inf a*"
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then g* inf (1 as) sup as 1 4. We also have

d

]--us -[-AaUs]-[-fs(1-ws)]

=0

and

ws(0)=l-us(0)_-<l-p<l-8=g* for all aZd.

Thus {ws(t)} satisfies the conditions of Theorem 4.2 with g replaced by g*, by the
theorem, ws(t)-->O as t- for all a Zd. The final result is obtained by considering
ws(t)= l-us(t). [3

Theorem 4.2 gives a subthreshold result. We now look for conditions that guarantee
that us(t)- 1 as t- for all a Zd. A trivial condition is given in Corollary 4.3, that
is assuming Us(0)> for all a Zd. Theorem 4.5 below tells us that under certain
conditions, Us(0)> b > a holding only at one node is enough to bump up the entire
solution { us (t) } to { 1 }.

The steady state solution of (2.1) in the statement of Lemma 4.4 exists under
certain conditions on fs and K as discussed at the end of 3. This lemma is a straight
generalization of Lemma 2 in Bell and Cosner [2] and is similar to Proposition 2.2 in
Aronson and Weinberger 1].

LEMMA 4.4. Suppose for some domain K c Zd, and a K, {qs } satisfies 0 <-_ qs <- 1
and

(4.3) qs +f(qs) 0.

If K has boundary OK, assume further qv <= 0 for all y OK. Let {Us (t)} be a solution of
(2.1) with us (0) qs for a K and us (0) 0 for all a Z \K. Then for each a, us (t) is

a nondecreasing function of with

lim us(t) ’s,

where {zs} is the smallest nonnegative solution to (4.3) validfor all a Zd, Which satisfies
zs>=qsfor aK.

In Theorem 4.5, we assume that fs(u) =f(u) for all a Zd, where f satisfies (2.4)
with as a fixed.

THEOREM 4.5. Suppose f(u) satisfies (2.4). Let M=- supo<__,__f(u)>0, m-=
-info<__,<__ f(u) > 0, and suppose there exists constants b, e with a < b < e < 1 such that
(see Fig. 4)

(4.4)
2( for u(b, e),

2(,=, d,) u-f(u)=O at u b, e,
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f(u)

2(d, + d2)u

a b e

FIG. 4

where di > 0 for i= 1, 2,..., 2s, and s is to be defined such that 2s is the number of d’s
that are >0. Suppose one of the following holds:

(4.5) 2(,=1 d’) b+ m <=e’min (d’’ d2’’ d)

(4.6)

If {u (t)} is a solution of (2.1) with u, (0)>= 0 for all a and uv(O >= b for some % then
lim ,-,oo u, (t) 1 for all a Zd.

The proof of the theorem is based on the following four lemmas. In order to
reduce the bookkeeping work as much as possible, those lemmas are stated in the
general form but proved in detail for d 2, and for the particular operator A d Ui, given
in (2.7):

Aui,. dl(u+,j- 2ui, q- Ui_l,j) q- d2( ui,j+l 2ui, -+- ui,j_).
d

Throughout the next four lemmas, we assume that f(u) satisfies the conditions in
Theorem 4.5, (4.4) holds, and {q,} is the smallest global nonnegative steady state
solution to (2.1)-(2.4) with q, _-> b for some a.

LEMMA 4.6. q b, e] for all a Zd.
Proof Suppose there exists a=(i,j) with b<=qg,<=e. By (3.1),

q,./+f( qi,j) 0,

d,(qi+,,j 2q,.j + qi-l,) + d2(qi,j+, 2qi, + q,,.i-) +f(qi,j) O,

or

d,(qi+,o+ qi-,o)+ d2(q<,+, + q,.,_,) 2(d, + d2)q,.,-f(q,a)

=< 0 (by (4.4)).
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So at least one of qi+o, qi-,g, qi,g+, q,g- must be <-0. For example, let q+d-<_0. If

q+,.i <0, then {qi,} is not a global nonnegative steady state solution, with q+o=0;
we obtain,

or

d, (qi+,g 2qi+,o + q,g) + d(q+,o+, 2q,+,o + q+,,,i-,) +f(q+,d) O,

dlqi+2,j + de(qi+,.i+ + qi+,.i-)=-dqi, < 0

(q, > 0 because qi, [b, el).

Therefore, at least one of q/,, q-o, qi,j+, qi,j- must be negative, so {q,} is not
a nonnegative steady state.

LEMMA 4.7. Assume further that (4.5) holds. If there exists ao Zd with q,o <-- b,
then q < b for all a Zd.

Proof Without loss of generality, let us assume qo,o < b. From (3.1) and (4.5),

d,(q,,o+ q-,,o) + &_(qo,, + qo,-,)

2(d, + d:)qo,o-f(qo,o)

<= 2(d + de) b + m <- e. min (d, d2),

dq,o+ dq-,o+ d2qo, q- deqo,- <- e. min (d, d2).

So every term on the left-hand side is =<e. min (d, d2) because all d, de and q’s are

nonnegative. But, dq,o<-_e.min (d, d2) implies q,o<-e.(min (d, dz)/d)<=e.
Similarly, q-l,o =< e, qo, --< e, and qo,- --< e. Furthermore, by Lemma 4.6, q, [b, e]
implies q,o < b, q-,o < b, qo, < b, and qo,-- < b.

It follows by induction that qi, < b for all i,j
LEMMA 4.8. Assume further that (4.6) holds. If there exists ao Zd with qo > e,

then q > e for all a Zd.
Proof Let us assume qo,o > e. Define

gli, 1 qi, j, F(gl,,.i) -f( 1 i,j );

then (3.1) can be rewritten as

(4.7)

We have

d,(q+,,., 2i, + 0-,o) + d2(,o+,- 2g/, + g/,o-,) + F(gli,j) O.

sup (-F(u))= sup (f(1-u))=M.
0_--<.u 0-----ul

Notice that qo,o> e implies o,o< l-e, and from (4.7), (4.6),

d,t,,o + d, t]_,,o + deto,, + deto,-, 2(d, + d2) rio,o- F(t]o,o)

<2(d,+de)(1-e)+M

_-< 1 b). min (d,, de).
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Therefore, every term on the left-hand side is <l-(b).min (dl, de). But dll,O
(1 b) min (dl, de) implies q,o
[b, e] by Lemma 4.6, thus q,o> e. Similarly, q_,o> e, qo, > e, and qo,-1 > e. By induc-
tion, qi, > e for all i, j

LEMMA 4.9. Assumefurther that (4.5) or (4.6) holds; then q : (e, 1) for all a Zd.
Proof. Suppose qo,o (e, 1). First, let us construct a sequence {qk} out of {qi,.j} such

that qo,o= qo> q> qe>" "> q,,> q,,+ with qm> e> a and q,,+l<=e, where qk{qi,}
for k 0, 1,..., m + 1 as follows.

Let (i, j)= (0, 0) in (3.1); define qo qo,o. We obtain

or

d,(q,,o-2qo,o+ q-l,O) + d2(qo,1- 2qo,o+ qo,-,)+f(qo,o)=0

dl(ql,o-- qo)+ dl(q_,,o- qo)+ de(qo,,- qo)+ d2(qo,-,- qo) -f(qo).

Assume without loss of generality that

q,o qo min (q,o- qo, q-l,o- qo, qo, qo, qo,- qo).

Define q q,o and

We obtain

therefore,

1
e= inf {f(q)}>O.

2(d + de) q[e, qo]

2(d + de)(ql qo)

< dl(q,,o qo) + a,(q_,,o- qo)+ de(qo,,- qo)+ de(qo,-,- qo)

-f(qo);

-f(qo)
ql-qo < <---e.=2(d+de)-

If q-<_ e, we are done (m =0).
Suppose q>e. Let (i,j)- (1,0) in (3.1); we have

d,(qe,o- q,) + d,(qo,o- q,) + de(q,,,-q,)+ de(q,,_,-q,) -f(q,,o).

Let qe be one of qe,o, qo,o, q,l, and q,_, such that

q2- q min (qe,o- q, qo,o- q, q, q, q,-1 ql);

then

therefore,

2(d, + de)(qe ql)

<= d,(q2,o- ql) + d,(qo,o q,) + de(q,,,- q,) + d(q,,_, q,)

-f(q,);

--f(ql)
q2 q -<-

2(d + d2)
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Following the same procedure, we can construct a sequence qo,o q0 > ql > q2 > >
qk > qk+l where

Therefore,

qk+l qk < --e if e < qk <= qo.

qk+l <- qk e <= qk-1--2e <--_" <-- qo-(k + 1)e.

This equation holds as long as qk > e. It is easy to see that when k increases, qk+l will
eventually drop below e or be equal to it. This completes our construction of the
sequence {qk}.

The assumption we made so far is only (4.4). Now consider (4.5) and (4.6).
Case 1. Assume (4.5) holds. According to Lemma 4.6, q,,/l -< e implies q,,/l < b.

Therefore, qia < b for all i, j, by Lemma 4.7, which contradicts the assumption qo,o
(e, 1).

Case 2. Assume (4.6) holds. By Lemma 4.8, qo.o> e implies qi.i > e for all i, j,
which contradicts qm+ <- e.

The contradictions are caused by the assumption qo.o (e, 1); therefore, qi.j (e, 1)
for all i, j. [3

Now we can prove Theorem 4.5.

Proofof Theorem 4.5. First, from Lemmas 4.6 and 4.9, we conclude that the global
nonnegative steady state solution {qs} with qs => b for some a, under the assumptions
of the theorem, must satisfy qs => 1. But q is a steady state; therefore, the smallest
such steady state is q, 1.

Let 0 be the d-dimensional zero vector. Suppose now u(0)=> 0, and uo(0) -> b (if
us(0)-> b for some c, then simply make a translation in c). Let {vs(t)} be the solution
of (2.1) with initial data vs(0) =0 for a S0 and vo b. Since qt =0 for/3 Co\{0}, and

2 d)b-f(b)=O) we may applyqo b yields a solution of (4.3) at a =0 (where (i=l
Lemma 4.4 and conclude that for any a, vs (t) is a monotone nondecreasing function
of t. Hence lim,_oo vs(t)= ’s, where {’s} is the smallest global steady state for (2.1)
with values lying above b. However, the only such steady state is {’s}= {1}, so
lim,_ v,(t) 1. Finally, vs(0) -< u(0) -< 1 implies, by Lemma 2.2, vs(t) <- u,(t) <- 1 for
all t, and all a zd; therefore, we obtain the conclusion that lim,_. us(t)= 1 for all
a Zd. [3

THEOREM 4.10. Suppose there are values Xl, x2, x3, x4 with 0 < Xl < x < x3 < x4 < 1,
such that

(4.8)
(i) (1-x,)+"’xl"=f( O, (1-x)+"rxz’f()=0, and

D D

f(z)
D
+(1-z)<0 for O<xl<z<x2,

(4.9)

f(x3) f(x4)
(ii) x3 0, x4 0, and

D D

f(z)
D
-z>O for X3 < Z < X4 < I

where D=t3c d (independent of a by (2.3c)). See Fig. 5. Suppose 0<= u(O) <- 1 for
all Zd. Then for any fl Za, if urn(O) [0, x2), then ut3 (t) [0, x2) for all > O. If
ut(0) (x3, 1], then U(t) G(X3, 1]for all t>0.
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(u)

DLI

x X
2

X X

D(u-l)

FIG. 5

Proof. First, 0_-< us(0)-<_ 1 for all a e Zd implies 0_-< us(t)_-< 1 for all a e Zd and
all t-> 0 by Lemma 2.2. Now suppose uv(0)e [0, x:). If we can prove that whenever
uv(t) goes into region (x, x:) it stops increasing, then uv(t) will stay in the region
[0, x:) for all t. This is true because if uv(t)e (xl, x:), then

d
d- u, (t) E d(u u,) +f(ur)

/3e C

-<- E d(1-ur)+f(uv) (since u_-< for all/3)

<0,

by (4.8)).
The other part of the theorem can be proved in the analogous way.

g. Prlmgfim Throughout this section, we assume

(5.1) lim us(t)= 1 for all a Z.
From Theorem 4.5 this is possible for some classes off’s. Below we use the notation

and [. means "integer part of."
THEOREM 5.1. Assume
(i) {us(t)} is a solution to (2.1)-(2.4) satisfying (5.1);
(ii) us(0) [0, 1] for all a Zd,

u(O)=O for }al> N where N <oo.

Then there exists a 6>0 such that for each ao6Zd, lim,_,oou(t)=0 if Ice[=
[a0l + ct] for c > 6.

Proof. Define

o-= su sup >0,
aeZ 0<u<l
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where (r < c because of (2.4). Then
(5.3) Aua AUa + rua,

d

c 3c Y, d,

c ’c d, u

(5.4) E d(u- ku,),
C

where

(5.5) kl-

Equation (2.1) may be rewritten as

or

d
(5.6) -ua-Au =f (ua) O’Ua =< O.

The last inequality is obtained by using the fact that ua(0) [0, 1] implies, by Lemma
2.2, ua(t) [0, 1], and by using the definition of o-.

Define

(5.7) wa(t) Ap(t) e

where positive constants/x, c, and A, and function p(t)=> 0 are to be determined. Then,
by (5.4),

Awa d(wt kwa)_
C,

E d[Ap(t) e-"(11-’)- kAp(t) e-(l"l-c’)]
(5.8)

=ap(t) e-"-’ 2 a[e-"--k]

Ap(t)

where

Fa(/lAa) is a function of/ depending on c and the particular form of operator
A d. Explicit representations of F(/IAd) for a couple of particular Aa’s are given in
Examples 5.1 and 5.2. Furthermore, considering there are 3a- elements in Ca and
the definition of Ca, it is true that for any fixed , -([l-[a[) is bounded above;
i.e., there exists M < such that -(IB[- [al) < M. Therefore,

F(l)[eM--k] 2 da VK.
C

Define

K
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then, for any fixed z,

(5.11) 0<F<oo.

It is not difficult to prove that F(/x) is a positive linear combination of cosh
k Z+ by using the symmetry property (2.3a) and the definition of Ca. Therefore, F(tz)
is even, monotonic increasing for /x > 0 and has a global minimum at /z 0. It can
also be proved that F(0)= r > 0, thus F(/x) can be represented as in Fig. 6. Examples
5.1 and 5.2 give the basic idea of the general discussion. Those results will be used later.

We now have

d
A- p(t) e-"<1"1-’’) + Ap(t) e-’11-’’). txc Ap(t) e

A e-"<11-’’) p(t) + p(t)txc F,p(t)

_-> e-"(11-’ p() + (.c r)p()

Let p(t) be the solution of (d/dt)p(t)+(xc-F)p(t)=O; then

(5.12) p(t) e -"(c-v/")’.

So, by (5.6),

d d
w, -Aw _->0=>-;7 us -Au.dt

Furthermore, choose

(5.13) a-= su.p, {e"11. ur(0)}.

A is finite because of the compact support assumption (5.2). Thus

w, (0) ap(O) e

su.p, {e "lrl. ur(0)}. 1. e

_-> u.(O).

FIG. 6
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This implies that w (t) _-> us (t) in Ro+ for all a Zd, because if choosingf -= 0, g 0,
then all conditions of Lemma 2.1 are satisfied. From (5.7) and (5.12),

(5.14) Ae=(ll-c’>.e-"(c-r/">’>-_u(t) in Ro+ for all a.

Now if/x and C- are properly chosen, the left-hand side of (5.14) will go to zero
if c> C’.

Let/Zo > 0; the tangent line to F(/x),/x> 0, at/Xo can be represented as

y(/.t) F’(/Xo)/.t + F(/Xo) F’(/Xo)/Zo.

Let/2 > 0 be the value of/Zo such that the tangent line at (/2, F(/2)) passes through
the origin (see Fig. 6). Then,

(5.15)

The tangent line exists, because, as we discussed before, F(/z) is even, monotonic
increasing for/x > 0, and has a global minimum F(0)= o-> 0. Now choose

(5.16) C- F’(/2)

then c > F(/2)//2 if c > . But F(/x)//z is a continuous function of/x, so c > F(/2)//2
+implies that there exists. /z+>/ such that c>F(ht)/ht for all /x with

Therefore, if c > ? and/.t is in the interval (/2,/x+), then

lim e-(c-v/) O.

Furthermore, for any aoZd, if la] laol+[ct], then the first factor in (5.14),

A e-(l’l-’) A e-(l’l+[ct]-ct)

_--< A e-(1%1-)

is bounded.
Combining the results above, we obtain

lim A e-t(ll-ct) e-(C-r/)’ 0

if Il=lol+[ct] for any aoZd, d>g and/z (/2,/z+). The result of the theorem is
obtained by considering the inequality given in (5.14) and u(t)>=O.

Notice that there is no contradiction between our result and (5.1) because in (5.1)
a is fixed, and in the result of Theorem 5.1, a laol +[et] is moving at a speed e.

Example 5.1. d 2. Consider the Ad given in (2.7)

d Hi, d u+,j 2tli,.j + Hi_l,j) "+" d2( tli,.j+l 2u,j + u,j_).

Here we have

c (i,j),

d+/-,o=d>O, do,+/-=d2>O, d+/-,=O,
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and from (5.9),

where

k 1- from (5.5).
2(dl + d2)

If i= O, and j O, then

(1) e-(1-) + e-"(1-)- 2k 2(e-"- k)

(2)=2(e-"-k).

If i=<-l, j is arbitrary, then

I(i/ 1,j)l-I(i,j)l=-Ii+ l+lJl-lil-lJl--li+ 11- Iil
=-(i+ 1)-(-i) =-1,

[(i-l,j)l-l(i,j)[=li-l[-]i[=-(i-1)-(-i)= 1,

so

If i=> 1, j is arbitrary, then

(1)=e-"+e"-2k.

I( + ,j)l-I(i,j)l li + 1-Iil i+ 1 -i= 1,

I(i- 1,j)l-I(i,j)l li- 1-Iil i- 1-i= -1,

so

(1)=e"+e-"-2k.

Similarly, if j _-<-1 or j_-> 1, and is arbitrary, we have

(2)=e"+e-"-2k.

Therefore, we obtain

+ d2)(e-" k)
F,j Fi,j(/z) (d+de)(e_.+e._2k)

F (d, + de)(e-" + e"- 2k)

+ de)(e-" + e 2 +dl

and

(5.17)

if i=j=0,

otherwise,
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Notice that min F r>0. Now (5.15) becomes

e-a + e 2 -t (-e-a + eZ)/2,
d +d2

or

(5.18) cosh (/2)-/2 sinh (/2)+ 1 =0.
2(d, + d2)

This equation has a positive solution for any dr, d2>0. Finally, by (5.16) and (5.17),
(5.19) e= 2(d, + d2) sinh (/2).

Example 5.2. Use the operator Aa defined in (2.9), namely,

dUi, d,(ui+,,j -2ui, + ui-,,j)+ d2(ui,j+, -2ui, + ui,.,-,)

+ d3(u i+,.,+- 2ui,., + u_,.,_).
Thus, from (5.9),

where

F, (/,) d[ e-"(l(i+ ,J)l-I(i,J)l) + e-,(l(-,J)l-I(i,J)l) 2k]
(1)

q- d2[ e-tx(l( i’j+ )l-l( i’j)l) + e-(l( i’j-1)l-I( i’j)l) 2k],
(2)

+ d3[e-(l(i+l’j+l)l-l(i’J)l)+ e-(l(i-l’j-l)l-I(i’j)l)- 2k],
(3)

k 1 from (5.5).
2(d, + d2 q- d3)

As in Example 5.1, we have to go through various cases to determine (1), (2),
and (3). From Example 5.1,

(1) (2) {2(e-- k) if i=j=0,
e-"+ e*-2k otherwise.

For (3) we have

f2( e -2t* k)
(3) e-2" + e2 2k

2(1-k)

if i=j=0,
if i=>l,j=>1 or

ifi_->l,j_-<-I or

Hence,

i<=-l,j<=-l,

i<=-l,j>=l.

Since/, > O,

[ 2(d, + d2)(e-u k)+ 2d3(e-2*- k)

/ (d’ + d2)( e- + e 2k) + d3( e-2" + e2 2k)

/
[,(d, + d2)(e-" + e** 2k)+ 2d3(1 k)

r(/x) sup
(i,j)cZ

--(dl + d2)(e-+ e*- 2k)+ d3( e -2** + e2*- 2k)

i=j =0,

i=> 1,j=> 1 or

i<=-l,j<--1,

otherwise.

2(d, + d2) cosh (/x) + 2d3 cosh (2/x) 2(d, + d2 q- d3) k
2[(d + d2) cosh (/z)+ d3 cosh (2/z)]- 2(d, + d2+ d3) + o-,
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SO that (5.15) becomes

2[(dl + d2) cosh (fi)+ d3 cosh (2fi)]- 2(d, + d2+ d3) + r
(5.20)

=/2{2(dl + d2) cosh (t2)+ d3 cosh (2/2)}.

This equation has a positive solution
THEOREM 5.2. Assume for a Zd,
(i) {q} is not identical to {0} and is a steady state solution to (2.1)-(2.4) with

0_--<q<l for Icel<N<eo, q. <-O for II=N;
(ii) The only steady state r. >- 0 for all ce Za with r >- q. for I1 < N is -. 1;
(iii) {us(t)} is a solution to (2.1)-(2.4), and there exists ceo Za, such that

u+o(0) >- q. for 11 < N.

Then there exists _c > O, such that for all c < _c and e > O, there exists T(e, c) < o, with
u(t)>-_ 1-e for Icl =lol/[ct] and for t> T(e, c).

Proof We may assume that ceo 0, where 0 is the d-dimensional zero vector, and
the general case can be obtained by a translation on ce. The proof consists of the
following.

(i) Let {w(t)} be the solution to (2.1) with w(0) q for I1 < N, and w.(0) =0
for.all ce, Ice] >= N. By Lemma 4.4, w(t) 1 monotonically for each ce as oe. Thus,
for each e > 0 there is a tl(e), such that for => tl(e),

(5.2) Wo(t)>-_-.

(ii) Since there are only finitely many
such that for > t, and any ce with Icel< N, we have w,,(t)>= w(O), where Ice’l=lcel+ 1.
This is true because w(0)- q < 1, and w,(t)- 1 as t-c; therefore, for any ce with
la[< N and any ce’ with Ice’l=lcel+ 1, there exists t’(ce, a’) such that w,,(t)>= w,(O) for
-> t’(ce, ce’). Since there are only a finite number of t’(ce, ce’)’s, we can choose

t2 ma,x { t’(

where cel <N and [ce’l=lcel +l-

Consider further that w(0) --0 for I1 -> N; we obtain

(5.22) w,(t)>=w.(O)

for all ce Zd, and all ce’ Za with I’1--I1 / a, as tong as t_-> t,
(iii) Equation (5.22) implies that

w. + mte) >-_ Wo( t)
(5.23)

for all t>0 and m--IcelZ+.
In fact, from (5.22), w,(t2)>=w(O). By Lemma 2.2 (letting ff.(O)=-w.,(te), etc.), we
obtain

(5.24) w.,(t + t2) => w.(t) for all >_- 0.

Again, w.,(2tz)>_--w(t); so by Lemma 2.2,

(5.25) w,,( + 2t2) w( + t2).

Let ce =0; then from (5.24),

(5.26) w,,(t + t) >= Wo(t), where Ice’] 101 + 1 1.
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In (5.25), letting Il 1, we obtain

w,(t+2t2)>=w=(t+t2), where 1’1-11+1-2,
----> Wo(t).

So (5.23) holds for m 2. Equation (5.23) can be obtained by using induction on m.
Write (5.23) as

(5.27) w(t)>-_wo(t-mt2) for t>-_mt2, where

(iv) Let _c=l/t2, and consider w(t) where ]cl=[ct]. If c<_c then 1-ct2=
1 (c/_c) > 0. Let rn ct] and T(e, e) t(e)/(1 ct2) > 0 in (5.27); then for > T(e, c),

w( t) >= Wo( t-[ct]t2) >-- Wo( t(1 ct)) Wo( T(1 ct)) Wo( t,(e))

=> 1 e, where I1 m [ct].

Finally, the assumption u,(0)-> q w(0) implies, by Lemma 2.2, that u(t)>=w(t)
for all t>=O, so u(t)>- l-e for t> T(e, c) and c<_c.

Example 5.3. Returning to Example 5.1, let us calculate and _c for the system

d
dt ui’j dl(tti+"j-2ui’j -I- Ui_l,.j) + d2(tli,j+, 2tti, -k- ui,.j_,)-k-fi,j(tti,j).

In order to simplify the calculations, let f,.i(u)=f(u), for all i,j, and let

I 65-u u <6o
-o.1 &---(5.28) f(u)

| 3.75 71 <26---6= /’/ < 0.75

[, 15(l-u) 0.75--<_ u.

f(u) is shown in Fig. 7. It can be treated as an approximation of some C function.

3.75

-0.1

f(u)

2(d + d2)u

260
a =0.

b =0.13

FIG. 7

0.75
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Letting d 1, d2--1.5, then (4.4), (4.5), and (4.6) are satisfied with m =0.1,
M 3.75, a =0.1, b =0.13, and e =0.75. If we choose

00 ifi0, j#0,
(5.29) ui,j(0)= .13 ifi=j=0,

then by Theorem 4.5, lim,_.oo ui,j(t)= 1.
The solution has been calculated numerically. We now calculate the upper bound

and lower bound of the propagation speed.
(i) Calculation of the upper bound &

By (5.19), where/2 can be solved from (5.18),

cosh (/2) -/2. sinh (/2) +
2(d, + d2)

Now

0"1 sup sup
o- <62/650 0_- <62/650 62

Similarly, 0-2 0-3 --975/71, 0-4-- 5, SO that

sup
Oul

max {0-1, 0-2, 0-3, 0-4}
975

71

Hence cosh (/2) -/2. sinh (/2) + 124/71 0, which has the positive solution/2 1.715867.
Therefore, using values of dj from Example 5.3, we have

t?= 2(dl + d2) sinh (/2) 5 sinh (1.715867)

13.454219.

(ii) Calculation of the lower bound _c.
_c can be estimated by using the method used in the proof of Theorem 5.2.
We can choose _c=l/t2, where t2=max<j,ir{t’(i,j, i’,j’)} can be estimated as

follows. From the given initial condition (5.28), we can see that N 1, qo,o 0.13, and
qo,+/-l q.,1,o=0, so that Wo,o=0.13, and w,j=0 if i0 and j0. From (2.1), letting
(i, j) (0, 1) and 0, we obtain

d
dt Wo, ll,=o dl(w,,,-2Wo,1 + w-l,,)+ d2(wo,z-2Wo,1 + Wo,o)+f(wo,1)],=o

d2wo,o(O) 1.5 x 0.13

=0.195.

If we assume that Wo, l(t) is increasing linearly for small (we do not know how small
must be, so this is only a rough approximation), then it will take 0.13/0.195 0.667

unit time to grow from 0 to 0.13. Similarly,

d
wl,ol,=o d, Wo,o(O) 0.13,d--
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thus it will take 1 unit time for Wl,o to grow from 0 to 0.13. Using the same calculation
on w_,o, and Wo,-1, we obtain similar results. Therefore, t: max (0.667, 1)= 1, thus
_c=l/t2=l.

6. Numerical simulations. Let us consider the system discussed in Examples 5.1
and 5.3, i.e.,

d
d-t ui, dl(Ui+l,j- 2ui, + ui-,,s) + d2(ui,s+,-2u, + ui,s-,)+f(u,j)

(i,j) Z2

wheref(u) is given in (5.28). Let d 1, d2- 1.5; then (4.4), (4.5), and (4.6) are satisfied.
We also set u,j(t)-= 0 on the boundary of the grid.

(1) Choosing initial condition

ui,s(0) 0.095 for all i,j (not on the boundary).

ui,s(0) < a for all i,j. From the numerical simulations, it is clear that u,s(t) 0 for all
i, j when - .(2) Choosing

0 if i 0,j 0,
ui,.i= 0.13 ifi=j=0.

The result is shown in Fig. 8. From these graphs, we can see that ui,(t) as ,
for all i,j interior and boundary of the grid, which supports our superthreshold
result, Theorem 4.5.

(a) t=0 (b) t=0.8

(c) t-1.6 (d) t-2.4

FIG. 8. Superthreshold experiment for 2-D initial value problem.

0 (i,j) (0, O)
ui’j(O)--

0.13 i, j) (O, O) tf=2.4.
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Propagation speed in two particular directions, the "i" direction (set j-= 0) and
the "j" direction (set 0), are shown in Fig. 9. From Fig. 9(1), along the "i" direction,
after the node (5, 0), the propagation speed starts to stabilize at about 3.5 UL/UT
(Unit Length/Unit Time). Along the "j" direction, from Fig. 9(2), the propagation
speed starts to stabilize at about 4.5 UL/UT after the node (0, 7). In Example 2.3, we
obtained _e 1, 13.5; therefore,

_c < c (both directions) < .
The theoretical values of and _c are reasonable compared with the experimental result.
It is seen that the comparison technique used gives rather conservative bounds. Here

UL/UT
6-

UL/UT
6

(i, 0)
5 10 15 20’

(1) "i" direction

* (0,j)
5 10 ’i3 20

(2) "j" direction

FIG. 9. _Propagation speed.
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TABLE
Propagation tests.

D, Uo(t) r Propagation

1"1
0.13 1.0 pass
0.13 10.0 pass
0.13 0.05 not pass

’2 0.3 0.1 not pass
0.13 1.0 pass

’3 0.13 10.0 not pass

we choose dl--1.0 ("i" direction), d2 1.5 ("j" direction), the above calculation
suggests that the larger d is, the higher the propagation speed in that corresponding
direction.

We also considered propagation behavior of the inhomogeneous system

d
dt ui, d ui+ t,j -2ui, + u,_,j) + d2(u,,.i+- 2u,, + u,,_)+f,j(u,,j),

with

f,(u)={f(u) (i,j)_l,
-cru (i,j) 6,

where 1 Z2; f(u) is given in (5.28) which satisfies the "propagation conditions."
The above function f, is motivated by considering the thin heart tissue model

with the cells in region 1 damaged. We want to study when propagation can pass
through the damaged region. We choose dl 1.0, d 1.5, grid size 70 70, and terminal
time t. 8.0. The effects of initial conditions, or, and shape of the damaged region on
propagation was considered. The result is summarized as the following"

0 if - 0, j 0,
Ui,j(O)

Uo if i=j=O,

l={(i,j)13<-i<=9,-3<-j<=3} (3x3 square centered at (6, 0)),

l2={(i,j)14<=j<=8} (a vertical band with width 4),

13 {(i, j)l{li] <- 10 (’11J[--< 10}\{[il-<_ 6 (q IJ[--- 6}}
(a rectangular ring centered at (0, 0) with center radius 8 and width 4).

The calculations were done using a fourth-order Runge-Kutta method on a VAX
computer. Graphs were plotted using the package "Mathematical." Step size was a
uniform .01 time units with grid size 70 70. For some calculation, in order to obtain
a stable pattern, we need to increase the terminal time tj, in such a case, to compensate
the usage of CPU time, the grid size is reduced.

Acknowledgment. The author is grateful to Professor Jonathan Bell for many
stimulating discussions and useful advice as well as the help in revising the manuscript.
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GLOBAL ASYMPTOTIC STABILITY FOR A STATIONARY SOLUTION
OF A SYSTEM OF INTEGRO-DIFFERENTIAL EQUATIONS

DESCRIBING THE FORMATION OF LIVER ZONES*

KJELL HOLM,KER?

Abstract. The formation of liver zones is modeled by a system of integro-differential equations. It has
previously been proved that one particular stationary solution, characterized by a jump discontinuity at the
zone boundary, is asymptotically stable with respect to sufficiently small perturbations of a special type. In
this paper it is proved that this stationary solution is in fact globally asymptotically stable, that is, it is the
limit (as time tends to infinity) of the solution of the integro-differential equations for arbitrary initial values.

Key words, integro-differential equations, global asymptotic stability, self-organization of cellular
patterns

AMS(MOS) subject classifications. 45K05, 45M05, 92C15

I. Introduction.
I.I. Biological background. The liver performs its metabolic functions with the

aid of various enzymes fixed inside liver cells. These immobile cells line the many
capillaries (hepatic sinusoids) through which the total hepatic blood flow is manifolded,
whereby exchange of substances between blood and the cells is facilitated. The interplay
of the unidirectional blood flow with local metabolism generates concentration
gradients of blood-borne substances (such as oxygen) between the inlet and the outlet
of the liver.

Several metabolic functions of the liver have been found to be organized in spatial
zones arranged in relation to the direction of hepatic blood flow, in such a way that
some enzymes act almost wholly upstream of others. We shall attribute such distribu-
tions of enzyme activities to distributions of cell-types. For the simplest case of two
enzymes, let there be two corresponding cell-types, each containing only one of the
enzymes; separate metabolic zones occur when all cells of the one type are located
upstream of all cells of the other type. We shall suppose, furthermore, that each
cell-type reproduces itself by division.

It has been shown recently that, for several kinds of enzyme kinetics, the observed
zonal structure would result from the implementation of a certain physiologically
desirable optimization principle [2], [3], [4], [5]. Amechanism by which that structure
could develop in any one liver was considered in [1]. It is formulated in terms of
competitive exclusion of the two cell-types in space and time and is an example of
self-organization of gross cellular patterns. The mathematical model was discussed in
[1], but for convenience the main steps in its derivation are repeated here.

As the many capillaries comprising the liver are similar and act essentially in
parallel, we shall model a representative capillary lined with cells of two kinds. We
put the x-axis along the blood flow, with inlet at x- 0 and outlet at x--. We define
the density of cells of the first kind, p(t, x), as a continuous representation of the
number of cells of the first kind per unit length of capillary at time at the position
x. The density p2(t, x) of cells of the second kind is defined analogously. The total cell
density p + p2 cannot exceed some fixed maximum density o- of cell sites, as division
of the cells is limited by the familiar phenomenon of contact inhibition.

Received by the editors March 26, 1990; accepted for publication (in revised form) June 8, 1992.
? Department of Mathematics, Chalmers University of Technology, and the University of G6teborg,
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The local rate of change Op/Ot of the density of cells of the first kind is assumed
to consist of a growth-rate term proportional to p (self-generation) and to the density
of sites available, o’-pl-p2; and of a death-rate term proportional to pl, with a
coefficient ill(c) > 0 dependent on the local concentration c ofa controlling blood-borne
substance (we consider oxygen). We shall assume that/3(c) is of the form

,(c)=,-,(C-Co),
where c0 is the steady oxygen concentration at the inlet, and _-> 0, u ->_ 0 are constants.
Then

Op

Ot
k,p,(o’-pl-p2)-(tz,- ul(C-Co))pl,

where k > 0 is a constant. A similar equation is obtained for P2. Oxygen is transported
in the x-direction predominantly by convection with the blood and is used up by the
two cell-types at the rates Kp and KZP2 (with positive constants and 2). Changes
in c caused by changes in p and p2 are quasi-steady. Therefore, c satisfies

0
fx KlPl K2P2’

where f is the steady rate of blood flow. If this is integrated and c eliminated, we
obtain the equations

-01 k,(o’-p,-p2)-tz,-- (K,O,+2P2) d:

-o (-Ol-Ol-- (lO+o

If kN, then O(t, x)O as m for all x, and similarly for p. Therefore, we
assume that k> and k>. For similar reasons we also assume that at least
one of and is positive (say ).

To simplify the equations we introduce new variables

t’ (ko" /z)t, x’ u:l x’ k--pi(t,x), i=1,2,-1 x’ ’(" )=Cl
and new parameters

After dropping the primes we obtain

Ov---- (t,x)=vl(t,x) 1-Vl(t,x)-vz(t,x)- [vl(t,)+Ovz(t,)]d
Ot

(1.1)
v----.,x.=( ,v(,x t-v(,x-v(,x-n Ivy(t, +ov(, ]

This system is studied for 0, 0 N x N L, where L g/fk, with given initial values

(1.2) v(0, x)=v(x), i=1,2, OxL.

The parameters satisfy

(1.3) 0>0, y>0, fi>0, 0,
oand the initial functions v are nonnegative, bounded, and measurable functions.
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1.2. The mathematical problem. In 1 it was shown that (1.1), (1.2) has a unique
solution (Vl, v2) such that the functions vi vi(t, x) are continuously differentiable in

for each x, measurable in x for each t, and satisfy (1.1), (1.2) for each (t, x).
Furthermore, there is a constant C-> 1 such that

(1.4) O<= vi(t, x) <= C for all ->_ 0, x[0, L], i=1,2.

The main question is what happens to the solution (vl, v2) as t--> oe. One may
guess that it tends to a stationary solution of (1.1), that is to a nonnegative solution
of the system

O<=x<=L.

v A v v rl v + Ov) d =0,

It was shown in [1] that all stationary solutions are unstable except possibly one (see
[1] for the definition of stability for this problem). In the most interesting case, where
the parameters satisfy

(1.5) ’q<A<l, O<x*<L,

where

(1.6) x*=ln

this stationary solution is

{;(1.7) v(x)=
for0<=x <x*
for x* < x _-< L,

{; for0=<x<x*- -qO(x-x*)(1.8) v(x) x* e for x* < x _-< L,

a solution that has the desired zonal structure. It was also shown in [1] that the
stationary solution (v, v_) is asymptotically stable with respect to a certain class of
perturbations. Apart from being sufficiently small (uniformly in x) these perturbations
had to go to zero at a certain rate as x--> x*. In [1] the question of what happens for
more general perturbations was left open, let alone the question of how the solution
of (1.1), (1.2) behaves for initial functions (1.2) that are not necessarily close to the
equilibrium solution (1.7), (1.8). We can now answer these questions in that we can

0show that vi(t, x)--> vT(x) as t--> oo for x x* i= 1, 2, for arbitrary initial functions vi
(bounded away from zero). In other words we have the following theorem.

oTHEOREM 1. Assume that the parameters satisfy (1.3) and (1.5). Let v be bounded,
measurable functions on [0, L] such that

(1.9) v(x)>-ao>0 for allx 6 [O, L], i=1,2,

for some constant ao. Then

(1.10) l)i(t,x)-’>l))S’(X) ast-->oo forxx*, i=1,2,

where (Vl, v2) is the solution of (1.1), (1.2), and (v, v) is defined by (1.7), (1.8). The
convergence in (1.10) is exponential for both vl and v2 if x <x*, and for vl ifx> x*.
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2. Proof of Theorem 1. The proof, which is rather long, is divided into three parts
that are given as separate lemmas. In Lemma 2.1 we prove convergence for v, and v2
if x < x*, in Lemma 2.2 for Vl if x > x*, and in Lemma 2.3 for v2 if x > x*. In each
lemma the proof is preceded by a comment where the main ideas of the proof are
outlined.

LEMMA 2.1. Let a, 0 < a < x*, be fixed. Then there exist positive constants and to

(depending on a) such that

(2.1) Iv,( t, x) e-Xl-<_ e-’, v( t, x) _--< fl e -’’

for t>--O and xe[0, a]. If a is so close to x* that v(a)=y[(1-) e-a+-h]<e-,
then to can actually be taken as v( a).

Comment. First, (2.1) can be obtained if x is sufficiently small. Using this result
we can then extend (2.1) to a somewhat larger interval. Continuing in this fashion, it
is possible to proceed step by step along the x-axis. Because of the positive difference
x*-a, we can reach the point a after a finite number of steps (the number depending
on a). In each step the estimate for v is obtained first. As for v,, we must first prove
that it remains bounded away from zero on the new interval. Then comes the crucial
step of the proof, which is the introduction of a Lyapunov type function. From a
differential inequality for this function a convergence result for Vl in L-norm is
obtained. Finally, another differential inequality, derived from the differential equation
for Vl, gives the pointwise estimate in (2.1).

Proof of Lemma 2.1. Since 1 h (1 r/) * e- ds 0, we have

(2.2) 1 1-a-(l-n) e-e d:> O.

Choose a 8 > 0 such that

(2.3) _<-min
2(1-r)(l+O)(x*+C)’2(1-r)(l+(l+O)x*+C)

where C is the constant from (1.4), and an integer N such that N6 a. Divide the
interval [0, a] onto N parts [x_,, x], k 1,..., N, where x k6, and let

(2.4) to’-
2

Suppose that for a certain k-1, 1 =< k-1-< N-1, we have found positive numbers
/3k- and tok- such that

(2.5) Iv,( t, x)- e-l _-<

_
e-%-’’,

(2.6) v2(t, x) <-- k-I e-’’’

for 0, x [0, Xk_l]. We are going to show that for some/k --> ]k-1 and 0 < tok <= tok-
we have

(2.7)

(2.8)

Iv,( t, x) e-Xl - C e-’’,

v2(t,x)<--ke-’’’

for >- 0, x [0, Xk]. This will also be obtained for k 1 without any extra assumptions.
From (2.5) and (2.6) we see that there is a Tk such that

(2.9) Iv,(t, x) e-Xl <= ,3, v2(t, x) <_- 8 for >_- T, x e [0, x_,].
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On (xk__, xk] we get for => T (if k= we consider [0, Xl] and -> 0),
(2.10)

1 -A-(1 -r/) (V -]" 0/)2) d:

iox,, + Ov2) ds (1 r/) V -t- 0/)2) d:_>--(1 n) (Vl

+ova) -( n) e-e -( )(+0)c=>1 a-(1 r) (v e e
dO

;o-> -a-(-(+ 0x* (- e- ’- ( (+oc

I1 (1 ’)(1 + 0)(X* + C)I 11 2 2

where we have used (1.4), (2.9), (2.2), and (2.3). From (1.1), (1.2), and (1.9) it follows
that v > 0, 1, 2, and

0t vr a-+( ) (Vl+OV),

so that

(2.11)
V(, X) =eV(X)_i;[l_a_(_i(Vl(,)+ov(,))d]

[v(, x]" [v(x]"
From (1.4), (1.9), (2.10), (2.11), and (2.4) we see that

[-+(l-vl(+OCx*]r -’(-rl

for T, x e (x_, x]. But for 0 N N T we have v(t, x) N C e’r e-’’, so that there
is a such that

(2.12) v(t, x) N e-’’ for 0, x e (X_l, x].
Then choose T T so that e-’r N . Thus

(2.13) v(t,x)N for tr, xe[0, x].
As a first step towards proving (2.7) we want to show that v(t, x) for
r, x (x_, x], where

(2.14) =min 2(1-)’
Assume on the contrary that Vl(f, ) < for some T and e (x_, x]. As long
as Vl(t,)< (and t T), we have, from (2.9), (2.13), (2.14), (1.6), and (2.3),

1 Vl v (v + Ova) d

Io ;x  -Io> 1 (v e e- d- v
-1

X*

> 1 x*- e- d-C Ox*
o

(+(+O)x*+C) >= >0=
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Therefore, (Ov/Ot)(t,)>O for these r We have, from (1.1), (1.9), and (2.14),

v( t, x) >-- ao e[1-2C-(l+)Cx*]T[’ Ol.k

for t_-< T, and x [0, x*). In particular, vI(T’k, )>--ak, and, therefore, there is an
interval t’, t"] with t’_-> T, such that v(t’, if) ak, and Vl(t, ) < ak for (t’, t"]. But
this is a contradiction, since (Ov/Ot)(t, if)>0 on (t’, t"]. Thus v(t, x)>= ak for all
>= O, x (Xk-, Xk].

Let

and

k
Vk( t) vl( t, x) e- e In v( t, x) x e-] dx,

k-1

Wl( l, X) l)l( l, X) e -x,

0(t, x) [v(t, )+Ov2(t, ’)] d’.

Since the function f(v, Vo) (v Vo Vo In (v/Vo))/(v Vo)2, v > 0, Vo > 0, is decreasing
in v for fixed Vo and decreasing in Vo for fixed v, and since ak < e (A )/(1 7),
there is a constant c (depending only on C) such that

(2.15) c [Wl(t,x)]2& Vk(t) [w(t,x)] dx._ 2k x_

We have

Here

dt v e-)( 1 v, va O) dx
k--1

[w+ w,(e-x- 1 + )+ w1D2] dX.
Xk-i

e 1 + 6 (v, e- + Or2) d (w, + Ova) d+ (w, + Ova) d,
k-I

so that

Iw, (e-x- 1 + q) (w, + Or2) (w, + Ova) d- Ore (w, + Ov2) d
Xk-I k-I

+ Wl (w + Ova) d.

Since

w, + Ov2) w, + Ov2) d( dx - w, + Ova) d
k-I k--I

we get for =>0 (using (2.5), (2.6), (2.12), and (2.15)),
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Thus there are constants Tk and to,, where 0< to, <min (2ak, tO’, tOk-l), such that

Vk(t)<--Tke- for t_> 0.

Thus, by (2.15),

Iw(t,x)l dx< [Wl(t,x)] dx < 7k

k-I k-I

For w we have the equation

Ot
Vl N1 + v + (Wl + Ova) d

For 0 and x e (X_l, x] we obtain

OWl
-2wl

Ot

-2vl w2-1 2Vl Wl v2 + wl d+ Wl d+ Ov d+ Or2 d

<--w+c(c + )[/,( + o) e-’’ +_x*(e--,’ + o e-’’)

-(/
kCl/

In the case k 1 this is obtained for x 0 also. In view of (2.12) we have thus proved
(2.7), (2.8) with flk --max (flk-, ’k, ).

After N steps we obtain

(2.16) [v(t, x) e-X[ <- flu e-N’, v2(t, x) =< flu
for >_- 0 and x e [0, a], which proves (2.1).

If To is chosen so large that fin e-Nr and fiN e-’r are small enough, it follows
from the estimates in 1 (see in particular Remark 5.1; note a misprint at the beginning
of the fourth row of Remark 5.1, where one should read sup[0.x] ]wi(t, )]) that

[Vl(t,x)-e-XlNo e-’(a)t, v2( t, x) <= o e

for >- To, x [0, a] for a certain constant/30, if v(a)< e-.
LEMMA 2.2. For each x’> x* there are positive constants K and K such that

(2.17) Vl(t,x)<=Ke-K’ fort>--_O, xe[x’,L].

Comment. It is first shown that v + v2 is bounded away from zero when x is close
to x*, and this together with Lemma 2.1 suffices to show (2.17).

Proof of Lemma 2.2. Let

(2.18) q(t) [v,(t,x)-e-X+Ove(t,x)] dx,

and

(2.19) I1 (t, x) v,(t, ) + Ova(t, s)] ds for x > x*.

There are constants/3 and tOk tO’k such that

[Wl(t,x)]2<=(fl) e-2k fort>=O, xe(Xk_,,Xk).
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It follows from Lemma 2.1 (since a <x* is arbitrary) that q(t)0 as toe. The
equations (1.1) can for x > x* be written

(2.20)

I)
ot --’r

Therefore (cf. (2.11)),

V, V2 go(t) @,(t, X) ],

v,(t,x) v(x) -(,-.;t(.+.,(.,x..(2.21) [v2(t,x)],/V=[v(x)]l/v e

Since q(t)- 0 as t- oo, we can choose T such that

< A-r/
(2.22) Iq(t)l--3( for t>= T.

Let

A-rt b= x* + 6o,(2.23) 6o 3(1_ r/)(1 + 0)C,

and

(2.24) a min[ ao e(1-2C-(l+O)Cb)T, ao e

Then it follows from (1.1) that

T(A-2C-rt(I+O)Cb)T A--’/
6(1-7

Vi(ZX)Ol forxe(x*,b], i=1,2.

Suppose that vl(?, ))+v2(?, ))<2a for some ?> T and 9 (x*, b]. Then there is an
interval [t’, t"] with t’> T such that v(t’,)+Vz(t’,)=2a, and v(t, 9)+ v2(t, 9) <2a
on (t’, t"]. For (t’, t"] and x 9, we have, by (2.22)-(2.24),

A-7 A-/ A-7
DI- V2--( --!1>-2a--(1+ 0)C6o>-0,

1-/ 1-7 3(1-7)

and then (2.20) shows that (Ov/Ot)(t, :) > 0 and (Ov/Ot)(t, 2) > 0 on (t’, t"]. But this
gives a contradiction, and, therefore,

(2.25) v(t, x) + v(t, x) _>- 2a for all t_>- T, x (x*, b].

Thus

(2.26) 0,(t, x) ->_ min (1, 0)2a(x- x*) for t_-> T, x (x*, b],

and since o (t) -+ 0 as --> +,

o[q(r)+p,(r,x)]d’-->oo

ast-->oo for x (x*, b].

Then we see from (2.21) that v(t,x)-->O as t-->oe for every x (x*, b]. Since q, is
increasing in x, (2.21) and (2.26) give an estimate of the form (2.17).

LEMMA 2.3. For x (x*, L] we have that

Vz(t, X) V(X) e-x* e-n(x-x*) as t-

with uniform convergence on closed subintervals of (x*, L].
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Comment. First we show that bx.[v2(t,x)--V(X)]2 dx---O as t-oo for a suitable
b. This is done by dividing the integral into two parts, where the first, part i.s small
because the interval is short. The other part is shown to go to zero by means of a
Lyapunov type function (as in Lemma 2.1). There we use that v 0 and v2 is bounded
away from zero, when a neighbourhood of x* is avoided (which follows from Lemma
2.2). After that pointwise convergence on (x*, b] is also obtained. Once we have passed
the critical point x*, we can proceed in small steps as in Lemma 2.1 and prove
convergence on successively larger intervals. It may be noted that we do not obtain
exponential convergence for v2 if x>x*. Indeed, experience from the linearized
equation indicates that we should not expect a better rate of convergence than 1! t.

ProofofLemma 2.3. Let b and a be as in (2.23) and (2.24), and let e > 0 be given.
Choose x’ (x*, b) such that

o/C

(2.27) (C + e-X*)e(x’- x*) <- and r/0(C + e-’*)2(b- x’)(x’- x*)
2 4

where c is the constant in (2.15). Consider the function

V(t) v(t, x) v(x) v(x) In
v(t, x)

dx,
v(x)

where v(x) is given by (1.8). Since v(t, x) 0 as t uniformly on Ix’, b] (Lemma
2.2), it follows from (2.25) that there is a t (depending on x’, hence on e) such that

2(t,X) fortt, x[x’,b].

From the properties of the function (v-Vo-Vo In (V/Vo))/(V-Vo) we find as in (2.15)
(since v(b) > ) that

(2.28) c [w(t,x)] dxN V(t)N [w(t,x)] dx for

where

we(t, x) re(t, x) v(x).

The derivative of V is

"(/= y( v2 v) e vl ve rq v d-0 v d dx

= w -w-O wd-p dx,

where is defined in (2.18), and

so that (t, x)O as , uniformly on [x’, b]. Since

w2( t, x) w2(t, ) d dx w2( t, ) d e O,

we have

;x’9(t)- [w(t,x)] dx- w(t,x) 0 w(t, ) d+l(t,x) dx.
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There is a 2 -> t such that

OEI.l,(t,x)l<4(C+e-*)(b_x, fort->t, and x[x,b].

For t_-> t2 we get, from (2.28) and (2.27),

9"(t) <- -2aTV(t) + 7(C + e-X*) [ riO(C + e-X*)(x’- x*) +
k

OgECI

4(C+e-X*)(b-x’)
(b-x

1
_--< -2ayV(t)+ yaec,.

Z

Thus

V(t) _-< V(t2) e -2’(’-’2)--1/48cl for t_--> t2,

and there is a 3-> t2 such that

V(t) -< 1/2/c for => 3.

Consequently, by (2.27) and (2.28),

[w2(t,x)]2 dx= wdx+ wdx<(C+e-X*)2(x’-x*)+ V(t)
x* C1

1 1
=<- e +- e e for => t3 t3(e).

2 2

This proves that

[w2(t, X)] dx --->0 as -> c,

and by Cauchy-Schwarz’s inequality,

(2.29) Iw2(t, x)[ dx - 0 as -> oo.

Fix x 6 (x*, b]. Again it follows from (2.25) that there is a 4 such that /)2(t, x) _-> a
for => t4. For t_>-t4 we have

OW2-- 2W2 2yw2v w2+riO w2 d(+q
ot ot

where

q2(t,x)=-2yv(t,x)w2(t,x) rio w2(t, ) d+q,(t,x)

and it follows from (2.29) that 2(t, X)-->0 as t c. Thus

[w2(t,X)]2<[w2(t4, x)]2e-2v(t-t4)+ e-2v(’-) q2(7.,x) d7. fort->t4,
t4
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so that w2(t, x)-O as . The convergence is uniform on closed subintervals of
(x*, b].

For the last part of the proof we divide [b,L] into N intervals [Xk-,Xk],
k= 1,..., N, of length

()
Xk Xk <

410C

Assume that it is proved that w2(t, x)->O as t--> for x e (x*, Xk_l] (this is the case
for k 1). Choose Tk such that

IOl(t, x)l<-A v(L)

and

for x

Let

r/0 Iw2(t, :)1 d: v(L) for t>= Tk.

ak =min [ v[(L), ao

(Note that Xk, Tk, and ak are not the same as in Lemma 2.1, although the usage is
similar.) For >- Tk and x (Xk-, Xk], we have

e v,( t, x) v2( t, x) r/q(t) ’/ll t, x)

V(Xk-1) (1( t, x) v2( t, x) r/0 w2( t, ) d- r/0 v( t, ) d
Xk

3 1
>-- v(L) -- v_(L) v2( t, x) - v(L) v2( t, x),

so that (Ov2/Ot)(t, x) >- 0, if v(t, x) -<_ ak. Since v2( Tk, x) _--> ak, this implies that v2(t, x) >_-

ak for all t_>- Tk, x (xk-1, xk]. By means of the function

Vk( t) v( t, x) v(x) v(x) In
v2(t, x)

_, v(x)
dx,

we obtain just as before (when we used V(t) to show that w2(t X)-->O as for
x(x*,b]) that xk [w(t,x)[dx-O as t-c, and then w2(t,x)-*O as tc for

Xk-!

x (Xk-, Xk]. In this way we obtain after N steps that w2(t, x)-O as for all
x (x*, L]. The convergence is uniform on closed subintervals of (x*, L].

By this, Theorem 1 is proved.

3. Some concluding remarks. Let us remark what happens for parameter values
that do not satisfy (1.5), (1.6). If r/< A < 1, but x*>= L, then there is only one zone,
and convergence follows from Lemma 2.1. If A < and r/=> A, then there is no critical
point x*, and again there is only one zone. We can apply Lemma 2.1 with a L;.we
replace x* by L and (A-r/)/(1-r/) by e-L. If = 1 and r/<l, then we can prove
Lemmas 2.2 and 2.3 with x* 0. If r/> h > 1, or h > 1 and 0 < ,/<_- A, or h 1 and /> 1,
then the result follows by symmetry. Indeed, if we make the substitutions .?= A Tt,

,10x, i vi/A, X 1/A, /= 1/y, /= 1/r/, and 1/0, then we obtain the equations
(1.1) with all quantities barred and with indices 1 and 2 interchanged, and we can
apply the previous results. The case r/= 0 is also easily treated.
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The case A =/= 1 is exceptional, as is indicated in [1], and requires a special
treatment. Following [1] we define V F(x, 1,/) 0 as the solution of

v,+(x)v=u, u>-O,

where ’(x) v(x)/[v(x)]L Define G(x, u) u-P(x, u), G(x, u) P(x, u)+
yG(x, u), and Fo(x, u) analogously. Then, as is shown in [1], the system (1.1) with
A 1 is equivalent to the single equation

[ io ](3.1) Ot- F(x, u) 1-u- Fo(, u) d

with v(t, x)= F(x, u(t, x)) and v2(t, x) G(x, u(t, x)), or u(t, x) v(t, x)+ v2(t, x). It
is shown in [1] that

(3. -u(x- o(,u( =0

has a unique solution u’(x), and we can now prove that u(t, x) u’(x) as m with
exponential convergence. We omit the details and only indicate the main steps of the
proof.

Divide [0, L] into N intervals [x_, x] of length , where is suciently small.
Let w(t, x) u(t, x) u(x), and assume that

(3. I( , xl - e--’’, 0, x e [0, x_l

for some positive constants

_
and m_. Much as in Lemma 2.1 we can show that

(3.4) u(t,x)>0, t0, x(x_,x].

Introduce the function

x [ u( ,x

(.5 v(
Fo(X, a-Fo(X, u(x

From the properties of F(x, u) and (3.4) we obtain

(3.) a [w(t,x) x V()b [(,x)]x
Xk--I

for certain positive constants ak and b. From (3.1) and (3.2) we get

[ ]ot
F’(x’ u) -w- 5( t, ) d

where

(3.8)

so that

(3.9)

A( t, x) Fo(x, u( t, x)) G(x, u(x)),

A(t,x)w(t,x)>=Ck[W(t,x)]2, t>--O, X(Xk-,,Xk]

for some positive constant G. Then

xk A(t,x) OWdx=_ A(t,x)w(t,x)dx(/k( t)
F(x, u)Xk-! XI,

I" r’- I" IxA(t, x) A(t, f) df ax A(t, x) A(t, f) af
Xk-i d 0 xk-1
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The important thing is that the last term can be estimated:

A( t, x) A( t, ) d dx A( t, x) dx >- O.
Xk--1 k-I

The first term can be estimated in terms of Vk(t) by (3.6) and (3.9), and the middle
term tends exponentially to zero as t-*w, according to (3,3) (since IAl--<_(l+0)lw]).
Thus Vk(t), and hence xk [w(t, x)] dx, tends exponentially to zero. Finally, a point-

Xk-
wise estimate for [w(t, x)], if >- O, x (Xk-, Xk], is obtained from (3.7) as in the proof
of Lemma 2.1.

In this way we know the asymptotic behaviour of the solution of (1.1) for all
values of the parameters.

Acknowledgment. The author wishes to thank L. Bass, A. M. Fink, and A. McNabb
for many helpful discussions on this problem.
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REMARKS ON PERIODS OF PLANAR HAMILTONIAN SYSTEMS*

FRANZ ROTHEt
In memoriam of Professor Peter Henrici for all his help.

Abstract. Criteria for monotonicity of the periods of planar Hamiltonian systems from various
authors are logically related. From the more restrictive criteria, not only monotonicity is proved, but
even a further convexity property of the energy-period function. This implies .estimates for the
canonical partition functionmwhich is the Laplace transform of the energy-period functionmand
some averages from the canonical ensemble of thermodynamics. For the standard system of classical
mechanics with quadratic kinetic energy and symmetric potential energy, the Laplace transform
technique allows one to solve the inverse problem to determine the potential energy function from
given periods. Several examples are discussed.

Key words, energy-period function, monotonicity, Laplace transform

AMS(MOS) subject classifications. 34C25, 34A25, 34A55

1. Introduction. In [17], Waldvogel proves that the oscillation periods of the
well-known Volterra-Lotka system

du
d- u (1 v),

(1) dv
dt -#v (1- u)

increase monotonically with the amplitude of the oscillations. A different variant of
the proof based on the canonical ensemble from classical equilibrium thermodynamics
is given by Rothe [12].

Introducing the variables (p, q) via u ep and v eq and exchanging the two
equations transforms (1) into the Hamiltonian system,

(2)
dq OH d__p OH
dt Op dt- Oq

with the Hamiltonian

H(p, q) (eq q 1) + # (eP p 1).

In this note, we generalize the Hamiltonian (3) from the Volterra-Lotka system and
treat the case of arbitrary Hamiltonians with separated variables

(4) H(p, q) AF(q) + #G(p).

For the functions F F(q) and G- G(p), we assume throughout that
(F0) F E Ca(JR, JR) is at least four times continuously differentiable, F(0)

0; and
(f0) The derivative f F’ satisfies f(0) 0, f’(O) > 0, and qf(q) > 0 for

all q : 0
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and similarly for the function G G(q) and its derivative g G’. Thus we treat a
system

dq

(5) d- #g(P)’

dp_
dt

-Af(q),

with A > 0 and # > 0 and (f0) holding for both functions f and g. Especially, our
class of systems includes the standard example from classical mechanics

(6)
dq dp
dt

p’
dt

-f(q)’

which results from (5) by setting A # 1, G(p) pl2 for the kinetic energy and
keeping only the one potential F F(q).

Systems (5) and (6) have a unique center at (p, q) (0, 0), which is surrounded by
periodic orbits (t, E, A, #) e IRx [0, oo) x (0, oc)2 -. (p, q) (p, q)(t, E, A, #) e ]a2. We
are interested in estimates for the energy-period function (E, A, #) e [0, c) x (0, cx))2 -T T(t, E, A, #) E (0, (x)), where T is the primitive period of the oscillations of system
(5) given by

p(t + T(E, A, #), E, A, it) p(t, E, A, it),
q(t + T(E, A, it), E, A, it) q(t, E, A, it),

(7) g(p(t, E, A, it), q(t, E, A, it)) E
for all t e lR, E e [0, oc), A, it e (0, oc).

In this introduction, we quote a typical new result of this note. Then we explain the
application to Hamiltonian systems of several degress of freedom. Next, we indicate the
connection with equilibrium thermodynamics. Finally, we comment on the application
to bifurcation of two point boundary value problems.

Assume that both functions f and g satisfy

f’(q) > 0 for all q IR,

q I"(q)
i,(O) -I(q)I"(q) < 0 for all q 0.

Then the energy-period function T T(E, , it) is a strictly increasing function of
the energy E. The apparently much simpler assumption qf(q) < 0 for all q 7 0 is
sufficient for (8) to hold. But since it implies f"(0) 0, it is often too restrictive.

The following remark is based on work of Arnold [1]. In the theory of Hamiltonian
dynamics, it is a basic problem to study the effects introduced by a weak coupling
into systems of several independent oscillators. As the simplest, really hard example,
take a system of two degrees of freedom with Hamiltonian

(9) H Ho + H1,

where Ho is the Hamiltonian of the uncoupled system, H1 is the coupling, and
is a small coupling constant. Suppose that the unperturbed system is completely
integrable and its Hamiltonian is

(10) Ho- Ho(J)+ Ho2(J2),
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where J1 and J2 are the action variables for the first and second degree of freedom.
Arnold’s celebrated result from [1] states that under the appropriate nondegen-

eracy assumption, in the weak coupling limit - 0 a part of the phase space F of
nearly full Lesbesgue-measure is filled with nonresonant KAM-TORI. Indeed, Arnold
gives results in two different settings, for which the relevant phase space F is

(a) F { (pl, q, p2, q2) ]Ra, the entire four-dimensional space;
(b) F ( (p, q, p2, q2) H(p, ql, p2, q2) E }, a three-dimensional surface

with specified total energy E.
The nondegeneracy assumptions appropriate for case (a) and (b) are

(lla) 02H1 (2U2
OJ21 OJ =/: 0,

(lib) 02H1 0H2/2 02H2 (OH12o \ OJx
o.

Assumptions (lla) and (llb) can be expressed in terms of the energy-period function
instead of the action-angle variables. We consider the Hamiltonian system (2) with one
degree of freedom dropping the index 1 or 2. The solutions of that system as specified
by (7) give rise to a mapping (t,E) -. (p, q). We substitute (p, q) (p, q)(t,E) into
the integral for the area A(E) enclosed by the orbit (p, q)(t,E). The determinant of
the Jacobian of this mapping is equal to one, and hence dp dq dtdE. Thus we get

(12) A(E)- f((p,q)lH(p,q)<_E}
E

dp dq T(E) dE,

and hence dA/dE T. In action-angle variables (J, ), the Hamiltonian H-- H(J)
depends only on the action J, and the equations of motion are

d
(13) 0, ---dr dt dJ

From the obvious solution (t) (dH/dJ) t + const, we see that dH/dJ 2r/T(H)
for the orbit with H E. Hence

(14)
dH

T--
dH dA

d--- dJ dH
27r,

which shows that the Hamiltonian H H(J) has the inverse function J A(H)/(2r).
Calculating the second derivative for an inverse function, we get

(15)
d2 H d2 J (dJ)dj2 dH2

-3 47r2 dT
T3 dH

Hence the nondegeneracy assumptions can be expressed in terms of the energy-period
function T T(E) as

(16a) dT(E) dT(E- El) : 0,
dE dE

d log T(E E)(16b)
d logT(E1) + = 0.

dE dE
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For the nondegeneracy assumption (16a) to hold for all E and El, it is obviously
necessary that the energy-period function is strictly increasing or decreasing. For
many examples, this can be checked by means of the criteria from this note. The
isoenergetical nondegeneracy assumption states that for fixed total energy E E1 +
E2, the frequency ratio T(E)/T(E--E) of the two uncoupled subsystems with index
1 and 2 has a nonvanishing derivative with respect to El.

Our second remark takes the point of view of classical equilibrium thermodynam-
ics. Assume that system (2) is coupled to a large heat bath with inverse absolute
temperature . All quantities of equilibrium thermodynamics can be derived from the
canonical partition function Z() defined as

(17) Z(/) j exp (-H(p, q)) dp dq.

For example, the mean value and variance of the energy H(p, q) are

(18) (H)can --OlOgz(z) and VarcanH
02 log Z(fl)

0Z 0Z
and the specific heat is f2VarcnH. (See, e.g., Beaker [2, p. 127].)

We substitute the solutions (p, q) (p, q)(t,E) of system (2) into definition (17).
Because the mapping (t, E)- (p, q) is area preserving, we get

(19) Z(fl, A, #) e-ET(E, , #) dE,

which shows that the canonical partition function is the Laplace transform of the
energy-period function. This connection allows us to get bounds for the mean energy
and the specific heat as well. We quote a typical result: If assumption (8) holds for
both functions f and g, then the mean energy is bounded below by (H)can > /-1.
This lower bound is the actual value for the harmonic oscillator.

Several authors (see Schaaf [15] for a survey and an extensive biography) have
considered the energy-period function in order to find or exclude bending points in the
bifurcation diagram of two point boundary value problems. The most simple example
is the nonlinear elliptic Dirichlet boundary value problem

u + f(u) 0 for all x e [0, T],
(20) u(0) u(T) O.

In the bifurcation diagram, the bifurcation parameter T is plotted against a norm of
u. The differential equation in (20) is equivalent to a Hamiltonian system with the
variables q u and p uz. The energy E u2/2 + F(u) serves as a norm of u..

The second branch in the bifurcation diagramcorresponding to solutions of
(20) with one sign change for x (0, T)--is just the plot of the energy-period function
T T(E) with the axes interchanged. The part of the first branch corresponding
to positive solutions of (20) comes from the plot of the energy-halfperiod function
T T+ (E), defined via
(21)

q(T+ (E), E) q(0, E) 0,

q(u,E) >_ 0 and 1/2p2(u,E) + F(q(u,E))) -E
for all BE [0,c) and uE [0, T+(E)].
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The other part of the first branch corresponds to negative solutions, for which we
define T- T-(E) by reversing the sign of q in (21).

Satisfactory monotonicity criteria for the first branch are given by Chafee [5],
Opial [11], Schaaf [15], and others. We mention them briefly in Proposition 4 below.
The situation is much more complicated for the second branch. It is not always possi-
ble to conclude monotonicity of the second branch by applying the same criteria as for
the first branch. Indeed, for many nonsymmetric systems with f(-u) = -f(u), as,
e.g., (20) with f(u) e 1, monotonicity of the period T T+(E) + T-(E)
results after the cancelling of an increasing halfperiod T- and a decreasing half-
period T+.

In this note, we give several criteria for monotonicity of the entire period T
T(E). This corresponds to the second bifurcation branch of (20), which brings in
additional difficulties. Different critera deal with them in different manners. We can
aim at estimates for the second derivative T"(E) as Schaaf in [14] and a variety of
results in [15], and Chicone [3] have done. Or we can try to eliminate or reduce the
asymmetry by substraction of suitable terms (e.g., linear terms of the force). This is
the approach of Chow and Wang [4] and several new criteria in this note.

The present note assembles these results and states implications among them.
Thus we prove that our new monotonicity criteria f E [ or F E are more general
than Schaaf’s criterion f . But in concrete examples, the latter turns out to
be the most useful criterion. Fortunately, we get some new results from the more
stringent criteria involving the second derivative, too: new convexity properties of the
energy-period functions and estimates of thermodynamic averages.

2. Notation and main results., We define some sets of functions appearing as
right-hand sides of system (5) and as primitive functions of them, respectively.

DEFINITION 1. By C C3(IR, IR) we denote the set of all functions satisfying

(f0) f(0) 0, f’(0) > 0 and qf(q) > 0 for all q 0.

By n c [ we denote the set of all functions for which there exist ql [-x, 0),
q2 (0, oc] such that

f’(q) >0
(n)

f’(q) < 0

for all q (ql, q2),
for all q E IR \ [ql, q2].

By m c n we denote the set of all functions satisfying

f(0) =0 and if(q) >0 for all q0.

By C C4(]R, IR) we denote the set of all functions satisfying

(FO) F(0) 0 and F’e :.
By 9Y C we denote the set of all functions satisfying

(M) F(0) 0 and F’ m.

We denote the differentiation operator by D. Obviously, m c n c D and
m DgJL Next we define some sets of functions f and g giving rise to a monotonic
energy-period function. We need the following functions:

(22)
fl =- 5f’’2 3f’f’",

f4 =- q [fD’ (3f’9 ff") 3f(2f"],
corresponding to the function f. The index zero denotes values at q 0.



134 FRANZ ROTHE

DEFINITION 2. We define classes of functions related to increasing periods. By
[+ c m we denote the set of all functions satisfying

(fl)+ if(q) > 0 and fl(q) > 0 for all q e IR.

By [2+ C n we denote the set of all functions satisfying

if(q) > 0 and fl (q) > 0 for all q e (q, q2),
(f2)+

if(q) < 0 and fa(q) > 0 for all q e lR \ [q, q2].

By [3+ C n we denote the set of all functions satisfying

if(q) > 0 and fl (q) > 0 for all q e (ql, q2),
(f3)+ f’(q) < 0 for all q e ]R \ [ql, q2].

By [a+ c n we denote the set of all functions satisfying

if(q) > 0 and f4(q) > 0 for all q e (q, 0) tJ (0, q2),
(f4)+

f,(q) < 0 q e \
The classes (fl)+ through (f4)+ of functions corresponding to nondecreasing periods
r den ed by replacing in (fl)+ through (f4)+ the assumptions f(q) > 0 and
f4(q) > 0 by f(q) >_ 0 and f4(q) >_ 0.

DEFINITION 3. We define the following classes of functions related to decreasing
periods. For 1 and 4 we denote by [- c m the set of all functions satisfying

(fi)- f’(q) > 0 for all q E lR and fi(q) < 0 for all q # 0.

For 1 and 4 we denote by [i c m the set of all functions satisfying

(fi)- if(q) > 0 for all q e IR and fi(q) <_ 0 for all q lit.

Corresponding to the potential F, we define the functions

F1 2F (3f’2 ff") 3f2f
F2 [1 + 1/2:.:,-2f] IF (3f’2 ff") f2ff]JOJO

(23) F3 f-1/2 (2F)3/2f-3f,,
Fa 3f2 (f2 2Ff’) + ff3,
F5 f2f6f’F4 + (2F)3/2F.

DEFINITION 4. The following classes of potentials F F(q) correspond to mono-
tonic periods. For i 1, 2, 3, 4, we denote by + c the set of all functions satisfying

(Fi)+ Fi(q)>O for all q#0.

By 5+ C we denote the set of all functions for which there exist q [-, 0),
q2 (0, oc] such that f F’ satisfies

if(q) > 0 and F5(q) > 0 for all q (qi, 0)tA (0, q2),
(F5)+

if(q) < 0 for all q E IR \ [ql, q2].

For 1, 2, 3, 4, we denote by ( c the set of all functions satisfying

(Fi)- F(q)<O for all q#0.

The classes (Fi)- for 1, 2, 3, 4 are defined by including the equality sign in the
assumptions for Fi(q).



REMARKS ON PERIODS OF PLANAR HAMILTONIAN SYSTEMS 135

DEFINITION 5. The following classes of functions are related to increasing half-
periods. By b+ c [ we denote the set of all functions in [ such that

(hl)+ qf"(q) < 0 for all q # 0.

By g)+ C we denote the set of all functions in such that

(H1)+ f2 2Ff’ > 0 for all q 0.

By 2+ C [ we denote the set of all functions in [ such that

d f(q)
(h2)+ qqq q

<0 for all q#0.

Finally, let

(h3)+ b3+ D2)+

Remark. Some of the classes i, [i, and bi have been introduced by a variety of
different authors; some seem to be new.

(1) In the investigation of the bifurcation for the nonlinear Dirichlet boundary
value problem (20), the class b+ was introduced by Chafee [5] and Hale [6] and the
class ) by Opial [11];

(2) For all functions in the class Il+ and C2-functions in the class 13+, necessarily
f’(0) 0 holds. This rather severe restriction does not hold for typical asymmetric
systems as (20) with f(u)- eu 1 below;

(3) The functional fl was introduced by Schaaf already in [14];
(4) The functional F1 is used by Chicone [3] in the form F1 f4 (F f-2)";
(5) The functional F4 is introduced by Chow and Wang [4].
THEOREM l. The following inclusions hold among the sets of functions from

Definitions 2 and 4:

c

c

c
c

Assume for system (5) that both functions f and g are contained in D4+ and , # > O.
Then the energy-period function T T(E, , #) is increasing in E and satisfies

OT/OE > 0 for all E > O. The mean energy for the canonical ensemble given by (18)
is bounded below by (H)can > fl--1 for all inverse temperatures > O. If the functions
f and g are contained in D-4+, then the corresponding inequalities including equality
hold.

Remarks. (1) One way to set up a system with constant periods is to look for the
borderline case of a potential F E and force f F’ such that either one of the six
assumptions F(q) 0 for i 1,2, 3, 4 or fl(q) 0 or f4(q) 0 holds identically for
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all q lit. Solving the corresponding ordinary differential equations yields an explicit
expression for the function F. From all six assumptions we get

(24a) F(q) 9I’a(O)f"-(O) 1 g (O)f’-l(O) q- g -1(0)q

in ce f"(O) 0 and

(24b) F(q) f’ (0)q2
in ce f"(0)= 0. In the limit f"(0) 0, F(q) of formula (24a) approaches (245).

(2) Of course, there exist other systems with a center that h constant periods
of oscillation. Loud [8] solves this problem for quadratic systems. Obi [10] gives a
criterion for constant periods for system (6).

(3) The first terms of the Taylor expansion of the energy-period function in terms
of the variable E can be calculated using normal forms, methods from bifurcation
theory or the Laplace transform technique introduced below. We get

(25a) T(0, , ) 2 (Apf’(O)g’(O))-/2

5g,,2(0) 3g’(0)g’"(0) 1T’(0, A, #) T(0, A, #) 5f"2(0) 3f’(0)f’"(0) +24A f’3(0) g’3(0)
(25b)

T(0, A, #) fl(0)
24A# f’3 (0)+ g’3(0)J

which gives the motivation to consider the quantity fl.
(4) As a simple specific example, we get the expansion of the energy-period func-

tion for Du]fing’s equation

(26)
d2 x
dr--T + x + x O.

It is equivalent to a Hamiltonian system (6) with f(q) q+q3. Since f’(0) g’(0)
1, g (p) 0 and f (q) -18/, (25a) and (25b) yield the expansion

3r
(27) T(E) 2r --E + o(E).
This was derived by Loud [8] with a different approach.

THEOREM 2. For the sets of functions from Definitions 3 and 4, the following
inclusions hold:

(- C D(- for 1 and 4,

i- c : c j .
Assume for system (5) that both functions f and g are contained inD and A, # > O.

Then the energy-period function T T(E, A, it) is decreasing in E and satisfies
OT/OE < 0 for all E > O. The mean energy for the canonical ensemble given by (18)
is bounded above by (H}cn < -1 for all inverse temperatures > O. If the functions
f and g are contained in D4 then the corresponding inequalities including equality
hold.

The following theorem, based on more restrictive assumptions, deals with the
dependence of the energy-period function and other quantities on the parameters A
and . It generalizes the results for the Volterra system from Rothe [13]. The indefinite
integral of the energy-period function is denoted by

(28) A(E, , ) T(E, , p) dE.

It is equal to the area enclosed by the orbit (p, q)(t, E, A, p) in the (p, q)-plane.
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THEOREM 3. Assume .for system (5) that both functions f and g are contained in

D2+ and , # > O. Then the energy-period function T T(E, ), #). and its integral
A(E, , #) have the following qualitative properties:

OT
(29) OE > 0 for all E > O,

(30)
0 (E OT)OE

>0 for all E > O.

The functi:ons

(31)
(32)

(log(E/A), log(E/#)) -+ log [ET(E, , #)],
(log(E/)), log(E/g)) - log A(E, ), #)

are well defined and strictly convex on their entire domain of definition ]R2. For the
canonical ensemble with any inverse temperatures > O, the mean energy (H)can and
the specific heat fl2VarcanH are bounded below by

(33) 2VarcanH > 3 (H)can > 1.

Assume, furthermore, that f’(q) > 0 for all q e ]R and g.(q) > 0 for all q e IR. Then
for all , # > 0 and E >_ O, we get further conclusions:

OT T
(34) OE < -"
The limit limE_+ T’(E, , #) T’(c, , #) exists and

(35) ET’(oc, A,#) < T(E,A,#) < T(0, A, #) + ET’(cw, ,#) + o(E, A, #),

where limE_ o(E, , #) O.
The orbital averages of the two summands of the Hamiltonian

(36)

(37)

lf0V(F(q)}U=S ---- T F(q(t, E, , it)) dt,

(G(p)>S= T
G(p(t, E, ;, #)) dt

have a ratio in the range [1/2,2].
Remarks.
(1) For the harmonic oscillator with f(q) q and g(p) p, formula (33) holds

with equality signs.
(2) In the examples of classical mechanics (36) and (37) are the mean potential

and kinetic energy. Hence we have shown equipartition of energy up to the factor
of 2.

(3) A result similar to (30) is given by Theorem 1.4.2 of Schaaf [15] for the
Dirichlet boundary value problem (20). Schaaf considers the period T as a function of
the independent variable p x/-. Under the assumption that f is an A-B-functions
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(which holds for f 6 f+), Schaaf proves d2T/dp2 > 0 for all p. Conversion to the
independent variable E via d2T/dp2 2ET"(E) + T’(E) yields

ET" 1
(S) T’ >-’
whereas (30) from above is equivalent to

ET" ET’
(R) T’ > T

i.

We want to compare (R) and (S). In general, neither one implies the other. Indeed,
take (20) and let f(u) e 1. For E 0, the right-hand side of (R) tends to
-1, and hence (S) is stronger than (R). For E oc, (34) and (35) imply that the
right-hand side of (a) tends to zero. Hence (a) is stronger than (S).

PROPOSITION 4. The following inclusions hold among the sets of functions from
Definition 5:

Proof. The inclusion b + c )2+ is straightforward to prove using (uf’-f)’ uf".
We give the detailed proof that )3+ C b2+. Let f e )3+ be given. The function
g xfffi has the first derivative g’ f/(2v/) and the second derivative g" (2Ff’-
f2)/(4v/3) < 0, which is negative since f e [2+. Hence

(38) (uf’ f) 2ugg" + 2g’(ug’ g).

From l’H6pital’s rule, we calculate

(39) lim(ug’- g)= lim
uf 2F

lim
uf’ f O,

-0 -0 ev -0 (f/v)
and hence

u

(40) (ug’ g) sg"(s) ds.

Finally, (38), (39), and (40)imply the result, since

u

(41) (uf’- f) 2ug" + 2g’ sg"(s) ds < O.

3. Proof of Theorems 1 and 2. We define the functions q qf(x) and p
qg(y) such that in the (noncanonical)coordinates (x, y), the orbits of system (5) are
transformed into ellipses. The relevant transformation q qf(x) depends only on the
function f. The corresponding transformation p qg(y) depending on the function
defines the second coordinate y.

The function x H qf(x) is uniquely defined by the requirements

(42) F(qi(x)) 1/2x2 and xqi(x) >_ 0 for all x e IR.

Obviously (F0) implies that qI(x) > 0 is equivalent to x > 0, qi(x) 0 is equivalent
to x 0, and qf(x) < 0 is equivalent to x < 0.
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Furthermore, we introduce the functions tl(x and s(x) defined by

(43) ti(x)
dqI(x)

and si(x) ti(x) / t(-x)
dx 2

as well as the analogous functions tg(y) and sg(y).
Differentiating (42) by x and solving for the derivatives of the function ti yields

the identities

(44) f (q/(8x)) ty(x x,

dtl(x) f2 (q(x)) 2F (q(x)) f’ (q(x))(45) 13 (ql(x))
dx

(46) f5 (q/(x)) d2 t$(x) F1 (q(x))
x dx2

Especially (f0) and (44) imply tf(x > 0 for all x : 0. Hence the function q qi(x)
is strictly increasing and the new coordinates (x, y) are well defined. Indeed f(0) > 0
and (58) below imply that tl(0) > 0 holds, too.

LEMMA 1. In the new coordinates, system (5) is transformed to

(47)

dx I
d-- ty(x)tg(y) y’

dy
dt ti(x)tg(y

The Hamiltonian given by (4) is a constant of motion which we call energy and
denote by E. Transformed to the (x, y)-coordinates it is

(48) ly2E H(p,q) F(q) + #G(p) 1/2x2 + #5

from which we see that the orbits of (47) are ellipses. In the (x, y)-plane, we use polar
coordinates (E, ) defined by

(49) x cos , y - sin .
The equations of motion (47) transform to

(50) d
dt tI (v/2E/cos)t (v/2E/#sin)’

which yields the following lemma, going back to Waldvogel [17] and Schaaf [14].
LEMMA 2. The energy-period function of system (5) is

(5) T(E, A, #) (A#)-1/ ti cos V ta sin V d.

Remark. Formula (51) contains rather detailed information about the temporal
structure of the oscillations. We divide the (p, q)-plane into the four quadrants { q >
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0,p > 0}, {q-> 0,p < 0}, {q < 0,p < 0}, and {q <,0,p > 0} and denote by
T++, T+-, T--, and T-+, the parts of the period for which the orbits is in the four
quadrants. With the same integrand a as in (51), we get

(52)

(53)

T-+ (E, A, #) a d(p,
/2

dp.T+-(E, ,, #)
/2

For system (5) with nonsymmetric force f or g--as for example the Volterra system
(1)--it may well happen that the energy-period function T(E) is monotone increasing
although some of the functions T++, T+-, T-+, or T-- are not.

In (43) we have already introduced the function sf(x) in terms of which (51) can
be rewritten as

(54) sf cos 99 sg. -p- sin 99 d99.

Differentiating formula (54) by E yields the following.
LEMMA 3. The derivative of the energy-period function is

OT(E, ,, #)
4 (,)i#) 1/2 fr/2

! bd with
OE Jo

Formula (55) is the main tool of our proof. To begin with, we consider the special
case E--0 for which formulas (54) and (55)imply

(56)

(57)

T(0.
OT(O, , #) --1/2

aS
7r (A/z) [si "(0)Sg(0) + sI(0)s(0)],

where we have used l’Hhpital’s rule to get limx-o+(si(x))/x sf"(0). To express
s](0), S"(0) and t(O),t’(O),tf"(O) in terms of the function f and its derivatives,
we solve formulas (44), (45), and (46) by the latter quantities and apply l’Hhpital’s
rule several times. For example,

X
tl(0 lim tl(x lim

x-*0+ x-,o+ f (qf (x)

For this o--limit, l’HSpital’s rule gives
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1 1
z-,o+ f’ (qg,(x)) q.f ’(x) f’(O)q.f ’(0)"

Since tf qf’ by definition, we can solve for ti(0). Similar, but even longer calcula-
tions yield the derivatives ti ’(0) and tf "(0). Finally, we end up with

1
(ss) t (o) v/g,(o),

f,,(o)

5f"2(0)- 3f’(O)f’"(O)(60) ,,(0)
12f’ 7/2(0)

f (o)
12f’ 7/2(0)"

Plugging (58) and (60)into the formulas (56) for T(0, , #) and (57) for 0T(0, , #)/OE
yields (25a) and (25b).

We come to the main part of the proof based on (55) for E > 0. The monotonicity
results all rely on the property

(s)+ si’(x)>O for all x>O,

which we shall conclude from the primary assumptions of Theorem 1. Obviously, if
(s)+ holds for both functions f and g, then the energy-period function T T(E, , it)
satisfies (OT/OE) > 0 for all E > 0, and hence is increasing in E. The further
discussion involves the following assumptions for the functions tI or tg"

(to)
(tl)+

(t2)+

(t3)+
(t4)+
(tS)+

tf(x)- xty ’(x) > 0 for all x

ty"(x)>0 for allx0,
d xty’(x)-xty’(O)

>0 for allx#O,X
dx ts(x xty’(O)

ty(x) xtf’(x) < ty(O) for all x # 0,

xtf ’(x) xty ’(0) > 0 for all x #- O,
ty(x)-xty’(x)>O and x#O imply

3x(t’f(x)-t’y(O)) (ty(x) xty ’(x)) + x2 tf(x)ts "(x) > O.

Assumptions (tl)-, (t2)-, (t3)-, and (t4)- are defined by the reversed inequalities,
whereas (si)+ and (si)- with 0, 1, 2, 3, 4, 5 denote the corresponding assumptions
for the function s.

LEMMA 4. Take a function f . Then the following implications hold:

(61) (tl)+ == (t3)+ ==, (t4)+ == (s)+,
(t2)+ == (t4)+ == (s)+,
(tl)+ and (tO)=: (t2)+.

Proof of Lemma 4. We begin proving (61). The implication (tl)+ = (t3)+ is
easy to get from (tf(x)- xti(x)’)’= -xtI(x)".

To prove (t3)+ = (t4)+, we use x2 [(tf(x) tf(O))/x]’ ty(O)-[ty(x)-xtf(x)’ 1.
Indeed, (t3)+ implies that the function x (0, x) (ty(x)- tf(O))/x is strictly
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increasing, and hence ty’(0) limy_,0 [(ty(y)- ty(O))/y] < [(ty(x)- ty(O))/x] for all
x > 0. Together with a similar reasoning for x < 0, this yields (t4)+.

The final implication (t4)+ (s)+ arises by adding (t4)+ to the corresponding
inequality with x replaced by -x. Thus (61) is proved. We omit the more straight-
forward proof of (62).

To show (63), we assume that both (tl)+and (tO) hold. We define y(x) ty(x)-
xty(O) and use the identity

(64)

We show that the right-hand side of (64) is positive for all x > 0. Indeed, I"
ty" > 0 by assumption (tl)+, and hence y(x) > ty(0) for all x 0. Further on,
y -xi’ tI -xty’ > 0 by assumption (tO) and xy ’(x) > 0 for all x 0 because of
(t4)+. Thus the right-hand side of (64) is positive for all x > 0, and hence the identity
(64) implies (t2)+ with x > 0. A similar reasoning applies to the case x < 0. D

LEMMA 5. Assume f e n. Then (th)+ implies (t4)+.
Proof. Since f E n, there exist ql E [-cx), 0) and q2 (0, cx] such that

f’(q) >0
(n) y’(q) < 0

for all q (ql, q2),
for all q ]R \ [ql, q2].

Let Xl e [--(X), 0) and x2 e (0, cx)] correspond to ql and q2 from assumption (n) via
qy(xi) qi for i 1, 2. In the following argument we distinguish the cases

() x e [x, 0) (0, ],
(b) x e (-cx, xl) U (x2,

For x e [xl, 0) U (0, x2], the assumption f e n yields

Z:f x$ tt xt$ (2F)3/2f-3ff > 0;

hence

(65)
l d ( X3f ) X2f-[ft’-{ 3XI’ (y--Xy’)
x = (b

> o,

and finally

(66) xy ’(x) > 0 for all x e [Xl, 0)[.J (0, X2].

Especially, xiy ’(xi) y(xi) > y(0) > 0 for 1 and 2. Now we turn to the
case x e (-cx, Xl) U (x2, c). From (n) we get

(67) x2 -x ty xtI tt xtI (2F)3/2f-3f < O,

implying

(68) xy’(x) > y(x) > xy(xi)/xi > 0 for all x e (-(x),xl)U (X2, CX3).

Together, formula (66) and (68)imply

b ,(x) (t ,() t ,(0)) > 0

for all x 0 proving (t4)+.
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(69)
(70)

LEMMA 6. Take a function f E [. Then the following implications hold:

(tl)- == (t3)- =: (t4)- = (s)-,
(tl)- (sl)- = (s2)- (s3)- = (s)-.

We omit the proof, which is analogous to Lemma 4. Note that in each of the
assumptions (ti) with 1, 2, 3, 4, equality for all x E IR holds if and only if we have
the linear function tf(x) tf(O) + xt ’(0).

The next step is to restate assumptions (ti) with 1, 2, 3, 4 in terms of the
original function f and its primitive F.

LEMMA 7. Take any F , and let f F. Then
() (to) hotd nd o ;
() Fo 1, e,, a, u.to (t)+ hod nd o F + and th

corresponding assumption including equality holds if and only if F -+;
(3) For i 1,2,3,4 assumption (ti)- holds if and only if F (- and the

corresponding assumption including equality holds if and only if F
Proof. Recall (x) t](x)-xt2(O), and let q qf(x). Some lengthy calculations

involving relations (44), (45), (46) and (58), (59), (60) yield the identities

(t0) ts() t ,(x) (.())/ S()-S,(),

(tF1) t "(x) (2F(q)) 1/2 S(q)-5F1 (q),
d -(x_$’ x2 fl+ ,, + xi, ($ xI ,) 8F2(q)S_6(q)F2(q),(tF2) x_ t

(tF3) t$(O) t$(x) + xt$ ’(x) F3(q),

’ F(q)(tFa) t+ ’(x) xt+ ’() xt+ ’(0) (0) (q)

from which the lemma can be read off.
LEMMA 8. Let F , f F, and 1, 2, 3, 4. Under that general assumption,

f e implies (ti)+, and hence F e .
Proof. We need the identities

d (F4(q) ) f2(q)(e) d S,() S,() S()

To begin with, we give the proof for the case 4. Assume that f E [. By Definition
2, there exist ql [--, 0) nd q2 (0, ] such tht

(a) if(q) > 0 and f4(q) > 0 for all q (q, 0)U (0, q);
(b) S,() < 0 or e [1, ].
Let Xl [-, 0) nd x2 (0, ] correspond to q and q2 via qs(x) q for

i 1,2. At first, we consider item (a). om the identity (72) we get F4(q) > 0 for
all q (q, 0)U (0, q2), and hence identity (tF4) implies

(3) xs,() > 0 or x e (Xl, 0)u (0,).

Now consider item (b). From (tFO) we conclude f(x) x$ ’(x) < 0, and hence

(74) x$’(x) > j(x) > 0 for all x
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Since xl’(x --xti’(x)- xti’(O), (73), (74)imply (t4)+.
To give the proof for the case i 3, assume that f 3+. By Definition 2, there

exist ql [-, 0) and q2 (0, (x)] such that
(a) f’(q) > 0 and fl(q) > 0 for all q (ql, 0) (0, q2);
(b) f’(q) < 0 for all q IR \ [q, q].
At first, we consider item (a). From (60) we get tI "(0) > 0. Since F (0) 0, the

identity (71)and tl:. e assumption f (q) > 0 imply F (q) > 0 for all q (qi, 0) (0, q2).
Hence (tF1) yields tl’(x > 0, and hence

(75) t$(x) xt$’(x) < ti(O) for all x [x, 0) (0, x2].

Now consider item (b). From f’(q) < 0 and (tFO) we conclude that

(76) ty(x) xty ’(x) < 0 for all x e (-(x:),Xl)

Finally, (75), (76)imply (t3)+.
For the proof of case 2, assume f e 2+. Clearly 2+ C 3+, and hence (73)-(76)

and (t3)+, (t4)+ all hold. Furthermore, by Definition 2, there exist ql E [-cx), 0) and
q2 E (0, oc] such that

(a) f’(q) > 0 and fl(q) > 0 for all q e (ql,q2);
(b) f’(q) < 0 and fa(q) > 0 for all q e IR \ [ql, q2].
Consider item (a) first. From f’(q) > 0 and (tFO) we conclude that xi’

ti(x)- xtI ’(x) > 0. Hence (64), (75) imply

> 0
\

for all x (xl, 0) t2 (0, x2). Now turn to item (b). Because of the identity

f2(q)f,-2(q) f4(q) =3f’2(O)xt-l(x) (ty(x) xty ’(x)) -2 B

-,with
/

we can conclude from A(q) > 0 that B > 0. Now F’(q) < 0 implies f xf < 0, and
hence

> 0 for all z (-,Zl)U (z,).

Together, (77) and (78)imply (t2)+.
inally, to consider the ce 1, we sume f . Note that f f holds and

q -,q +. Hence we argue in case 2 with Zl --,
LMMA 9. Agai we need the 9eneral ssmption F

implies (ti)- for 1 nd 4.
We skip the proof, which is similar to that of Lemma 8. Lemmas 4-9 prove the

inclusions of the various function classes in Theorem 1 and 2. The monotonicity of the
energy-period function follows from Lemma and the monotonicity of the functions
and s. To prove the estimate of {H)a we use (18) and (19) and a partial integration
to get

1 dT
{H}ca- 1 e-N dE.

This completes the proofs of Theorems 1 and 2.
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4. Proof of Theorem 3. Recall formula (43), defining si(x) 1/2(t(x)+
t(-x)). Let E- 1/2x2, and, as in aothe [12], introduce the function

(79) Ts(E ss(x-).

The convolution of two functions E e [0, oc) - u(E) and E e [0, ) v(E)is
defined

(S0) (u v)(E) u(a)v(E a)da.

We use the shorthand notation (u(E/)} for the function E
is a parameter. These definitions allow us to rewrite the formula (51) for the period

(81)

E (a) (E-,a) da=(A)_l{ (E)} { ()}
As formula (19) from the introduction shows, the canonical partition function Z
is the Laplace transform of the energy-period function T(E, A, ). For Laplace corre-
spondences like (19) we introduce the symbolic notation
Here denotes the independent variable of the Laplace transformed function. It h
the physical meaning of an inverse absolute temperature. For a given function F
and f F’ in system (5), we define

(82) zI() exp (-F(q)) dq.

We assemble some useful Laplace correspondences.
LEMMA 10.. The following functions are Laplace transforms of each other.

.-o

(84) .--o 2=/fl,

7 .-o

(86) T(E, , p) .--o Z(Z, , ,).

Proof. Substituting E F(p) into (82) yields

(87) zi() exp (-E)I(E)dE,

with (E) { [F’(q)[- F(q) E } Tf(E). This proves (83) from which (85)
follows. The correspondence (84) is elementary. Alternatively, it follows from (83)

q2 Formula (86) was alreadyfor the harmonic oscillator ce f(q) q and F(q)
proved in the introduction.

Since the Laplace transformation takes convolutions into products, applying (85)
to both functions f and g yields

(ss) (E/,)} .--o
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Because the Hamiltonian is assumed to be the sum (4), the canonical partition function
defined by (17) factors into a product and we get

(89) z(z,

From (86)-(89), we get an independent proof of the energy-period formula (81).
After these more general considerations, we are ready to begin the proof. In

Theorem 3, we make the assumption that f E D2+ and g E D2+. Consider the
function f. By Lemma 7, the inequality (t2)+ holds, which asserts that both functions
log x - log (tl(x) -xtf(O)) and log x -, log (tf(-x)+ xtl(O)) are strictly convex
on their whole domain IR x. From Rothe [13], we need the following.

LEMMA 11. Let f f(x) and g g(x) be smooth positive functions defined for
all x (0, oo). If the two functions log x - log f(x) and log x - log g(x) are both
strictly convex on their domain lit, then the following functions are strictly convex on
their entire domains:

(90)
(91)

(92)

(93)

log x e IR log (f(x) + g(x)),
log x e ]It - log (f(x)g(x)),

[/01 ](lo  , og l e

(log(E/.),log(E/A)) e 2 log [(A.)-l/2{f(E/A)} {9(E/.)}].

Item (93)--not contained in Rothe [13J--is a consequence of (92). Note that the
factor (/ktt)-l/2 makes the function in formula (93) well defined. By means of (90) in
Lemma 11, we conclude that the function log x IR - log sy(x) is strictly convex.
Now it is straightforward from (79) that both functions

(94) 1og(-) -+logT/,(---) and
E1og(-) -lOgTg()

are strictly convex, and finally (92) in Lemma 11 implies that the function

E E(log (-),log (-))-log[(A#)-l/2T(E,A,#)]
is strictly convex on its domain IR2 which proves (31)

Next we prove estimate (32) for the area enclosed by the orbits of system (5).
Define

(95) TI(E Tf(E a)da {TI(E)}

and similarly Ta corresponding to g. Indeed, TI is the energy-period function of the
system

(96a)

dq
dt

p’

dp
_f(q)

dt



REMARKS ON PERIODS OF PLANAR HAMILTONIAN SYSTEMS 147

and Tg is the energy-period function of the system

dq
g(p),

dt(96b) dp

A formula for the enclosed area A as a convolution can be found by means of Laplace
transforms. From A(E, ), #) f T(E, A, #) dE and elementary properties of the
Laplace transformation, we get the correspondence

(97) A(E, A, #) .--o Z-1Z(Z, A, #).

On the other hand, taking the convolution of (84) and (85) yields { X//S}. {TI(E)}
TI(E .--o 2/zI() and hence

() .--o A2/Az/(A) and Tg ().--o 2r/zg(p).

Taking the convolution of these two formul yields

(98)
(TI (E/A)) (Ta (E/) ) .--o 2A zi(AZ) za(,Z)

Now comparison of (97) and (98) yields

1 E E

Applying formula (31), which we have already proved above to the systems (96a) and
(96b), we conclude that both functions

E1og() log.() and log()logT()
are strictly convex. Now (ga) from Lemma 11 yields convexity Nr the convolution.
Because of (99), we get that the Nnction

E

is strictly convex on its domain 2, which proves (32).
The results about the canonical ensemble rely on the following lemma proved in

LEMMA 12. Assume that the functionlogE logT(E) is strictly convex
on . nking the Laplace transform z(Z) f e-(E) dE, we get the function
log log z(), which is strictly convex on .

By this Lemma, the functions log Z log zi(Z) and log Z log zg(Z) are
strictly convex. Since Z(Z, A, ) zl(AZ)Zg(Z), by Lemma 12, the function log Z
log Z(Z, A, ,) is strictly convex, too. Using (18) we conclude

0< (logZ):2VarcanH (H)can
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for all > 0. Since lim/_,0 fl (H)can 1, we get assertion (13).
We come to the second part of Theorem 3, relying on the additional assumption

f(q) > 0 and g’(p) > 0 for allp, q E IR as well as f,g E D2+ as before. Let sf
be the function defined by (43). Under the assumptions just stated, the function
x (0, oc) - xsf(x)/sy(x) is increasing and bounded above by the constant 1
because of (tFO). Hence the function x (0, cx)) - sy(x)/x is positive and decreasing
and finally limx-o si (x) limx-,o sl (x)/x s exists. For all 5 > 0 there exists

K such that

(100) xs<sf(x)< (l+5)xs+K for allx>0.

Inserting this estimate into the basic period formula (54) yields the estimate

(101)

For the proof of the last claim in Theorem 3 we need the following.
LEMMA 13. The orbital averages of F and G are

1/o (F(q))H=E T F(q(t,E)) dt

(103)
T 0A

1 0
T 10A(E, A, )(G(P))H=E : T G(p(t, E)) dt

10A(E, A, #)

T O#

or, in terms of the phase angle,

(104)
sf -- cos o Sg sin o cos2 o do,(F(q))H=E TAo

sf cos sa sin sind.

Proof. Differentiating the partition function Z03 A, #) in (17) by the parameter
and substituting the independent variables (t, E) yields

10Z(, A, #). e-mE F(q(t, E, A, #))dt dE,(105) .0A

which is the Laplace correspondence -T(E,A,#)(F(q)}H=E .--o D-IOZ/OA. On
the other hand, differentiating the correspondence (97) by yields OA(E,A,#)/OA
--o D-IOZ/OA. Comparison of the last two formulas proves (103).

To show (104), we use (50) to substitute the phase angle o into the definition
(103) of (F(q)) and plug in F(q) 1/2x2 (E/A)cos2 o, resulting from (42) and
(49).
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To complete the proof of Theorem 3, we show (35) through (37).
consequences of (100),
(106)

slosg < X < (1 + 6)
2E2 3/2

As further

holds for all (E/A) > O, (El#) > 0 uniformly--with the three choices X A(E, .k, #)
as well as X )ET (F(q))H=E and X #ET (G(P))H=E. The first choice results
from integrating (101) over the interval [0, E]; the two others use (104). Together,
(101) and (106)imply

(107) lim
AT

E---cx:)-- (F(q))H=E < 1 and lim #T (G(P))H=E < 1
E-cx) --On the other hand, elementary considerations show that

(108) lim
)T

(F(q)}u=E
1 #T 1

E-*0-- = and E-.lim T (G(P))H=E=--’2
Finally, we combine this information about the limits E c and E - 0 with

the convexity from (32) and (103),

0 OA 0 AT 0 # OA
0hA0 0 A (F(q)}>0 and

0#A0#
_0___ #T (G(p)) > 0
O# A

to conclude that

(109)
AT #T-- (F(q)}H=E and -(G(P)}H=E e (1/2,1) for all E,A,# > 0,

proving (36) and (37)in Theorem 3.
A similar reasoning, combining convexity and limits for E cx, applies to

derivatives by E. Because of (30), the function E - (E/T)(dT/dE) is increasing.
Because of (101) we get limE(E/T)(dT/dE) < 1. Hence limE_-.oT(E)/E
limE- dT/dE T exists, and estimate (35) follows.

5. Examples.
(A) The pendulum. The frictionless pendulum is a Hamiltonian system (2) with

(A.1) H(p, q) 1/2p2 + 1 cos q.

In the (p, q) phase plane, there exist closed orbits surrounding the center at (0, 0) with
H(0, 0) 0. We restrict the discussion to these oscillations and disregard the libra-
tions occuring at energies H > 2. The closed oscillatory orbits lie inside the bounded
region 7 bounded by the two heteroclinic orbits connecting the saddle points $1 at
(p, q) (0,-r) with $2 at (p, q) (0, r). At the saddle points and on the connecting
heteroclinic orbits, the Hamiltonian assumes the value H(p, q) 2. Hence the re-
striction to the region T implies E E [0, 2) for the range of values of the Hamiltonian
and q E (-r, r) for the phase angle in the potential F(q) 1- cos q and the force
f(q) sin q.

Referring to Definition 1-4, we check that f n but f m, f )1+, and f [2+.
(Hence even f e [3+ and f e [4+.) Therefore, Theorem 1 shows that the energy-period
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function T T(E) is strictly increasing. Since even f E [2+ does hold, we apply
Theorem 3 to get the stronger conclusion that

for all E e [0, 2).

Because of f m, the second part of Theorem 3 leading to (34)-(37) does not apply.
Indeed (34) and (35) do not hold for the pendulum. This is easy to see because the
slow motion near the saddle points $1 and $2 implies limE-.2 T(E)

(B) The "battle of sexes" model. See, e.g., Maynard-Smith and Hofbauer [9] for
the biological background of the "battle of sexes" model. Let the variables u, v [0, 1]
give the parts of the male and female population with different mating behavior.
Taking into account the effects of behavior on the numbers of offspring, Maynard-
Smith derives the differential equations

(B.1)

du
Au(1-v) (1- v)d

dv ( u)d-----#v(1-u) 1-
with parameters A, # > 0 and A, B [0, 1). A transformation to a Hamiltonian system
(2) is achieved by introducing the variables p and q via

A B
(B.2) u= and v=

A + (1 A)e-p B + (1 B)e-q"

(B.2) transforms (B.1) into the system (2)--or equivalently (5). The relevant Hamil-
tonian has the form (4) of a sum with separated variables. Indeed, H(p, q) AF(q)+
#G(p) with
(B.3)
F(q) -q + A-1 log [1 / A(eq 1)] and G(p) -p -+- B-1 log [1 + B(ep 1)].

For the function f(q) F’(q) -(A- 1)(eq 1)/[1 + A(eq 1)], we have to
check that fl 5f’’2 3f’f" >_ O. This leads to a rather lengthy calculation, unless
we use the Schwarzian derivative

"qf:--
f’ 2 --f7

for a shortcut. Indeed, since f(q) -(A-1)U/[I+AU] =_ T(U) with U(q) eq-1, the
function f is the composition f T o U, where T is a linear fractional transformation,
for which the Schwarzian derivative vanishes. Hence we get for the Schwarzian of the
composition,

Sf S(T o U) [ST o U]U’2 +,U SU 2,

and finally fl (f"2/2)- 3f’2,Sf (f,,2 + 3f,2)/2 > 0 for all q 0. (Indeed,
fl 2A-2(1 A)-2W2(1 / W + W2)(1 + W)-6 > 0, where W A(1 A)-leq.)
Since f, g m, we have confirmed that f, g +. Thus all parts of Theorem 3 do
apply. As a final remark, note that the limiting case A B 0 leads back to the
original Volterra model (1).
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(C) The power law. Take the Hamiltonian

(C.1) H(p, q) A
l q,__ + it

plp,__
a p

of the form (4) with the power law potentials F(q) Iql/a and G(p) -Ipl,/p. This
example shows the advantage gained from the partition function (17) to achieve an

easy calculation of the energy-period function. At first we use (82) to get

exp (-/F(q)) dq 2o"-l-bl/a r(ff-1)"/-l/a,

where F is the Euler gamma function. Now formula (88) yields

(c.2)
z(Z, a,,)

4o._1+1/o.,o_1+1/0 r(a_l)i,(p_l) (it )-l/p

Now we use the Laplace correspondence T(E,
transform (C.2) back and get

Z(fl, ,\, it) from (19)to

ET(E,,\,it)=4a-+l/,p-+l/oF(a-)F(p-1)F(a-l+p-1) (-)/ (--E)
1/p

Integration over the interval [0, E] and formula (103) yields

ET E
A=

a-1+p_1
and

In the case a, p E (1, 2), Theorem 1 and the first part of Theorem 3 apply. In the case
a, p E (2, oc), Theorem 2 applies.

(D) An unsymmetric system with constant periods and its perturbation. Constant
periods arise for the potential (24a). For simplicity, let if(O) 1, f"(0) -3, and
take the kinetic energy G(p) 1/2p2 with it 1. We get the Hamiltonian

(D.1) Ho(p, q) =1 2 ( V/1 + 2q).p +A l+q-

System (2) with the Hamiltonian (D.1) leads to oscillations in the range q e [-5, 23-],
since the potential F(q) A(1 + q v/1 + 2q) is no longer well defined for q < 2

and F(-1/2)= F()= A/2.
To solve the system (2) with Hamiltonian function (D.1), we use the same vari-

ables x and y as in the proof of Theorem 2. These variables are defined by

F(q(x)) 1/2x2 and xqf(x) >_ 0

y2 and (y) > 0

for all xIR,
for all yIR,

as required by (42). We can check that y p and x x/1 + 2q- 1. Solving for
q yields q qf(x) x + 1/2x2, and hence (43) gives tI(x ql(x) 1 + x and
tg(y) qg ’(y) 1.
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System (50) for the phase angle in the (x, y)-plane takes the form

(D.2) d /
dt 1 + cos "Integrating (D.3) over the range [-r/2, r/2] gives the positive half period

(D.3) T+ T+++T+-:
1 /2 (2E1+ cos ) d= 1 ()r+2

A similar integral over the range [/2, 3/2] gives the negative half period

We see that both half periods depend on the ener E, but the total period T
T+(E)+ T-(E) is independent of E.

Now consider the energy-period function in ce of the perturbed Hamiltonian

qn+l
n+l

for a small perturbation parameter e > 0. In the ce n a, we get fl (0) 0, and
hence (2gb) implies T’(O) 0. A numerical calculation for the example e 0.1 and
n a shows that F(q) 0 holds for all q e [-0.a, ), but fl(q) 0 holds only
for all q e [-0.2,) and no longer for all q e [-0.a,-0.2]. Hence we se follows
from Theorem 1 well--that Chow’s functional F implies increing periods in a
bit larger range of oscillation amplitudes than Schaaf’s functional fl.

6. he nverse problem. The following theorem considers the inverse problem
to calculate the potential F F(q) from a given energy-period function. To get
a managable problem for which uniqueness is reasonable, we restrict ourselves to the
system (6) with only one unknown potential F F(q). The inverse problem h
been treated by Keller [7], too. It leads to an Abel integral equation, which can eily
be solved by means of Laplace transformation already set up in this note. Hence we
find i convenient to include this part. Beyond that, we get additional insights,
nessecary conditions for monotonicity of the energy-period function.

or given E > 0, let q_ < 0 < q+ be the two solutions of F(q) E, and define
the function v(E) q+ q_. om (42), (4a), and (79) we conclude

(110)
dv dv d dz si(

om now on, we omit the index f because we consider only one force function. Define
the Abel integral operator " r T by

(1 1) T(E) da

In this operational notation, formula (95) for the energy-period function is simply
T or {T(E)} {()}.
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THEOREM 4. For the system (6), the energy-period function T T(E), the area
A A(E) enclosed by orbits, and the Lagrangian L A- ET satisfy

{A(E)} P.l{2v(a)}, {T(E)} 9g{T(a)},

1A(E) } 9g{a-(a)} {L(E) } 9g{v(a) aT(a)},{ET(E) -
Conversely, we can calculate the functions v v(a) and v’ T from a given energy-
period function by means of

(112)

9g{T(E)},

v(a)- I T(O)v} 1 9A{T’(E)},

{aT(a) 1/2v(a)} -9.1{ET’ (E)},
{aT’ (a) + 1/2T(a)} " T’9I{ET (E) + (E)}

By taking the. Laplace transforms, these claims are rather straightforward to
check. We leave the details to the reader.

Remarks.
(1) Obi [10] gives a criterion for constant periods of system (6), which we can

derive from (113), too. Introducing Obi’s function

Eobi (x) Eobi (--x)
(q+(x2/2) + q-(x2/2))

forx >0,

we get q+-+-q_--2Eob [--:\(2Fqq-))---2Eob [+\(x/2F(q-)).
Constant periods T(E) 2r for all E occur if and only if v(E) 2x/-, which

is equivalent to q+ -q_ 2v/F(q+). Using Obi’s function to eliminate either q+ or
q_, we see that constant periods 2r occur if and only if Obi’s condition

2F(q>- (q- Eobi (V/2’F(qi))
2

holds for all q e IR.
(2) Under the additional symmetry assumption F(q) F(-q), formula (113)

enables us to determine the potential from the given energy-period function, since the
function q+ 5(q+ q-) v(E) is the inverse of the potential E F(q+).

(3) We get the following chain of implications among properties of the system
(6). Roughly speaking, each step corresponds to a half-order integration achieved by
the operator 92.

dE - >0 for all

dT
> 0 for all

dE

d8
E>O == >0 forall a>O ==
E > O ==v aT(a)--v(a) > O forall a>O ===

L(E)>O forall E>O.
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SOLUTIONS OF THIRD-ORDER DIFFERENTIAL EQUATIONS
RELEVANT TO DRAINING AND COATING FLOWS*

WILLIAM C. TROY

Abstract. The behavior of solutions of two differential equations is investigated. The first is a
model for a viscous fluid draining over a wet surface. The second equation is derived from the first
as a result of an inner expansion as a parameter tends to zero. The existence of the appropriate
solution is proved for both equations.

Key words, differential equations, nonlinear, fluid mechanics, draining
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1. Introduction. We investigate the behavior of solutions of two third-order
differential equations, namely,

(1.1) y’" -1 + (1 + + b2) y-2 (b + b2) y-3, 0 < < 1

and

(1.2) y,,, y-2 y-3.

Equation (1.1) arises in modeling draining or coating fluid flow problems. The function
y represents the thickness of a thin film of viscous fluid draining over a wet solid surface
in an unsteady manner. Equation (1.2) is the so-called "small limit" of (1.1), or inner
expansion of (1.1) valid for x x0, obtained by setting x x0 + X, y Y, followed
by the formal limit -- 0.

In a recent article Tuck and Schwartz [3] present an extensive numerical study of
the behavior of solutions of (1.1) and (1.2). The reader is referred to their paper for
a more complete derivation of (1.1) and (1.2).

The physically important solution of (1.1) satisfies (y, y’, y") --+ (, 0, 0) as x --+

x, and (y, y’, y") --+ (1, 0, 0) as x --+ -x. The numerical results of Tuck and
Schwartz predict the existence of exactly one such solution, up to translation. We
give a rigorous proof for the existence of at least one such solution in the first of our
two main results (see Fig. 1).

THEOREM 1. Let 0 < < 1. There is at least one solution (up to translation) of
(1.1) satisfying limx-(y, y’, y") (, O, O) and limx--o (y, y’, y") (1, 0, 0).

Next we investigate the behavior of solutions of (1.2). Tuck and Schwartz show
that the appropriate conditions to be satisfied by a solution of (1.2) are

y > 0 for all x E (-x,oc),

(1.4) lim (y, y’, y") (1, 0, 0),

*Received by the editors November 5, 1990; accepted for publication (in revised form) February
25, 1992. This research was partially supported by National Science Foundation grant DMS-9002028.

University of Pittsburgh, Department of Mathematics and Statistics, Pittsburgh, Pennsylvania
15260.
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FIG. 1

and

(1.5) lim (y, y’, y") (c,-c, 0).

Tuck and Schwartz also claim that any solution of (1.2)-(1.5) satisfies the asymp-
totic behavior

(1.6) y 31/alx log1/a (Ixl) as x ---,

We confirm these properties in our second result (see Fig. 2).

y!

FIG. 2

THEOREM 2. There exists a solution of (1.2) satisfying (1.3)-(1.6).
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2. Proof of Theorem 1. The proof uses a two-dimensional shooting argument.
That is, we analyze the behavior of solutions of the initial value problem

(2.1) y’" -1 / (1 + 5 + 52)y-2 (5 + 52)y-3,

(e.e) (0) (0) Z, (0) 0,

where (a, ) e E {(a, )[5 _< a _< 1 and _< 0}. For each (a, ) e E, let [0, 2), 2
2 (a,) denote the maximal interval of existence of the solution of (2.1), (2.2) in
[0, oo). Likewise, let (2, 0] ,& (a,) denote the maximal interval of existence of
the solution in (-oc, 0]. It is possible that or 2 may be finite or infinite.

b
2

y

FIG. 3

In the first part of our proof we determine the behavior of solutions over [0, 2)
for appropriately chosen values of a and/ (see Fig. 3). In particular, for 5 < c _< 1
and small/ < 0, we find (Lemmas 1 and 3) that y’ has a first zero on [0,2), and
y(xo) a for some first x0 > 0. Next, in Lemmas 2 and 4 we show that if 5 _< a _< 1
and < 0 is large, then y cannot have a zero and the solution enters an invariant set
K1 in which y and y" must remain negative. We then appeal to a topological result
of McLeod and Serrin (Theorem 3) and show in Lemma 5 that there is a continuum- contained in {5 + A _< c _< 1 A, < 0} for small A > 0, which joins the lines
a 5+A and c l-A, and such that if (a, ) e ?, then lim__, (y, y’, y’) (5, 0, 0).
Next, we perform a similar analysis that determines the behavior of solutions on (2, 0]
(Lemmas 6-11).

We construct a second continuum, F, joining the same lines as such that if
((,/) E F, then limx-_o (y, y’, y") (1, 0, 0) (see Fig. 4). For small A > 0 we show
that / N F # . Thus, if ((,/) e / N F for small A > 0, then Theorem 1 follows.

One of the main tools in our analysis is the energy functional

(2.3) Q yy" + y + (1 + 5 + 52) (5 + 52)
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y

FIG. 4

which satisfies

(2.4) Q’= (y").

We use Q to obtain our first technical result. Lemma 1 will play a key role in the
construction of one of our shooting sets.

LEMMA 1. Let 5 < c <_ 1 and < O. If there is a first xo E (0,2) .for which
y(xo) , then y’(xo) > O.

Proof. Since < 0, the definition of x0 implies that y (x0) _> 0. We assume, for
the sake of contradiction, that y’ (x0)= 0. This and (2.3) lead to

(2.5) Q (x0) Q (0).

For 5 < a < 1, (2.1) gives y’"(0) > 0. Therefore, y" > 0 on a small interval (0, e), and
an integration of (2.4) shows that

Q(xo) Q(O) +o(y")2dt >_ Q(O) + o (y")2dt > Q(O),

contradicting (2.5). If 1, then y"(0) 0 and y"(0) (ti2 -t-5- 2) > 0. Again
y’ > 0 and y" > 0 on a small interval (0, e), and the same contradiction occurs. Thus
we must conclude that y’ (x0) > 0.

Before defining our two shooting sets we need to determine the properties of a
second type of solution, one which intersects the subset of R3 given by

(2.6) K1 ((y,y’,y’) R310 < y < i,y’ < 0, y" < 0}.

LEMMA 2. If a solution of (2.1), (2.2) satisfies (y (&), y’ (5),y" (5)) C KI for
some e [0, 2), then (y (x), y’ (x), y" (x)) e g for all x e [5, 2).

Proof. It follows from (2.1) that y" (x) < 0, y" < 0, y’ < 0, and y > 0, for all
x

We are now prepared to define our topological shooting sets by the following:
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A {(,) e Ely(xo) a for some first x0 > 0 and 0 < y(x) < c on (0, x0));

B {((,f) e E (y (&),y’ (&),y" (&)) e gl for some & > 0, and 0 < y (x) < (

for 0 < x < &]).

Remarks. We observe that (y, y’, y’) _-- (, 0, 0) and (y, y’, y") _= (1, 0, 0) are so-
lutions of (1.1). Thus, if (a,) e A U B, then (a,) # (, 0), (a,) # (1, 0). Fur-
thermore, if (,/) (5,) and < 0, then y"’(0) 0, y(a)(0) < 0, and (y, y’, y")
immediately enters K1. Thus (, ) E B if/ < 0.

It follows from Lemmas 1 and 2 and continuity that A and B are relatively open,
disjoint subsets of E. We need to show that A and B . For this we have the
next two lemmas (see Fig. 3).

LEMMA 3. For each e (5, 1] there exists < 0 such that if < < O, then
y (xo) .for some first xo > O.

Proof. If a (5, 1) and - > 0 is sufficiently small, then y’" > 0 for x > 0 until
y 1. This and continuity imply the result. If a 1 and -/ > 0 is sufficiently small,
then a linearization shows that (y, y’) spirals around (1, 0) in the (y, y’) plane, and the
lemma follows.

It follows from Lemma 3 that (a, ) A if 5 < a <_ 1, </ < 0.
LEMMA 4. There exists

_
0 such that if 5 <_ ( <_ 1 and

_ , then
(y (&) y’ () y" (&)) e gl for some & e (0,2), and y’ < 0 for 0 <_ x <_ &.

Proof. Equation (2.1) shows that lY"I is bounded while 5/2 _< y _< 1. Therefore,
for large - > 0, and 5 <_ c <_ 1, there must be a first x E (0, ) for which y (x)
5/2, and y’ < +1 << -2, y" < 1 for allx (0, x]. Ify" (xi) _< 0, then y" (x) <: 0,
and Lemma 2 shows that (y, y’, y’) KI for all x (xl, ). We assume, for the sake
of contradiction, that y" > 0 for x > x as long as y _< 0 and y > 0. Since (2.1) is
autonomous, we may take X 0 so that

(2.7) y(0)-, /<y’(0)<+l, 0<y"(0)<l.

For x > 0, as long as y _< 0 and y > 0 we see that y < 5/2 so that y’ _< -5,

(e.s) y"<_l-5x, and y’<_(+l)+x-x2.

Suppose for large -fl > 0, that y > 0 over [0, ] as long as y" > 0. Then (2.8)
shows that there is a first & (0, ] for which y" () 0, and y’ < 0 on [0,&). But
then (y, y’, y’) enters K1 at 2. Thus the only possibility that remains is that y (b) 0

y" y [0, b). Let 0 < e < 5/2 be arbitrarilyfor some first b E (0, ), and > 0, < 0 on
chosen, and let a2 > al > 0 satisfy y (a) e and y (a2) e/2. Then y’ > over
[al, a2] so that a2 -a _> -e/2. Also, over [al, a2] (2.1) gives y’" < -(5 + 52)/2e3 for
small e > 0. Therefore, y" < 1-((5 + 52)/2e3) (x al) over al < x < a. In particular,
we see that y" (a2) < 1 + ((5 + 52)/4e2) < 0 for small e > 0, a contradiction. This
completes the proof.

It follows from Lemma 4 that (a, ) B if 5 _< a <_ 1 and/ _</. In order to
complete the first part of our proof of Theorem 1 we need a topological result proved
by McLeod and Serrin [1].

THEOREM 3 (see [1]). Let I be the closed unit square {0

_
x

_
1, 0

_
y

_
1} in

the (x, y) plane, and let S- and S+ be disjoint relatively open subsets of I, respectively,
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containing the lines y 0 and y 1. Then the complement D of S+ and S- in I
contains a continuum joining the lines x 0 and x 1.

The McLeod-Serrin result applies to any closed rectangle in the plane. We need
to apply this result to a subset of our set E in the (a,/) plane. For each small A > 0
we define the subset EA of E by

EA {(a,/3) E E[i + A <_ a _< 1 A and/ _</ _< 0}.

We define S+ A N EA, S B N EA. Since A and B are relatively open in
E, then S+ and S are relatively open subsets of EA. Furthermore, Lemma 3 and
continuity imply that the set + A _< a _< 1 A, / < / < 0 is contained in S+.
Lemma 4 and continuity imply that the line segment/ -/, i / A _< a _< 1 A is
contained in S. Also, S+ q S since A q B . Thus, by Theorem 3 there
is a continuum q’A contained in the complement DA EA (S+ tA S) and which

joins the lines a i + A,/ </ </3+A and a 1- A, / </ </I-A. Recall that
the entire line segment a ti, / </ < 0 is contained in B. Similarly, by Lemma 3
the entire line segment a 1, /1 </3 < 0, is contained in A. The "endpoints" of ")’A
consist of the two sets

Set bl(A) -inf GA and b2(A) --sup HA. From these definitions, continuity, and
our preceding discussion it follows that bl (A) -- 0 as A ---, 0+, and b2(A) _< 1/2 < 0
for all small A > 0. (See Fig. 3.) Next, we determine the behavior of solutions that
satisfy (a, ) A, where 5 + A < 1 A.

LEMMA 5. Let (a, ) ")’A. Then
(i) 0<inf{y()[0<<2}<_y(x)<afor0<x<2;
(ii) -- x;
(iii) lim_ (y, y’, y") (, O, 0).
Remarks. In the (y, y) plane a linearization shows that the solution spirals to

(, O) as x --, c. This and (i) imply that all relative minima of y remain bounded
away from zero, while the relative maxima of y are less than a.

Proof. Suppose that y (x0) a for some first x0 > 0. Then (a,/) A, a contra-
diction. Next, we assume, for the sake of contradiction, that inf0<<{y()} 0. If, in
fact, limx- y (x) 0, then there is an Xl e (0, 2) with y (x) 5/2, and y e (0, 5/2)
for all x (x, 2). It then follows exactly as in the last part of the proof of Lemma
4 that (y, y’, y") eventually enters gl. Thus (a,/3) B, again a contradiction. The
remaining alternative is that 0 lim.x_. y (x) < limx_ y (x). Then there exists an
increasing sequence {XN}N of positive numbers with limN___. XN 5:, y’ (XN) 0
for all N, and limN-o y (XN) 0. This and (2.3) imply that Q (XN) --oc as
N oc, a contradiction since Q (0) > -oc and Q’ _> 0 for all x [0, 5:). Thus we
must conclude that inf{y()[0 < < 5:} > 0, and (i) is proved. With y bounded below
away from zero and bounded above by a, it follows from (2.1) that

(2.9) lY’"[ < M for 0 < x < 5:

for some M > 0. An integration of (2.9) shows that y’ and y" are bounded over any
finite interval. Therefore, (y, y’) cannot become unbounded at any finite value, and
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FIG. 5

it must be the case that 2 oc so that (ii) is proved. It remains to be shown that
limx--. (y, y’, y’) (5, 0, 0). First we show that Q is bounded above. If, in fact,
Q ---. cx as x oc, it must be the case that limx__. yy" oc since y is bounded
away from zero. This leads either to y oc or y ---, -c, which, by part (i), cannot
be true. Therefore, lim_ Q (x) Q < oc. Suppose that lim.__. y" -# < 0.
Since y is bounded, it must be the case that lim_. y" >_ 0. Therefore, there is an
unbounded increasing sequence {XN}N such that y" (XN) --#/2 and y" (XN) >_ 0
for all N. Choose N such that

(2.10) Q (XN) > Q 3
64M"

Let a XN, and let b > a the succeeding point for which y(b) -#/4.
Then y’" _< M on (a,b) so that b- a _> #/(dM). This and (2.4), (2.10) lead to
Q (b) _> Q (a) + #3/64M > Q, a contradiction. It follows that lim,_,o y- _> o. Sim-
ilarly, limx-,o y"

_
0 so that lim-,o y" 0. Next, suppose that limx-, y (x) 5.

There are two possibilities. First, suppose that limx_ y (x) exists with E
(0, 5)U (5, a]. Then limx-,o y" q’ 0, and an integration leads to y" (oc) :/: O,
a contradiction. The other possibility is that limx_o y (x) < limx-,o y (x). First,
suppose that limx_,o y (x) :/) < 5. Let {XN}N be an increasing unbounded sequence
with y’ (XN) 0 for all N, and limN-oo y (XN) 9" Also, limN--,o y" (XN) O. From
(2.1) there is an > 0 such that y" _< -r/when y <_ (fl + 5)/2. Thus, if y’(x,) > O,
an integration of (2.1) from xg to x shows that for large N, y 0 and y" _< 0 at some
first x c > xg before y /2 (Fig. 5). Thus (y, y’, y’) enters gl at x c so that
(a,/) E B, a contradiction. Similarly, (y, y’, y’) enters gl at XN ify’(XN) < 0. There-
fore, lirn_o y (x) _> 5. If we assume that lim--,o y (x) > 5, then similar reasoning
shows that y exceeds a, again a contradiction. Therefore, limx-oo y (x) 5. Finally,
it remains to prove that lim-o y 0. If lim_o y < 0, then it easily follows from
the fact that y" --+ 0 and an integration that lirn_o y (x) < 5, a contradiction. Thus

limz_ y’

_
0. Likewise, limx_ y’

_
0. Therefore, lim_, (y, y’, y’) (5, 0, 0), and

(iii) is proved.
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We now proceed with the second part of our shooting argument in which we follow
solutions backwards from zero. Again, let A > 0 satisfy 6 + A < 1 A. For each such
A, our goal is to prove that there is a second continuum F C_ E that joins the lines

/ A, < 0, and 1 A, < 0 and has the following additional properties.
(Refer to Fig. 4.)

LEMMA 6. Let (a,) E F;
(i) < v()/o < < o;
(ii) & -oc;
(iii) limx-,-oo(y, y’, y") (1, O, 0).
F,tho, iI =_ sup{3 < o1( + ,3) e r} a,d in{3 < 01( ,) e

F}, then b3 is bounded away from zero for small ik, and b4 -- 0 as A -- O.
We postpone the proof of Lemma 6 in order to see its consequences (Fig. 4). It

follows from the properties of 7 and F given above that 7 N Fx for small A > 0.
Let (, fl) E 7 N F. Lemmas 5 and 6 imply that the solution with y(0) , y’(0), y"(0) 0 must exist for all x e (-cx, cx), that limx--.-oo (y, y’, y") (1, 0, 0)
and limx-oo (y, y’, y") (, 0, 0). Theorem 1 follows. Thus it remains to prove the
existence of F. For this we find it convenient to set t -x so that the problem (2.1),
(2.2) becomes

(2.11) ym 1
(1 + 3 + 32) (3 + 32)

y2 + y3

with initial condition

(2.12) y(O)--a, y’(O)------>O, y"(O)=O,

where =_ d/dt. Also, we set -. It is evident that Lemma 6 is equivalent to the
following.

LEMMA 7. Let (, ) FA. Then
(i) a < y (t) forO < t < ;
(ii) x;
(iii) limt- (y, y’, y") (1, O, 0).
The existence of F follows from a two-dimensional shooting argument that is

similar to that used to prove the existence of 7),. Again, the first step is to define an

energy functional analogous to Q, namely,

(1++52) (+)
(2.13) P =_ y’y" y +

y 2y2

which satisfies

(2.14) p,= (y,,)2.

The existence of FA and the proof of Lemma 7 requires the next four lemmas,
which are analogous to Lemmas 1-4.

LEMMA 8. Let < < 1 and - > O. If there is a first to > 0 for which
y(to , then y’ (to) < O.

Proof. y’ (to) < 0 by definition of to. Suppose that y’ (to) 0. Then (2.13) implies
that

(2.15) P (to) P (0).
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However, - > 0 and 5 < c _< 1 so that (2.11), (2.12) imply that y" 0 on an
interval (0, e). Therefore, an integration of (2.14) gives P (to) > P (0), contradicting
(2.15).

For our next result, we define the set

(2.16) H1 {(y,y’,y") e R31y > 1, y’ > 0, y" > 0}.

The set H1 will play a role similar to that of the set K defined in (2.6). In Lemma
2 we described the crucial properties of K2, and we now describe the key properties
of H1 in our next result.

LEMMA 9. If (y () y’ () y" ()) e H for some , then (y (t), y’ (t), y" (t)) e
H for all t e (, t

Proof. It follows from (2.11) that y’ > 0,y" > 0, y > 0, and y > 1 for all

FIG. 6

We now define our topological shooting sets by (see Fig. 6)

C {(c, ) e E[ there exists a first to > 0 with y (to) c and y > ( on (0, to)},
D {(a,/) g (y (), y" (), y" ()) E HI for some > 0,

and y > a for all t E (0, ] }.

Remarks. It folloWs from the definitions of the sets C and D so that (a, )
C U B if (a, ) (5, 0) or (a,/) (1, 0). Furthermore, if (a, ) (1,/) and/ < 0,
then it follows from (2.11) that y’"(0) y"(0) 0, y’(0) - > 0 and y(4)(0) > 0.
Thus (y, y’, y") enters H as t increases from zero, and we conclude that (1,) e
D for all < 0.

It follows from Lemmas 8, 9, and continuity that C and D are both open in E,
and C D . In order to see that C and D are nonempty, we need the next two
results. (See Fig. 6.) These are similar to Lemmas 3 and 4.
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LEMMA 10. For each a E [5, 1) there exists < 0 such that if-i > - > O,
then y (to) c for some first to > O.

Proof. If c E (5,1) and -/ > 0 is sufficiently small, then (2.11)implies that
yr, < 0 for t > 0 until y < 5. This and continuity imply the result. Ifc 5
and -/ > 0 is small, then a linearization of (2.11) around the constant solution
(y, y’, y") (5, 0, 0) shows that (y, y’) spirals around (5, 0) in the (y, y’) plane, and the
existence of to is assured.

LEMMA 11. There exists < 0 such that if 1 >_ - and 5 <_ c <_ 1, then

(y(t, y’(t, y"(t) e H1 .for some > O, and y’(t) > 0 for all t e [0, ].

Proof. Equation (2.11) shows that [Y’"I is bounded while y _> c. Thus, for large
-/ > 0 there is a first tl e (0, t’) independent of c e [5, 1] such that y (t) 2, and
y’ > -/- 1 > 2, y" > -1 for 0 _< t <_ t. If y" (t) _> 0, then y’" (t) > 0; it follows
from (2.11) that (y, y’, y") E H1 for t > tl. We assume, for the sake of contradiction,
that y" < 0 for t > tl as long as y’ > 0. Since (2.11) is autonomous, we may set t 0
and consider the initial values

y(0)-2, 2<-/-l<y’(0)<-/, -l<y’(0)<0.

For t > 0, as long as y > 0, equation (2.11) implies that y,t >_ 5,

(2.18) y" _> -1 4- , y’ _> 2 t 4- -It easily follows from (2.18) that, if- > 0 is sufficiently large, y" 0 at some
{ e (0, 2], and y’ > 0 for all t e [0, t-]. But then y’"(t-) _> 5; hence (y, y’, enters H1
at {.

We define U+ C VI E and U- D g)E, where, once again, A > 0 satisfies
(+A< I-A.

It follows from Lemma 10 that (c,/) U+ if ti _< c < 1 and </ < 0. Lemma
11 shows that (a,/) e U- if 5 _< c _< 1 and I/-/1 is small. Also, U+ N U-
since C 3 D . Thus, as before, we conclude from the result of McLeod and
Serrin that there is a continuum F C E (U+ tJ U-) that joins the line segment
c ti + A,/ </ < 0 with the line segment c 1 ,/ </ < 0. As with , we
investigate the endpoints of F, which consist of the sets

{(1 (1 e

From continuity and the fact that the line segment (1,/) D for < 0 it follows that
lim_,0 F N {c 1 A} (1, 0). Furthermore, (5,) C for/ < / < 0 so that
sup J < /2 for all small A > 0. This, together with the properties of 9’ described
earlier, imply that / F for sufficiently small A > 0. Let ((, ) 7 F .for
small A > 0. Then Lemmas 5 and 6 imply Theorem 1.

It remains to prove Lemma 7, which in turn implies Lemma 6. The proof of
Lemma 7 uses the same arguments as the proof of Lemma 5. The main difference is
that the functional P replaces the functional Q. For the sake of brevity, we omit a
repetition of the details.
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3. Proof of Theorem 2. Once again, we employ a two-dimensional shooting
argument. Here the appropriate initial value problem is

(3.1) ym y-2 y-3,

(a.e) u(o) ,. u,(o) Z, u,,(o) o,

< Ce < 1 > 0}. Let [0, 2) and (&, 01 denote the maximalwhere (c,fl) e G-= {(c,/)15
positive and negative intervals of existence of the solution of (3.1), (3.2). As in the
previous section, we will make use of an energy functional, namely,

(3.3) R yy’ + y-1

which satisfies

(3.4) R’=(y")2 for<x<2

and

0<R(0)<1/2 forall(,/)e.

As in 2 we need two technical lemmas before defining our shooting sets.
LEMMA 12. For each c E [1/2, 1) there exists 1 (Ol) > 0 such that ifO < < ((),

then y(xo) ( for some first xo > O, and y(xo) < O.
Proof. If 0, then y(0) y(0) 0 and ym(0) < 0. This and continuity give

the existence of x0 for small > 0. The definition of x0 implies that y(xo) <_ O. It
follows from (3.3) and (3.4) that R(xo) > R(0) so that y(xo) < O.

Next, we define the subset K2 of the phase space R3 by

(3.6) K2 {(y,y’,y") e R3ly > 1,y’ > 0,y" > 0}.

LEMMA 13. If (y(2c), y’(&), y"(&)) e K2 for some 2c > O, then (y(x), y’(x), y"(x)) e
K2 for all x [&, 2).

Proof. Equation (3.1) and the definition of K2 imply that ym > 0, y" > 0, y >
0, y > 1 for all x [&, 2), and the lemma immediately follows.

We define our topological shooting (Fig. 6) sets by

X ={(a,, fl) e Gly(xo a for some first x0 > 0, and y > a for 0 < x < x0},
Y ={(a,/3) e G[(y(&), y’(2c),y"(&)) e K2 for some > 0,

andy(x)>afor0<x<&}.

It follows from Lemma 12 and continuity that X and X is open in G. Also,
continuity implies that Y is open in G. Lemma 13 and the definitions of X and Y
imply that X N Y . Finally, we show that Y in the following lemma.
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< c < 1 and > ** thenLEMMA 14. There exists ** > 0 such that if
(y(&),y’(&),y"(&)) E K2 .for some (0,5:), and y’ > 0 for 0

_
x < 5:.

Proof. Equation (3.1) implies that lY’"I is bounded as long as y’ > 0. Thus, if
/3 >> 1 and 1/2 _< _< 1, there is a first xl x(,/3) (0, 1) such that y(x)
2,y’(x) >_ /3- 1 > 0 and y"(x)

_
-1 over [0,xl]. If y"(xl)

_
O, then y’"(x) ,

and it follows from Lemma 13 that (y, y’, y") K2 for x < x < 5:. Suppose, however,
that y"(x) < 0 for 0 < x < 5: as long as y’ > 0. In order to obtain a contradiction, we
need a lower bound on R(x). If _< y(0) _< 1, then R(0) _> 12/27. Thus, by (3.4),
R(x)

_
12/27. If 1/2

_
y(0)

_ , we let 0 < a < a2 < Xl satisfy y(al) 1/4 and
y(a2) . Then y’ </3 and an integration over [a,a2] leads to a2 -al

_
1/(8/3).

Also, over [0, a2] it follows from (3.1) that y"’

_
-64/343. Thus y" _< -64x/343,

and we conclude from (3.43) that R’ _> (64/343)2x2 and R(x) >_ (64/343)2x3/3. At
x Xl, we obtain R(xl) _> R(a)

_
8/(3(343)2/33). Since our system is autonomous

we may set x 0 and consider the initial value problem

(3.8) y(0)=2, /3-1<y’(0)<, -l _< y"(0) < 0, R(0)> 3(343)2/32.

Suppose that y’ > 0 for all x _> 0. Then y(cx) exists with 2 < y(oc) <_ c. If
y(cx)) < cx, then y’" >_ k _= (1/(y(cx))2) -(1/(y(cx)))3) > 0 on [0, (x). An integration
shows that y" 0 at some first x > 0. At x,y(xi) > 2, y’(xi) > O,y"(xi)
0, and y"’(Xl) > k > 0 so that (y,y’,y") enters K2 at x. Otherwise, if y(c)
c, then R(cx)) > 0, and we conclude from the definition of R that y’y" > 0 for
large x. Thus, once again, y"(xl) 0 at some first x > 0 so that (y,y’,y") again
enters K2 at x. Finally, we must consider the possibility that y’(a) 0 at some
first a > 0. Since y’ > 0 and R > 0 on(o,a),then y’(y’y"+ (i/y)- (1/2y2)) >
0, and an integration gives ((y’)3/3+ln(y)+(1/2y) >/33/4 for large [3. In particular,
since y(a) > 2, then at x a we obtain ln(y(a)) > /33/6 for large /3. That is,
y(a) > ea/6 for [3 >> 1. But then R(a)

_
e-a/6 < 8/(3(343)2/33) for large /3,

contradicting (3.8). Thus a cannot exist for large/3 and the lemma is proved.
The next step in our analysis is to once again apply the McLeod-Serrin result.

Let > 0 such that < 1- . Then, by Lemmas 12-14 and Theorem 3, there is a

< c < 1 ,/3 > 0 which joins the line segmentscontinuum g contained in the set

**= 3,0 < /3 < ands= 1-,0 </3 </* and such thatgN(XUY) .
Furthermore, since the line c 1,/3 > 0 is contained in the set Y, then we conclude
that lim__.0+ g f {c 1 } (1, 0). In order to complete the proof of Theorem 2
we need to prove two further results. First, we show in Lemma 15 that if (,/3) g,
then (y, y’, y") (1, 0, 0, as x c. Following that, the rest of the proof is
devoted to showing that there is a point (&,/) g for which (1.5) and (1.6) hold.

LEMMA 15. Let (, ) g. Then
(i) 5:

(ii) < y(x) < sup{y()10 _< < oo} <
(iii) lim,-+oo (y, y’, y") (1, 0, 0).
Proof. If there were a first x0 > 0 for which y(xo) c, then Lemma 12 gives

y’(xo) < 0 so that (c,/) X. This is a contradiction since g q (X t2 Y) . Thus
y(x) > c for all x (0,5:). Equation (3.1) shows that ly’"l is bounded for all x (0,5:).
Therefore, neither y’ nor y" can become unbounded at finite x. Also, since y > c
for all x (0,5:), our conclusion must be that 5: oo. This proves (i) and the first
part of (ii). Next, suppose that sup{y()10 _< < oo} oo. Then R(oo) > 0. If
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y oscillates infinitely often as x -- cx, there is an unbounded, increasing sequence
(xi}i with y(xi) oc as -- oc, and y(xi) O, all i. Then limi_ R(xi) O,
a contradiction. Thus it must be the case that y > 0 and y < 0 for large x, and
y(x) oc as x ---, oc. Again, limx-o R(x) > 0 so that lim_. yry, > 0. But
then yr > 0, y > 0, y > 1 for large x and (y, y, y’) E K2, a contradiction. Therefore,
sup(y()10

_
< cx} < cx) and (ii) is proved. Part (iii) now easily follows from energy

arguments similar to those used in Lemma 4. We omit the details for the sake of
brevity.

Since (1.5) and (1.6) describe the behavior of the required solution as x --- -cx,
we find it mathematically convenient to "turn the problem around" by setting t -x.
Then the appropriate initial value problem is

(3.9) y, y-3 y-2,

(3.10) y(O) a, y’(O) -, y"(O) O,

where (c, ) E G and d/dt. We need to determine the behavior of the solution
of (3.9), (3.10) for t _> 0, where (c,/3) e g. First we prove the following result for
solutions satisfying (a, 3) (1, 0).

LEMMA 16. There are values c, (1/2, 1) and , > 0 such that if , < < 1
and 0 <_ < ,, then y"(to)- 0 at some first to > O. Furthermore, y"(t) > 0 over
(0, to), y(to) > 1, y’(to) > 0 and y"’(to) < O.

Proof. A linearization of (3.9) around the constant solution y 1 shows that
the solution must spiral around (1,0) in the (y,y’) plane if 1- a > 0 and _> 0
are sufficiently small. In particular, since a < 1, (3.19) implies that y’ > 0 for
t _> 0 until y 1 at some first > 0. Here y’() > 0 and y"(t > 0. Thus y(to) > 1,
and it follows from (3.9) that y’"(to) < 0. This proves the lemma.

Remark. Recall that lim__,0 g f3 {c 1- A} (1, 0). This and Lemma 16
immediately imply the following.

LEMMA 17. If > 0 is small and (1 , ) g for some > O, then there is a

first to > 0 such that y"(to) O. Furthermore, y(to) > 1, y’(to) > O, y’"(to) < O.
We are now prepared to finish the proof of Theorem 2. Since g is a continuum,

we conclude that there is a continuous function f [1/2, 1- ] (0, oc) such that
(c, f(c)) g for all a [3, 1- ]. Furthermore, we assume that > 0 is sufficiently
small so that Lemma 17 holds. We need to determine the behavior of the solution of
(3.9), (3.10), where f(c) as increases from to 1 . That is, y(O) and
(dy/dt)(O) -f(c). (See Fig. 7.) We will use the functional

y-2
(3.11) S =_ y’y" + - y-l,

which satisfies

(3.12) S’= (y,,)2

and

(3.13) < S(O) < 0 for (o,2



168 WILLIAM C. TROY

y’=-f(y)

FIG. 7

The functional S plays a key role in proving the next pivotal result.
LEMMA 18. Let 1/2 <_ a <_ 1- A and (y(0), (dy/dt)(O)) (a,-f(a)). If there is a

value > 0 such that S(t >_ 0 and y" > 0 for 0 < t

_ , then y" > 0 for all t E (0, ).
Proof. If y"(to) 0 at some first to E (, ), then y’"(to) <_ 0 so that y(to) >_ 1.

Thus, by (3.11), S(to) <_ O. However, since y" > 0 over (, to), (3.12) and the condition

S(t >_ 0 imply that S(to) > 0, a contradiction.
> 0 is sufficiently small and (y(0) (dy/dt)(O)) (a,-f(a)),LEMMA 19. If a-- 5

then there exists - (a) > 0 such that S() > 0, and y" > 0 over (0, ].
Proof. First we assume that a 1/2 so that y(0) 5, (dy/dt)(O) -f(5) <-

0 and (d2y/dt2)(O) O. Then y’"(0) > 0 and S(0) 0. Thus y" > 0 and S > 0 on an
interval (0, e). This, continuity, and Lemma 18 prove the result.

Lemmas 17-19 will be used to help complete the first part of the proof of Theorem
1)[ if 1/2 < a < & and (y(0) y’(0) y"(0))=2. For this we define the set J {& (5,

(a,-f(a), 0), then there exists > 0 such that y" > 0 for 0 < t <_ and S() > 0}.
Continuity and Lemma 19 imply that J is open and nonempty.

Let a* sup J. It follows from Lemma 17 that a* < 1 A. We consider the
special solution of (3.10) for which (y(0), (dy/dt)(O), (d2y/dt2)(O)) (a*,-f(a*), 0).

We need to prove that

dy d2y) 0).(3 14) lim y(t) (c oc
t--.o ’dr’dr2

First, since y(0) a* < 1, then (3.9) implies that y" > 0 for t > 0 at least until
y(t) 1 at some first t > 0. Also, since y(0) < 1, y’(0) _< 0 and y" > 0
over (0, tl), it must be the case that y’(tl) > 0. Thus we have y(t) 1, y’(tl) >
0, and y"(tl) > 0. If there were a first to > t for which y"(to) 0, then y(to) >
1, y’"(to) < 0, and S(to) < 0. It follows from (3.12) that S < 0 for 0 < t _< to. From
this and continuity we see that a t J if a* -a _> 0 is sufficiently small, contradicting
the definition of a*. Thus it must be the case that y" > 0, y > 1, y > y(tl) >
0, and y’" < 0 over (tl, oc). From this we conclude that y(oc) oc and y"(oc) must
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exist. If y"(oe) > 0, then S(oe) oe. Therefore, S(t > 0 for some > 0 and y" > 0
over (0, t. But then continuity implies that a E J if a- a* > 0 is sufficiently small,
again contradicting the definition of a*. Therefore, y"(oe) 0. Finally, suppose
that y’(oe) K for some K E (0, oe). Then, for large t it must be the case that
Kt < y < 2gt and y’" <_ -1/(8K2t2). Then y"(t) > ft(1/(8g2u2))du 1/(8k2t).
One more integration shows that y exceeds K at some finite t, a contradiction of the
definition of K unless K oe. Thus we conclude that limt- y(t) oe.

To finish the proof of the first part of Theorem 2 we recall that t -x and
conclude from the properties given above that limx__(y(x),dy/dx, d2y/dx2)

The final step in proving Theorem 2 is to show that

(3.15) lim
y(t)

1
t--,cx (31/3t 1ogl/3( ))

and

(3.16) lim 1.
(3 /3 log /3(t))

At several points in the derivation of (3.15) and (3.16) we will make use of the
following version of l’Hhpital’s Rule.

L’Hdpital’s Rule [2, pp. 384-385]. Suppose that f and g are differentiable and
g’(t) : 0 on an open interval (d, oe). Suppose that

lim f(t) trn g(t) 0 or that

lim f(t) =hoe and lim g(t) =hoe.
t--*oo t--cx)

If limt--, f’(t)/g’(t) exists, then limt-o f(t)/g(t) limt_ f’(t)/g’(t).
We need one last technical result for the proof of (3.15) and (3.18), namely, the

following.
LEMMA 20. Let (V(0), (dy/dt)(O), (d2y/dt2)(O)) (a*,-f(a*), 0). Then
(i) limt_ S(t) 0;
(ii) limt_ t/y limt- ty" limt- yy" 0;
(iii) limt__. yy’y" 1;
(iv) limt__,((y’)3/log(y)) 3;
(v) limt-, (log(y)/log(t)) 1.

Proof. (i) Recall that S y’y"- 1/y + 1/(2y2) and y(oe) oe. Thus we only
need to prove that yy" -- 0 as t oe. If S() > 0 at some > 0, then continuity
again implies that a* : sup J. Therefore, S(t) < 0 on (0, oe), and it follows that
limt- yy" <_ O. However, y > 0 and y" > 0 for large t > 0. Thus limt- yy" O,
and (i) is proved.

(ii) From l’H6pital’s Rule we see that limt--, t/y limt- 1/y’ O. An inte-
gration of (3.9) leads to

(3.17) y"(t) (y-2 y-3)d#.

From (3.17) and an application of l’Hhpital’s Rule we obtain

limty"= lim( (y-2_ y-3)d#) / () _tna ()2 (1-)
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Similarly, limt-.oo yy" limtoo(1 (1/y))(1/y’) O.
(iii) Next, we integrate S’= (y.)2 from t to cx and obtain

(3.18) y,y,,__ 1 1
(y,,)2d#"

y 2y2

Multiplication of (3.18) by y gives

We need to show that the last term in (3.19) tends to zero as t o. Again, by
l’H6pital’s Rule, we obtain

lim y (y")2d#-- lim
(yy,,)2

(iv) From l’H6pital’s Rule, and (iii), it follows that

lim
(y,)3

lim 3 yy’y" 3.
t- log(y) t-o

(v) From (ii) and l’H6pital’s Rule, we obtain

lim
log(y)

t--, log(t)
ty" )lim ty__’ lim 1+ 1.

t--,cx y t--cx "-
We are now prepared to complete the derivation of (3.15) and (3.16). Multiply

(3.18) by y, integrate from zero to t, and it follows that

(3.20)
(y,)3

log(y)+ y’ (y"
3 y (#) (s))2ds d# + W,

where W -[(f(a*))3/3 + log(a*) + l/a*].
We divide (3.20) by log(t), use (v) of Lemma 20 and l’H6pital’s Rule to obtain

(3.21) lim
(Y’(t))3

t 3log(t)
1+ tlim -ty’ (y"(s))2ds

We need to show that the last term in (3.21) tends to zero as t cx3. First, since

y’ > 0 for large t > 0, then (3.21) implies that y’ < 2131/3 logl/3(t)] for large t > 0.
Thus

(3.22) ty’(t) (y"(s))2ds <_ 2t31/3 logl/3(t) (y"(s))2ds.

From l’H6pital’s Rule we conclude that

(3.23)

(Y"(s))2ds
lim 1/3t--.o (t-1 log- (t))

t2(y"(t))210gl/3 (t)
lim
t- (1 + 3-1 log-l(t))
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It follows from parts (iii), (iv), and (v) of Lemma 20 that for large t > 0,

This and (3.23) imply that the right-hand side of (3.22) tends to zero as t -- oc.

Thus, from (3.21) it follows that limt-. (y(t))3/3 log(t) 1. Finally, this last limit,
and l’HSpital’s Rule, leads to

lim
t-- (3/3t log/3(t))

lim
y!

t--o (31/3 logl/3(t)
__

3-2/3 log-2/3(t))

This implies (3.16).
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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF SDE FOR
RELAXATION OSCILLATIONS*
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Abstract. A stochastic Li6nard equation with a small parameter e > 0 multiplying the highest derivative
is formulated by a two-dimensional stochastic differential equation (SDE). Here fast and slow variables
appear. In order to investigate the asymptotic behavior of the fast variable in such a system as e- 0, a

stochastic process X(t) as a good approximation for all => 0 is derived by the methods of matched and
composite expansions for relaxation oscillations. Then the limit ofX (t) is identified, so that X (t) converges
weakly as e 0 to a solution of a one-dimensional stochastic differential equation. This yields the weak
convergence of the slow variable as e- 0.
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tion, relative compactness, weak convergence
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1. Matched and composite asymptotic expansions. We consider the influence of
random perturbations upon the Li6nard oscillator:

d2x dx dw
g(x a-7

with a family { e, to, 6 of positive constants, where ddt denotes the symbolic derivative
and dw/dt is the so-called white noise. Here and hereafter e is a small parameter such
that 0<e<< 1, and g(x) is a scalar function on xR=(-,). Putting y=
e(dx/dt)+ tcx, we get an equivalent system:

dx dy dw--- y x,
dt

g(x) + d--"
The object of interest is the asymptotic behavior of the solution

(x(t),y(t)), O<-t<=T(T<oo) ase$0.

The above equation follows from the formal oscillator:

d2x dx db
d,r2 + pK --7+ g(x) 3

dr

with a large parameter u >> and a white noise db/dr, under consideration that

1 r
e -<< 1,

//

and a Brownian motion process w(t)=(1/v/-)b(vt).
When 6 0, this equation of the Li6nard type is connected with explaining the

relaxation oscillations, which is named after van der Pol [8].
While an equation takes the form

x,

* Received by the editors June 10, 1991; accepted for publication (in revised form) May 5, 1992.
? Department of Mathematics, Faculty of Technology, Kanagawa University, Rokkakubashi Kanagawa-
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for which the averagingprinciple of Papanicolaou [5] applies, our oscillator is ofthe type

-=f x, + -, 0<<< .
So we adopt another method.

Let (, F, P) be a probability space with an increasing family {F,;t-_>0} of
sub-o--algebras of F, and let w(t) be a one-dimensional Brownian motion process
adapted to Ft. Then as the response of the above oscillator we take the solution of the
following two-dimensional stochastic differential equation:

e dx(t) [y(t) x( t)] at,
(1.1)

dy(t)=-g(x(t)) dr+ 6dw(t).

Let (, ) be a two-dimensional random vector independent ofthe two-dimensional
Brownian motion process. Then we consider (1.1) under the following initial condition:

(.2) x(0) , y(0) n.

For e 0 we obtain the reduced system"

Namely,

(1.3)

0 Yo- Xo, dyo -g(xo) at + 6 dw( t).

dxo(t)-- g(xo( t)) dt +- dw( t),

yo(t) KXo(t)

with the initial state (Xo(0), y0(0)) (Co, KCo), where the value Co is still undetermined.
Since the derivative of x(t) is of order O(1/e) formally, x(t) is rapidly varying until
the line y--x is reached. During this short period of time, y(t) seems to remain
almost unchanged. Thus it is plausible that in the limit e 0 the solution jumps at
t--0 from the initial state (:, r/) to the state(r//, r/). This enables us to determine Co
in approximate solution (1.3) valid for > 0: Co--r//. Obviously, this approximate
solution Xo(t) with the initial state Xo(0) Co r// does not satisfy the initial condition
(1.2). In order to obtain a good approximation in both the time intervals such that

near t=O, away from t=O,

we adopt the methods of matched and composite expansions in Grasman [1, Chap. 1]
and Nayfeh [3, Chap. 4].

In 1 we derive a good approximation for (1.1) in all time intervals. In 2 we
identify the limit, so that such an approximation converges weakly as e 0 to a diffusion
process governed by (1.3). In 3 and 4 we prepare some estimates for the moment
of the solution of (1.1), and in 5 we give the proof of the identification of the limit.
In the following, without being concerned for the moment with mathematical rigor,
we present some preliminary considerations.

Since e is small, we naively look for a regular perturbation solution (Taylor series
in e) of the form

(1.4)
x(t; e) Xo(t)+ exl(t)+"

y(t; e)= yo(t)+ ey,(t)+"
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This is called the outer expansion. Substituting (1.4) into (1.1) and systematically
equating the coefficients of powers of e we get the following equations"

(1.5)

(1.6)

Here we assume that

0 Yo KXo,

dyo -g(Xo) dt + dw( t),

dx,,_l [y, x,] dt,

dy, -g,(xo, x,, x,) dt, n= 1,2,....

g(xo+exl+eZx2+’’’) Y’, g,(xo, xl,x2,...,x,)e"
n=O

with go(Xo)= g(xo) and

(1.7) g,(xo, Xl, X2,..., Xn) Xnl" X"2" x"k ["][dkg(s)l
,,+,2+...+,k=, k! dsk J.=xo"

Equation (1.5) is just the same with the reduced system (1.3). We impose the initial
condition on (1.5) as follows"

(Xo(0), yo(0)) (Co, Co).

Next we introduce the time scale:

Let (x(t), y(t)) be the solution of (1.1) with the initial state (1.2), and set

x(r; e)= x(re), y(r; e) y(re).

Then x(r; e) and y(r; e) satisfy the following equations:

dx(r; e)= [y(r; e)-x(r; e)] dr,

(1.8) dy(r; e)=-eg(x(r; e)) dr+x d,(r),

x(O; e) , y(O; e)

where (r) is a Brownian motion process defined by (r) 1/ w( re ). It is assumed
that the solution of (1.8) can be expanded in a power series of v:

X(T; E)-- UO(r) -’-%//-’Ul(T) - :b/2(T)-"
(1.9)

y(r; e)= Vo(r)-t-"y/Vl(r)-t

This is called the inner expansion. Substituting (1.9) into (1.8) and equating the
coefficients of powers of x/, we obtain the following equations:

duo
(1.10) dr

Vo-Uo, Uo(0) :,

Vo() n,

dUl
dr vl u u(O) O,

(1.11)

v,() (), v,(o)=o,
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dl,
--V.--KU., u.(O) O,

(1.12) dv. g,-2(Uo, u,..., u,-2), v,(0)=0,
dr

n=2,3,...,

where g(Uo+V/-u + eu2+" ") is assumed to be expanded as

g(uo+v/-u,+eu2+" ")= E g,(uo, u,, u2,..., u,)(v/-)"

with go(Uo) g(Uo) and g,(uo, u, u2,..., u,) as in (1.7). The solution of (1.10) is given
by

(1.13) Uo(-) : exp [-Kr]+ [1 exp[-Kr]], Vo(r) r/.

We must determine the value Xo(0)= Co in the outer expansion (1.4) and (1.5) so that
both expansions (1.4) and (1.9) should have a limited time interval over which they
are valid. Since T must be large and small, we substitute er in (1.4) and require
the identical asymptotic behavior of both expansions for " large. Namely, by (1.4),
we have

and so

x= Xo(,e) + x,() +. ,
y yo(’re) + ey,(’re)+...,

g(xo(s))ds+-w(re) +ex,(’e)+’’’
K K

[Ioy= Co- g(xo(s)) ds+6w(re) +ey,(’e)+"

On the other hand, for large -,

(1.14) Uo
,

Vo r/.

Thus it is necessary that

Add the two expansions (1.4) and (1.9) and subtract the matching terms (1.14). Then
we get the following expansion, which may be valid in both time intervals"

(1.15)

This corresponds to the so-called composite expansion.
Let (x(t), y(t)) be the solution of (1.1) with the initial state (1.2). Then, being

motivated by the formal expansion (1.15), we take account of the following processes"
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Then, in 2 we give a theorem on the weak convergence of X(t) and y(t) as e --> 0
to the diffusion processes Xo(t) and yo(t) governed by SDE (1.3), respectively. The
proof of the theorem is given in 5 by using the following estimates:

Section 3: uniform boundedness for the moment of (x(t), y(t)) with respect
to e;

Section 4: relative compactness for X (t) and y (t);
Section 6: appendix (a priori bounds of the solution of the Langevin equation

with a drift multiplied by I/e).

2. Theorem on weak convergence for e 0. Let (x(t), y(t)) be the solution of
(1.1) with the initial state (1.2). Then we define a pair (X(t), Y(t)) of random
processes by

(2.1)

Y(t)=y(t)-KX(t),

where u0(z) is given by (1.13). We notice that

/ \ F 1
(0) =-,

\ K/ L J
(2.1)’

Y(O)=O.

We shall need the following definition and assumptions.
DEFINITION 2.1. For the continuous function g(x), set G(x)= g(s)ds and

assume that there exists a constant fl _-> 0 such that G(x)+ fl >= 0 for all x m R 1. Then,
for each 0< e and (x, y) R2= R x R 1, we define the functions V(x, y) and V(x, y)
by

y2 y=
V(x, y)= e[O(x)+]+-- V(x, y)=[G(x)+]+--

2’ 2"

Assumption 2.1. The scalar function g(x) is once continuously ditterentiable with
respect to x m R1, and there exists a constant c > 0 such that

Ig(x)l+lg’(x)l<=c(+lxl ") for all xGe

with an integer p >--1.
Assumption 2.2. The function g(x) satisfies the following conditions:
(i) There exists a constant a > 0 such that

-xg(x) <- a for all x el;

(ii) G(x)cc as Ixl-eo, where G(x) is as in Definition 2.1;
(iii) Let /3->_0 be a constant such that G(x)+ 1 >-0 for all x R . Then there

exists a constant > 0 such that

x +y <-_ lV(x, y) for all (x, y) e R2,
where V(x, y) is as in Definition 2.1.

Assumption 2.3. Let b (, r/) be a two-dimensional random vector independent
of the two-dimensional Brownian motion process, such that

E[ V(th)"q] < De for an integer m >_- 2, q max {2p, 2},

where p is as in Assumption 2.1 and V is as in Definition 2.1.
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Example 2.1. Consider the following functions.

+2x2k+(i) g(x)= Zk=O (2k +2)Ce2k with a family {C2k+2} of positive constants;
(ii) g(x) rx sx with constants r > 0 and s > 0.
In case (i), Assumptions 2.1 and 2.2 hold for g(x) with the following choice of

constants:

c (2k+2)2azk+2, p =2n+ 1,
k=0

a>0, /3=>0, /->max{2, a}.
In case (ii), Assumptions 2.1 and 2.2 hold for g(x) with the following choice of
constants:

c 4r + 2s, p 3,

c
4r, /3> />max 2,4r,

Hereafter, C([0, T]; R 1) is the space of continuous paths w: -e 1.
THEOREM 2.1. Suppose that Assumptions 2.1, 2.2, and 2.3 hold. For the solution

(x (t), y (t)) of SDE 1.1 with the initial state 1.2), let (X (t), Y (t) be the process
defined by (2.1). en X(), O, with the initial state X (0)= /, converges weakly
in C([0, r]; R), T<, but arbitrary, as e 0 to the solution X(t) of the following
one-dimensional SDE:

(2.2) dX(t)
I
g(X(t)) dt +- d(t), X(O) =,

where if(t) is a one-dimensional Brownian motion process. Moreover,
E[supo,lY(t)lzm]o as eO for every T< with the same exponent m as in
Assumption 2.3. In particular, y t), O, with the initial state y (0) , converges
weakly in C([0, T]; R), T<, but arbitrary, as e 0 to the process X(t).

3. Uniform boundedness for the moment. Let z (t) (x (t), y (t)) be the solution
of SDE (1.1) with the initial state (1.2): z(0)= . Hereafter, is a two-dimensional
random vector independent of the two-dimensional Brownian motion process, and V
and V are the functions given by Definition 2.1. Then, for the proof of Theorem 2.1
we estimate the moment of z(t) from above uniformly in e.

LZMM 3.1. Suppose that g(x) satisfies the conditions (i) and (ii) of Assumption
2.2. Suppose that satisfies the following moment condition:

E[V()]< for an integer m l.

en there exists a pathwise unique solution z(t) (x(t), y(t)) of (1.1) with the initial
state z(O) . For each 0< e 1, set U(t) V(z(t)). en
(3.1) El(l+ U(t))]E[(I+ V())]exp[ct],

where c m[ + 6Z(m-)].
Proof Denote by L the differential generator associated with (1.1). Namely, for

(x,y)R,
L

1
(y-x)

0 0 1 0

o- g(x) --+-
Oy 2 Oy2"

Then, by condition (i) of Assumption 2.2, V satisfies

LV:(x,y)=-xg(x)+2N+6 for all (x,y)eR.
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By the condition (ii) of Assumption 2.2, V is radially unbounded" V(x, y)->00 as
(x2 + y2)/2 __> 00. Notice that E[ V (4)] =< E[ V(b)] < 00. So, according to nonexplosion
criteria in Hasminskii [2] and Narita [4], any solution of SDE (1.1) with the initial
state (1.2) such that E[ V(4)] < 00 cannot explode, which implies the pathwise unique-
ness for the solution. Moreover,
(3.2) L[(1 + V)"]
with the constant c m[a + 62(m-1/2)]. Apply the Ito formula to (1 + U(t)) and
take expectation. Then, by (3.2) and the Gronwall lemma, we get (3.1). Hence the
proof is complete.

LZMMA 3.2. Under the same assumptions as in Lemma 3.1, suppose that the moment
condition on b is replaced by the following condition"

E[ V()2] < for an integer m 1.

For each 0 < e 1, set U V z (t)). en

(3.3) E[o,=sup (l+U(t))m]Am(T)exp[cT]
for every T <, where

A(T) E[(I+ V())m]+Bm exp

B 2am(2c)’/2(E[(1 + V(6))2]) /2,
and c2 is the constant obtained by Cm in (3.1) with m replaced by 2m.

Proo Foreach T<,setS(T)=supot(1 + U(t)), where U(t) V:(x(t),
y(t)). Then (3.2) yields

(3.4) S(T)NS(O)+c S(t) dr+ sup M(t),
OtT

where M(t)=Jo re(l+ U(s)) -y(s) dw(s). Put e =inf{t; lz (t)lN}. Then
Lemma 3.1 implies that e with probability 1 as N. Since y:2V(z) for
z (x, y) R, M(t) satisfies

E[M(t e)] N2m [(1 + U(s e))] ds,

where a b is the smaller of a and b. Notice that [V()] <, so that the estimate
(3.1) of Lemma 3.1 holds with m replaced by 2m. Thus

[M(t)] lim [M(t e)]<.

Namely, {M(t); 0} is a square integrable maingale satisfying

[M()]N2m[(I+ V())] exp[cms]ds,

where cm is the constant obtained by c in (3.1) with m replaced by 2m. Thus the
martingale inequality yields

E sup IMp(t)] E sup M(t)
OtT OtT

2(2m[(1 + v(6))])’/

x - ]- 1]) ’/c[exp [c
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Take expectation on (3.4), so that

Io [ 1E[S(T)]<-E[S(O)]+c,, E[S(t)]dt+E sup IMp(t)

Further, notice that

E[S(O)]<-_E[(1 + V(th))m]-< (El(1 +
and that (exp [xT]- 1)/2 exp [xT/2] for x->_0. Then by the Gronwall lemma we get
(3.3). Hence the proof is complete.

LEMMA 3.3. Let the same assumptions as in Lemma 3.2 hold. Then

(3.5) E sup lye(t)[2m <-2"A,(T) exp[c,,T] for everyT<o,

where c,, and A,,, (T) are the same constants as in (3.1) and (3.3), respectively.
Proof By Definition 2.1, since y2/2 <- V(x, y) for (x, y) R2, we see that (1/2),,y2,, __<

(1 + V(x, y))m. Thus (3.5) follows from (3.3) of Lemma 3.2, and hence the proof is
complete.

LEMMA 3.4. Suppose that g(x) satisfies all conditions of Assumption 2.2 and that
ch satisfies the following moment condition"

Then

(3.6)

where

E[ V(th)2r"] < C for an integer m >-- 1.

E[ sup [x(t)[2"] for every T<,

K,, (T) 22-1[l,E V(4 )" + K
-2,, 2A,, (T) exp Cm T]]

with the same constants c,, and A,, T) as in (3.1) and (3.3), respectively.
Proof By SDE (1.1), x(t) satisfies the linear ordinary differential equation of

first order:

d
x(t

1
[y(t)_Kx(t)] x(0) scdt e

Namely,

x (t) exp +- exp y (s) exp ds,
E

and so, for 0 =< -<_ T,

Use the following inequalities"

(a+b)-<-22’-l(a2’+b2m) for a->O and b_->O,

O_-< exp [-x] <1 and O-<l-exp[-x] <-1

Then, for each T> 0,

for x0.

(3.7) o<-t<=7"sup [xe(t)[2m <--22m-l [[[9-m + K-m O<=t-<_-TSUp [ye(t)[2m].
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By condition (iii) of Assumption 2.2, since b (s, r/) satisfies

__<

the moment condition on implies

Z E[ V(6) 3 Z (E[

Therefore, taking expectation on (3.7), by (3.5) of Lemma 3.3 we obtain (3.6). Hence
the proof is complete.

4. Relative compactness for X*(t) y(t). Hereafter let (x(t), y(t)) denote the
solution of (1.1) with the initial state (1.2), i.e., (x(0), y(0)) (, ), where is
a two-dimensional random vector independent of the two-dimensional Brownian
motion process. Throughout this section, let V be the function given by Definition 2.1.

LEMMA 4.1. Suppose that there exists a constant c > 0 such that

Ig(x)lc(l+lxl ) for all xR with an integerpl,

and suppose that Assumption 2.2 holds. Let be a random vector such that

E[ V()2q] <, q max {2p, 2},

where p is as in the hypothesis. Let T < be arbitrary and fixed. en
(4.1) sup E[[y(t)-y(s)[4]D(t-s) forOstT

O<el

with a constant D > 0 independent of e.

Proof According to the second equation of SDE (1.1) and the Schwarz inequality,
y’ (t) satisfies

(4.2)
(()-(s))42 (_x)3 Ig(x(u))l4 du+ dw (u)

for 0NsN tNT.

The growth restriction on g(x) implies

Ig(x)14c423(l+lxl4) for allxR 1.

Put m 2p. Then, by virtue of the moment condition on we notice that

E[V()]N(E[V()q])e/q< with q=max {2p, 2}.

So the estimate (3.6) of Lemma 3.4 holds with m 2p. Namely,

E[ sup [x(t)[4p]Kp(T),
OtT

where K2p (T) is the constant obtained by K(T) in (3.6) with m 2p.
On the other hand,

dw(u) N 436(/- s) for 0NsN tN T.

Taking expectation on (4.2), we get (4.1). Hence the proof is complete.
LEMMA 4.2. Under the same assumptions as in Lemma 4.1, suppose that the moment

condition on is replaced by the following condition:

[ g()mq] < for an integer m 2, q max {2p, 2},
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where p is as in the hypothesis of Lemma 4.1. Let y t(t) be the process defined by (2.1).
Then

(4.3) t.o<=Sup,._-<7- Y(t)l=] F(T)(e+r?) for every T<00,

where F, (T) is a positive constant independent of e such that F, (T) is a continuous and
increasing function of T. Moreover, for every T < 00,

sup E[lYt(t)- Y(s)14]<=(t-s) for O<-s<=t<= T
0<tl

with a constant > 0 independent of e.

Proof First we show (4.3). According to (2.1)’, Yt(t) has the following form:

yt t) A t) rI K) exp [e ]

Since (xt(t), yt(t)) satisfies SDE (1.1) with the initial state (xt(0), yt(0)) (, r/)= &,
At(t) satisfies the following linear stochastic differential equation:

dA(t)=[---A(t)-g(x(t))] at +, dw(t),

zx(0) n-.
Therefore, the solution At(t) can be written in the form

At(t) I(t)- I(t)+ Ij(t),

where

I(t)=exp exp g(xt(s)) ds,

I(t) exp exp 8dw(s).

Accordingly, we have

Y(t)=-I(t)+Ij(t) for all t_->O.

In the following, let m >= be any integer and fixed. Then, for each T < 00,

(4.4) sup Igt(t)l-m-<22"-[ sup II(t)12m+ sup II(t)12"].
O<=t< T I_O<=t<= T O<=t<- T

First we evaluate ]I(t)] 2m. Consider the growth restriction on g(x), so that

]g(x)]2" -< c2m22"-1(1 +IX]2"p) for all x R’.
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Then the Schwarz inequality yields

II( t)12" <= t2"- exp [-2me Kt]
exp c2"22"-(1 + Ix(s)l=) as

t2’-’C2"22m-’[ I + sup Ix(s)I2"p

exp[-2me Kt] If exp [2meS] ds

By the moment condition on 4 we notice that

E[V()2mp]<=(E[V()mq])2p/q (oo for m->_2.

Thus the estimate (3.6) of Lemma 3.4 holds with m replaced by mp. So

(4.5)

E
U0_-<tT
[ sup ]I(t)l2"] <=C2"22"-1T2"-’[1 + Kmp(T)]

-exp

where Kmp (T) is the constant obtained by Km(T) in (3.6) with m replaced by mp.
Next we evaluate II(t)lm. Use the inequality that

E h(u) dw(u) =< [m(2m-1)]’t’-’ E[h(u)2"] du

for a nonanticipating Brownian functional h (u). Then

(4.6) E[lI(t)l’]<-J,(t) for all t_>O,

where

Notice that I(t) is the pathwise unique solution of the following Langevin equation:

dI( t) - I( t) dt+ 6 dw( t), I(0) O.

Put

M(t)--lI(t)lz"+ Ii(s)12ds.
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Then the Ito formula applies to the stochastic differential d[lI(t)l2m with the following
result:

ioM(t) 2m(2m 1)lI(s)l2m- ds +2m II(s)l’-1 dw(s).

Namely, M(t) is a nonnegative submartingale, which yields

E[o__<,_<Tsup [I(t)l] E [o,sup M(t)] 2(E[M(T)])/.
Here, by the definition of M(t) we see

0T

[4m--4]ElM(T)2] 2 84[m(2m-1)]2T [It(s) ds

+ 212m] E[II(s)]4m-2] ds

Let m be such that m2. Then, by the definition of J(t) in (4.6), both J_2(t) and
J_(t) are well defined. Further,

J_(t) J_2(T) for all T,

J_(t)J_(T) for all t

So the estimate (4.6) yields

(4.7)
E [ sup N2[m(2m 1)T(J_(T))/

since (a + b)l/ a/+ b/ for a 0 and b 0. Observe that for n 1

j(t)/N[n(2n_l)]/r(_/ e

Take expectation on (4.4). Then, by (4.5) and (4.7), we get (4.3) as follows:

where

g 2[m(2m 1)[(2m 2)(4m 5)]m- + 2m[(2m 1)(4m 3)]m-’/].
Now we show (4.3)’. Since Y(t)=-I(t)+I(t), we see that for

g(- g(s=-(;(-;(sl+((-;(s,

and so

E[IY(t) Y(s)14]23[E[lI;(t)-I;(s)14]+ E[lI(t)-I(s)[4]].
Here the estimate (6.2) of Lemma 6.1 in 6 is applied to I(t):

sup E[[I(t)-I(s)[4] 154(/--S)2 for 0s t.
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Thus, in order to prove (4.3)’ we have only to show

sup E[lI(t)-I(s)14]<=K(t-s)2 for0=<s-<t -<T
0<e=l

with a constant K > 0 independent of e.

By the assumption, since ]g(x)]<=c(1 +Ix] p) for xR’, we see that for 0 <= u <= T,

exp exp g(x(v)) dv

sup [x(v)[ p exp exp dv
O<=vT

On the other hand, I(t) satisfies the linear ordinary differential equation of first order:

di(t K
I2(t)+g(x(t)) with I2(0)=0.

dt e

So, for 0-<s=< -< T,

I2(t) I2(s) I(u) du+ g(x(u)) du

and

lI2(t)-I(s)l <-- lI2(u)] du+ Ig(x(u))l du

sup Ix (v)l " (t-)
OvT

Under the assumption, the estimate (3.6) holds with m 2p, that is,

E[t_o__<__<rsup ]xe(v)14P] <=K2p(T).

Therefore,

E[lI;(t)-I(s)14]<=24c4E 1 4- sup Ix (v)l" (t-s

<-K(t-s)2 for 0_-<s_-< -< T

with a constant K > 0 independent of e. This inequality together with Lemma 6.1 imply
(4.3)’. Hence the proof is complete.
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LEMMA 4.3. Under the same assumptions as in Lemma 4.2, let X( t) be the process
defined by (2.1). Let T < be arbitrary and fixed. Then

(4.8) sup E[IX(t)-X(s)I4]<-- D’(t-s)
0<el

for 0 <-- s <-- <-- T with a constant D’> 0 independent of e.

Proof. By (2.1)’, (X(t), Y(t)) satisfies

K(X:(t)-X(s))=(y(t)-y(s))-(Y(t) Y(s))

for 0 s _-< <= T, and hence

K41x(t)-X(s)14<_23[ly(t)-y(s)14/lr(t) Y(s)l4]
for 0-< s-< t-< T. Take expectation on both sides of the above equation and apply the
estimates (4.1) of Lemma 4.1 and (4.3)’ of Lemma 4.2. Then we obtain (4.8). Hence
the proof is complete.

Remark 4.1. Lemmas 4.1 and 4.3, as follows from Prokhorov [6], assure the
relative compactness of the families of probability measures induced by y= {y(t)}
and X= {X(t)}. By the representation theorem of Skorokhod [7], without loss of
generality, we can assume that there exist a subsequence {e }= ,: of {e} and random
processes 37(t) and )(t), such that

y;,(t)-fi(t) and X,(t)-f(t) with probabilityl

uniformly for each finite time interval as j
LEMMA 4.4. Under the same assumptions as in Lemma 4.2, let {ej }= 1,2 and f((t)

be a subsequence and a process for which Remark 4.1 holds. For the sake of simpli,city,
let us consider that {e }__1.2 {e}. Then, for each T < there exists a constant C 0
independent of e, satisfying the following estimates"

(4.9) E sup IX(t)l mq _-< C, q max {2p, 2},
OtT

(4.9)" E t_o_-<,r[sup Ig(.(t))12 1 _-< (,

where m >-_ 2 and p >-1 are as in the hypothesis of Lemma 4.2.
Proof. We shall denote various positive constants independent of e by the same

symbol C. By the assumption, since Ig(x)l<-_c(1 +lxl ) for all xR 1, g(x) satisfies

(4.10) Ig(x)l_-< d(1 +lxl mq) for all x R and m_->

with q max {2p, 2}. Recall (2.1), so that

IX(t)l too-- x(t) sc- exp

_<_ d[lx,(t)l. + ])]mq],

where b (sc, r/) is the initial vector in the hypothesis. Thus

(4.11) sup Ix(t)lmqd[ sup
O<=tT
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The condition (iii) of Assumption 2.2 and the moment condition on b imply

(4.12) E[[c[mq] E[]t]2rnq])1/2 lmq/2( E[ V( qb )mq])1/2 < (30,

where m =>2. Therefore, the estimate (3.6) of Lemma 3.4 holds with m replaced by
mq/2. Namely,

(4.13) E sup Ix(t)l ’q <- C.

Take expectation on (4.11). Then, by (4.12) and (4.13) we get (4.9). So, by (4.9) and
(4.10) we get (4.9)’. Consider that

g(X(t))+ g(X(t)) with probability 1 as e -0.

Then, by (4.9)’ and the Fatou lemma we obtain (4.9)". Hence the proof is complete.

g. Proof f There Z1. First of all we consider the one-dimensional SDE (2.2).
LMMA 5.1. Suppose that g(x) is a once continuously differentiablefunction satisfying

-xg(x) <- a for all x R wich a constant a > O.

Let d (, r be a two-dimensional random vector independent of the two-dimensional
Brownian motion process, such that

E[1612] < oo.

Then there exists a pathwise unique solution X of (2.2) with the initial stateX(0) 1/ K.

Moreover, suppose that g(x) satisfies all conditions of Assumption 2.2 and that

E[ V(b)2’] < 00 for an integer m >= 1.

Then

(5.1)

where

El(1 /1/2lx(t)l)] El(1 /1/21x(0)l ) exp [bmt],

Proof. Denote by L the differential generator associated with SDE (2.2)"

d l/iS\ d
L=--- g(x)x+K ) d-x-2’ xR1.

Then, the assumption on g(x) implies

L x2 =---1 xg(x)+

for all x R 1. Moreover,

=<--+-
K 2

So, any solution X(t) of (2.2) with the initial state X(0)= ,// such that E[],/12] <o,
as follows from Hasminskii [2] and Narita [4], cannot explode. Hence the pathwise
uniqueness holds for the solution of (2.2).
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Next it is easy to see that

L[(1 +1/2x)-’ --< b,(1 +1/2x)

with the constant

for all x e R

b,,=2m -+ 2m-

Recall the condition (iii) of Assumption 2.2 and the moment condition on 4, so that

E IX(0)[z -<_E -<_

Then, evaluating El(1 +[X(t)lz)] by the Ito formula and the Gronwall inequality
we obtain (5.1). Hence the proof is complete.

Proof of eorem 2.1. Let m be the integer for which Assumption 2.3 holds"

E[V()mq]<, q max {2p, 2}, m2.

Then the initial vector satisfies all moment conditions in the hypotheses of Lemmas
3.1, 3.4, 4.1, 4.4, and 5.1 automatically. Under Assumptions 2.1 and 2.2, the function
g(x) satisfies all growth conditions in the hypotheses of Lemmas 3.1, 3.4, 4.1, 4.4, and
5.1. Therefore, the family {y(t), x(t), Y(t), X(t), X(t)} of processes satisfies the
family {(3.5), (3.6), (4.3), (4.9), (5.1)} of estimates, respectively.

Denote by {e}=,2 a subsequence of {e} for which Remark 4.1 holds. For
simplicity of the notation, let us consider that {e } {e}. Let (t) and (t) be the
random processes for which Remark 4.1 holds. Then we proceed to the proof by
showing the followin results.

Step 1. (t) X(t) for all 0 with probability 1.
Step 2. There exists a one-dimensional Brownian motion process if(t) such that

fi(t) n g(X(s)) ds + (t) for all 0

with probability 1.

Step3. g(X(s)) ds +- (t) for all 0
K K d0 K

with probability 1.
Step 4. X(t) converges weakly in C([0, T]; R), T<, but arbitrary, as e0

to the solution X(t) governed by SDE (2.2) with the initial state X(0)= /.
Proof of Step 1. Observe that

E[[;(t) (t)[] E[[;(t) y (t)l] + Eli Y(t)[]
(5.)

+E[X(t)-X(t)[],

where Y (t) y (t) X (t). Since the estimates (3.5) of Lemma 3.3 and (4.9) of
Lemma 4.4 hold for y(t) and X’(t) with m2, both {y(t)} and {X(t)} are
equi-integrable with respect to e, while y(t) fi(t) and X(t) (t) with probability
1 as e 0. Thus the L-convergence of y(t) and X(t) to fi(t) and (t) holds,
respectively. On the other hand, the estimate (4.3) of Lemma 4.2 implies the Le-
convergence of Y(t) to zero as e 0. Thus, letting e0 in (5.2), we have

E[[fi( t) rX( t)[] O,
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and hence

P()7(t) K)(t)) 1 for each >_- 0.

Since 37(t) and (t) are continuous with probability 1, the result of Step 1 holds.
Proof of Step 2. Put

A(t)= fi(t)- rI- g(X(s)) ds

Rewrite A(t) as

A(t)=[fi(t)-y(t)]+ y(t)- q- g(X(s)) ds

Then, since y(t) r- g(x(s)) ds+ 8w(t), we see

(5.3) A(t) A:(t) A(t) + 8w(t),

where

A(t)=fi(t)-y(t) and A(t) [g(x(s))-g(X(s))] ds.

Since the estimate (3.5) of Lemma 3.3 holds with m->_2, {ly(t)l2} is equi-integrable
with respect to e, while y (t) 37(t) with probability 1 as e 0. Thus

(5.4) E[IAT(t)I]->0 as e->0.

On the other hand, the Schwarz inequality yields

io]A(t)12_-< Ig(x(s))-g(f(s))l

For a moment suppose that the following result holds:

(5.5) E Ig(x(s))-g(((s))l ds --,0 as e-0.

Then we get

(5.6) E[IA.(t)I] --> o as e --> 0.

So, taking expectation on (5.3), by (5.4) and (5.6) we have

IE[A(t)][<=[E[A(t)][+[E[A(t)]I-.O as e0,

and hence

E[A(t)] =0.

Further, it follows from (5.3) that

(5.7) A(t) (A (t) A(t)) + 28(A(t) A( t))w(t) + 82w(t) 2.
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Here (5.4) and (5.6) imply

E[(A( t) A( t))2] e[E[IA( t)I2]+
0 as e-0,

IE [(A(t) A( t))w( t)] --<_ (E [(A (t) A( t))2])l/2t 1/2

-*0 as e-*0.

Hence, taking expectation on (5.7) we get

E[A(t)2] E[(Ai(t)-A(t))]

+ 28E [(A( t)- A( t))w( t)] + t2t

-62t as e-0.

Namely,
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where

Observe that

Then

g(x(s)) g(X(s))+ g’((s))h(s),

E(s)=X(s)+O(s)h(s), 0<0(s)<l.

and so

g(x (s)) g(2(s)) [g(x (s)) g(X (s))] + [g(X (s)) g(2(s))]

g’((s))h(s)+[g(X(s))-g(2(s))],

(5.8) Ig(x(s))-g((s))122[lg’((s))12lh(x)12/lg(X(s))-g((s))]2].
Then we first evaluate the right-hand side of (5.8). By Assumption 2.1, since
c(1 +1’[ p) for all " R’, we see

Ig’((s))lih(s)] <-_ c[1 4- 2-’(Ix(s)l p + Ih(s)l )].

E[A(t)z]= t32t.

Since 37(t) and X(t) are continuous, A(t) is also continuous. Define (t) by

1
(t)= A(t).

Then, according to the above argument, {v?(t)} is a continuous square integrable
martingale with E[v?(t)] 0 and E[v?(t)2] t. Thus, v?(t) is a one-dimensional
Brownian motion process. Hence the result of Step 2 is valid.

Therefore, in order to prove Step 2 we have only to show (5.5). Since g(x) is
differentiable, the mean value theorem yields

g(X+h)=g(X)+g’()h, ;2=X+Oh, 0<0<1.

Consider the expression (2.1)’, so that

x(s)=X(s)+h(s) with h(s)=(-)exp[-Z].
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In the following we denote various positive constants independent of e by the same
symbol A. Notice the inequalities such that

,h(s)l<=A[, exp [-2es]
Ih(s)l"_-<AId,I" exp

s

Ig’(ff (s))l=l h (s)l -< A[ I1 + IX (s)ll =

+llP+exp [-2pS]] exp [-2es].
Use the inequality such that xy (x+ y)/2. Then

Ig’( (s))ll h (s)

(5.9)
e Il+lX(s)l

By condition (iii) of Assumption 2.2, satisfies

[

112+2 11211 }jill4p + I141
[t’v(6)" + v(6)].

Recall Assumption 2.3" E[ V(
q < mq for m 2, the H6lder inequality yields

e[ v(6)] ([

and hence

u[1612]

Further, the estimate (4.9) of Lemma 4.4 holds for X(s) with the following result:

E sup Ix(s)l4p

LOst 0

where 4p 2q mq for m 2. Therefore, taking expectation on (5.9) we have

(5.10) [Ig’(,(s)),lh(s)l]NAexp[-s] forall0NsN.

Next, set

A(t) E Ig(X(s))-g((s))l ds
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Notice that the estimates (4.9)’ and (4.9)" of Lemma 4.4 hold for g(X(s)) and g(f(s)).
Then, since g(X(s))- g(X(s)) with probability 1 as e -0, by the dominated conver-
gence theorem we get

(5.11) A(t)-0 as e-0.

Accordingly, by (5.8), (5.10), and (5.11) we obtain

Ig(x(s))-g(2(s))l ds

-<2 A exp ds+A(t)

=2 A 1-exp
e

+1(t 0 as e0.

Thus (5.5) holds. Hence the proof of Step 2 is complete.
Proof of Step 3. Obviously, the result of Step 3 follows from Steps 1 and 2.

ProofofStep 4. By viue of Step 3, the limit process X(t) has the same law with
the solution X(t) of SDE (2.2) with the initial state X(0) /. According to Lemma
5.1, the pathwise uniqueness holds for the solution of (2.2), which implies the law
uniqueness. So the result of Step 4 holds. Moreover, by (4.3) of Lemma 4.2, Y(t)
satisfies

Steps 1-4 also imply the weak convergence of y(t) to X() as e 0. Hence the proof
of Theorem 2.1 is complete.

Remark 5.1. In the proof of (5.5), a process 0(t) arises from the mean value
theorem. Let {e}=l, be a subsequence for which Remark 4.1 holds. For notational
simplicity, and without loss of generality, we will usually not use the tilde notation,
and simply assume that

X(t) X(t) with probability 1 as j ,
where X(t) satisfies (2.2) and consider that {e} {e}. Suppose that g(x) is a twice
continuously differentiable function satisfying

g"(x) 0 for all x e R.

Then, for each 0,

(5.12) 0() on { } with probability as e0,

where (, ) is the initial vector given in (1.2).
We will show (5.12). In fact, by the theorem ofTaylor, the following equations hold"

g(a+ h)= g(a)+ hg’(a + Oh)

g(a)+ h{g’(a)+ Ohg"(a + 01Oh)}

g(a)+ hg’(a)+ Oh2g"(a + OOh),

where0<0<l and0<01<l, and

g(a + h)= g(a)+ hg’(a)+1/2h2g"(a + O2h),
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where 0 < 02 < 1. Thus

Consider that

Oh2g"(a + OlOh) 1/2h2g"(a + O2h).

0- O(t) and 0i OT(t), where i= 1, 2.

Then, since exp [-Kt/e] # 0 for all => 0, we have

o( - g"(x(+o(o(h(

= - g"(X(t)+ O;()h()), where

Note that for each 0,

X()X(t) with probability 1 as e0.

Observe that for each 0,

which implies that for each 0,

O(t)O(t)h(t)O and O(t)h(t)O

with probability 1 as e 0. Then, since g"(x) is continuous in x, we see that for 0,

g"(X(t)+ O(t)O(t)h())g"(X(t)) with probability 1 as e0

and

g"(X(t)+ O(t)h(t))-g"(X(t)) with probability 1 as e-0.

Therefore, for each 0,

lim O(t) - g"(X()) =- - g"(X(t)) on {r K},
--0

from which follows (5.12).

6. Appendix (a priori bounds of the solution of the Langevin equation). In order to
prove the estimate (4.3)’ of Lemma 4.2 we shall need Lemma 6.1. Let us consider the
solution I(t) of the one-dimensional Langevin equation with a drift multiplied by 1/e:

(6.1) dI(t) -- I(t) dt + 6 dw(t) with I(0) 0,
e

where and 6 are positive constants, 0< e-< is a small parameter, and w(t) is the
Brownian motion process.

LEMMA 6.1.

(6.2) E[]I( t) I(s)]4] <-1564( t- s)2 for O<- s <= uniformly in 0-<e---1.
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DEFINITION 6.1. For t=>0 and a>0, define the function A(t; a) by

A(t; a)=()(1-exp [-at]).

Here we will prove (6.2) by showing the following estimates:

(6.3) E[[l(t)12]=62,(t;) for t->0,

162[() ( )1(6.3)’ E[I(u)I(s)] =- A u + s; A u-s; forums,

(6.4) A t; -A t; for t0,

(.4)’ [i()4] Xe for tO,

E[I(t)-I(s)l]

(6.5)

(6.5)’

(6.6)

E[lI(t)-I(s)12]<=362(t-s) for0=<s_<-t,

E[(I(u)- I(s))3l(s)] -A(u; s) for u => s

with a nonnegative and continuous function A(u; s) of u => s satisfying

A(u; s) <-_- A u-s;

for u>-s.

Step 1 (proof of (6.3) and (6.3)’). Since I(u) has the form

I(u) =exp exp 6dw(v),

-(u-)]exp for

193

Namely, (6.3) and (6.3)’ hold.

for 0-<s <- t,
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Step 2 (proof of (6.4) and (6.4)’). The Ito formula applies to (6.1) with the following
result:

[i(t)14 4_._ I/(lg)[ 4 du +66 II(u)l2 du

+46 I(u) dw(u).

As is already shown by (4.6), since

E[ll(t)l2"]<oo for all t>-0 withml,

we can take expectation on the both sides of the above equation and get

Io’ IoN[i(t)14] ___4 [I(u)l4] du+6 [I(u)l] du.

For O, define the function f(t) by

f(t) E[lI(t)], where m e 1.

Then f4(t) satisfies the linear ordinary differential equation of first order:

t) 4<f4(t) + 66f(t),

where f2(t)--E[lI(t)l2] is given by (6.3). Therefore,

f4(t) exp
t<t

exp 632x 62A u;

f4(0) =0,

[ (exp [-] 1) - (exp [2----t] 1) ],
which yields (6.4). The estimate (6.4)’ follows from (6.4) and the inequality that if
0 < a < b, then

1
0<-_,(t;a)-A(t;b) <-- for t=>0.

a

Step 3 (proof of (6.5) and (6.5)’). By the Ito formula applied to (6.1), we see that
for 0=<s=< t,

II(t)-I(s)l 2

_2__ (I(u)- I(s))I(u) du
17,

+ 62 du + 2 (I(u)- I(s))6 dw(u)

I Is_2__ II(u)- I(s)l du _2__ (I(u)- I(s))I(s) du

+ du+ (r(u)- (s)) (u).
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Take expectation on the above equation, which is possible by the estimate (4.6). For
t-> s, define the function f2,,(t; s) by

f2,,(t; s) E[II(t) I(s)[2"], where m => 1.

Then f2(t; s) satisfies

f2(t;s) 2KI,’ 2KIs’fz(u; s) du--- E[(I(u)-I(s))I(s)] du

_jr_ 2 du for >= s.

It follows from (6.3) and (6.3)’ that for s=< u =< t,

E[(I(u)- I(s))I(s)] E[I(u)I(s)]- E[lI(s)l2]

a(u;s),

where

a(u; s)=(1-exp [-(u-s)])(1-exp
Namely, f(t; s) satisfies the linear ordinary differential equation of first order:

dt
f2(t;s)=-

e
f(t s)+62(a(t;s)+l) for >s,

f(s;s)=O.

The solution is computed as follows:

f2(t;s)

exp exp 6 a (u" s) + 1) du

[(1-exp [-2es])f.’ (exp [2(ue-s) ] -exp [(-s)])du
+ exp du

1-exp
e

-(exp[-(t-s)]-exp[-2(t-s)])}e e

+ 1-exp
e
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Rearrangement of this equation yields (6.5). Since 0=<A(u; a)<=u for all u=>0 and
a > 0, it follows from (6.5) that

f2(t;s)<=62[{(t-s)+(t-s)}+(t-s)] for t>-s,

which implies (6.5)’.
Step 4 (proof of (6.6) and (6.6)’). For u _-> s, set

(u;s)=I(u)-exp[-K(u-s)]I(s)’e
Then, for u => s,

and

I(u)- I(s) (u; s)-(1-exp I-K(u s)l)
(I(u)-I(s))3I(s) (u; S)3I(s)

-3 1-exp [(u; s) I(s)

+3 1-exp (u; s)l(s)

1-exp I(s

Note that I (u; s) and I(s) are independent for u > s, since the Brownian motion w(v)
is a process with independent increments. So, if m and n are positive integers, then

E[[(u; s)’I(s) n] E[[(u; s)m]E[I(s) n] for u > s.

Moreover, for any u >_ s,

E[I(u; s)]= E[I(s)]=O.

Therefore, for u > s,

E[(I(u)- I(s))3I(s)]

(6.7)
=-3 1-exp E[[(u; s)Z]E[lI(s)l 2]

1-exp E[ll(s)]4].

We note that (6.7) holds with u s, since

E[(I(s)- I(s))3I(s)] =0.
On the other hand, for u _-> s,

E[(u;s)2]=E I(u)-exp
-(u-s)

I(s)
E

E[]/(u)12]-2 exp [-:(u-s)]e E[I(u)I(s)]

+exp E[lI(s)l
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For u _>-s, define f2(u; s) and f(u, s) by

j72(u; s)= E[(u; s)2] and f(u, s)= E[I(u)I(s)].

Use the notation that f2,,(u) E[[I(u)l2’’] with m -> 1. Then, for u >- s

f2(u; s)=f(u)-2exp [-K(u-s)]
(6.8)

For u => s, set

-2(u-s)]+exp fz(s).
E

A(u; s)=3(1-exp [-K(u-s)]) fz(u;
(6.9)

+ 1-exp f4(s).

Then, (6.7) can be written as

E[(I(u)- I(s))3I(s)] -A(u; s) for u >- s.

By the definition of f2(u; s) and f2,,(s), where m 1 and 2, A(u; s) is a nonnegative
and continuous function of u _>-s, and hence (6.6) holds.

Next we must evaluate A(u; s) for u => s. Since the estimates (6.3) and (6.3)’ hold,

f2(u)2() for u-->0 and f(u,s)>=O for u->s.

Thus, it follows from (6.8) that for u => s,

O<-f(u; s) <-f(u)+exp [-2(u s)]

Combining this, (6.3), and (6.4)’ with (6.9) we see that for u _-> s,

O<--A(u;s)<--3(1-exp[-(u--s)])2()
+ 1-exp f4(s)

=<_3 1-exp x

( [--K(tt S)]) 3 4+ 1-exp x e 2

2
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Namely, the first inequality of (6.6)’ holds. Note that

A(v;a)_-<v forv_>-0 and a>0

and that

0 <- (1-exp [-x])2 <= 1-exp [-x] < 1

Then, by the first inequality of (6.6)’ we get

A(u; s)<--

=38((u-s) for all US,

for x>_-0.

showing the second inequality of (6.6)’.
Proof of Lemma 6.1. The Ito formula applied to (6.1) yields that for 0-< s =< t,

II(t)-I(s)]4

___4 (I(u) I(s))3I(u) du

+66 II(u)-I(s)l du+46 (I(u)-I(s)) dw(u)

4
[I(u)- I(s)l 4 du _4_f (I(u)- I(s))3I(s) du

+ I(u-(sllu+4 ((u-(s

Take expectation on the above equation, which is possible by the estimate (4.6). Use
the function

fi(t;s)=[lI(t)-I(s)l] for ts, where

Then, for u s,

f4(t; s)= ___4 f4(u s) du ___4 N[(I(u) I(s))I(s)] du

+6 fi(u; s) du.

Namely, f4(t; s) satisfies the linear ordinary differential equation of first order:

4 4, s ---A(; s--- [(( (sa(s]

+6fi(t; s) for

with the initial condition f4(s; s)=0. The solution is given by

f4(; s

(6.10)
=exp

l" [4(u-s)]{ 4 }exp [(I(u)-I(s))3I(s)]+6fi(u; s) du.
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Here (6.6) and (6.6)’ imply

_4___ E[(I(u)- i(s))3i(s)] =m4K A(u s)
E F_,

_--< 12tsa(u-- S) for u => s.

On the other hand, (6.5)’ implies

6t2f2(u S) <- 18t54(U S) for u >- s.

Combining these inequalities with (6.10), we obtain

f4(t; s)-<-exp
-4K(t-s)

exp
4(u-s) (30t4(U_S)) du

<--304 (U--S) du

154(t $) for t_-> s.

Hence the proof of Lemma 6.1 is complete.

kledgems. The author is grateful to the referee for his valuable advice,
and to Professor Z. Schuss for his encouraging criticism.
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SOLVABILITY OF BOUNDARY VALUE PROBLEMS FOR SYSTEMS
OF SINGULAR DIFFERENTIAL-ALGEBRAIC EQUATIONS*
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Abstract. This paper considers systems of linear singular differential-algebraic equations subject
to two-point boundary conditions. Existence and uniqueness theory is given for the case when one
can decouple the original problem in a boundary value problem for ODEs with a singularity of the
first kind at the left endpoint of the interval, and a set of algebraic equations. This paper also studies
the solvability of the system in its initial value version.

Key words, differential-algebraic equations, singular systems of ODEs, existence and unique-
ness of bounded solutions, projection methods

AMS(MOS) subject classifications. 34A10, 34B05, 34C20, 34C30

1. Introduction. Implicit singular ordinary differential equations (ODEs) re-
sult often from modelling of phenomena in applied sciences and technics. Therefore,
recently, their analytical properties essential for an efficient numerical treatment have
been extensively studied. Typically, linear systems are of the form

(1.1) .(t)x’(t) + [(t)x(t) ](t), t e (0, 1],

where the coefficient matrix ft.(t) is singular.
In numerous articles on analysis and numerical solution of linear and nonlinear

differentiM-algebraic equations (DAEs) existence of sufficiently smooth solutions is
assumed. Consequently, the Taylor series expansion of such a solution provides a tool
in the study of the analytical features of the problem, and the properties of numerical
methods applied for its approximate solution. We refer to [3] and [9] for more detailed
information on this technique. Obviously, this approach justifies the question, under
which circumstances can we guarantee the required smoothness of the solution x(t)
of (1.1). The answer in the case of constant coefficient matrices and / is easy:
smoothness of x depends merely on the smoothness of the right-hand side f. It is
more complicated for the general problem (1.1); we have to consider additionally the
smoothness of certain canonical subspaces; cf. [1] and [8]. One of the most important
is the nullspace of A(t). As defined in [1], we call the system of DAEs "normal" if
rank of (t) is constant, and "singular" if it is not. Here, all phenomena known from
classical theory of ODEs with singularities may occur.

The simplest class of normal DAEs are the so-called "transferable," or "index 1"
systems; see [1] and [7]. Essentially, their solution x(t)can be split into two parts,
x(t) u(t) + v(t), such that u(t) solves a set of classical ODEs, subject to boundary
or initial conditions, and v(t) satisfies a set of algebraic equations. Moreover, it can
be shown that "index 1" problems are well posed and can be solved numerically in,
more or less, a standard manner. Here, we study systems (1.1), where A(t) tA(t),

(1.2) tA(t)x’(t) + B(t)x(t) f(t), t e (0, 1],
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and the rank of A(t) is constant as a function of t. This means that the system is
transferable on (0, 1], and there is a rank change in matrix (t) for t 0. We show the
solvability statements for initial and boundary value problems. It turns out that the
eigenvalue stucture of the pair {A(0), B(0)} already determines the first derivative
of x(t) and, in general, x’(0) may become unbounded. This is a well-known fact in
the theory of singular systems of ODEs; cf. [2], [5], and [6]. Thus a theory where the
assumption of arbitrarily smooth solution remains unrelated to the rank of A(t) seems
questionable.

The following investigation of (1.2) may serve as basic knowledge in the further
study of more involved singular DAEs, but it is also motivated by applications, where
singular boundary value problems for systems of ODEs are augmented by sets of al-
gebraic constraints. We derive the results combining techniques from the theory of
transferable DAEs and the theory of singular boundary value problems. The crucial
common element in both concepts is the use of projection matrices, which, appro-
priately chosen, guarantee certain commutativity properties, stated in Lemmas 2.2,
2.3, and 2.4. We can successfully link both techniques by partitioning the original
boundary value problem for a system of DAEs into an equivalent system of singular
boundary value problem of ODEs and a set of algebraic equations; see [4] and [7].
This equivalence is shown in Theorems 2.1 and 3.2. The paper is organized as follows"
in 2, we study the constant coefficient case. We define the projection matrices, use
them to construct a continuous solution x E C[0, 1], and formulate conditions nec-
essary for its uniqueness. In 3, we extend the existence and uniqueness results to
the variable coefficient case. In particular, we heavily rely on the construction of the
general solution presented in 2.

2. Constant coefficient case. We investigate the linear boundary value prob-
lem

(2.1a)
(2.1b)

tAx’(t) + Bx(t) tf(t),
Box(O) + Blx(1) , 0<t<l,

where A, B are constant real rn x m matrices, B0, B1 are constant real k m matrices,
such that rank[BoB1] k,k < m, and f E C[0, 1] is a vector-valued function of
dimension m. Here, we assume A to be singular, and denote by Q IRmm a
projection matrix on the kernel of A, ker(A) =: No. Finally, with P := I- Q, we can
reformulate (2.1a) and obtain

(2.2) A(tPx(t))’ + (B- A)x(t) tf(t), 0 < t < 1.

This suggests restricting the space of solutions x of (2.2) to

C := {x e C[0, 1]" rx e cl[0, 1], (rx)(t):= tPx(t), t e [0, 11}.

We note that C C [0, 1], in general. Moreover, C does not depend on the special
choice of Q, but it is entirely determined by ker(A). For the convenience of notation
we use C := C[0, 1], C := C1[0, 1], and C := C 3 C(0, 1]. Before discussing the
system in its general form (2.1a), we consider an example in order to present the basic
idea of the decoupling technique.

2.1. Case study. Given the problem

(2.3) tAx’(t) + Bx(t) tf (t), 0<t_<0,
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where m 3, x (xl, x2, x3)T and

A diag(1, 1, 0),
1 0 1 /B= 1 0 0

1 1
f =(fl,f2, f3)T.

Since (2.3) does not include x, we attempt to decouple the system into two differ-
ential equations for (xl,x2)w and one algebraic equation for x3. Some elementary
calculations yield,

0 1 0 x2(t) A- 0 1 0 0
o o 1/2 o o o 1/2

+ 1 0 0 x2(t) t f2(t)
0 1/2 0 0 f3(t)

or equivalently, with Q diag(0, 0, 1) and P diag(1, 1, 0),

tGu’(t) + Gv(t) + BPu(t) tf (t), O<t_<l,

where

x(t) =_ Px(t) + Qx(t) =" u(t) + v(t), G=A+BQ.

Since G is regular, we multiply (2.4) by G- and have

1 -1
tu’ (t) + v(t) + 1 0

0 1
o u(t) t f (t)
0 2f3(t)

which provides the desired decomposition,

(x(t) ) 1(--1 1) (xl(t) ) (fl(t)--2f2(t) )(2.5a) x’2(t) -1 0 x2(t) + f2(t) O< t < 1,

x3(t) --x2(t) + 2tf3(t).(2.5b)

Clearly, the above separation method becomes impracticable if G is singular, so the
crucial assumption for the investigation of the general case is the regularity of the
matrix

G A + BQ =_ AP + BQ.

2.2. General case. We now execute the procedure presented in 2.1 to trans-
form the general problem (2.1) and study its properties. We assume that the system
(2.1a) is transferable for t e (0, 1], or equivalently, G A + BQ is nonsingular; cf. [4].
It has been shown in [1, Thm. A.13] that two matrices A and B form a regular matrix
pencil of index 1 if and only if A is singular, but G is not. Moreover, if G is nonsin-
gular, then Q8 := QG-1B represents the projection onto No, along the subspace

S {z e IR"" Bz e im(A)}.

We also denote P8 I- Q.
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THEOREM 2.1. Let x E C satisfy the boundary value problem (2.1). Then the
function pair u := Px C, v := Qx C is a solution of the system

(2.6a)
(2.6b)
(2.6c)
(2.6d)

tu’(t) + PG-1Bu(t) tPG-If(t), 0 < t <_ 1,
BoPsu(O) + BPsu(1) - B,QG-I(1),

Qu(5) O,
v(t) -Qu(t) + tQG-f(t), 0 < t <_ 1,

where 5 (0, 1] is arbitrary but fixed. If u C, v C solve the transformed system
(2.6), := + v e C# a o] onaina (2.1).

Proof. It is easy to see that G-1A P and G-BQ Q. Using these relations,
we can reformulate (2.1a),

t(Px)’(t) + Qx(t) + G-BPx(t) tG-f(t),

which implies

(2.7a)
(2.7b)

t(Px)’(t) + PG-IBPx(t)
Qx(t) + QPx(t) tQG-f(t).

Consequently, any solution x e C of (2.1a) solves (2.6a), (2.6d). Trivially, (2.1b) can
be written as

(e.s) Bo(u(O) + v(0)) + B(u(1) + v(1)) .
We evaluate (2.6d) at t 0, and t 1, substitute v(0), v(1) into (2.8), and obtain
(2.65),

B0(,)u(0) + B(I- Q)u(1) =/3- BoQG-f(1).
P, P,

Finally, (2.6c) follows from Q(Px(5)) 0, for any 5, and this concludes the proof of
the first statement. Let us assume that u C, v C solve the system (2.6). Then
the multiplication of (2.6a) by Q and (2.6c) imply

t(Qu)’(t) 0 =v Qu(t) constant,

and since Qu(5) 0, we have

Qu(t) o = Pu(t) u(t).

From the multiplication of (2.6d) by Q we conclude v(t) Qv(t). Consequently,
x :-- u + v =_ Pu + Qv Cl, and the result follows.

According to Theorem 2.1, we can characterize solvability of (2.1) via discussion
of (2.6a), (2.6b), and (2.6c). In the theory of singular boundary value problems, the
conventional form of (2.6a) is

(2.9) u’(t) Mu(t) + F(t), 0 < t <_ 1,

where M :-- -PG-B and F(t):= PG-f(t). We use techniques developed in [2] to
select a bounded solution u C of (2.9).
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Let us denote by (t) E C (0, 1] the fundamental solution matrix of the homoge-
neous problem

(2.10) O’(t) _lMo(t), 0 < t _< 1, 0(5) I.
t

Then,

(t)=exp Mln =:

and the general solution of (2.9) is

(2.11) u(t) O(t) c + ep-(s)F(s)ds 0 < t <_ 1.

It follows immediately that u C[5, 1], but in general, u C[0, 1].
LEMMA 2.2.

O(t)P PO(t), O(t)Q QO(t) Q vt e (0,1].

Proo
MQ -PG-B Q -PG-BQ -PQ 0 Q(-PG-) QM

M Q M

O(t)Q I+ Q Q(t) Q.
i=1

Moreover,

MP- M(P + Q) M= -PG-B- -p2G-B= PM O(t)P= PO(t).

Remark. (t)P and P(t) are identical solutions of (2.10), with O(5)P P. To
show Q(t) Q, we could also argue follows:

1
QMO(t) -QP... 0 Qo(t) constant Q.(#(t))’ ’(t)

Using the commutativity rules given by Lemma 2.2, and F(s) PF(s),
QO-(s)P O, we can rewrite (2.11), and obtain a new form for the general so-
lution u(t),

(.1) (t) c + (t)p + -()()d 0 < t .
Obviously, condition (2.6c) holds if and only if

(2.3) Qc 0,

and any u(t) given by (2.2) and satisfying (2.13) belongs to im(P).
So far, we have represented m as N0 im(P), with N0 ker(M). Now,

we additionally decompose ker(M) := N0 N, in such a way that N1 im(P).
Moreover, we introduce the following notation:
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X0 is the invariant subspace of M, associated with eigenvalues A O, in N1;
X_ is the invariant subspace of M, associated with A a + iT 0 such that

a_<0;
X+ is the invariant subspace of M, associated with , a / iT, a > 0.
Now, we immediately have

(2.14) ]R" No @ Xo @ Z- @ X+, N1 C_ Xo, N1 C_ im(P).

LEMMA 2.3. X0 C_ im(P) can be chosen in such a way that Xo @ X_
im(P), holds.

Proof. For a nontrivial eigenvalue ) 7 0, we have

Mzo ;zo PMzo Azo Qzo 0 Pzo zo.

Similarly, for any principal vector zl, the defining equation Mzl ;kzl -t- zo implies
zl E im(P), and consequently, X_ @ X+ _c im(P). Let , 0 be an eigenvalue with
the algebraic multiplicity na -t- 1, and the geometric multiplicity ng 1. Then the
set of generalized eigenvalues associated with , solves

Mzo O, Mzl zo,. MzL zL-1, Zo N1 C_ im(P).

Since the general solution of Mz z-i is z 5 + ker(M), where
z depends on dim(ker(M)) parameters. In general, dim(ker(M)) _> dim(ker(A))
rank(Q), and, therefore, the parameters can be fixed in such a way that Qz 0
Pz zL. For k- l, l- 1,....,2,

Qzk-1 QMzk 0 = Zk-1 im(P),

and the result follows.
For the new decomposition of lRr, given by (2.14), with im(P) X0 X_ X+,

we need two additional projections P1, P2 Jamm, such that
P1 is a projection onto X0 X_, along the subspace No X+;
P2 is a projection onto X+, along the subspace No (R) X0 X_.

According to the construction,

(2.15) P P1 + P2, Pi PPi PiP, i= 1, 2.

LEMMA 2.4.

(t)Pi=PiO(t), O<t<l, i=1,2.

Proof. Let J diag(O, J0, J-, J+) denote the Jordan canonical form of M
EJE-1, where E is the matrix containing the generalized eigenvectors of M. Then
we can write P as

O KI K2 K3
o o o o
0 0 I_ 0
0 0 0 I+

From MP PM, it follows immediately that K1Jo O, K2J- 0,and K3J+ 0
must hold and since J_, J+ are regular, K2 K3 -0. Consequently,

0 K1 0 0 0 0 0 0

Pl=E
0 Io 0 0 E_ P2=E

0 0 0 0 E_
0 0 I_ 0 0 0 0 0
0 0 0 0 0 0 0 I+
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and MPi PiM, i 1, 2, which completes the proof.
We now return to the formula (2.12), and use the projections P1 and P2 to derive

the following, more precise representation for the general solution u(t) of (2.9), subject
to the initial condition (2.13),

u(t) (t)PlC + ((t) Pl-l(s)F(s)ds + (t) Pl(-l(s)F(s)ds

+O(t) P2c + P20-l(s)F(s)ds

which yields

u(t) Pie- P  -l(s)F(s)as + t

+O(t) P2c + P2O-(s)F(s)ds 0 < t 1.

It is clear from the form of (2.16) that the behavior of u(t), in particular for t O,
depends essentially on the structure of (t). We first note that

(t)P=E diag 0, ,0 E-,

(t)P2 E diag 0, 0, 0, E-.
For any Jordan box

A 1 0

L’- ".. ".. LEUnxn

". 1
0 A

we deduct from the definition of (I) (t),

(1 lnt

tL t

(In t)n-1
(n--l)!

". In t
1

t>O,

and, consequently,

lim (I)(t)P2 O,
t-,O

lim (t) P-l(s)F()ds O.
t--O
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Moreover, these parts of (I)(t)P1, contributed by the invariant subspaces associated
with A a + i/ 0, a _< 0, and by subspaces spanned by the principal vectors
associated with A 0, have no limit, or become unbounded for t 0. Since the
subspace spanned by the eigenvectors to A 0 provides bounded contribution in
((t)P, we have to split X0 again in order to separate the unbounded and bounded
parts. Let X0 :- N1 H, where H is spanned by the principal vectors related to
A 0. Then (2.14) becomes

(2.17) lRm No @ N @H X_ (X+.

We denote by R, the projection onto N1, along No@HI@X_@X+, and by H P-R,
the projection onto H X_, along No @ N1 @ X+.

Then, H HP PIH, and

We require,

()R R, 0 < < .
(2.18) Hc H(-(s)F(s)ds = Hu(O) O,

and obtain from (2.16),

/0u(t) Rc- R-(s)F(s)ds + t P-l(s)((1)F(st)ds
(.1)

+(t) P:c + P-()F()d o < t 1.

This immediately implies

(2.20) lim (t) Re- Re-l(s)F(s)es,
t0

and, therefore, (2.18) is necessary Nr C. inallN we consider the boundary con-
ditions (2.6b) in order to deermine the constants in Pe and Rc. om the evaluation
of (2.19) for t 0 and t 1, and substitution into (2.6b), we have

BogRc + Blg(Rc + (1)Pc) ,

and so, the boundary value problem (2.6) is uniquely solvable if the linear system
(2.21) can be uniquely solved for the remaining free components of c. This is the case
when for the coefficient matrix

(2.22) T "= BoPsR + BIP((1)(R + P2), T E ]Rkm,
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the following conditions hold:

(2.23) rank(T) k dim(N) + dim(X+),
(2.24) ker(T) ker(R + P2) No @ H X_.

We summarize results from this section in the following theorem.
THEOREM 2.5. The boundary value problem (2.1) has a unique solution x C,

for arbitrary f C, and lRk if and only if the coefficient matrix T given by (2.22)
satisfies (2.23) and (2.24).

COROLLARY 2.6. The initial value problem (2.1), B 0, is uniquely solvable if
and only if

(2.25) A "= {A e \{0}" det(AA + B)= 0} C_ _,
and the following conditions hold .for T := BoPR,

rank(T) k dim(N),
ker(T) ker(R) No @ H X_.

Proof. We first show that A and the set of nontrivial eigenvalues of M coincide.
Let A 0 be an eigenvalue of M; then z Pz follows from Mz ikz. Also,

-Mz + Az pG-1Bpz + APz 0

== (I Q)G-BPz + APz G-1Bpz QG-1B Pz + APz 0

BPz GQPz + A(A + BQ)Pz BPz GQPz + AAPz 0

G

AAPz + BPz (A+_B) QG-1B Pz AAPz + BPz BQPz 0

G Q

AAPPz + B(_Q..5)Pz (AA + B)Pz O.

P

Consequently, det(AA + B) 0 and A A.
Let us now assume A A; then there exists a vector w such that

(2.26) (AA + B)w O, w O.

Multiplying (2.26) by PG-1, we immediately obtain

,pG-1Aw + pG-1B w O (I- M)Pw O.
P -M---MP

Moreover, multiplication of (2.26) by QG-1, yields

AQG-1Aw + QG-1B(Qw + Pw) 0
P Qs

QG-BQw =-QPw Qw =-QPw.
I-P

This completes the proof, since w 0 implies Pw 0, and, therefore, det(AI-M) 0
must hold. We conclude that A is the set of nontrivial eigenvalues of M, and it follows
from A c_

_
that X+ is an empty set and P2 0. [:]
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Remarks.
1. If X0 @X+ 0, then ker(M) No, and lR" No @ X_. In this case P1 is a

projection onto X_ im(P), P P1 + P2 P R + H H. Also, T 0, and the
general solution (2.19) contains no free constants. It is limt-.0 u(t) 0, and u e C],
if it is subject to the homogeneous initial condition u(0) 0. If the general solution
given by (2.16) does not satisfy (2.18), then it becomes unbounded or has no limit as
t --- 0o

2. If the smallest positive real part of the eigenvalues of M is sufficiently large,
namely, amin > 1, then u E C implies u E C. This is also the case when, for the
eigenvalue A _= a 1, its algebraic and geometric multiplicities coincide. Additionally,
if QG-lf C), then the solution of the boundary value problem (2.1), x C. This
follows immediately from (2.6d). We stress that QG-f C is necessary for x to be
in C1.

3. For 5 1, (I)(1) I (cf. (2.10)) and according to (2.19), the general continu-
ous solution of (2.6a) and (2.6c) is

]oou(t) Rc- RO-l(s)F(s)ds + t P(-(s)F(st)ds

+O(t) P2c + P2(-(s)F(s)ds 0 <_ t <_ 1.

The linear system (2.21) can then be simplified to

(2.28) BoPsRc + BIPs(Rc + P2c) ,
where - BQG-lf(1)+ BoPs Ro-l(s)F(s)ds

001-B1P HO-l(s)F(s)ds.

3. Variable coefficient case. Here, we discuss the linear system

(3.1a) tA(t)x’(t) + B(t)x(t) tf(t), 0 < t <_ 1,
(3.1b) Box(O) + BlX(1) -/,

where A, B are real-valued continuous rn rn matrices, A(t) : 0, and all other data
is set as in (2.1). We assume that the kernel of A,

(3.2) ker(A(t)) No(t),

is nontrivial and smooth on [0, 1], or equivalently, there exists a projection function
Q(t) e lRrem, Q e C[0,1], which maps ]Rm pointwise onto No(t). We also define,
P(t) := I- Q(t). Moreover, let

(3.3) G(t) := A(t) + B(t)Q(t)

be regular for all t (0, 1]. Under these assumptions, the differential-algebraic system
(3.1a) is transferable on (0,1]. Recall that G(t) is nonsingular if and only if the
matrices A(t), B(t) form a regular matrix pencil of index 1. While the matrix pencil



210 ROSWITHA MRZ AND E’WA B. WEINMLLER

(A(t), B(t)} is regular with index 1 for 0 <_ t <_ 1, the pencil {tA(t), B(t)} is regular
with index 1 for 0 < t _< 1, and becomes singular at t 0 when B(0) is singular.
The nullspace of tA(t) is neither smooth nor of constant dimension, which changes in
t 0 from m rank(A(t)) to m.

Since,

A(t) =_ A(t)P(t), tP(t)z’(t) (tP(t)x(t))’ tP’(t)z(t) P(t)x(t),

we rewrite (3.1a) and obtain

(3.4)
A(t){(tP(t)x(t))’ P(t)x(t)} + (B(t) tA(t)P’(t))x(t) tf(t), 0<t<0.

As previously, the solution space is

C := {x e C[0, 1]" rx e C1[0, 1], (rx)(t)"= tP(t)x(t), t e [0, 1]}.

As a first step in the investigation of (3.1) we derive the related, decoupled system
analogous to (2.6). Again, Qs(t) := Q(t)G-(t)B(t), Ps(t) := I- Q(t), where Q(t)
is the pointwise projection onto No(t) along the subspace

S(t) "= {z e ]Rm" B(t)z e im(A(t))}.

From the multiplication of (3.1a) by P(t)G-(t) and Q(t)G-(t), we have

tP(t) G-l(t)A(t) x’(t) + P(t)a-l(t)B(t)x(t) tP(t)a-l(t)f(t),
P(t)

.=. t(P(t)(t))’ tP’(t)x(t) + P(t)a-(t)B(t)x(t) tP(t)G-(t)I(t),
0<t_<1,

and

(3.6)

tQ(t) G-l(t)A(t) x’(t) + Q(t)G-l(t)B(t)x(t) tQ(t)G-l(t)f(t),
P(t)

: Q(t)G-(t)B(t)x(t) tQ(t)a-l(t)f(t), 0 < t <_ 1.

We introduce u := Px and v := Qx, and reformulate (3.6)"

Q(t)G-l(t)B(t)u(t) + Q(t) G-(t)B(t)Q(t)x(t) tQ(t)G-(t)f(t)
Q8 I-P(t)

= v(t) -Q(t)u(t) + tQ(t)G- (t)f (t), 0<t<l.

This implies

(3.8) x(t) u(t) + v(t) P(t)u(t) + tQ(t)G-l(t)f(t),

and the substitution of (3.8)into (3.5) yields

(3.9) tu’(t) M(t)u(t) tF(t), 0<t_<l,
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where

M(t) := -P(t)G-l(t)B(t) + tP’(t)Ps(t),
F(t) := P(t)G-l(t)f(t) + tP’(t)Q(t)G-(t)f(t).

Due to (3.8), the boundary conditions (3.1b) read

(3.10) BoPs(O)u(O) / BPs(1)u(1) - BQ(1)G-I(1)f(1).

In order to be able to combine solutions u(t), v(t) of (3.9), and (3.7) to a solution
x(t) of (3.13), it is necessary that u(t) e im(P(t)), t e (0, 1].

LEMMA 3.1. Let u(t) e C] be a solution of (3.9), subject to

(3.11) Q(5)u(5) 0, 5 e (0,1].

Then Q(t)u(t) 0 for all t e (0, 1].
Proof. QF 0 follows from QP’Q -QPQ’ o. We multiply (3.9) by Q and

conclude

tQ(t)u’(t) tQ(t)P’(t)P(t)u(t) o,

and finally,

t{Q(t)u’(t) + Q’(t)P(t)u(t)} o,
t{(Q(t)u(t))’ Q’(t)Q(t)u(t)} o.

Consequently, for U(t) :- Q(t)u(t), t > 0, we obtain the following homogeneous initial
value problem with trivial initial condition

U’(t)- Q’(t)U(t) O, 0 < t <_ 1,

U(5) =0,

which implies U(t) =_ Q(t)u(t) O, 0 < t <_ 1, and the result follows.
u(t) E im(P(t)), 0 < t <_ 1.

Let us unite (3.7), (3.9), (3.10), and (3.11) to a system

Clearly,

(3.123)
(3.12b)
(3.12c)
(3.12d)

tu’(t) M(t)u(t) tF(t), 0 < t <_ 1,
BoPs(O)u(O) + BIP(1)u(1) - BQ(1)G-(1)f(1),

Q(5)u(5) O, 5 e (0,1],
v(t) -Qs(t)u(t) + tQ(t)G-(t)f(t), 0 < t <_ 1,

and formulate the following assertion, in analogy to Theorem 2.1.
THEOREM 3.2. Let x C be a solution of (3.1); then the pair, u :- Px

C, v := Qx C satisfies (3.12). For any u C and v C, solving the system (3.12),
we construct the solution of the boundary value problem (3.1) by x := u + v C.

In order to find continuous solutions of (3.12), we first study the solution manifold
of the singular system (3.12a),

(3.13) u’(t) M(t)u(t) + F(t), 0 < t <_ 1.
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Let us assume that M’(0) exists; then the matrix M1 (t),

(3.14)

Ml(t) := -(M(t)l M(0))=-1(p(t)G_(t)U(t) p(O)G_(O)B(O) + P’(t)Ps(t),

is continuous on [0, 1], and with

M(t) Mo + tM (t), Mo := M(0),

we can reformulate (3.13) to

1Mou(t) + F1 (t), 0 < t < 1(3.15) u’ (t) -where

F (t) := F(t) + M1 (t)u(t).

Since (3.15) is, formally, a system with constant coefficient matrix, its general solution
is provided by (2.11). Let

o(t) exp Mo In -:

and Po := P(0), Qo := Q(0) I- Po; then Lemmas 2.2, 2.3, and 2.4 hold for
o, Po, Qo, and the corresponding subspaces of Mo and the general solution of (3.15)
is

u(t) o(t) c+ O(s)F(s)ds
(3.16)

Qoc+ Oo(t)Po c+ ((s)Fx(s)ds + Qo F(s)ds.

According to Lemma 3.1, it follows from Q(5)u(5) 0 that Q(t)u(t) 0 for all
t (0, 1], which results in the following requirement on c

0 Q(5)u(5) Q(5)(Qoc +Poc) Q(5)c.

Let us now associate with matrix Mo, projections P1, P, R, H and the subspaces
No := N(0), N1, H1, X0, X_, X+, defined in 2.2. Then the continuous solution
u C of (3.15) is

(t) o + o l()a

(a.17) +Re- Rl(s)Fl(s)ds + t Pll(s)o(1)Fl(St)ds

+o(t) P+ g()gl()d 0 < t 1,

where P(5)c c, and, therefore,

lim (t) QoP()c- Qo F1 (s)ds + RP()c- R (s)F(s)ds.
tO
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Moreover, the components (Qo + R + P2)P(5)c -: 9/have to be chosen in a suitable
way in order to satisfy boundary conditions (3.12b).

Since, Fl(t) depends on u(t), we interpret (3.17) as an operator equation, and
use contraction techiques to show its solvability with respect to u. Therefore, let us
discuss the integral operator g C[0, 5] el0, 5],

where 9/E IRm is a fixed vector. For u, v E C[O, 5], we obtain

I(Ku)(t) (Kv)(t)l <_

We estimate (3.1S) term by term; cf. [6]:

[QoM(s)[ds <_ gl(,

o
IRl(s)Ui(s)lds <_ 2,

fot [PlOl(s)Oo(1)Ml(st)lds <_ a3t <_

() amin t
6 In

Io(t)P()M()Id <_
tln_ +1,
tlnl ,

_< 46,

O’min e (0, 1),

O’min 1,
O’min > 1,

where rmin is the smallest positive real part of the eigenvalues of M0, and n is the
dimension of the largest Jordan box associated with amin. Consequently, it follows
from (3.18), for sufficiently small > 0, that

for any u, v C[0, 5], which means that K is contracting on C[0, 5] and has a unique
fixed-point there. Equivalently, for any 9/-- (Qo + R+ P2)P(5)c, there exists a unique
solution of (3.12a), u(t) C[0, 5], and this solution can be easily extended to C[0, 1].
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We finally treat the question when u, given by (3.17), satisfies the boundary
conditions (3.12b). The evaluation of (3.17) yields

u(O) (Qo + R)P(5)c

-Qoo Fl (s)ds fo Rl(s)F(s)ds,
u(1) (Qo / R + (o(1)P2)P(5)c

+o () ()()

A- Pl(l(s)o(1)F(s)d8 + (I)o(1) P2ffl(s)Fl(s)ds,

and u is a unique solution of (3.12a), (3.12b), and (3.12c) if the linear system

(3.9)
(3.19b)
(3.9)

Tc= ,
T {BoPs(O)(Qo + R) + BIPs(1)(Qo + R + (I)o(1)P2)}P(5),- BQ(1)G-(1)f(1) BoP(O)u(O) BP(1)u(1),

where

u(O) :-- -Qo Fl(s)ds Rg (s)F(s)ds,

u(1) := Qo Fl(s)ds- ROl(s)F(s)ds

+ eg()eo(1)l()a + o(1) %-()()a,

is uniquely solvable for the free components (Qo + R)P(5)c and P2P(5)c. Since

P(O)Qo 0, Oo(1)Qo Qo, (I)o(1)R R,

we can rewrite (3.19b), and obtain

(3.20) T {BoP(O)R + BPs(1)Oo(1)(Qo + R + P2)}P(5).

We now recapitulate the results in the following theorem.
THEOREM 3.3. Let M(t) be differentiable at t O. Then the boundary value

problem (3.1) has a unique solution x E C1, for any f C and ]Rk, if and only
if the matrix T, defined by (3.19b), satisfies the following conditions:

(3.21) rank(T) k dim(N1) -4- dim(X+),
(3.22) ker(T) ker((Qo + R + P2)P(5)).

Additionally, if the nullspace of A(t) is constant, and we set Q(t) =_ Qo, then (3.20)
and (3.22) reduce to

T BoP(O)R + B1P(1)(o(1)(R + P2)

and

ker(T) ker(R / P2) No @ H1 @ X_,
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respectively.
COROLLARY 3.4. Initial value problems are uniquely solvable if

Ps(1)QoP(5) o, Ps(1)o(1)P2P(5) =0.

This is the case when P’(t) =_ 0 and P2 O, or equivalently, the matrix M(O)
-P(O)G-I(O)B(O), has no eigenvalues with positive real parts, and det(AA(0)+B(0))
0 and ) 0 imply Re(A) < 0.

Remarks.
1. If A(t) and S(t) are continuously differentiable at t 0, so is M(t).
2. Theorem 3.3 characterizes the existence of solutions x E C. If QG-lf C

and if all eigenvalues a+iy with positive real parts, such that det(AA(0)+S(0))
0, satisfy the condition a > 1, then x C1.
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UNIFORM HARMONIC APPROXIMATION ON COMPACT SETS
IN I, k>-3*

VLADIMIR ANDRIEVSKII"

Abstract. Estimates of the best uniform approximation of a function f given on some compact set
K [k, k 3, by harmonic polynomials are obtained. The results connect approximation properties of the
function f with its structural properties and the geometry of K. This corresponds to well-known results for
analytic functions.

Key words, approximation, harmonic function

AMS(MOS) subject classifications. 31A25, 30C85

1. Introduction. Let K be a compact set of the k-dimensional Euclidean space
Ek, k-> 3 with a connected complement D :-Ek\K.

Denote by Har (K) the class of all functions continuous on K and harmonic at
its interior points, and let Hn, n 0, 1,..., be the class of all harmonic polynomials
of degree at most n.

For a function f given on K and n-0, 1,..., we set

Ilfll :- sup {[f(x)l, x 6 K},

E.,a(f, K):--inf {llf-h]l, h H}.

The main purpose of this paper is to establish estimates for the quantity E,,,a(f, K)
depending--like the known results for analytic functions (the reader can find the whole
survey in [4] and [5])won the smoothness properties ofthe functionf and the geometric
structure of the compact set K. Similar problems for the case k 3 were investigated
in [8] and [1].

2. Main definitions and results. In all that follows c, cl, c2,.., denote constants
depending maybe on K, k, or other quantities inessential for our investigations. The
same symbols may be used for different constants in the statements of different results.

For x= (xl,..., x)6E,y= (Yl,...,Y) E, and 6 >0, we set, as usual,
k

Ix-ylZ:: (x- y),
j:l

B(x, 6):: {y: }x-y] < 6}, B() :: B(0, ),

S(x, 6) := {y: lx-y[ 8}, S():=S(0,6), S:=S(1),

d (x, K) := inf {Ix yl, y K }.

The domain D is called a John domain (see, for example, [6]) if each point x D
can be joined to with a Jordan curve y= y(x) satisfying the following property. If
y is defined by y=y(s), s [0, ], y(0)=x, y(c)=, where s is the arc length, then
for every s > 0 we require

(2.1) d(y(s),K)>=cs, c const (0, 1].

* Received by the editors May 28, 1991; accepted for publication (in revised form) May 5, 1992. This
research was supported by the Alexander von Humboldt Foundation.

? Institute for Applied Mathematics and Mechanics of Ukrainian Academy of Sciences, ul. Rozy
Luxemburg 74, Donetsk 340114, The Ukraine.
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Let to(6), 6 > 0 be a positive nondecreasing function, such that

,o(+o) =o; ,,,(2a)_-< ca, a>o.

We denote by C(E) the class of functions f given on E c Rk for which

]f(x)-f(y) _-< cto (Ix- y]), x, y 6 E.

THEOREM 1. Let K be a compact set whose complement D is a John domain. Then
forf C (K) CI Har (K) the following estimate holds:

(2.2) E,,a(f K) <= c,w(n-), n 1, 2,...,

where the constants c, c > 0 are independent of n.
The proof of Theorem 1 is based on the following fact that is analogous to the

procedure of "removal of the poles" suggested in the case of approximation of analytic
functions by Keldysh (see, for example, [7, pp. 21-27]).

LEMMA 1. Let K c B(R) for some R > O, and let D Rk\K be a John domain. For
any y Dr)B(3R) and sufficiently small e >-0, there exists a function qy(x)= qy(X, e)
harmonic in B(3 R) with the following properties:

(2.3) IIx-yl-+- qy(X)l_-< e, x K;

in [c l },
where d := d (y, K).

Moreover, we shall show how Lemma can be applied to the proof of the harmonic
analogue of the well-known Bernstein-Walsh theorem; see also Theorem 3.1 in [2].

THEOREM 2. Let K be an arbitrary compact set with a simply connected complement,
and let the function f be harmonic in some neighbourhood of K. Then for some q (0, 1),
the estimate

(2.5) En,A(f, K) cq n, n--O, 1,...,

holds, where the constant c is independent of n.

3. Proof of Lemma 1. To begin, we recall some facts that will be needed below
(see, for example, [3, pp. 206, 213]).

Let the function F be given and continuous on the sphere S(y, R), y k, R > 0.
By the Laplace formula, the solution of Dirichlet’s problem

AQ(x) 0, xk\S(y,R),

Q(x) F(x), x 6 S(y, R)

can be represented by the series

: R (F, ), x B(y, R);

where := (- y)/Ix- Yl, (F, ), j O, 1,..., are the surface harmonics satisfying
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Now let y and e be given. Let y c D be an arc from the definition of John domain,
i.e., an arc with endpoints y and satisfying (2.1). Without loss of generality, we may
assume that y[gk\B(R)] is a part of some ray from the origin.

In the following c will be the constant from (2.1).
Setting s := d/4, s := (1 + c/4)s_, v 2, 3,..., we introduce the sequence of

points

y0:=y, y:=y(s), v=1,2,....

Our next aim is to construct a sequence of harmonic functions qo, q,.., with
some special properties.

To begin with, put qo(x)= [X-yo] -k+2. Assuming that the function q is given, we
describe the procedure of construction of the next function q/, v 0, 1,

Since the function q is harmonic in kk{y} by (3.2), we have for x kkB(y+,
cs+/2), (x-y+)/[x-y+[ S,

q(x) 2 21z;+ (q, ).
j=O

Put

qv+l(X) 2 2Ix y+:o
(g’*)’

where the large enough number n+ will be chosen later.
Introducing the notation No := d -+2,

we obtain

Nc (j+)-XN_cn-2"N_<3N_
j=O

Moreover,

(.4 I[o- [[ c -+ j-2- c -+n-2-,,
j=n+l

and for v 1,

(3.5)
IIq-q+llc,N j-2-j=nv++l

k-2c2n+2 "+N.
We consider the case n+ := tn, v 1, 2,..., for some integer > 1.
We claim that there exist a sufficiently large n n(e) and such that

Indeed, according to (3.4), inequality (3.6) is valid for 0 if we set

C2(3.7) nl c In e’
where c and c are suciently large.
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Further, since for > 2,

(3.8)
N’<-3""N’-<-" <=3n"+n"-l+"’+n’N

<= 3 n.( l+t-l+’") No<= 3 2nNo
we have, applying (3.5) and (3.8) for v _-> 1 and fixed t-> 6,

[[q- q+l K

if the constants c and c from the relation (3.7) are suciently large.
Since our curve ,/satisfies condition (2.1) there exists an integer m c In (c/d)

such that B(3R)
We claim that the function q(x):= q,(x) satisfies the desired conditions (2.3) and

(2.4).
In fact, for x K and e 1

IIx-yl -’+2- qy(X)l =< Iqo(x)- ql(x)l +’’" + Iqm-l(X)- q (x)l

N-+ +...e.
2

Apart from this, according to (3.8),

IIq ll  ex, In

Lemma is proved.
With reasoning completely similar to the construction and study of the propeies

of the function q, we can obtain the following result.
ForEcN and>0set

Ea := {x" d(x, E) < 6}.

LEMMA 2. Let D=k\K be a John domain. For any point y6K3afqDa, 6>0,
there exists a function $a,y(X) harmonic in K3a, satisfying

< Cl -k+2

[Ix- yl-+z- a,(x)l c2631x- yl --’, x B(y, C3a

4. Two auxiliary operators. We shall need the following two standard operators
(for details, see [9], [10]).

For given f Har (K), denote by jr := Kf a function, defined on Ek such that

jT(x) =f(x), x 6 K,

j(X) 0, x@k\Kcl
c=IIflIK,

and in addition iff C’(K), then jT CO().
Furthermore, for a continuous function g given on and 6 > 0 set

ga(x) (Uag)(x) := f, g(x+ 8y)CI)(y) dr, x 6 k,
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where

c exp (lyl/(lyl 2 1)}, 0 _-< lyl < 1"
(y) ::

0 ]yl > 1,

and the constant c is chosen such that ak (y) dy 1.
The function gs has partial derivatives of all orders in R k, and if g C (Rk), then

Jigs g[l -< c,w(6);

IIAg . _-< co() -.
In addition, if g is harmonic on B(x, ), then

gs(x) g(x).

5. Proof of Theorem 1. Let f be a given function, and let 6 3(n) be a sufficiently
small number, the value of which will be determined below. Consider the function- s :- USKf According to Green’s formula it can be written in the form

1 f Aq (y)
dy, x k,(x) :-(k_2)---- D [x-Yl k-2

where tr= 2rk//(F(k/2)) is the total area of the unit sphere S.
It is easy to see that the function

1 f Aq (y) S,y(X) dyu(x) us(x):=
(k- 2)----’- DK

1 f A(y)
(k 2)------ \K3 [Z---2 dy, x k,

where OS,y(X) is a function from Lemma 2, satisfies the conditions

u Har (K2s), Ilull--< Clllfll, Ilu-f[], --< c2o().

Consider now the next function v := Usg--2u. From the properties of the operators
Us and gK we conclude that

(5.1)
IIAIi --< c=llfll’-=;

Av(x) O, x e Ka

v(x) O, xekB(3R)

for some R > 0 such that K B(R).
Applying Green’s formula to the function v we obtain

1 ( Av(y)
v(x) (k-2) --B(3R)K6 Ix-yl-2

dy,

Consider the function

1 [ av(y)q, V(x) ay,q(x) ::
(k 2) dB(3R)K

x B(3R),
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where qy(x) qy(x, e), e 82o(8), is the function from Lemma 1. By virtue of Lemma
1, q Har (B(2R)) and

(5.2)
q (R c exp {c8-}.

By (3.1) and (3.3)

q(x)=)=o2 k2R] (q’ )’ xeB(2R), =;
(q," )[[sN cs(j+ 1)-2 exp {c3-c4}.

Considering the harmonic polynomial

)=o k2R]
(q’ )’

we can estimate for x e K,

[q(x)- h(x)[ c6 exp {c38 -4} 2 J2-j N c7 exp {c38-4- n In ()}.
j=n+l

Choosing 8:= n -1/(2c4), we obtain by the inequalities (5.1) and (5.2) the desired
estimate (2.2).

6. Proof of Theorem 2. The reasoning will be quite similar to that of Theorem 1.
Without loss of generality, we may assume that D NkK is a John domain.

Fixing suciently small numbers 0< d < p such that fe Har (Ko) we consider
the function :=U where 0 < 8 < p- d will also be some fixed number.

By the properties of the operators U and , we have

(x) =f(x), x e Ka

(x) =0, xe k(3g)
for some R such that K c B(R).

According to Green’s formula we have

f (y) N.(=-(-
Let n be large enough. Consider the function

1 j" (y)q,(x) ay, x e (g),(x) :=
(_)

where qy(x) qy(x, e) is a function from Lemma 1, and e e(n) will be chosen below.
By the estimates (2.3) and (2.4) we obtain

(6.1)

Since for x e B(2R),

=o

(q," 11 c(j + 1--;
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we can obtain for the harmonic polynomial

=o \2R/
Y(q’ )’

the following estimate"

(6.2) [Iq-h.ll,,<=c, Z 2-jjk-2e-’:NC22-’rlk-2e-c"
j=n+l

It is easy to see that the desired estimate (2.5) follows from the inequalities (6.1) and
(6.2) if e :-qn, where 1-q is positive and small enough.
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POSITIVE HERMITE INTERPOLATION BY QUADRATIC
SPLINES*

AATOS LAHTINEN

Abstract. Necessary and sufficient conditions are derived under which a quadratic spline pre-
serves the positivity of a set of function values in the Hermite interpolation. As a corollary it is
seen that positive interpolation is always possible over a set of nonnegative function values when a
quadratic spline with suitable parameters is used.

Key words, quadratic spline, positive interpolation, parameters

AMS(MOS) subject classifications. 41A15, 41A29, 65D05, 65D07

1. Introduction. In the problem of positive interpolation a set of points where
the measured or otherwise obtained ordinates are nonnegative is given, and the exis-
tence of a nonnegative interpolating function is considered. Such a function is needed
in many practical situations, for instance in growth studies.

Spline functions offer good possibilities for the treatment of this problem. A
simple linear spline as in [1] naturally gives a solution. However, it is usually desirable
that the interpolating function has at least Cl-regularity. Under this condition the
existence of positive interpolants has been studied for several types of splines (cf. [2],
[4]-[6], [8], [9]). Especially [5] presents necessary and sufficient conditions under which
the solution of the problem of positive interpolation is given by quadratic splines.

In some growth studies, the spline functions representing the boundary at different
time levels must have a certain shape (cf. [3]). In these cases the derivatives at
interpolating points also have to be taken into account. This leads to the problem of
positive Hermite interpolation which is the subject of the present paper.

In 2 the problem is stated and a solution to the Hermite interpolation problem
is given by using the quadratic splines of [7]. This solution has at most one additional
breakpoint in each data interval. Section 3 considers positivity locally, that is, in
a data interval. The situation is treated in terms of the endpoint derivatives mi
and mi+l of the quadratic spline with a fixed additional breakpoint. Necessary and
sufficient conditions to the local positivity are described as a region Mi in the mimi+-
plane. The effect of the position of an additional breakpoint to the local positivity is
considered in 4. Here the region Mi is taken as a function of the additional breakpoint.
In 5 the main result, Theorem 1, gathers the local results together. Necessary and
sufficient conditions are given for positive Hermite interpolation by quadratic splines
in the whole interval. Finally, 6 establishes as a corollary that for nonnegative data
a solution to the problem of positive interpolation by quadratic splines always exists.

2. The problem. We define at first the Hermite interpolation problem for
quadratic splines as follows.

Let [a, b] be an interval containing a mesh (xi) such that a Xl < x2 <... <
xn b and let (y) and (m) be real numbers. Find a quadratic spline s with the
fewest number of breakpoints such that

*Received by the editors June 10, 1991; accepted for publication (in revised form) May 5, 1992.

Department of Mathematics, University of Helsinki, Hallituskatu 15, SF-00100 Helsinki, Finland.
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Schumaker has in [7] given a solution to this problem. The construction is done
separately to each subinterval [xi,xi+l], i 1,..., n.

If mi + mi+l 2(i, the solution s on [xi, xi+l] is a parabola

(2.1) mi-bl mi (x xi)2.
2Axi

Here we have used the notation Axi xi-}-i xi, Ayi Yi+l Yi, Ayi/Axi.
If mi / mi+l 2ii, then s is on [xi, xi+l] a quadratic spline with one breakpoint

i, which can be freely chosen in the interval ]xi, xi+l [.

x <_ x < ,

where

(2.3) t i Xi

Axi

di (1 ti)yi q- iYi-t-1 -" 1/2ti(1 ti)Axi(mi mi/l).

Notice that 0 < ti < 1, di s(i) and #i s’(i). The values di and #i are used in later
considerations. They are a consequence of s E C [xi, Xi+l] and of the interpolation
conditions. For a fixed i, they are unique.

The quadratic spline s defined on an interval [xj,xk] C [a, b] by (2.1) and (2.2)
for i j,..., k- 1 is called in the Continuation a solution of the Hermite interpolation
problem, or for short a solution of the HIP, on [xj,xk] with data (y) and (mi).
This solution is characterized by having at most one breakpoint between interpolat-
ing points. The solution is, however, by no means unique because the additional
breakpoints i remain as parameters expressed in terms of ti.

Positive Hermite interpolation is a special case of Hermite interpolation. The
formulation of this problem is as follows.

Let [a, b] be an interval containing a mesh (xi)’ such that a xl < x2 < <
Xn b, and let (yi)’, yi >_ O, i 1,..., n and (mi)’ be real numbers. Find a solution

of the germite interpolation problem with data (yi)’ and (mi)’, which is nonnegative
on [a, b].

Our intention is to derive necessary and sufficient conditions for the existence of
a positive Hermite interpolant and to examine the role of the breakpoints i in the
process. As a corollary we will get results concerning positive interpolation.

Notice that the word "positive" is used as a synonym of nonnegative in this
terminology.

3. Positivity on subintervals with fixed breakpoints. As a first step the
positivity of the Hermite interpolation is considered on a subinterval [xi, xi+l]. Let
there be given on [xi, xi+l] values yi >_ 0, yi+l >_ 0, mi, mi+l and a position i E
]xi, Xi+l[ for an additional breakpoint if needed. The point i determines the value of
parameter t via (2.3). Let then s be the solution of HIP on [x,x+l] with this data
so that the possible additional breakpoint is at i. The positivity of s is examined in
different alternatives.
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If mi -4-mi+l 25, the spline s is on [x,x+l] a parabola defined in (2.1).
Schmidt and Hess have shown in [5] that the positivity of such a spline s depends on
the quantities

2
(3.1) vi Axi(Yi-4- /yiyi/l), i-- X,...,n- 1

in the following way.
PROPOSITION 1. If mi + mi+ 2, the solution s of the Hermite interpolation

problem is positive on [xi, Xi+l] if and only if mi > vi.

Thus we will concentrate for a while on the case where

(3.2) (mi, mi+) Li { (mi, mi+l mi + mi+l 2ii }.

This means that the solution s of the HIP on [xi, xi+l] is a quadratic spline with an
additional breakpoint at a given point i as defined in (2.2).

A necessary condition for positivity is that

(3.3) di s(i) > 0.

This implies by (2.4) that positive Hermite interpolation with a fixed breakpoint is not
possible for all data values. Therefore, we consider the relation of the derivative values
mi, mi+ to other data values in a positive Hermite interpolant. In this setting there
are given values xi, xi+l, yi, yi+, i and we will examine how these values determine a
set Mi in the mimi+-plane so that every (mi, mi+l) E Mi gives a positive solution of
HIP on [x, x+]. The necessary condition for a pair (mi, m+) to produce a positive
solution to the HIP is by (3.3),

(3.4) (mi, mi+) e Ad {(m,mi+l) di >_ 0}.

The positivity of s, a solution of the HIP with given data and the breakpoint at i is
at first considered separately on the intervals [x, ] and [i, x+], starting with the
former. We have to treat several different cases. Notice that by the restriction (3.2)
the points of the line Li are excluded from these considerations.

Case 1. (m,m+) e A {(mi, m+) e Ad m #}.
By (2.2) s/[xi, i] is of first degree and thus positive.
Case 2. (mi, mi+l) e A2 {(m, mi+i) e Ad mi > #}.
When mi tti, the restriction s/[xi, i] is a parabola given by (2.2). Its vertex is

mi Axiti, yi Axiti(3.5) (x(1),8(x(1))) xi
#i mi 2 #i mi

If mi > #i, then s(x()) > 0 whence s/[xi, ] > O.
Case 3. (mi, mi+)EA3={(mi, mi+i)Ad Imi<#i A(mi>OV#_O)}.
In this case the vertex does not lie in the interval ]xi,i[. Therefore, s/[xi,i] is

monotone and thus positive.
Case 4. (m, mi+l) e Ad \ (A U A2 U A3).
It is easy to see that Ad\ (Ai t2A2 t2A3) {(mi,mi+) Ad mi < 0 A #i > 0}.

This case is nonempty only when yi > 0. In fact, if yi 0, then s/[x,] can be
positive only if mi > 0, which does not happen in Case 4.
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mi+l

Ui:I A, A4

FIG. The sets ta3. 1AJ and Aa in a case where YiYi+l > O.

Now the minimum of the spline s is at the point x(1) E ]xi, i[. This means that
s/[xi, i] > 0 if and only if s(x()) O. By (2.3) and (3.5) this condition is equivalent
to

(3.6) tAxm + 2y(1 + t)m + 2y(1 t)m+ 4y O.

The closed region determined in the mimi+-plane by (3.6) is the inside of a parabola
mi+ pi(mi) opening downward. Here

tAx 1 + t 22
’mi +(.7) p,(m,)

(1 t,)U,’ 1 t, 1

The lines di 0 and mi pi are both tangents to this parabola with points of
tangency

(3.8) Pd--(b 52)=
2yi 2yi+

and P= 0,1tAxi’ (1 t)Ax
rthermore, the parabola intersects the line i 0 at the points Pd and P and the
line Li at the points

(a.9) Q =(vi,wi) and Q’= -(i- ii+l), (i+ ii)

where v is as (3.1) and

2
(3.10) wi 25 vi -x (yi+ + v/yiyi+).

Note that the points Q and Q do not depend on ti.
Thus s/[xi, i] _> 0 in Case 4 if and only if

(3.11) (m,m+) Aa ((m,mi+) Adlm < 0 A # > 0 A (3.6) is valid}.

If yi > 0, the set A4 is bounded by the parabola mi+l pi(mi) up to the point Pd, by
the line segment PdP and by the mi+-axis from the point P downward (see Fig. 1).
If yi 0, the set A4 is empty.
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The situation on the interval [xi, i] can be summed up as follows. If (3.2) is valid,

(3.12) a Aj \ Lis/[xi,i] >_ 0 == (mi, mi+l) e (’Jj=l

The part of the mimi+l-plane that gives a positive solution to HIP on [xi,i] is the
half plane di >_ 0 minus the line Li and minus a wedge with its apex at Pd. The left
side of the wedge is the line di 0, and the right side a monotone part of the parabola
m+ p(m) in case y > 0 (see Fig. 1). If y 0, the right side of the wedge is the

mi+l-axis. The examination of the interval [xi, i] is now complete.
The situation on the interval [i, xi+] can be treated quite in the same way as

on [xi, i]. Therefore, the discussion is shortened into two cases.
Case 5. (m, m+) E A5 {(m, m+) E Ad m+ <_ 0 / # >_ 0}.
Analogously with Cases 1-3 it is seen that in Case 5 always s/[i,xi+] >_ O.
Case 6. (m,m+) Ad \ A5 {(m,m+) Ad m+l > 0 A # < 0}.
This case is nonempty only when yi+ > 0. In fact, if yi+l 0, then s/[i, xi+]

can be positive only if mi+l _< 0, which does not happen in Case 6.
In this case the minimum of the spline s is at a point x(2) ],x+[. Thus

s/[,x+] >_ 0 if and only if s(x(2)) _> 0. This is equivalent to

(3.13) (1 ti) 2Axm+ 2(2 t)y+m+ 2ty+lm + 4y+5 <_ O.

The closed region, determined in the mimi+l-plane by (3.13) is the inside of a parabola
mi qi(mi+) opening to the right. Here

(3.14) qi(rni+) (1 ti)Axi 2 2 ti
2tiyi+ mi+l ti

mi+l -- t--(

The lines d 0 and m+ tti are both tangents to this parabola with points of
tangency Pd and, respectively,

(25i )(3.15) P2 --,0
Furthermore, the parabola intersects the line #i 0 at the points Pd and P2 and the
line Li at the same points Q and Q as the parabola mi+l pi(mi).

Thus s/[i, Xi+l] >_ 0 in Case 6 if and only if

(3.16) (mi,mi+l) e A6 {(mi, mi+l) e Adlrni+l > 0 A #i < 0 A (3.13) is valid}.

If yi+l > 0, the set A6 is bounded by the parabola mi qi(mi+l) from the point Pd
to the right, by the line segment PdP2 and by the mi-axis from the point P2 to the
right. If yi+ 0, the set A6 is empty.

The situation on the interval [i, Xi+l] can be summed up as follows. If (3.2) is
valid,

(3.17) 6 Aj \ Lis/[,x+] >_ 0 == (m,m+) U=5

The part of the mimi+l-plane that gives a positive solution to HIP on [i, Xi+l] is
the half plane di >_ 0 minus the line Li and minus a wedge with its apex at Pd. The
upper side of the wedge is the line di 0 and the lower side a monotone part of the
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rai+ll //di 0

FIG. 2. The set Mi in a case where YiYi+l > O.

parabola mi qi(mi+l) in case yi+l > 0. If yi+l 0, the lower side of the wedge is
the mi-axis. The examination of the interval [i, xi+l] is complete.

The results of this paragraph can now be united. Denote

(3.18) /t///, (U=I.A.) n 6(Uj=sAj).

Note that the line Li is no longer excluded.
PROPOSITION 2. Let s be a solution of the Hermite interpolation problem on

[xi, xi+l] with data yi >_ O, yi+l > O, mi, mi+l and let the possible additional breakpoint
be at a point i E]xi, xi+l [. Then s >_ 0 on [xi, xi+l] if and only if

(mi, mi+l) E Mi.

Proof. If (mi, mi+l) Li, then the statement follows from (3.12), (3.17) and from
the definition of Mi. If (mi, mi+l) lies in the line Li, then by Proposition 1 s > 0 on
[xi, Xi+l] if and only if mi > vi. On the other hand by the construction of Mi the
set {(mi, mi+l) Li mi >_ vi} C Mi, the point (Vi,25i--vi) (Vi, Wi) being on the
boundary of Mi. This proves the proposition.

For later use we need a more detailed description of Mi (see Fig. 2). Firstly,
suppose that yiyi+l > 0. Then we get from previous considerations that (mi, mi+l)
Mi if and only if

mi) if mi < bl,
(3.19) mi+l < q- (mi) if mi > bl,

or equivalently

/ p-i (mi+l) if mi+l <_ b2,
mi

qi (mi+ if mi+ > b2.

Here (bl, b2) Pd from (3.8), and pi, qi are determined by (3.7) and (3.14). Because
pi is monotone when mi < bl, it has an inverse function p-I there. Similarly, qi is
monotone when mi+l > b2 and has an inverse function
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mi/l

mi vi

C2
/Tti+l Wi

mi

FIG. 3. The partition of the mimi+l-plane in the proof of Proposition 3.

-1
If yi 0,yi+l > 0, then (mi,mi+l) E Mi if and only if (3.20) is valid with

0. If y > 0, y+l 0, then (mi,m+l) E M if and only if (3.19) is valid with
0. Finally, if yi 0, yi+l 0, then (mi, mi+l) Mi if and only if

(3.21) mi _> 0 A mi+l _( 0.

We notice that Mi is always closed, convex, and nonempty.

4. Positivity on subintervals. What we know up to now is exactly when the
solution of the HIP is positive on [xi, xi+l] if the place of the possible additional
breakpoint i is fixed. In the problem of positive Hermite interpolation, however, the
place of i is a free parameter. Therefore, we will next examine the dependence of the
set Mi M(t) on the breakpoint via t defined in (2.3).

PROPOSITION 3. Let there be given on an interval [xi, xi+l] data yi >_ O, yi+l _>
O, mi and mi+i. There exists a positive solution of the Hermite interpolation problem
on [xi, xi+l] if and only if in the case where YiYi+l > O,

mi > vi V mi+l < wi V (mi, mi+l) (vi,

in the case where yi 0, yi+l > O,

in the case where yi > O, yi+l --O,

and in the case where yi- yi+ O,

m _> 0;

mi+ _< 0;

mi >_ 0 A mi+l

_
O.

Proof. Firstly, suppose that yiyi+l > 0. We divide the mimi+l-plane into four
quadrants by the lines mi vi and mi+l wi, which intersect at the point Q defined
in (3.9). Furthermore, we divide the first and third quadrant by the branch of the
hyperbola

(4.1) Axmm+l 2y+imi + 2ymi+l O,

passing through the point Q. This branch is the track of the point Pd as a function
of the parameter ti, 0 < ti < 1 (see Fig. 3).
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o in each part of the mimi+l-plane in a clock-We choose a point Po (m mi+
wise order and examine whether there exist values ti E ]0, 1[ so that Po Mi(ti).

Case 1. Po
The boundary section OMi(ti) N C1 is a monotone part of the parabola mi+l

pi(mi) (compare Figs. 1, 2, and 3). By (3.7) a point Po C belongs to OMi(ti) if

ti t) where

O2yi(25 mi mi+l)
0 0 0Axm + 2yim 2ymi+

supposing that t) ]0, 1[. For the verification of this condition we first notice that
on C the numerator of t1) is negative. For the denominator of t1) we get a suitable
upper bound,

Axim + 2yim 2yim+ < Axiv + 2yivi 2yiwi O.

Thus t1) is positive. Furthermore, it can be seen that on C1,

Axim + 4yimi 4yi5i < Axiv + 4yivi 4yibi 0,

and that the negativity of the left-hand side is equivalent to the inequality t) < 1.

It has been shown that t) ]0, 1[.
The only boundary section of Mi(ti) C that depends on ti is the part of the

parabola mi+ pi(mi). From (3.7) we see that pi(mi) is as a function of ti mono-
tonically increasing. This means that t < u implies M(t) CI c M(u)N C. So
the point Po Mi(ti) C for every ti E [t), 1[. Thus a given point Po C lies in
Mi(ti) if and only if the solution s of the HIP has an additional breakpoint and

(4.3)

Case 2. Po C2 {(mi, mi+l) mi+ > wi A mi >_ (2yimi+)/(2yi+l-
Aximi+l)}.

The boundary section OMi(ti) C2 is a monotone part of the parabola mi
qi(mi+) (compare Figs. 2 and 3). By (3.14) a point Po C2 belongs to OMi(ti) if

ti t2), where

(4.4) t2) 1 +
2yi+l (25i m mi+l)
0 O OAxm+ 2y+ mi+ + 2yi+lm

As in Case 1 we see that t2) ]0, 1[. The only boundary section of Mi(ti) C2 that
depends on ti is the part of the parabola mi qi(mi+l). As in Case 1 we see that
qi(mi+) is a monotone function of ti, now decreasing. This means that ti < ui impiies
Mi(ti) C2 C Mi(ui) C2. So the point Po Mi(ti) C2 for every ti [t2) 1[. Thus
a given point Po C2 lies in Mi(ti) if and only if the solution s of the HIP has an
additional breakpoint i and

(4.5) x + t)Ax _< < x+.
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Case 3. Po E C3 {(mi, mi+l) mi >_ vi A mi+l

_
wi}.

The boundary OMi(ti) is given by a strictly increasing concave function and the
corner point of C3, Q (vi, wi) OMi(ti) for every ti ]0, 1[. This implies that
C3 c Mi(ti) for every ti ]0, 1[. Thus a given point Po e C3 lies in Mi(ti) for any
additional breakpoint fi,

(4.6) xi < i < Xi+l,

the solution s of the HIP has, and also if s has no additional breakpoint, i.e., if
mi + mi+l 2&, mi >_ vi.

Case 4. Po e Ca ((mi,mi+l) mi < vi A mi+l <_ (2yi+lmi)/(Aximi + 2yi)}.
As in Case i the boundary section OMi(ti)CIC4 is a monotone part of the parabola

rni+l pi(rni). Now ti > ui implies Mi(ti) N Ca c Mi(ui) 1 Ca. This means that
the point Po Mi(ti)CI Ca for every ti ]0, tl)]. Thus a given point Po Ca lies in
Mi(ti) if and only if the solution s of the HIP has an additional breakpoint i and

x < < x + t)Axe.

Case 5. Poe C5 ((mi, mi+l) mi+l < wi A mi < (2yimi+l)/(2yi+-
Aximi+l)}.

As in Case 2 the boundary section OMi(ti)C5 is a monotone part of the parabola
mi qi(mi+). Now ti > ui implies Mi(ti) C5 c Mi(ui) C5. This means that
the point Po Mi(ti) C5 for every ti E ]0, t}2)]. Thus a given point Po C5 lies in
Mi(ti) if and only if the solution s of the HIP has an additional breakpoint i and

(4.8) x < _< x + t)Axe.

Case6. Po C6 R2\ 5Ud=ICj
It is easy to see that in the case, where yiyi+l ) O,

C {(rni, rni+l) rni < vi A rni+ >_ wi A (rni,rm+.) --/= (vi,wi)}.

By the arguments given in Case 3 it must be M(t) r-1 C6 0 for every t ]0, 1[. Thus
no Po C6 can give a positive Hermite interpolant.

The case yiyi+ > 0 is now completely examined. It has been shown that for any
given data the solution of the HIP is positive in Cases 1, 2, 4, and 5 with a suitable
choice of additional breakpoint and in Case 3 independent of the breakpoint. This
proves the proposition in this case.

The treatment is valid with obvious modifications in cases where yi 0 or yi+l

0. The proposition is proved. []

From the proof we get also exact conditions for the choice of additional break-
points. We state separately the case where the positivity is independent of the choice
of breakpoint.

PROPOSITION 4. Let there be given on an interval [xi, Xi+I] data yi >_ O, yi+l _>
0, mi and mi+l. All solutions of the Hermite interpolation problem are positive on
[xi, Xi+ if and only if

m >_ vi A mi+l <_ Wi.

5. Positive Hermite interpolation. Now it can be stated when a quadratic
spline defined by (2.1) and (2.2) will produce positive Hermite interpolation either
independent of the choice of additional breakpoints or with a suitable choice o them.



232 AATOS LAHTINEN

THEOREM 1. Let there be given on an interval [a,b] a mesh (xi), a xl <
x2 < < x, b and real numbers (yi)’,yi >_ O,i 1,... ,n and (mi)’{. There
exists a quadratic spline as in (2.1) and (2.2) giving a positive solution of the Hermite
interpolation problem on [a, b] with this data if and only if at every point xi, where
yi =0,

ml >_Oif i=l, mi--0ifi=2,...,n-1, mn _Oif i=n,

and in every interval [xi, xi+], where yiyi+ > O,

mi > vi V ??’ti+l < wi V (??;ti,??i+l) (vi,wi).

This result follows directly from Proposition 3. The conditions of Theorem 1 can
also be verified by examining the validity of the following restrictions:

Fori=l m >_0 ify=0;
Fori--2,...,n-1 mi=0 ifyi=0else
mi <_ wi- if mi- vi_ else
mi<w_l ifm_l<V{_;
For i n mn <: wn-1 if ran-1 Vn-1 V Yn 0 else
mn Wn-1 if mn-1 Vn-1.
Similarly we get the following result from Proposition 4.
THEOREM 2. Let there be given on an interval [a,b], a mesh (xi)’, a x <

x2 < < Xn b, and veal numbers (yi)’,yi >_ 0, 1,...,n and (mi)’{. Every
quadratic spline as in (2.1) and (2.2), which is a solution of the Hermite interpolation
problem with this data, is nonnegative on [a, b] if and only if

v <_ ml, vi _< mi _< wi-1, i 2,...,n- 1, mn

_
Wn-1.

In a situation where the conditions of Theorem 1 are valid but the conditions of
Theorem 2 are not, some but not all additional breakpoints produce a positive Her-
mite interpolant. The proof of Proposition 3 gives necessary and sufficient conditions
(formulas (4.2)-(4.8)) for the choice of the additional breakpoints.

The results imply that the problem of positive Hermite interpolation is not always
solvable by using quadratic splines as in (2.1) and (2.2). In fact, if at an inner point
xi where yi 0 we have mi : 0, then no Hermite interpolant of any kind can be
positive in the neighbourhood of xi.

On the other hand, by allowing in the quadratic spline more than one breakpoint
between interpolating points we can in all other cases obtain a solution to the problem
of positive Hermite interpolation. It is sufficient to consider the case where on an
interval [xi, Xi+l] we have yiyi+l > 0, but the conditions of Theorem 1 are not fulfilled.
In this situation we add a new interpolating point zi to the interval ]xi, xi+[ and set
both the function value and the derivative value to be zero at zi. Now Theorem 1 shows
that for this augmented data set we get a positive Hermite interpolant, which of course
is also a solution to the original problem. This gives us the following modification of
Theorem 1.

COROLLARY 1. Let there be given on an interval [a,b] a mesh (x)’, a xl <
x2 <... < Xn b and real numbers (yi), y >_ O, 1,..., n and (mi). There exists
a nonnegative quadratic spline s on [a, b] with s(xi) yi and s’(xi) mi, i 1,..., n
if and only if at every point xi where yi O,

ml >_ 0 if i 1; mi =0 if 2,. ,n 1; mn <_ 0 if i n..
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6. Positive interpolation. Finally we would like to remark that because the
set Mi is never empty, we can see from the theorems that the quadratic splines we use
always give a solution to the problem of positive interpolation.

COROLLARY 2. Let there be given on an interval [a, b] a mesh (xi)’, a xl <
x2 < < xn b and real numbers (yi)’, yi >_ O, i 1,..., n. There exists a quadratic
spline as in (2.1) and (2.2) that is a positive interpolant to this data.

In fact, by choosing mi 0, i 1,... ,n, for instance, we get for every set
of additional breakpoints a positive Hermite interpolant, which is of course also a
positive interpolant.
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SUBDIVISION SCHEMES DETERMINED BY COEFFICIENTS OF A
HURWITZ POLYNOMIAL*

I. YAD-SHALOMT

Abstract. The functional equation

is known to have a unique compactly supported continuous solution, given that {ai k}i=0 is a positive
sequence satisfying ia2i ia2i-1 1. This solution, E(t), is also obtained by a subdivision
algorithm. This paper discusses the particular case where ki=oaZ is a Hurwitz polynomial, i.e., all
zeros are in the left half plane.

The problem of Lagrange interpolation from the space {E(. i)}, E Z, was recently analyzed
by Goodman and Micchelli [SIAM J. Math. Anal., 23 (1992), pp. 766-784]. In particular, they
showed that the problem is solvable under a condition similar to the B-spline case.

Here an alternative analysis is introduced, and results on the problem of Hermite interpolation
are stated. The local linear independence of {E(.- i)), E Z, is discussed also for the case where
Ek zi_oai is not a Hurwitz polynomial.

Key words, stationary subdivision schemes, functional equations, Hurwitz polynomials, total
nonnegativity, Hermite interpolation

AMS(MOS) subject classifications, primary 41A, 39B; secondary 15

1. Introduction. The functional equation

k

E(t) E aiE(2t i)
i=0

has found important applications in the areas of computer aided geometric design and
multiresolution analysis. The uniform normalized B-spline of order k (degree k- 1)
with integer knots {0,..., k} satisfies the equation above with the mask

ai 2-(k-l)/) 0<i<k

Generally, solutions of such equations (if they exist) do not have an explicit form
and they are approximated by subdivision schemes. These schemes originate in a
well-known algorithm due to Lane and Riesenfeld. Subdivision schemes are useful
for curve (surface) generation, and for a detailed discussion of this subject see, e.g.,
[DGL], [D], [MP], [CDM], and [DL].

Wavelets are deeply related to the equation above, and we refer the reader to
[DAUB] for a discussion of orthonormal wavelets, and to [CW] and [M] for a discussion
of prewavelets.
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234



SUBDIVISION SCHEMES OF A HURWITZ POLYNOMIAL 235

Here we restrict ourselves to a certain class of equations (containing the B-spline
equations), and we mainly analyze determinantal and sign properties of their com-
pactly supported continuous solution. As we clarify now, some properties of the
solution, E(t), are particularly significant for the research areas mentioned above.

(i) [GM]. {E(t- i)}=_ is a totally nonnegative sequence. Such a basis is
particularly shape-preserving, and for a discussion of such representations we refer
the reader to [G].

(ii) [GM]. {E(t- i)}i=- is a locally linearly independent sequence in the
sense of Definition 3.1. Such sequences are known to be L2-stable, and this stability
is important in multiresolution analysis.

Our motivation for this paper arises from an analysis done by [GM] and in the
following we briefly survey their results.

The polynomial

k

(1.1) A(z)- y aiz, (ai}i=o c R
i--O

is termed a Hurwitz polynomial if all its zeros satisfy Re z < 0 (see [GANT]). We will
also call the associated sequence k(ai)i=o a Hurwitz sequence. In the particular case,
where the zeros are real and negative, (ai k}i=o is termed a Polya frequency sequence.

Imposing the condition

(1.2) A(1) 2, A(-1) 0,

we find that the Hurwitz sequence {ai k}i=0 is positive (ai > 0, 0 _< i _< k) and the
functional equation

(1.3) E(t) aiE(2t i) E(t i) 1
i=0 i=--cx3

has a unique continuous compactly supported solution (see also IMP], [CDM]). The
function E(t) is vanishing outside of (0, k) and satisfies a variation diminishing
property

(1.4) S-/i=_ciE(t-i))<_S-{ai}, t E (-x) ), {i}=cR,

where S- counts strong sign changes of functions, sequences, respectively. Given a
sequence {x }=0, xv < x+l, where {v} is a strictly increasing sequence of integers,
the matrix

)(1.5) M E(.Xg0) E(. r)i,j

is totally nonnegative, i.e., all its minors are nonnegative. We denote the associated
determinant by

E(.Xe0)- E(.-er)
D
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and, in particular,

(1.6) D E(.X eo) E(.-e) > O, x < x+

Moreover, (1.6) is positive if and only if

(1.7) xt e supp(E(.- t)) (e, e, + k)

which is a well-known result for B-splines (see, e.g., [SCH]). Here and throughout this
paper the support of a function is defined by supp(f):= {x If(x) # 0}.

The analysis in this paper is not based on [GM], and we believe that our proofs
are simpler. First we establish in 3 the local linear independence of {E(.- i)}, given
that {a k}i=0 is a Hurwitz sequence. We also analyze the local linear independence
where {a}/=0 is a positive sequence and where {ai}i=0 is a mask of an interpolatory
subdivision scheme. In 4 we introduce an alternative analysis for the problem of
Lagrange interpolation, where {ai }k=0 is a Hurwitz sequence, and in 5 we discuss the
Hermite interpolation problem.

Our proofs are mainly based on arguments of subdivision and arguments of Weak
Tschebycheff (WT-) systems. A survey of WT-systems is found in INCH] 2, and we
completely follow the approach there. The results of subdivision theory are mainly
taken from [D], which is a review paper summarizing known results (see also, e.g.,
[CDM], [DL], [DGL], [Me]). Other key results are Orlando’s formula [GANT] and the
total positivity of a Hurwitz matrix [KEMP], [AS], which are explained in 2.

We comment that subdivision schemes determined by a Hurwitz polynomial
are a subclass of those that are analyzed in [Y]. The properties investigated there
are Lipschitz continuity, variation diminishing properties, and bell-shaped refinable
functions.

2. Subdivision preliminaries. In the following we clarify some well-known
results related to subdivision schemes and functional equations. Unless otherwise
stated, the results are taken from [D] (and the contributors are credited there).

A subdivision scheme is given by the formula

enA-1(2 1) i E ai-2yf?,

n kwhere {fi }-o C Rd denotes the control points at level n, and {ai}i=0 (a0 0,
ak 0, ai 0 for i < 0, > k) is the mask of the scheme.

DEFINITION 2.1 (Convergence). Let (2.1) apply recursively to the initial data
{f0 5,0}-o c R. The scheme is said to converge if there exists a nontrivial
continuous function E(t) such that IE(2-ni)- fl tends to zero uniformly on and
on n.

The function E(t) is supported on (0, k) and is termed the refinable function of
the scheme. The following fundamental theorem summarizes the relation between
convergent schemes and functional equations.

THEOREM 2.2. Let E(t) be the refinable function of a convergent scheme deter-
mined by {ai k}i=0" Then E(t) is the unique continuous, compactly supported solution
to

k

(2.2) E(t) E aiE(2t i),
i=0
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which satisfies also

(2.3) E E(t- i) 1.

The sum rule

(2.4) E a2i- E a2i+1- 1

is a necessary condition for a convergent scheme, and it is equivalent to saying that
the characteristic polynomial A(z) given by

k

(.) (z) a,z
i=0

satisfies

(2.6) A(1) 2, A(-1) 0.

The following theorem is central for analyzing the smoothness of E(t).
THEOREM 2.3. Assume k > 1. Let {a1) }i=o be given by

(2.7) A(1)(z) 2(1 + z)-A(z) Ea)zi
i--O

}i=o also does. Moreover, let}i=o determines a convergent scheme, then (ai k

E(), F() afuion aoii (}o, ()),=0;- oon-
ingly then E(t) E C and

(e.8) E’(t) F(t) F(t 1).

The scheme determined by {a) k-1}=0 is termed the divided difference scheme.
More generally, if k > rn and if A(z) has an m-fold zero at z -1, then the coefficients
of 2m (z + 1)-m n(z) determine the divided difference scheme of order m. It is also
true that if the divided difference scheme of order rn converges, then E(t) Cm. The

(,)mask of the divided difference scheme of order rn, tai } is given explicitly by

(2.9) 2m(z + 1)-m az
i=0 i=0

Let the matrices A0 and A be defined by

(Ao)i,j ai-2j+k-1, 0 <_ i,j <_ k- 1,
(2.10)

(A1)i,j ai-2j+k, 0 <_ i,j <_ k- 1,

and let f denote the vector (f/n_(k_ 1),..., f). Then the following is true.
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THEOREM 2.4.
(i) The values at level n, {f}, satisfy

(2.11) E fE(t i) E fE(2nt i),

and f determines the behavior of (2.11) on [j2-n, (j + 1)2-’q
(ii) The transformation (2.1) is given also by f2+1 Ao- f2’+1 Ally.

Hence, for each i E Z there exist j Z and a sequence {Q}n=0 such that

n

I: H e {0,1}.
=1

(iii) [DGL]. Ao and A1 have k- 1 common eigenvalues counting multiplicities.
The kth eigenvalue of Ao is co, and the kth eigenvalue of A1 is ak. (Note that since

ao O, ak O, then it follows that Ao, A1 are either both singular or both invertible.)
(iv) /f the scheme converges, then for each j and for each sequence {i}__1, the

product (2.12) tends to a multiple of the vector (1,..., 1) as n c.
The singularity of the matrix A0 is determined by the following result [GANT,

p. 97].
THEOREM 2.5 (Orlando’s formula). Ao is a singular matrix if and only if the

polynomial A(z) ki=o aizi has a pair of opposite zeros z and -z.
Positive schemes have the following property.
THEOREM 2.6. Let {hi k}=0, k > 1, be a positive mask satisfying (2.4); then
(i) The associated subdivision scheme converges;
(ii) [MPIN]. The refinable function E(t) is positive on (0, k).
Now, we focus our attention on a Hurwitz sequence, {hi k}i=0" The following

theorem is a direct consequence of Theorems 2.3 and 2.6 (see also [GM], [Y]).
THEOREM 2.7. Let {hi k}i=o be a Hurwitz sequence satisfying (2.4), and assume

that A(z) has an m-fold zero at z -1, 1 <_ m < k. The scheme and its associated di-

vided difference schemes up to orderm-1 are convergent; {ai}k-0- {am-1)Ik-m+lji=o
are Hurwitz sequences.

A key result here is that the bi-infinite matrix

(2.13) Aij ai-2j

is totally nonnegative if {hi}k is a Hurwitz sequence (see [KEMP] [AS])i=0
Now applying (2.1) to the data at level n, {f} c R, it follows that

(2.14) S-{fn+l}cS-{fn},

and, consequently,

(2.15) S- {fE(. i) } <_ S-{f}

This argument appears in IMP] for the particular case of a Polya frequency sequence
k z negative)(all roots of Y=0 a are real and
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a. Local linear independence. In the following let (ai}Lo (no 7 O, ak 7 O)
determine a convergent scheme, and let E(t) be the associated refinable function that
vanishes outside of the interval (0, k). By Theorem 2.4 (iii) A0 and A1 are either both
singular or both invertible.

DEFINITION 3.1. The functions (E(t- i)}=_o are said to be locally linearly
independent if (E(t i) 0}i=-(k-1) are linearly independent on each subinterval of

LEMMA 3.2. Assume that Ao is invertible and the scheme converges; then the
following statements are equivalent:

(i) (E(t- i)}=_ are locally linearly independent;
(ii) (E(t- i)}___(_1) are linearly independent on [0,1].
Proof. We prove (ii) = (i) (the converse is trivial). Assume in contradiction that

=-(-1) fE(t- i) 7 0 on [0,1], but there exist j and n such that

0

/----(k-l)
f., E(t- i) O, t E [j2-n, (j + 1)2 ].

By (2.11) it follows that

i--j-(k-1)

fE(2nt- i) O, t e [j2-n, (j + 1)2-n],

which implies that one of the following statements is true.
(a) (f)=j-(k-1) is trivial.

(b) {E(2nt i) j}i=j-(k-1) are linearly dependent on [j2-n, (j + 1)2-n ].
Now, (b) is a contradiction to (ii) and (a), together with (2.12), is a contradiction to
the nonsingularity of A0 and A1. [-!

kTHEOREM 3.3. Let {hi}i=0 be a Hurwitz sequence satisfying (2.4). Then {E(t-
i)} are locally linearly independent.

Proof. By Theorem 2.6 the scheme converges, and {E(t--i)}i=_(k_l) are positive
kfunctions on (0,1). Since all roots of i=0 aizi are in the left half plane, then by Theo-

rem 2.5 A0 and A1 are invertible. Thus, by Lemma 3.2 we discuss linear independence
o f.,E(t- i) 0 on [0, 1] and 0 {f’?}iL-(k-1) ison [0, 1]. Assume that ’i=-(k-1)

nontrivial; then by the positivity of {E(t- i)} it follows that S-(fg) > 0. Also for
each n and each {it}t=o we get by the nonsingularity of A0, A1 that 1-It=l A,fg is

nontrivial, and, consequently, s-(YI=i Ai, fo) > 0. Thus, S-{f} tends to infinity,
contradicting (2.14). [:]

The rest of this section is devoted to positive and interpolatory schemes, and we
will not make use of these results in the following sections.

kTHEOREM 3.4. Let {ai}i=0 be a positive mask satisfying (2.4), and let Ao be
invertible. Then the following statements are equivalent:

(i) {E(t- i)} are locally linearly independent;
(ii) Each nontrivial common invariant subspace of Ao and A1 owns a nontrivial,

nonnegative vector.
(Note that at least one nontrivial common invariant subspace always exists,

namely, (1, 1,..., 1).)
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Proof. As in the preceding proof the scheme converges, {E(t- i) }i=_(k_ l) are

positive on (0,1) and (i)is replaced by linear independence on [0, 1].
(ii) = (i) Let M be the space of all vectors f0 such that i fE(t- i) =_ 0

on [0, 1], and assume in contradiction that M is nontrivial. It is clear that M is a
common invariant subspace of A0, A1, and by the positivity of {E(t- i)} it follows
that each nontrivial vector in M has at least one strong sign change, contradicting
(ii).

(i) (ii) Assume in contradiction that there exists a nontrivial common invari-
ant subspace M such that each nontrivial vector in M has a strong s_n change. Let
f E M be a nontrivial vector. Then all vectors of the form l-[t=1Ai,f are also in M,
and also have a strong sign change. Since the scheme converges limt_. H=I Ai, f0
converges to a multiple of (1,..., 1), which implies limt_. NX=l Air f3 0, contra-
dicting the linear independence.

A scheme is said to be interpolatory if there exists j E Z such that a2i+j 5i,o.
Obviously, {f} is a subset of {f+l}, and if the scheme converges, then E(i)
for each i Z.

THEOREM 3.5. Let {aik}i=0 determine a convergent interpolatory scheme, and
assume that Ao is invertible. Then {E(t- i)} are locally linearly independent.

Proof. Assume in contradiction that there exists a nontrivial {f/}i___(k_i) such

that =-(k-1) fE(t- i) =_ O, on [0, 1]. By the nonsingularity of Ao, A it fol-

lows that for each n and each {Q}in__, the vector f [In= Aifo is nontriv-
ial. For a sufficiently large n there exists j such that the support of the functions
{E(2at )}=-(k-)"j is contained in [0, 1], and since the scheme is interpolatory, then

0{fin}i=j-(k--1)j are values of ’i=-(k-1)fE(t- i). Hence, there exists t such that

’=-(k-1) fE(t i) O, and the contradiction is obtained.
Remark 3.6. The four-point scheme (see, e.g., [D]) depends on a positive tension

parameter w and is determined by
(3.1)

no---w, a--0, a2-- +w, a3--1, a4--+w, ab----0, a6---w.

kThe scheme is known to converge for Iwl < 0.5. The polynomial i=0 aizi has no pair
of opposite zeros; thus, by Theorem 3.5 the {E(t-i)} are locally linearly independent.

4. An alternative analysis of Lagrange interpolation. Let {ai k}=0 be a
Hurwitz sequence satisfying (2.4). Then E(t) is continuous, and the following proper-
ties of E(t) have already been discussed:

(4.1)

(4.4)

E(t) 0, t<_O, t>_k,

E(t) > O, 0 < t < k,

S- (E aE(. _S-{a},

{E(.- i)}, Z are locally linearly independent.

Only these properties of E(t) play a role in this section.
In the following, let {G}=0 and {x. }=0, r >_ 0, be strictly increasing sequences,

and we define the set of points I by

(4.5) I-- U supp (E(.- G)) (G, G + k).
---:0 --0
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THEOREM 4.1.

(4.6) D E(X. tgo) E(. tr) >_ 0 Vv, xt < xe+,.

Proof. We assume that xt E I for all v, since otherwise the determinant vanishes.
For the particular sequence xt + 1/2 it is clear that the matrix (4.6) is lower
triangular, and by (4.2) the diagonal is positive.

Now, we are under the following conditions:
(i) {E(t- g)}r=0 is a sequence of continuous linearly independent functions

on I;
(ii) There exists a sequence {xt }r=0 such that (4.6) is positive;
(iii) On I, S-(:=o ate, E(.- ,)) <_ S-{at}=o for each sequence {a/}=o;
(i) and (iii), together with [SCH] Theorem 2.39, imply that either {E(.- g)}=o

or {E(.-go),... ,S(.- gr-1),-E(.-gr)} is a WT-system on I. Hence, (4.6) is either
nonnegative or nonpositive, and the proof is completed by (ii). D

THEOREM 4.2.

(4.7) D E(Xtgo) E(.-) > O, xt < xt+l

if and only if

(4.8) V, xt e supp(E(.- tv)) (t t + k).

Proof. First, we prove that (4.7) =v (4.8). Assume in contradiction that (4.8)is
violated while (4.7) still holds. If the violation occurs at p r, i.e., x. supp(E(.-
)), then either the last row of (4.7) or the last column of (4.7) vanish, contradicting
the positivity of the determinant. Hence, the violation occurs at q, where q < r.
By Theorem 4.1 it follows that (4.7) is a totally nonnegative matrix, and by [GANT,
p. 100] we get
(4.9)

E(X. E(.-
D

D

Now by a preceding argument we get

0,

and together with (4.9) it follows that (4.7) vanishes.
In the following we prove (4.8) (4.7). The case r 0 is obviously true, and

we sume by induction that it is true for each sequence {z}=o, J < r. Assume in
contradiction that (4.8) holds, and there exists I(t) such that

(4.11) f(t) E E(t g), f(x) 0 V, {} nontrivial.
--0

First note that

(4.12) at. 0, 0 _< _< r
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since if at 0, then by deleting row/ and column g. the induction hypothesis is
contradicted. In view of the local linear independence, f(t) does not vanish on any
subinterval contained in I.

Now we are under the following conditions:
(i) {E(t )}=o is a WW-system of order r / 1 on I;
(ii) f(t) has r + 1 zeros on I, namely, {x}=o;
(iii) The zeros of f are essential (since E(x) 0; see [SCH, Def. 2.43]);
By [SCH, Thm. 2.45] it follows that f(t) is vanishing on a subinterval of I, and

the proof is complete.

5. Hermite interpolation problem. In the following we assume that (ai k

kis a Hurwitz sequence satisfying (2.4), and that the characteristic polynomial -i=o aizi
has an (m / 1)-fold zero at z -1, 1 < m/ 1 < k. By the results of 2 it follows that
E6Cm.

In general the Hermite interpolation problem of order m involves derivatives up
to order m, and the interpolation points (xt}r,=o satisfy

(5.1) x <_ x+1, xt < xt+m+l,

where {g} is a strictly increasing sequence of integers. The matrix we discuss is

(.)

( .x ) ___0E(x,_)_E(-igo) E(.-g) i,j

M
(di

i,j 0,...,r, di max{q" x x_q}.

In words, if xt. x_q # x_q_, then the -q row contains the values of
{E(x -g)}-=0, the -q+ 1 row contains the values of {E’(x -g)}-=0, and the
row contains the values of {E(q)(x -g)}=0.

The following theorem is an immediate result of Theorem 4.1 and [SCH, Lemma

r x x < we then haveTHEOREM 5.1. For each {x.}=0, x.+, x++,

(5.3) D E(.Xg0)- E(.-gr)
_> 0.

The following theorem provides a necessary condition for nonsingularity of (5.3).
r x <_ x < we then haveTHEOREM 5.2. For each {x}=o, x+, x+.+,

Xv(5.4) D E(Xo). E(. r) > 0

only if

x 6supp (E(.-g)) W:, 0<_u<_r.

Proof. Assume in contradiction that (5.5) is violated, i.e., there exists such that

xt supp(E(.- )). Substituting all the derivative values appearing in the matrix
(5.4) by discrete divided differences according to the formula

---E(x gj) q! [x, x+h,..., x+qh]E(. ),
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the modified determinant is clearly zero for a sufficiently small h. Hence, (5.4) vanishes
and the proof is completed. [:]

Now, we restrict ourselves to consecutive translates, and under this assumption
Theorem 5.3 is a converse for Theorem 5.2. Originally, Theorem 5.3 was proved for
the case m 1, and its generalization to the current form is due to Mark Kon.

THEOREM 5.3. Let {x}=o satisfy

Xt

__
X+l, X < Xl+m+l, Xt supp (E(.- g)).

Then

XO Xr(5.8) D E(.) E(.-r) >0.

Proof. The case r 0 is obvious, and we assume by induction that (5.7) = (5.8)
X rfor each sequence {xe}=0, j < r. Assume in contradiction that there exists { e}t=0

satisfying (5.7), where (5.8) is vanishing. Hence, there exists f(t) such that

(5.9) f(t) aE(t ), {a}=0 nontrivial

with

(5.10) f(xe) =O V, O < g < r

and

(5.11)
0Y
otj f(xe) O if xe xe-j, l < j < m

First observe that c0 0, since otherwise

Xl Xr )(5.12) D E(.-1) E(.-r) -0

in both cases, x0 < X and x0 xl, contradicting the induction hypothesis. By the
same argument, cr : 0. Next observe that f(t) does not vanish on any subinterval of

(5.13) I U supp (E(.- g)) (0, r + k).
=0

It is true since by the local linear independence and the previous observation
it follows that if f vanishes on a subinterval, then there exists a trivial sequence
{aeq+k- with 0 < q, q + k 1 < r Since the support of E is of size k, thenJ=q

XO Xq--1 I O(5.14) D E(.) E(.-(q- 1))

contradicting the induction hypothesis.
Now, we count the zeros of ft on I. Let j be the number of points xe with

xe xe-1. Then ft has r + 2 zeros on I according to the following count"
(i) r + 1- j zeros follow from the multiplicities in {xe}=0;
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(ii) j 1 zeros follow from Rolle’s theorem;
(iii) Two zeros near the boundaries of I follow also from Rolle’s theorem since

f(O) f(k + r) O.
By the results of 2 it is known that

(5.15) E’(t) F(t) F(t- 1),

where F(t) is the refinable function of the divided difference scheme, which is also
determined by a Hurwitz sequence, and F(t) is supported on (0, k- 1). Hence f’(t)
is a function of the form

r+l

(5.16) f’(t) EeF(t
e=0

I + satisfyand due to the above construction its zeros ty=0

(5.17) 0 < y0 _<--" _< yr+l < (r + 1) + (k- 1) Ye < Ye+,.

The proof is complete by the following inductive argument on m. This theorem is
true for m 0 (by the preceding section), and assume it is true for 0,..., m- 1. By
Lemma 5.4 it follows that there exists some i such that f’ (t) vanishes on a subinterval
containing y and y+l. Now, since one of the zeros (or both) is a zero of f, then f
also vanishes on this subinterval, a contradiction.

The following lemma is needed for the preceding proof.
LEMMA 5.4. Assume that Theorem 5.3 holds for m 0,...,n, and let f(t)

r=o ceE(t- g.), 1 < r vanish at yo,... ,yr. If

(5.18) 0 < y0 < _< yr < r +k, Ye < Ye+n+ Vg,

then there exists such that f vanishes on some interval containing y, y{+l.

Proof. By induction on r, the proof of the case r 1 is easy, and we assume the
hypothesis is true for 1,..., r- 1.

First observe that there exists some q such that

(5.19) yq (q, q + k),

since otherwise f 0, hence we assume yq < q. (The case yq > q + k is similar.)
Define

q--1

(5.20) g(t) E atE(t

then g f on (0, q]. By induction hypothesis g vanishes on a subinterval of (0, q]
containing y, yi+l, < q, and the proof is completed. [:l
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A CLASS OF BASES IN L2 FOR THE
SPARSE REPRESENTATION OF INTEGRAL OPERATORS*

BRADLEY K. ALPERTt
Abstract. A class of multiwavelet bases for L2 is constructed with the property that a variety

of integral operators is represented in these bases as sparse matrices, to high precision. In particular,
an integral operator C whose kernel is smooth except along a finite number of singular bands has
a sparse representation. In addition, the inverse operator (I- ]C) -1 appearing in the solution of a
second-kind integral equation involving ]C is often sparse in the new bases. The result is an order
O(n log2 n) algorithm for numerical solution of a large class of second-kind integral equations.

Key words, wavelets, integral equations, sparse matrices

AMS(MOS) subject classifications. 42C15, 45L10, 65R10, 65R20

Introduction. Families of functions ha,b,

ha,b(X)- ]al-1/2 hlX-b)a
a, bER, aO,

derived from a single function h by dilation and translation, which form a basis for
L2(R), are known as wavelets (Grossman and Morlet [9]). In recent years, these fam-
ilies have received study by many authors, resulting in constructions with a variety
of properties. Meyer [11] constructed orthonormal wavelets for which h E Ca(R).
Daubechies [6] constructed compactly supported wavelets with h Ck(R) for arbi-
trary k, and [6] gives an overview and synthesis of the field.

Beylkin, Coifman, and Rokhlin [4] develop the connection between wavelets and
recent fast numerical algorithms devised by Rokhlin and other authors [3], [8], [14],
[15]. These algorithms exploit analytical properties of specific linear operators to
achieve, in each case, fast application of an operator to an arbitrary function. The
operator and function are discretized to a matrix and vector; in the discrete represen-
tation a full n n-matrix is applied to a vector of length n in order O(n) operations,
as opposed to order O(n2) operations for naive matrix-vector multiplication. Each
algorithm depends on "local smoothness" of the underlying operator. In particular,
each algorithm may be viewed as the division of the operator matrix into order O(n)
square submatrices, each approximated by a matrix of low rank, followed by the fast
application of the submatrices to the function vector.

In [4] it is observed that these numerical algorithms can be generalized by a
technique in which the underlying operator is represented in a basis of wavelets.
Discretization (i.e., truncation of the operator expansion) then results in an operator
matrix that is approximated by a sparse matrix. The characteristics of the wavelets
bases which lead to a sparse matrix representation are that

(1) The basis functions are orthogonal to low-order polynomials (have vanishing
moments); and
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(2) Most basis functions have small intervals of support.
An integral operator whose kernel is a smooth, nonoscillatory, function of its

arguments over most of their range (and, therefore, can be approximated locally by
low-order polynomials) will have negligible projection on most basis functions.

One difficulty of using wavelets bases for the representation of integral operators is
that they do not form a basis for functions on a finite interval. Wavelet basis functions
overlap in such a way that either the interval must be extended, a periodization
must be performed, or the basis functions at the interval ends must be modified. In
[4] the integrand is treated as periodic, with some loss of sparsity. In [13] Meyer
showed how the basis functions overlapping the interval ends can be truncated and
reorthogonalized to obtain a basis on the finite interval.

A second difficulty of using wavelets for the representation of integral operators is
that projection onto the basis functions requires appropriate integration quadratures
(as is true with other bases). The order of convergence of the quadratures determines
the order of the numerical method as a whole. The difficulty is that quadratures must
be employed for each element of the resulting matrix, leading to potentially high cost.
On the other hand, use of the Nystrhm method, in which the interval is discretized
into n points and the integral at each point is approximated by a quadrature, requires
the application of quadratures only n times.

In this paper we construct a class of wavelet-like bases, which we call multiwavelet
bases, which lead to the sparse representation of smooth integral operators on a finite
interval. For each basis, the interval is recursively bisected; the basis functions on a
given scale are supported on he dyadic subintervals of a particular size. Out of this
class of bases, different bases differ in the number of basis functions supported on each
subinterval, and this number corresponds to the order of convergence of expansions of
C functions. The lack of overlap of the basis functions on a single scale eliminates
the first difficulty (mentioned above) of using wavelets for the representation of inte-
gral operators. The second difficulty is eliminated by the construction of a discrete
counterpart to the bases developed here. The latter construction is described in [2].
A principal advantage of the present construction is its simplicity.

In 1, we construct multiwavelet bases, and in 2 we prove that the representations
in these bases of certain integral operators are sparse, to high precision. In 3 we
give several numerical examples of the bases and the solution of second-kind integral
equations and conclude with a discussion.

1. Multiwavelet bases.

1.1. The one-dimensional construction. We construct a class of bases for
L2(R) that can be readily revised to bases for L2[0, 1]. Each basis is comprised of
dilates and translates of a finite set of functions hi,..., hk. In particular, these bases
consist of orthonormal systems

(1) hjn,m(X) 2m/2 hj(2mx- n), j 1,...,k; m,n e Z,

where the functions hi,..., hk are piecewise polynomial, vanish outside the interval
[0, 1], and are orthogonal to low-order polynomials (have vanishing moments),

/o(2) hj(x) x dx O, O, 1, k 1.

We first restrict our attention to the finite interval [0, 1] c R, and we construct
a basis for L2[0, 1]. We employ the multiresolution analysis framework developed by
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Mallat [10] and Meyer [12], and discussed at length by Daubechies [61. We suppose
that k is a positive integer, and for m 0, 1, 2,... we define a space Skin of piecewise
polynomial functions,

(3) Sk {f: the restriction of f to the interval (2-’n, 2-’(n / 1)) is
a polynomial of degree less than k, for n 0,..., 2m 1,
and f vanishes elsewhere}.

It is apparent that the space Sk has dimension 2ink and

ss ... s ....
For m 0, 1,2,... we define the 2mk-dimensional space R to be the orthogonal
complement of S in S+,

RS;

so we inductively obtain the decomposition

k() s s R R ... R_.

Suppose that functions h,... ,hk R R form an orthogonal bis for R.
Since R is orthogonal to S, the first k moments of h,..., hk vanish,

hi(x) O, i O, 1,...,-X dx k 1.

The 2k-dimensional space R is spanned by the 2k orthogonal functions h(2x),
,hk(2x), hl(2X- 1),... ,hk(2x- 1), of which k are supported on the interval

[0, ] and k on [, 1]. In general, the space R is spanned by 2mk functions obtained
from hi,..., hk by translation and dilation. There is some freedom in choosing the
functions h,..., hk within the constraint that they be orthogonal; by requiring nor-
mality and additional vanishing moments, we specify them uniquely, up to sign. The
remainder of this subsection is devoted to the explicit construction of h,..., hk; in the
following sections we exploit only the property that h,..., hk form an orthonormal
bis for R.

In preparation for the definition of h,... ,hk, we construct the k functions
f,...,fk R R, supported on the interval [-1,1], with the following proper-
ies:

(1) The restriction of to the interval (0, 1) is a polynomial of degree k- 1;
(2) The function is extended to the interval (-1, 0) an even or odd function

according to the parity of + k- 1;
(3) The functions f,..., fk satisfy the following orthogonality and normality

conditions:

(x) (x) dx <,> , , 1,..., k;

(4) The function fj h vanishing momems,

dx 0, i 0, 1,...,j + 2.X k
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Properties 1 and 2 imply that there are k2 polynomial coefficients that determine
the functions fl,..., fk, while properties 3 and 4 provide k2 (nontrivial) constraints.
It turns out that the equations uncouple to give k nonsingular linear systems that
may be solved to obtain the coefficients, yielding the functions uniquely (up to sign).
Rather than prove that these systems are nonsingular, however, we now determine

f fk constructively.
We start with 2k functions that span the space of functions that are polynomials

of degree less than k on the interval (0, 1) and on (-1, 0), then orthogonalize k of
,xk-l, then to the functions xk xk+ ,X2k-1them, first to the functions 1, x,

and finally among themselves. We define fl, f21,..., f by the formula

xj-l, x E (0, 1),
f)(x) -xj-x, x e (-1,0),

0, otherwise,

xk-1 f, f,..., f are linearly independent,and note that the 2k functions 1, x,...,
hence span the space of functions that are polynomials of degree less than k on (0, 1)
and on (-1, 0).

(1) By the Gram-Schmidt process we orthogonalize f with respect to 1, x,...,
xk-, to obtain f], for j 1,..., k. This orthogonality is preserved by the remaining
orthogonalizations, which only produce linear combinations of the f].

(2) The next sequence of steps yields k 1 functions orthogonal to xk, of which
k- 2 functions are orthogonal to xk+, and so forth, down to one function which is
orthogonal to X2k-2. First, if at least one of f is not orthogonal to xk, we reorder
the functions so that it appears first, (f21,xk O. We then define f] f]-
aj. f where aj is chosen so (f],xkl 0 for j 2,...,k, achieving the desired

orthogonality to xk. Similarly, we orthogonalize to xk+l,..., X2k-2, each in turn, to
Obtain f2 f23 f.4, k+l

3 ’’-,fk such that (f]+l,xi)=0fori<_j+k_2.
(3) Finally, we do Gram-Schmidt orthogonalization on f+l kfk-,"’’, fl2, in that

order, and normalize to obtain fk, fk-,..., f.
It is readily seen that the fj satisfy properties (1)-(4) of the previous paragraph.

Defining h,..., hk R ---+ R by the formula

hi(x) 21/2 f(2x- 1), i= 1,...,k,

we obtain the equality

R0k linear span {hi 1,..., k},

and, more generally,

(5) Rkm linear span {hjn,m hjn,m(X) 2m/2 hj(2mx- n),
j=l,...,k; n-0,...,2m-l}.

We will show next that dilates and translates of the piecewise polynomial functions
hi,..., hk form an orthonormal basis for L2(R). Furthermore, a subset of these dilates
and translates, combined with a basis for S0, forms a basis for L2[0, 1].

1.2. Completeness of one-dimensional construction. We define the space
Sk to be the union of the Skm, given by the formula

(6) [J
m--0
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and observe that Sk L2[0, 1]. In particular, Sk contains the Haar basis for L2[0,1],
consisting of functions piecewise constant on each of the subintervals (2-ran, 2-m(n+
1)). Here the closure Sk is defined with respect to the L2-norm,

Ilfll (f,
where the inner product (f, g/ is defined by the formula

(f g) f(x) g(x) dx.

We let (ul,..., uk} denote an orthonormal basis for S0k; in view of (4), (5), and (6),
the orthonormal system

Bk (uj j 1,...,k}
U (h,m j-1,...,k; m-0,1,2,...; n-O,...,2m-l}

spans L2[0, 1]; we refer to Bk as the multiwavelet basis of order k for L2[0, 1].
Now we construct a basis for L2(R) by defining, for m E Z, the space km by the

formula
~kSm (f" the restriction of f to the interval (2-ran, 2-m(n + 1)) is

a polynomial of degree less than k, for n E Z}
and observing that the space k \k is spanned by the orthonormal setre+l\ m

hn , 2m/2( j,m" hj,m(X)= hj(2mx-n), j 1,...,k; n e Z}.

Thus L2 (R), which is contained in [Jm km, has an orthonormal basis

?’(hi,m j 1,...,k; m,n Z).
1.3. Construction in multiple dimensions. The construction of bases for

L2[0, 1] and L2(R) can be extended to certain other function spaces, including L2[a, b]d
and L2(Rd), for any positive integer d. We now outline this extension by giving the
basis for L2[0, 1] 2, which is illustrative of the construction for any finite-dimensional
space. We define the space S,2 by the formula

S,2--S xS, m-- 0, I,2,...,

where Skm is defined by (3). We further define Rk,2 to be the orthogonal complement
of ,qk,2 in .k,2
-m mq-l

2 (/?k,2 k,2 ]?k,2|,k,2
-"m m+l -m ---m

Then Rok’2 is the space spanned by the orthonormal basis

{ui(x)hj(y), hi(x)uj(y), hi(x)hj(y) i,j 1,...,k}.
Among these 3k2 basis elements each element v(x, y) has no projection on low-order
polynomials,

ol ol v(x, y) x y dx dy O, i, j O, 1, k -1.

The space Rkr2 is spanned by dilations and translations of the v(x, y) and the basis
of L2[0, 1] 2 consists of these functions and the low-order polynomials {ui(x)uy(y)
i,j- 1,...,k}.
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1.4. Convergence of the multiwavelet bases. For a function f E L2[0, 1], a
positive integer k, and m 0, 1, 2,..., we define the orthogonal projection Qkmf of f
onto Skin by the formula

u2, 
j,n

where {ujn,m} is an orthonormal basis for Skin The projections Qkmf converge (in the
mean) to f as m -- o. If the function f is several times differentiable, we can bound
the error, as established by the following lemma.

LEMMA 1.1. Suppose that the function f [0, 1] --. R is k times continuously
differentiable, f ck[0, 1]. Then Qkmf approximates f with mean error bounded as

follows:

(7’) IIQf fll <- 2-’ 2
sup

4kk! e[0,1l

Proof. We divide the interval [0, 1] into subintervals on which Qkmf is a polyno-
mial; the restriction of Qmf to one such subinterval Im,n is the polynomial of degree
less than k that approximates f with minimum mean error. We then use the maxi-
mum error estimate for the polynomial which interpolates f at Chebyshev nodes of
order k on Im,n.

We define Im,n [2-mn, 2-m(n + 1)] for n 0, 1,..., 2m 1, and obtain

and by taking square roots we have bound (7). Here kCm,nf denotes the polynomial
of degree k, which agrees with f at the Chebyshev nodes of order k on Ira,n, and we
have used the well-known maximum error bound for Chebyshev interpolation (see,
e.g., [5]). rl

The error of the approximation Qkf of f, therefore, decays like 2-ink, and, since

Skm has a basis of 2mk elements, we have convergence of order k. For the generalization
to d dimensions, a similar argument shows that the rate of convergence is of order

2. Sparse representation of integral operators. The matrix representations
of integral operators in multiwavelet bases are sparse (to finite precision) for the same
class of integral operators as is treated in [4], namely, all Calderon-Zygmund and
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pseudodifferential operators. In applications, an operator kernel commonly has the
form

(8) K(x, t) f(x, t) s(Ix tl) + g(x, t),

where f and g are analytic functions of x, t and s is analytic except at the origin where
it is singular. In the following development we initially restrict ourselves to a simple
example of this latter class of kernels, with K(x, t) log Ix t I. Although this kernel
is symmetric and convolutional, neither of these properties is related to the sparsity.
Instead, a proof of sparsity (presented in Lemma 2.2 below) relies solely on derivative
estimates provided by the Cauchy integral formula for intervals separated from the
singularity. Later we treat the more general situation of (8) with s(x) log(x).

We begin this section by introducing some notation for integral equations.

2.1. Second-kind integral equations. A linear Fredholm integral equation of
the second kind is an expression of the form

(9) f(x) K(x, t) f(t) dt g(x),

where we assume that the kernel K is in L2[a, b] 2 and the unknown f and right-hand
side g are in L2 [a, b]. For notational simplicity, we restrict our attention to the interval
[a, b] [0, 1]. We use the symbol/ to denote the integral operator of (9), given by
the formula

(Cf)(z) K(z, t) I(t) dt

for all J’ e L[O, 1] and x e [0, 1]. Suppose that {bl, b,...} is an orthonormal basis
for L[O, 1]; the expansion of K in this basis is given by the formula

(10) K(x, t)
i=1 j=l

where the coefficient Kij is given by the expression

jo1 jo(11) Kij K(x,t) bi(x) bj(t) dxdt, i,j 1,2,

Similarly, the functions f and g have expansions

f(x)
i--1 i--1

where the coefficients fi and gi are given by the formulae

/01 /01fi f(x) bi(x) dx, gi g(x) bi(x) dx, 1, 2,

The integral equation (9) then corresponds to the infinite system of equations

fi EK f gi, 1, 2,
j=l
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The expansion for K may be truncated at a finite number of terms, yielding the
integral operator R defined by the formula

n n

(Rf)(x) (Kij bi(x) bj(t)) f(t) dr,
=1 j=

feL2[0,1], xe[0,1],

which approximates K:. Integral equation (9) is thereby approximated by the system

n

() f K, f ,,
j=l

1,...,n,

which is a system of n equations in n unknowns. The system (12) may be solved
numerically to yield an approximate solution to (9), given by the expression

n

f.() f, (x).
i--1

How large is the error eR f- fR of the approximate solution? We follow the
derivation by Delves and Mohamed in [7]. Defining gn by the formula

n

.(x) (x),
i--1

we rewrite (9) and (12) in terms of operators ) and R to obtain

Combining the latter equations yields

( ) ( R)f. + ( ).

Provided that (I- (:)-1 exists, we obtain the error bound

(13) IIII < II(I- )-111" ll(C R)fn + ( gn)l[.

The error depends, therefore, on the conditioning of the original integral equation,
as is apparent from the term II(I- K:)-II, on the fidelity of the finite-dimensional
operator R to the integral operator K:, and on the approximation of gn to g.

2.2. Representation in multiwavelet bases. We consider integral operators
K: with kernels that are analytic, except at x t, where they are singular. In particu-
lar, we analyze singularities of the form log Ix- t I. An operator with such a kernel K,
expanded in one of the multiwavelet bases defined above, is represented as a sparse
matrix. This sparseness is due to the smoothness of K on rectangles separated from
the "diagonal."

DEFINITION 2.1. We say that a rectangular region oriented parallel to the coordi-
nate axes x, t is separated from the diagonal if its distance in the horizontal or vertical
direction from the line x t is at least the length of its longer side. In symbols, a

region [x,x+a] [t,t+b] C R2 is separated from the diagonal if a+max(a,b <_ t-x
or b-t- max(a, b} <: x t. This definition is illustrated in Fig. 1.
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x=t

FIG. 1. Rectangular regions (just) separated from the diagonal.

Suppose that k is a positive integer and that Bk (bl, b2,... is the multiwavelet
basis for L2[0, 1] of order k, defined in 1. We let Iy denote the interval of support
of by, and we assume that the sequence of basis functions bl, b2,.., is ordered so that
I1, I2,... have nonincreasing lengths. For large n, the matrix (Kiy }i,y= ,n is sparse,
to high precision, as is proved in the following propositions.

LEMMA 2.2. Suppose that the function K [0, 1] [0, 1] -- 1 is given by the
formula g(x,t) log Ix- t I. The expansion (10) of g in the multiwavelet basis Bk
of order k has coefficients Kiy which satisfy the bound

1
(14) Igijl <

8k" 3k-1

whenever the rectangular region Ii Ij is separated from the diagonal.
Proof. Suppose that the intervals Ii and Iy are given by the expressions Ii

[xo, x0 + a] and Iy [to, to + b]; without loss of generality we assume (as one of two
equivalent cases) that b + max(a, b} < x0- to. It is immediate from this inequality
that

(15) xo+a/2-x < 1

xo + a/2 t 3

(x,
We use the Taylor expansion for the natural logarithm about c > 0,

log(cWy)--log(c)+() (Y/C)2 (Y/C)3 (Y/C)4T...
2 + 3 4

for lYl < c. We now let c x0 + a/2 t and y x x0 a/2 and for (x, t) e Ii /j
we obtain the formula

((a)) 1 (xo+a/2-x)
m

(16) log Ix-tI=log xo + - t
a/2 t

m=l
m x0 +
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We now apply (11), (16), (2), and (15), each in turn, to obtain

/to+b
J to

/to+b
J to_
/to+b
J to

Ibj (t)l dt

Iby (t)l dt

1 dx) Ibj (t)] dt

as was to be proved. D
We now consider a somewhat more general kernel.
LEMMA 2.3. Suppose that the function L D D -- C is given by the formula

L(z, w) f(z, w)log Iz wl + g(z, w), where D is the closed disk of radius centered
at z 1/2 and f and g are analytic in a domain containing D D C C2. Suppose
further that the function K is the restriction of L to [0, 1] [0, 1]. The expansion of
K in the basis Bk has coefficients Kij that satisfy the bound

( __)1 2
(17) IKjl < -- 3k_1

sup If(z, W)I-- Sk
sup Ig(z, W)I

z,wEOD 7 z,wEOD

whenever the rectangular region Is Ij is separated from the diagonal.
Proof. We treat the parts of K separately by defining K to be the restriction of

f(z, w)log Iz- w to [0, 1] [0, 1] and g’ to be the restriction of g, so g g’ + g’.
We combine the method of proof used in Lemma 2.2 with the formula for the

derivative of a product,

(18) OmK’(x,t) - (m) Of(x,t)
Oxm

r----0
r Oxr

o Ix tl

By the Cauchy integral formula we obtain

(19) Orf(x,t) _< sup
z,w60D

Org(x,t) <r! sup la( ,
z,w60D
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for (x, t) E [0, 1] [0, 1]. For the logarithm, differentiation yields the formula

(20)
0"- log Ix tl (--1)m-’-l(m r 1)!

for r < m. Combining (18), (19), and (20), we obtain

O’K’(x,t)

(21) + m! Ilog Ix ill)
_< ( m Of(x’ O’- lg lx

.-
r--O

z,weOD \ r=O
r Ix tlm-v

< S (m! 2 + lgm)
for Ix- t] < 1 and m > 1, where Sy -supz,oeoD If(z,

Suppose that the intervals Ii and Ij are given by the expressions Ii [xo, xo + a]
and Ij [to, to + b]; we assume without loss of generality that b+ max{a, b} < xo to.
It follows directly from this inequality that

(22) xo + a/2 x

xo + a/2 t
1

for (x, t) e Ii x Ij. We now apply (11), (2), (21), and (22) to obtain

/to+b
J to

K’(x, t) b(x) bj(t) dx dt[
xo+a o

Z (xo + a/2 x)m o’g’(xo + a/2, t)
m! Oxo"xo m=O

/t+bxx+a ]XoA-a/2--xto .=k Xo + a/2 t

b(x) dx Ib(t)l dt

m

Sy (2 + log m)Ibi(x)l dx Iby(t)l dt

<__ ftoTb xxo+aJ to o

1
(m + 1)Ib (x)l dx Ib (t)l dt

m--k

k 3) 1
SI + 3k- [b(x)l dx Ibi(t)[ dt

1 dx) Ibj (t) dt

For the second term of K0 Ki + gij we obtain
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tO+b fxXO+ao

g’(x, t) bi(x) bj(t) dx dt

tlo+b xZO+a< g’(x, t)bi(x)dx Ibj(t)] dt
o

t]o+b fxo+a
o

< sup Ig(z, wll Ix xo a/2l" Ib,(x)l dxlb(t)l dt
xo m=k z,wOD

+b
< sup

m=k z,wEOD
Iff(z, W)I /xo4-a Ib(x)l dxlb(t)l dt

< Ia(z,
-7 8k-1 z,w60D

2<
-7 8k z,wOD

yields (17).Combining the estimates for Ki’j and
The preceding lemma shows that for a smooth kernel K with logarithm singularity

at x t, the order k of the multiwavelet basis Bk in which K is expanded may be
chosen large enough that the expansion coefficient Kij is negligible, provided
is separated from the diagonal. As mentioned above, a similar statement can be
proven for any kernel of the form g(x,t) f(x,t)s(Ix- tl)+ g(x,t), where f,g are
entire analytic functions of two variables and s is an analytic function except at the
origin (where it has a singularity), provided that s is integrable. More generally, any
Calderon-Zygmund or pseudodifferential operator can be similarly expressed (see [4]).

The next lemma establishes the fact that, asymptotically, most regions I x I are
separated from the diagonal.

LEMMA 2.4. Suppose that I, In are the (nonincreasing) intervals of support
of the first n functions of the basis Bk. Of the n2 rectangular regions I Ij, we denote
the number separated from the diagonal by S(n) and the number "near" the diagonal
by N(n) n2 S(n). Then N(n) grows as O(nlogn); in particular, for n 2tk with
> O, we have the formula

(23) N(n) 6nlk- 15nk- 6lk2 + 16k2.

Proof. The restriction that n 2 k ensures that the first n basis functions consist
of those functions whose intervals of support have length at least 2-t. We define S1 (p)
to be the number of pairs (i, j) such that the rectangular region Ii Ij is separated
from the diagonal and II1 II1 2-p, and we observe that S(p) (2P-1)(2P-2)k2

for p 0, 1, 2, We further define S2(p, q) to be the number of pairs (i, j) such
that Ii Ij is separated from the diagonal and IIi 2-p, IIjl= 2-q, and we observe
that S2(p, q) Sl(min{p, q}) 21p-ql for p, q 0, 1, 2, Finally, we combine these
formulae to obtain
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p--O q--p-4-1

I-1

+
p--O

1--1

1)(2 (2 3)
p--O

(4 -6.2Zl + 15.2 + 61 16) k2

n2 6nlk + 15nk + 61k2 16k2,

from which (23) follows directly. The assertion that the general growth of N(n) is
O(n log n) follows from (23) and the fact that N is a monotonic function of n. [:l

3. Numerical examples and discussion.

3.1. Basis functions. In this section we give numerical expressions for the mul-
tiwavelet functions fo, fl,..., fk-1 and show their graphs for several values of k. These
functions were obtained using the procedure of 1, implemented in a simple Maple
program (available from the author). Table 1 contains, for small k, the polynomials
that represent the fi on the interval (0, 1), together with the reflection formula to
extend the functions to (-1, 1), which is their interval of support. Figure 2 shows the
graphs of the functions for k 4 and k 5.

3.2. Integral operators and their inverses. We compute the expansion in
multiwavelet bases of the integral operator/C defined by the formula

(24)

which yields the matrix

where

1

(1Cf)(x) log Ix t f(t) dr,

K(n) {Kij}i,j--1 n,

/ol/oKij K(x, t) bi(x) bj(t) dx dt

and {bl, b2,...} are a multiwavelet basis of L2[0, 1]. We approximate K(’0 with a
matrix T(’) whose elements are defined by the formula

(25) T( { Kj, if ]Kjl _> T,
0, otherwise,

where the threshold T is chosen so that a desired precision e is maintained: liT(n)
g(n)ll < ellg(n)ll. Here the norm II" is the row-sum norm, IIAll max -jn__l iAijl.
The threshold T is given by T ellg(n)II/n. This computation was performed for the
multiwavelet basis of order k 4, for various sizes n, as shown in Table 2.

An interesting property of many operators of second-kind integral equations is
that their inverses, when they exist, are also sparse in multiwavelet coordinates (to
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TABLE 1
Expressions or the orthonormal, vanishing-moment unctions fl,..., f, for various k, for

argument x in the interval (0, 1). The function fi is extended to the interval (-1, 1) as an odd
or even function, according to the formula fi(x) (-1)i+k-lfi(-x) for x e (-1, 0), and is zero
outside (-1,1).

fl(X)
k-1

k-2

fl (x) vf5 (-1 T 2x)
:() v (- + a)

k--3

fl (X) 1/2 V/ (1 24x -t- 30x2)
() 1/2 (a- + -)
f3(x) 1/2 (4 15x + 12x2)

k-4

fl (x) 45 (1 -t- 4x 30x2 + 28x3)
f2(X) (--4 -- 105g 300:r2 -- 2103)
f3 (x) 5 (-5 T 48x 105x2 + 64x3)
fd(x) (-16 + 105x- 192x2 + 105x3)

k---5

(1 + 30x / 210x2 840x3 - 630x4)
(-5- 144x -t- 1155x2 2240x3 T 1260xa)
(22- 735x - 3504x2 5460x3 -}- 2700x4)
(35 512x T 1890x2 2560x3 -}- 1155xa)
(32 315x -t- 960x2 1155x3 T 480x4)

high precision). The operator (I- K) -1 has the Neumann expansion -i0 Ki, which
converges if Ilgll < 1; thus (I- K)-1 may be approximated to arbitrary precision by

I-a polynomial in g. More generally (regardless of Ilgll) (I- K)-1 A ’i=0( (I-
K)A), where A (I- KH)/II(I- KH)(I- g)l I. The Schulz method [16] (see also
[2]), a classical iterative matrix inversion technique, can be used to compute the first
2m terms of this expansion with m iterations. Analogous to Newton iteration, the mth
Schulz iterate Xm to invert a matrix M is given by Xm 2Zm--1 Xm-1 MXm-,
where Xo MH/IIMHMII. The iterates satisfy the equation I- X,M (I-
Xm_IM)2, which assures their quadratic convergence to M-.

The terms g and ((I- KH)(I- g)), of which these expansions are composed,
have representations in multiwavelets that are asymptotically sparse. Specifically,
their n n-matrix representations, after thresholding, contain only order O(n log n)
nonzero elements. This fact follows from arguments similar to those given in Lem-
mas 2.2 and 2.3. It is important to add, however, that the constants in these asymp-
totic estimates may not ensure useful sparsity for reasonable values of n.

For the operator T(n) defined above, the inverse (I- T(n))- is roughly as sparse
as I- T(n). We have computed it by the Schulz method. Table 2 displays, for various
precisions e, the average number of elements per row in the matrices I- T(n) and
(I- T(n))-. Figure 3 displays the matrices for n 128 and 10-3.

3.3. Discussion. The results of the previous subsection demonstrate, for a par-
ticular integral operator, that the multiwavelet representations are sparse. The matrix
has a peculiar structure in which the nonnegligible elements are contained in blocks
lying along rays emanating from one corner of the matrix. Furthermore, the inverse
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-I,0 -0.5 0,0 0.@

0

-2

-.0 -0. 0.0 0.’

FIG. 2. Functions fl,...,fk are graphed for k 4 (top graph) and k 5 (bottom). Each
function (given in Table 1) is a polynomial on the interval (0, 1), is an odd or even function on

(-1, 1), and is zero elsewhere.

matrix shares that structure. This property is a general characteristic of integral
operators with nonoscillatory kernels that possess diagonal singularities.

The kernel g(x, t) log Ix t of the previous subsection was chosen, however,
because the projections Kij could be computed analytically, thereby avoiding use of
quadratures. The difficulty here with quadratures is that they would be required for
each element Kij, and would have to cope with the singularity of the logarithm. It was
felt that the analytical computation would be more efficient. In fact, the analytical
computation, which requires integrating monomials xj (0 <_ j < k) against the loga-
rithm and combining the results with large coefficients, is a very poorly-conditioned
procedure. The computations described above required quadruple-precision arith-
metic to obtain single-precision accuracy for n as small as 64. This procedure is not
recommended.
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TABLE 2
The average number of elements per row of the matrices S(n) I- T(n) and (s(n)) -1, where

T(n) is defined in (25), is tabulated for various precisions e and various sizes n. Here k 4.

e 10-2 e 10-3 e 10-4

n S(n) (S(n)) -1 S(n) (S(n)) -1 S(n) (S(n)) -1
32 8.8 9.7 19.3 19.6 22.8 23.6
64 9.3 10.0 25.8 26.0 31.9 32.6
128 9.9 10.1 29.2 29.4 38.2 38.8
256 11.8 11.8 30.1 30.3 41.9 42.7

The fault lies, of course, not with the idea of projection to the multiwavelet basis,
but with the method of projection. The integration should be performed numeri-
cally, with quadratures. As mentioned above, such a procedure would require use
of quadratures for each matrix element Kj, or potentially order O(nlogn) times.
A more efficient procedure is to use the NystrSm method, in which only n quadra-
ture applications are required. Numerical quadratures and a vector-space analogue
of the multiwavelet bases are developed in [1], [2]; these tools enable efficient solu-
tion of second-kind integral equations using NystrSm’s method. We believe that the
present paper, rather than directly providing numerical tools, offers a particularly sim-
ple framework in which to understand the ideas for sparse representation of integral
operators.

FIG. 3. Matrices representing the operators I- ]C (left) and (I- ]C)- (right), with ]C defined
by (24), expanded in the multiwavelet basis of order k 4, for n 128. The dots represent elements
above a threshold, which is determined so as to bound the relative truncation error at e 10-3.

Acknowledgment. The bases constructed in this paper are the limiting case of
the discrete construction in [2]; thanks to R. Coifman for prodding this author to
consider the limit, which surprised us with its simplicity.
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INEQUALITIES OF LITTLEWOOD-PALEY TYPE FOR FRAMES
AND WAVELETS*

CHARLES K. CHUI AND XIANLIANG SHI$

Abstract. Inequalities of Littlewood-Paley type for frames in both the wavelet and Weyl-

Heisenberg settings, and those for any unconditional basis of the form Cj,k(x) 2(2Jx- k), are
established. In particular, if {j,k } is a semi-orthogonal basis, then the Littlewood-Paley identity is
obtained. A similar identity for the "biorthogonal wavelets" of Cohen, Daubechies, and Feauveau is
also obtained.

Key words. Littlewood-Paley inequalities, frames, frame bounds, wavelets, biorthogonal
wavelets

AMS(MOS) subject classifications. 41A17, 42C15

1. Introduction and results. The objective of this paper is to establish cer-
tain inequalities and identities of Littlewood-Paley type and to discuss some of their
important consequences. This section is devoted to introducing the necessary defini-
tions and notation and to a discussion of the main results in this paper. For the sake
of clarity, it will be divided into two subsections: with the first one on frames and the
second one on wavelets.

1.1. Inequalities for frames. The notion of flames was introduced by Duffin
and Schaeffer [6] in their work on nonharmonic analysis. For the Hilbert space L2 :-
L2(-c, c), a family of functions Ck E L2, k E Z, is said to be a frame of L2 if there
exist two positive constants, C1 and C2, with 0 < C1 _< C2 < cx), such that

(i.1) Clllfll

_
[(f,k)l:

_
C211fll

kZ

for all f e L2. Here and throughout, II/11 denotes the L2-norm of f. A frame
is called a tight frame, if C1 C2 (cf. [5], [6]). Note that even a tight frame with
C1 C2 1 is not necessarily a basis of L2. For instance, if {Yk}, k Z, is an
orthonormal basis of L2 and {ak}, k Z, is any sequence of real numbers, then the
family {T]k COStk, r/k sinak}, k Z, which is certainly not a basis of L2, is, however, a
tight frame of L2 with C1 C2 1. Observe that {ak} may be so chosen that every
function in this nonbasis tight frame is nontrivial.

In this paper, we will only consider frames that are generated by a single function.
Two types of such frames are of particular interest:

(i) s.t. frames (or frames generated by scaling and translation of a function
E L2) defined by:

(1.2) (Sj,k)(x) :-- a1/2(aJx kb), j,k e Z,

*Received by the editors May 28, 1991; accepted for publication (in revised form) April 21,
1992. This research was supported by National Science Foundation grants DMS-89-01345 and INT-
87-12424.
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310028, People’s Republic of China.

263



264 CHARLES K. CHUI AND XIANLIANG SHI

where a > 1 and b > 0 are (fixed) constants, and
(ii) w.h. frames (or frames of Weyl-Heisenberg type, generated by a function

E L2) defined by

(1.3) (Hj,k)(x) := eiJPx(x- kq), j,k e Z,

where p, q > 0 and pq

_
2r.

1.1.1. s.t. frames. Let us first study s.t. frames. For any function b L2, set

(1.4) Cj (x) "= aJ(-aJx), j e Z,

where again a > 1 is fixed. Then we have the so-called "semidiscrete integral wavelet
transform""

(1.5) (Wjf)(x) (f Cj)(x), j e Z, f e L2,

where denotes the integral convolution on (-(x), oc) (cf. [8], [9]). For this transform
to have any practical value, it must be "stable"; and by this, we mean the existence
of constants A and B, with 0 < A < B < oc, such that

(1.6) AIIfll 2 < IIWjfll 2 < BIIfll 2, f e L2.

On the other hand, in signal analysis, since has the property of a bandpass filter,
in order to be able to reconstruct the original signal from its wavelet transform (1.5),
the function must satisfy

(1.7) A - I(a)[2 B a.e.,
jz

where is the Fourier transform of , defined by

(w) e-ix.’(x)dx.

In fact, it is easy to see that (1.6) and (1.7) are equivalent, with the same constants
A and B.

To generate an s.t. frame, we further discretize the transform Wjf in (1.5) by
defining Sj,k as in (1.2), using another parameter b > 0. Then analogous to the
stability condition (1.6) for semidiscrete integral wavelet transforms, we require

(1.8) Cy,k(X) :-- (Sj,k’g,)(x) a1/2"d2(aJx- kb)

to satisfy the frame condition:

(1.9) A’llfll 2 < I(f, Cy,)l e -< B’llfll 2, f e L2,
j,kZ

where 0 < A < B < cx. Our result on s.t. frames is then an analogue of (1.7), as
follows.
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THEOREM 1. Let {j,k }, as defined in (1.8) .for some a > 1 and b > O, be a frame
of L2 with frame bounds A’ and B’ as in (1.9). Then satisfies

1
[2(1.10) A’ <_ - l(aw <_ a.e.,

.for the same constants A and B.
From (1.10), we can easily derive other interesting inequalities. For instance, by

integrating each term in

B

over 1 <_ [w[ _< a, we have

2A’ log a dw <_ 2B’ log a,

which immediately yields

1 J_ ](w)]2

(1.11) A’ _<
2bloga oc

dw <_ B’.

We remark that the so-called "compactibility condition" (1.11) for s.t. frames was also
derived by Daubechies [5] by using techniques from trace-class operators. In addition,
Daubechies [5] also observed that under the assumptions of Theorem 1, the quantity

is bounded from above and below by some positive constants. The contribution in
Theorem 1 is that these constants are given by the frame bounds.

1.1.2. w.h. frames. For a function E L2, consider the semidiscrete window
Fourier transform (also known as short-time Fourier transform)"

(1.12) (Fyf)(x) e-iiPt(t x)f(t)dt, f e L2,

where p > 0 is a fixed constant. Then analogous to (1.6), the stability of the transform
(1.12) is defined by the requirement"

(1.13) CIIfll 2 [IFyfll 2 Dllfll 2, f e L2,
jz

for some 0 < C _< D < oc, independent of f. It is not difficult to see that (1.13) is
equivalent to

(1.14) C <_ I(w jp)l 2 <_ D a.e.,
jz
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for the same constants C and D. Further discretization of the transform Fjf in (1.12)
results in introducing

(1.15) J,k(X) := (Hj,k)(x) eiJPX(x- kq),

as defined by (1.3), where q > 0 is the second discretization constant satisfying

(1.16) 0 < pq <_ 27r

(cf. [5] for the requirement of (1.16)). For (d,k} to be a frame, we need constants
0 < C’ _< D’ < x), such that

(1.17) C’Ilfll
_

I<f, ,>1

_
D’llfll, f e L2.

j,kez

Our result on w.h. flames in this paper is the following inequalities, which are along
the same line of (1.14).

THEOREM 2. Let (j,k}, as defined in (1.15) .for some p, q > 0 satisfying (1.16),
be a frame of 52 with frame bounds C and D’ as in (1.17). Then and satisfy

(1.18) C’ <_ 1 i(w_ jp)l 2 <_ D’, and
q
jz

(.) c,< :-- I(- J)l < D, ..,
P jez

for the same constants C’ and D’.

1.2. Results on wavelets. In the following, we will set a 2 and b 1 in the
definition of i,k in (1.8); that is, we will consider

(1.20) j,k(x) 2z(2Jx- k), j,k e Z.

Furthermore, we will also assume that {j,k } in (1.20) is an unconditional basis of L2

with constants 0 < K _< L < oc, namely: it is complete and satisfies

(1.21) K laj,l 2 <
j,kZ

for all {aj,k} E 12(Z2). However, this assumption does not guarantee that the dual
basis {,k}, relative to {j,k }, defined by

(1.22)

is obtained by dyadic dilations and integral translations of a single function in the
same manner as {i,k} from . We will give an elementary proof of this somewhat
surprising result in 3. If it so happens that

(1.23) ;,k CJ,k, j, k e Z,
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where

(1.24)

for some E L2, then we will call the "dual" of . Since {j,k} is clearly an

unconditional basis of L2, it follows that is the dual of , also. Observe that if
is an "orthonormal wavelet" in the sense that {j,k} is an orthonormal basis of L2,
then is self-dual with .

As a consequence of Theorem 1, we have the following inequalities of Littlewood-
Paley type.

COROLLARY 3. Let {j,k}, as defined in (1.20), be an unconditional basis of L2,
with bounds K and L as given in (1.21). Then the Fourier transform of satisfies

(1.25) K _< l(2Jw)l2 <_ L i.e.,

and consequently,

(1.26) K < 1 /_ I(w)l2

21og2 Iw----V-dw -< L.

Furthermore, if is a wavelet with dual as defined in (1.22)-(1.24), then {j,k} is
also an unconditional basis of L2 with bounds L-1 and K-I, and consequently,

(1.27) 5-1

_
1/(2J0)l2 K-1 i.e.,

and

(1.28) L_ < 1 /_ I(w)l2

21og2 iw
dw

_
K-1

There are two special cases that are of particular importance. We will discuss
them separately.

1.2.1. Semi-orthogonal wavelets. Let {y,k} be an unconditional basis of L2

generated by some function , as governed by (1.20) and (1.21). For each j E Z, set

(1.29) Wi closL2 span{/,k: k Z}.

Then we say that is a "semi-orthogonal wavelet" if

(1.30) Wy_I_W, j,gZ, j.

The dual of a semi-orthogonal wavelet is easily obtained via the Fourier transform,
namely

=(1.31) (w)- (w),
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where

By giving up the orthogonality of (0,k: k E Z} it is possible to construct compactly
supported with certain desirable properties. For instance, the compactly supported
spline-wavelets of Chui and Wang in [1] are symmetric for splines of even order and
anti-symmetric for splines of order. In addition, explicit formulas of compactly sup-
ported semi-orthogonal spline wavelets and their duals were given in Chui and Wang
[1], and a characterization of all the compactly supported ones in [2]. For this type of
wavelets, we have the following result.

THEOREM 4. Let be a semi-orthogonal wavelet with dual . Then

(1.33) E(2Jw)(2Jw)= 1 a.e.,

and consequently,

(1.34) (w) (w)
dw 2 log 2.

In particular, if is.an orthonormal wavelet so that , then its Fourier
transform satisfies

(1.35) E 1(2iw)12 1 a.e.,

and

C’=
o Iwl

dw=21og2.

1.2.2. Nonorthogonal wavelets. Wavelets without any orthogonality struc-
ture have even more flexibility. For instance, examples of those and their duals in
Cn(-oc, oc), where n E Z+ is arbitrary, both with symmetry and compact support,
have been constructed recently by Cohen, Daubechies, and Feauveau [4]. Following
Cohen [3], we let too(w) and 0(w) be two 27r-periodic Lip(a) continuous functions,
0 < c < 1, satisfying

(1.37)
mo(w)Cno(w) + rno(w + )o(w + ) 1;

rno(0) o(0) 1; mo() ,= o(r) 1.

Suppose that and , defined by

(1.38)

w) m0
j=l

)= o N
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satisfy

I(x) + 14(z)l <_ C

for some e, C > 0. Then is a wavelet with dual , where

(1.39)

in the sense that {j,k} and {j,k}, defined by (1.20) and (1.24), are both uncondi-
tional bases of L2, such that

(cf. Cohen [3]). Although this is not semi-orthogonal, its Fourier transform still
satisfies the same Littlewood-Paley identity, as follows.

THEOREM 5. Let be a wavelet with dual as defined by (1.37)-(1.39). Then

(1.40) E(2Jw) (2Jw)- 1, w E R,

and consequently,

(1.41) /_ (w) (w)
dw 2 log 2.

Remark. For an orthonormal wavelet , identity (1.35) is called the Littlewood-
Paley identity. Hence, the results in (1.33) and (1.40) may be called Littlewood-Paley
identities also. The significance of these identities is that when is considered as a
bandpass filter, so that {y,k} gives rise to a filter bank decomposition, the wavelet

can be used for perfect reconstruction. In other words, the pair (, ) constitutes
an allpass filter as demonstrated by (1.33) and (1.40). We also remark that the value
of C in (1.36) is needed in the reconstruction formula (from the integral wavelet
transform) of Grossmann and Morlet.

2. Proofs. In this section, we establish all the results stated in 1.
2.1. Proof of Theorem 1. By (1.2), we have, for any f E L2,

(f, Cj,k) a f(x)(aJx kb)dx

1 1/2 f(ow)(w)eibodw

Hence, by setting

271
(2.1) T

b’
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we have

j,keZ

a)T2 - .f(cd (w + gT))(w + iT) e

2

E .f(aJ (w / eT))(w + eT) dw.

Therefore, it follows from (1.9) and (2.2) that

A’]I]I[ 2 <_ . - EEz/(aJ(w + T))(w + t.T)l d B, II]II 2,

so that for any M > 0, M E Z, and wo E (-cx, c), we have

M aJ fa-:iwO+-- Ja-Jo- E ](aJ (w + eT))(w +

Now, consider ] (1/x/)Xio....o+,1, > 0. Then for sufficiently small , the above
inequality becomes

M aJ fa-j(wq-)

b --_,(o_)
l()12d < B’,

and thus, by taking 0 and M - cx consecutively, we have

(2.4)

On the other hand, for any wo, r/> 0, a positive integer M may be chosen so that

X)

aMwo(l+a) -1

Also, for

0<<min{a-1 T}a+ lW0,

the function ] (1/x/)Xio o+1 satisfies

](aJ (w + eT)) 0
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for all e Z with I1 _> (e/aJT) + 1 and all w e [a-Jwo (T/2), a-Jwo + (T/2)]. Hence,
for this f, we have

_M
aj ia_Jwo+
-o-

](( + T))5( + T)
j=-

--M fa-wo+a-o
(e.) =-

I( + tT)lo....o+(( + tT)) +

C [a-i(w+)
I()1= + I()1= .

i=_ -(o-)

Since e < (a- 1/a + 1)wo, the intervals

[a-J (wo e), a-J (coo + )], j6Z,

are mutually disjoint; and hence, by (2.5), we have

f-’<<"+’: LI(<,.,)ld<,., _<
j----O0 d a-J (WO--e) aMwo(1-Fa) -1

I(o)1 <

so that it follows from (2.6) that

aJ T

E/(aJ(w + eT))(w +
2

j=-M+I
E ](a (w + eT))(w +
t6Z

C [wo+e -M

+ C +
o- =-o

2

Therefore, by (2.3) and (2.7), we have

oo aJ LT

(2.8) I := E - E
j=--M+I

C Iw+e
-M

I(-)1._> A’ C
.o- =_

On the other hand, for all sufficiently small e > 0, it is clear that

i= a-o-)I/()()1
j=-M+I

1
I(-)1,

2b o-e j=-M+I

2
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where / (1/x/)Xio....o+1" Hence, in view of the boundedness property in (2.4),
we may take -- 0 in (2.8) to arrive at

o -U
1 [(a-Jwo)12 > A C/- C [(a-Jwo)[2(.9)

j=--M+I

for almost 11 w0 > 0. Since y > 0 is arbitrary, (2.4) and (2.9) together yield

(e 0) A,(-) >

for almost all w > 0. A similar argument holds for w < 0. Henee, by (2.4) and (2.10),
we have completed the proof of Theorem 1.

2.2. Proof of Theorem 2. Instead of (2.1), we now consider T 27r/q. Then
it follows from (1.15) that, for any f E L2,

21 ei(-pl((w jp)f(co)da
,kZ ,keZ

:4.2 _(w +T jp)f(w + T)_ei
j

T21
r 12=4r2 " ez (w + IT jp)](w + gT) dw.

As in the proof of Theorem 1, we fix any w0 and 0 < e < T/2, and consider the
function ] (1/)X[o....o+]" Then it follows from the frame bounds in (1.17)
that (2.11) becomes

1 [wo+s 115(o jp)ldo <_ D,,C’ <
oo-

and this implies (1.18).
To derive (1.19), we set T 27r/p and note that

T

I(f, ’)1 T, f(x + eT’)(x + eT’- kq)e’dx
j,kEZ j,kZ g.EZ

1 ooT’ 2

T’2 E 7 E f(x + eT)(x + eT- kq) dx.
kZ Z

By the same proof as above, we also have (1.19). This completes the proof of the
theorem.

2.3. Proof of Corollary 3. Let (,k} be the dual basis of L2 relative to (5,k }.

*Then (j,k) is also an unconditional basis of L2 and it follows from (1.21) that

(2.12) L-1 E laj’kl2 -j,kZ j,kZ j,kZ
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for all {a.,k} e g2(Z2). Now, for any f e L2, writing

S(x)- E a.i,k,k (x)’

we have

so that (2.12) yields

](f,y,k)J 2

_
]lf[] 2 K- I(f,Y,k)[ 2

j,kz

which is equivalent to

(2.13) K]]f]]2 <- E ]<f’J,k>]2 -< LI]f]]2
j,kZ

for all f E L2. Hence, (1.25) follows from Theorem 1with a 2 and b- 1. In
addition, (1.26) follows from (1.11) for these specific values of a and b. Of course,
(1.27) and (1.28) are now the analogous consequences of (2.12) with ,k replaced by

Cj,k, where is the dual of .
2.4. Proof of Theorem 4. Before we go ahead to establish the theorem, let us

first say something about the dual of . In the first place, we note that (0,k)
((.- k)} is an unconditional basis of W0, meaning, of course, that it is complete in

W0 and satisfies

kZ

for all {bk) E g2, where 0 < K _< L < cx are as in (1.21). Note that (2.14) is a
consequence of (1.21) with the same bounds. It is well known (cf. [7]) that (2.14) is
equivalent to

(2.15) K _< @(w) _< L a.e.

for the same constants K and L, where (w) was defined in (1.32). Hence, we have

jz

for some {cj } g2, so that

(x) Ecj(x j)

is in W0. Secondly, from the definition of in (1.31), we see that

(2.16) E(w + 2rk)(w + 2rk) 1 a.e.,
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and by a standard argument, it can be shown that (2.16) is equivalent to

(2.17) <(. j), (. k)> 5j,k, j, k e Z.

In the proof of Theorem 4, we orthonormalize {j,k} as usual by defining a func-
tion y, with

(2.18) ()1/2"

In view of (2.15), we have r/E W0, and

j,k Z,

constitute an orthonormal basis of L2. Hence,

]If, rlj,k)] 2 --]lf]], f e L2,
j,k

and by Corollary 3 with K L 1, we have

(2.19) [(2Jw)12 1

so that (1.33) follows from (1.31), (1.32), (2.18), and (2.19). Furthermore, (1.34) is
a consequence of (1.33) by following the same method of derivation of (1.11). This
completes the proof of the theorem.

2.5. Proof of Theorem 5. By (1.39), we have

(2w) (2ca) m0(ca -4- r)ff0(w + r)(w) (w),

and hence it follows from (1.37) and (1.38) that

5() (): (- .0()0())5() ()
() 5() (:) 5(:).

Under the assumption on the decay property of and , we note that and are
both continuous at zero and converge uniformly to zero as Iwl oc. Therefore, by
telescoping, we have, from (2.20),

()(): (0)(0):

for all w, where the assumption m0(0) 0(0) 1 in (1.37) is used. This establishes
(1.40). Since (1.41) follows from (1.40) as in the derivation of (1.11), we have completed
the proof of the theorem.
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3. Final remarks. In this paper we have established various inequalities and
identities of Littlewood-Paley type, among which are those for the following three
classes of functions:

(a) The collection .T" of all s.t. frames;
(b) The collection :R of all such that {j,k}, as defined in (1.20), is an uncon-

ditional basis of L2;
(c) The subcollection l/Y of functions in n that have duals as defined by (1.22)-

It was shown in 2.3 that 7 C ’, and, in fact, the bounds for the unconditional
basis {j,k} generated by any e n in (1.21) remain to be the frame bounds for the
frame {j,k}. Hence, we have

(3.1) )/Y C C .
Observe that even for any E ’, the result

from (1.11) already yields

(x)dx (0) 0,

provided that is continuous at zero, which follows from a very weak growth condition
of , such as E Ll(-oc, cx)). Hence, it is already reasonable to call any e " a

"wavelet." If, in addition, e )4; with dual , then by using the notion of "integral
wavelet transform" as defined in (1.5), namely,

(W.f)(x) 2 /_ f(y)(2Jy- 2x)dy,

the coefficients

(3.2) aj,k 2 (Wjf) --]

of the "wavelet series" expansion

S(x)
j,kEZ

of any f L2, contain very important information of the "signal" f in time-frequency
analysis.

Regarding (3.1), while it is obvious that T is a proper subset of ’, it is not
immediately clear that }/V is properly contained in 7. In the following, we give a very
simple proof of this fact.

Let 52 be such that {,Dj,k }, as defined in (1.20), is any orthonormal basis of
L2, and consider the function

(x) :- (x) 221/2(2x),
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where z is any complex parameter with Iz[ < 1. Then it is clear that E T. In fact,
we have

(1-Izl) E laj,kl2 <-
j,kEZ

aj,kr]j,k _< (1 + Izl) 2 E laj,kl2
j,kEZ

for any {aj,k} e e2(Z2).
verify that

Let {,k} be the basis dual to {rh,k }. Then it is easy to

(3.4)
Vo,o(X) zt-t,o(z),

=0

?,1 (X) 0,1(X).

Hence, for r to be in l/Y, the family {,k} must be given by

k),o,0(2x

and in particular,
(X + 1) v0,0(*),

so that (3.4) yields

(x) ?,I(X -- 1) r,0(x (x) +Ez-e,(x)’
=1

or

0.
=1

This is not possible, unless -,o(x) -0 or (x) 0 for all x.
The consideration of q,o in (3.4) was motivated by the fundamental work of

Daubechies [5, p. 989] where a corresponding function h*o,o was constructed by using
the Meyer wavelet (cf. [10]) This function h* is not in Lp(-cx, o) for sufficiently0,0
small p- 1 > 0 as shown by our derivation and (3.4) above. Note that this corrects
a mistake in [5], where it was erroneously stated that h*o,o was not in Lp(-x, cx) for
large p. On the other hand, the fact that 1/Y T also follows from an earlier result
of Tchamitchian [11], [12], as pointed out by Daubechies [5, p. 989] and Meyer [10,
p. 127].
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CONSERVATION LAWS WITH DISCONTINUOUS FLUX FUNCTIONS*
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Abstract. The author studies the initial value problem for the scalar conservation law ut +f(u), --0 in
one spatial dimension. The flow function may be discontinuous with a finite number ofjump discontinuities.
This paper proves existence of a weak solution, and the proof is constructive, suggesting a numerical method
for the problem.

Key words, conservation laws, discontinuous flow, front tracking, porous media
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Introduction. In this paper we are interested in the Cauchy problem for the scalar
conservation law

(0.1) u,+f(u)x=O,

that is, the initial value problem with u(x, O) Uo(X) piecewise continuous of bounded
variation, and so that fo(x)=f(uo(x)) has bounded variation.

The flux function f is supposed to be piecewise smooth with a finite number of
jump discontinuities. For simplicity, we will consider flux functions with only one
point of discontinuity, so that

lim_ f(u) lim_+ f(u),

being the point of discontinuity. The extension to a finite number of discontinuities
is outlined at the end of the paper.

This Cauchy problem may arise in several physical applications. For two phase
flow in porous media we may have a discontinuous flux (flow) function if the flow
properties change abruptly at some saturation. Such changes are obtained for the
relative permeability at the irreducible saturation, both when measuring the relative
permeability experimentally 11 ], 16], and when modeling flow properties on a network
of pores [12]. This effect is due to discontinuous distribution of the low saturation,
and is a jump from zero permeability value to a presumably small but positive value
at this critical saturation. Simulations on discretized fracture apertures indicate possible
major discontinuities for the nonwetting phase relative permeability, particularly for
systems with small long-range correlation among apertures in the direction of the flow
[19]. A discontinuity of the relative permeability yields a corresponding jump for the
flow function. In standard texts of reservoir simulation and related topics, e.g., [4],
relative permeability curves are assumed to be continuous, or approximated by con-
tinuous functions. This paper, however, suggests that also discontinuous functions,
which in some cases may be more realistic, may be used with existence and stability
results similar to those for the continuous problem.

It should be an object of further investigation if our results could be extended to
be applicable also for hysteresis problems, that is, history dependent flow properties.
Laboratory studies [6] indicate that we would expect to have an interval of saturations,
say (Ul, u2) where f(u) is double valued, and the correct flow value is determined by

* Received by the editors February 12, 1992; accepted for publication July 14, 1992. This author’s
research was supported by the Royal Norwegian Council for Technical and Industrial Research.

? Department of Mathematics, University of Oslo, N-0316, Oslo, Norway.
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previous or neighboring saturation values. Marchesin et al. [17] have studied this
problem, but their analysis is based on finite slopes of flow functions.

Another possible application is traffic flow analysis 15]. We propose the following
model for two-lane unidirectional traffic on a freeway that involves a discontinuous
flow function: Assume that all cars have the same length, and that the speed of cars
in the left lane is constant, independent of the car density (at least at those values of
interest here). In the right lane, a certain fraction of the cars drive with a low, fixed
speed, but passing (by changing lanes only during passing, and with instantaneous
acceleration) is possible. Thus, as long as the density in the left lane permits passing,
that is, as long as there is space enough between the cars, the overall flow depends
continuously upon the overall density. However, as the density reaches the value where
the left lane density prohibits passing, the overall flow drops discontinuously to that
of the two lanes considered separately. Although multilane traffic with passing has
been studied previously (e.g., [18]), no model similar to the one proposed above is
known by the author. Theconsequences of this model should be an object of future
investigation.

In either application, the procedures of this paper are constructive, and suggest
a numerical method. The major idea of our method is to approximate the flux function

f with a piecewise linear function, and approximate the initial value function Uo with
a step function [3], [7], [9]. By this procedure the original Cauchy problem is approxi-
mated by Riemann problems, and the solution of these consists of shocks only. We
call this method a front tracking method. Shocks of the solution are traced without
numerical dispersion, whereas rarefaction waves are approximated by a sequence of
small shocks. Such methods have been extensively developed by the Oslo group [1],
[2], and have turned out to be computationally and mathematically successful.

The following definition simplifies the notation.
DEFINITION. Let u_ and u+ denote the points (tL lim_.-f(u)) and

(tT, lim,_, a+ f(u)), respectively. We write u_ < u/ if lim,_a- f(u) < lim,_ f(u ), and
say that f is double valued at the jump discontinuity at u

Throughout this paper we will assume that u_ < u/.The case u/ < u_ can be
treated symmetrically. We will treat u_ and u/ as being two different u values, and
we will let t denote any of them.

The fact thatf is discontinuous implies that the existence results of, e.g., Krushkov
[13] and Kuznetsov [14] do not apply to this problem. A somewhat similar "discon-
tinuous problem" is the problem with a flux function discontinuously varying with x.
This latter problem is solved in [5] by combining a technique of Temple [20] with
front tracking methods by Dafermos [3] and Holden, Holden and Hegh-Krohn [9].
In this paper we will build mainly on [9]. By using front tracking as our method of
analysis, we can avoid estimates involving the boundedness of the derivative of f, and
thereby we are able to prove existence of a solution of the Cauchy problem. Our work
will be based on, extend, and partly parallel the previous works by Holden, Holden,
and Hegh-Krohn [8], [9], where similar techniques are used to study the continuous
case. As for their works, our method is based on the solution of Riemann problems
for (0.1), which will be discussed in some detail.

1. The solution of the Riemann problem. In general, the Riemann problem of (0.1)
is the initial value problem consisting oftwo constant states separated by a discontinuity,

f
(1.1) u(x, O) "{

t u for x > O.
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The Riemann problem when neither of /’/l, Ur equals t7 is easily solved by the
well-known procedure of taking convex envelopes of f between u and ur. Note that
even though f is not continuous between Ul and ur, the convex envelope of f with
respect to the interval (Ul, ur) is continuous and piecewise smooth. Thus, we obtain
the familiar fan-like solution picture in the x plane of waves propagating with finite
speed. In general the waves are smooth (rarefaction waves) or shocks, the latter being
discontinuities traveling with a certain shock speed. A shock wave with left and right
states ul and u2 will be denoted a Ul/U2 shock. However, since we may have, for
example, U < l < Ur, then, if fi is part of the solution, we should specify whether we
have u_ or u/.

Special care should be taken when either u or u equals tT. The following lemma
is easily verified by examining convex envelopes.

LEMMA 1.1. The Riemann problem with initial values u fi and ur has a unique
solution with waves offinite speed only.

However, if Ur U_ < Ul, or u u+ > Ul, we have to extend the concept of convex
envelopes.

DEFINITION. The convex envelope of the function f with respect to the interval
(Ul, u/), where f is double valued at u_ < u/, is defined by the convex envelope of f
with respect to the interval (Ul, u_) connected to the line from u_ to u/.

The convex envelope defined above is a curve in the u-f(u) space, which may
have infinite slope with respect to u. Thus, a general Riemann problem (1.1) is solved
by tracing the convex envelopes of f with respect to the interval (ut, Ur), using the
definition above if necessary. The solution generally consists of a fan of waves with
finite speed, and possibly one shock u_! u/ or u+/u_ with infinite speed. Note that the
Riemann problem Ul u_, u u/ or vice versa, is solved by a single shock of infinite
speed to the right in the x-t plane. However, since the u value is constant across
such a shock, we call it a zero shock. Thus, in the sense of u, a zero shock carries no
information, but the flux value information is transported instantaneously.

See Fig. 1.1 for a simple example of a Riemann problem solution.

2. Shock interactions. After the Riemann problem solution is found, we want to
study the interaction of several Riemann problems. We will be particularly interested
in the case of a piecewise linear flux function f, which implies that the only waves
present are shocks [3], [9]. We define a single collision to be a collision involving and
creating waves of finite speed only. That is, two or more waves interact at some point
(x, t), none of which has infinite speed, and the result contains no zero shock.

In the following, rightnext front (or Riemann problem) will mean the next front
(Riemann problem) to the right of the present. Starting out with finitely many Riemann

H H

f(u)
t=0

U:Ur=U

U
x=O

X

FIG. 1.1. Discontinuous flux function and corresponding Riemann problem solution.
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problems as our initial data, we define the following algorithmic procedure for determin-
ing the solution u(x, t):

(1) Solve the initial Riemann problems, starting from the left along the x axis. If
a zero shock evolves, change the left state of the rightnext Riemann problem before
solving that problem;

(2) After having finished at 0, determine the first interaction to occur, say, at
z. Denote the interacting constant states by ul, u2,..., u4, M > 1. Here ul is the

leftmost state and u4 is the rightmost. The interaction is resolved by solving the
Riemann problem with initial values Ul ul and Ur UM. If a zero shock occurs, an
interaction is created instantaneously at the rightnext front. If this happens, or if more
interactions occur at the same time, treat them from the left, while changing the
corresponding left value of the next front when zero shocks appear;

(3) When all interactions at z are resolved, proceed to the next interaction at
some greater time, etc.

As discussed above, a created zero shock, of course, will influence the rightnext
front (or the rightnext interaction), but the following lemma assures limited distribution.

LEMMA 2.1. A zero shock emerging from (x, t) interacts with the rightnext front
instantaneously, but only with the rightnext.

Proof Assume that a u_/u+ shock is formed. The rightnext front is necessarily
of the kind u+/a where a ti, since if a u+ we had no front, and if u_ the
rightnext front was a zero shock as well, which is impossible since our resolution starts
from the left. Thus, the rightnext front is turned into a Riemann problem with initial
states u_ and tT, which, by Lemma 1.1 is solved by shocks of finite speed only. A similar
argument is valid if the zero shock is a u+/u_ shock, rl

If there is an interaction rightnext to the true collision, influence further to the
right depends on the right state of that interaction.

Provided we have a finite number of interactions at time t, this completely resolves
and continues the solution. It remains to be determined whether this procedure of
resolution is well defined, that is, whether the solution is independent of the order in
which simultaneous interactions are resolved. Firstly, by Lemmas 1.1 and 2.1, it is
easily seen that the only cases that need to be checked are when more interactions
occur with no fronts between them. The following lemma determines the resulting
solution of a sequence of simultaneous interactions.

LEMMA 2.2. For anyfinite sequence ofsimultaneous interactions creating zero shocks,
the overall result is determined by the leftmost interaction.

Proof Let 11, I2,..., IN be the sequence of simultaneous interactions. Note that
the left state of 11 and the right state of IN may be different from i, but that the rest
of the left and right states involved equal u_ and u+ alternately. We will demonstrate
that the order in which the interactions are treated does not affect the overall solution.
Assume that the sequence of Is is already obtained, and that the next interaction to
consider is 11. Assume that the right state of 11 is u_. The case of ur u+ is treated
symmetrically. Thus, by the resolution of 11, a u+/u_ shock evolves, changing the left
state of I2 to u+. However, by our assumption of the sequence, the right state of I2
was u+, so that the interaction I2 is killed. The next interaction is not altered, and I3
now is a new leftmost interaction in the remaining sequence. Thus, by continuing this
argument, we see that the entire sequence is resolved by a u+ state, which was determined
by the u+/u_ shock emerging from the leftmost interaction. [3

Thus the resolution procedure defined by treating interactions with increasing x
is well defined. We will define an event to be either a single collision or one or more
simultaneous interactions, each creating zero shocks as described in Lemma 2.2. The
latter will be denoted as a dual collision. See Fig. 2.1 for different kinds of events.
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FG. 2.1. Single collision (left) and more interactions (right).

Having determined the well-defined algorithm for treating Riemann problems
locally, we are now able to examine the procedure of solving a finite number of initial
Riemann problems globally as t--> c. The following theorem extends a result from [9].

TIaEOREM 2.3. Given a piecewise linearflowfunction with one point ofdiscontinuity,
and an initial value function Uo(X) consisting offinitely many constant states separated
by discontinuities. Then, even for infinite time, only a finite number of events occur, and
the overall solution u(x, t) consists of a finite number of constant states, separated by
shocks.

Proof Let N be the number of u values between whichf is linear, plus the number
of initial u values not in this set. Thus we may number the possible u values
wl, w2,..., wN. Let L(t) be the number of shock lines for u(x, t), that is, the number
of shock lines for a front wi/wj is Ii-jl, and let F(t) be the number of shocks in
u(x, t). Define the function G(t)= NL(t)+ F(t). Then G(t) is obviously nonnegative.
We will show that G(t) is decreasing at each event, leaving us with a finite number
of possible events only. First, if the event is a true collision, the theorem from [9] is
valid. Examine, therefore, a dual collision. We will compare the dual collision with
two collisions, connected by a zero shock of large but finite speed (see Fig. 2.2). Note
that we may always find a speed S so that no other interaction takes place before the
shock with speed S reaches the position of the right interaction. We name this the
split case. Note that the result in the two cases are the same. Obviously, Gbefore and

U+

Um:U

U+

FIG. 2.2. Original dual collision (top) and split collision (bottom).
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Gafte is the same for the two cases, and since we know that G is decreasing for the
split case [9], the same is valid for the dual collision. If more intermediate interactions
were killed in between the left and right interaction, it is easily seen that G decreases
even more. Thus, we have a finite number of interactions, which gives only a finite
number of shocks, dividing the x-t plane in a finite number of polygons where the
solution u is constant. [3

COROLLARY. The total variation of the solution is nonincreasing.

3. Stability. We now turn our interest to the stability of the solution, both with
respect to Uo(X) and the flux function f(u). The following theorem ensures stability
with respect to the initial data.

THEOREM 3.1. If U(X, t) and v(x, t) solve (0.1) with initial value functions Uo(X)
and Vo(X), respectively, Uo and Vo being step functions with finitely many values, and so
that Uo(X) Vo(X) outside some finite interval [- a, a ], andf being piecewise linear with
one point of discontinuity, then

I ’u(x, t)-v(x, t)[ dx<- f ,Uo(X)-Vo(X), dx.

Proof Assume that Uo(X) and Vo(X) are constant at the intervals Ii =(a, a+),
where i= 1,2,..., M, and a=-c, a+=. We want to construct a sequence
{Uo,.} so that Uo, Uo and Uo,u Vo. This construction is done by taking the intervals
I one by one, and by moving the previous Uo, towards Vo at g of an interval every
time. Thus, if Uo w., and Vo w,, at interval/, then N = 31s- tl. Let {w} be the
set of initial and possible values for u. Note that Uo, differs from Uo,+ only at 1/2 of
some interval I, and that !,Uo Uo,+al Iw w+l for some j at this interval. Further-
more, [Uo(X)-Vo(X)[ f_’_ [Uo,i-Uo,+[,. Let u(x, t) be the solution of (0.1) with
initial value Uo, g. We then have

t)-v(x, t)l dx <= dx

=< lUo,- Uo,+ll dx lUo(X)- Vo(X)] dx,
i=1

the latter inequality by Lemma 3.2 below that is taken from [8]. U
LEMMA 3.2 (Holden, Holden, and H0egh-Krohn).

ax <= I o,, Iax.
i=1

Proof The proof [8] considers the time derivative of lu- u+l dx at the intervals
from Theorem 3.1. To transfer the result from [8], we observe that this derivative is
zero also if ui u_ and ui+l u+ or vice versa.

Note that Theorem 3.1 implies stability also for higher-dimensional problems.
This follows by the dimensional splitting analysis by Holden and Risebro [10].

Next we are interested in stability with respect to the flux function f At this point
we will assume that the discontinuity of f is fixed, and so are the two corresponding
points u_ and u/. With this assumption, we may state the theorem.

THEOREM 3.3. Let f and g be piecewise linear functions with a coinciding point of
discontinuity at u=, and let v(x, t) and u(x, t) be the corresponding solutions of
ut +f( u), 0 and vt + g(v) 0 with the same initial value, a stepfunction takingfinitely
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many values" Uo(X) Vo(X). Then

d--; lu(x, t)-v(x, t)[ dx <- TVx(f(uc(x, t))-g(vc(x, t)))

<- TVx(f(uo,(x, t))-g(Vo,c(X, t))),
where u(x, t) and the Total Variation (TVx) are defined below.

DEFINITION. Let ui be the value of the step function u(x, t) taken at the interval
(ai, ai+l), i= 1, 2,..., M, for fixed t. Then u(x, t) is defined by

/’/i for a <- x <- ai+l

Uc(X, t) (x-ai++e)(ui+ ui) forai+ e<=x<=ai+l.ui+
E

Here e 1/2 mini {ai+, ai}.
Note that u(x, t) is a piecewise linear, continuous function.
DEFINITION. TVx(f(u(x))) is defined by

N

TV(f(u(x)))=sup Z If(u(x,+,))-f(u(x))l,
i=1

where the supremum is taken over all finite partitions of {xi}.
Note that u in the above definition should be continuous.

Proof of Theorem 3.3. The proof of Theorem 3.3 carries over literally from [8] by
the following observation. Define the function F(u)=f(u)-g(u), and note that since

f and g are assumed to have identical discontinuities, F is continuous and piecewise
linear. The analysis of [8] is based on estimates of f-g, and these estimates are still
valid by the properties of F. [3

We now have stability results for piecewise linear flux functions with piecewise
constant initial data, and we will use this, together with knowledge of zero shocks, to
conclude with existence and uniqueness results for problem (0.1).

4. Existence and uniqueness. We first restate the problem that will be our object
of study for the rest of this paper. The equation is

(4.1) u,+f(u),:O,
with initial data u(x, O) Uo(X). The flux function f is measurable and continuous with
bounded derivative, except at u--/ as above. The initial value function Uo(X) is
measurable and of bounded variation, as is fo(x)=f(uo(x)). We assume there are
values us < /< Us and xs < Xs, so that for x -< xs, and x >= Xs, Uo(X) is not in the interval
(us, Us). The latter restriction is put on Uo(X) to avoid zero shocks traveling unlimited
distances instantaneously. We have the following lemma to ensure this.

LEMMA 4.1. There exist numbers s and S, -oo < s < S < oo, and so thatfor x < xs + st
and x > Xs + St we have either u (x, t) < us, or u (x, t) > Us. In these areas the solution
u(x, t). is determined by the existence and uniqueness results in [8].

Proof Since Uo(X) is of bounded variation, we may assume that Xs is so that either
Uo(X) < us or Uo(X)> Us for x > Xs, and similarly for x < xs. The maximum speed of
waves entering the region x > xs is then determined by the maximum slope of the
function

f(u)

fs(u)= f(u_)+
f(u)

f(us) -f(u_)
US U_

for u =< u_,

(u-u_) foru_<-u<=us,

for u >- Us.
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By definition fs has a finite maximum slope, S. Similarly we define fs for waves entering
the other region, x < x, and the lemma follows.

Before proceeding we need the following lemma from [8].
LWMMA 4.2. Assume that a measurable function f is approximated by a sequence of

measurable, uniformly bounded functions {gn} satisfying

tla
forx (a, b)-An,

where the Lebesgue measure of An, m(An) satisfies m(An) < 1/nan, {an} being an

increasing sequence of real numbers. Then for m > n, the sequence {gn} satisfies the
following Cauchy criterion:

’b 2(b-a) 4M
Ig.(x) grn(X)l dx <=

nan nan
where M is such that Ig.(x)l < M.

We are now in the position of constructing a sequence of solutions, which we will
show converges to a solution of (4.1): For given k, we select k different u values, say
Wl, w2,..., Wk, among which we should have the two entries for tT, u_, and u/. Then,
for given f, we construct fk by evaluating f at the chosen u values, making fk piecewise
linear between these values. Note that we by this construction keep the correct
discontinuity. Finally we make a piecewise constant approximation of Uo(X) from
below, using only the k different u values at a finite number of sample points. We
denote this approximation Uo.k(X). Now, let Uk(X, t) be the solution of the equation
u, +fk(U)x =0 with initial data UO,k(X). This defines a sequence of solutions, and we
have the following lemma.

LEMMA 4.3. {ui(x, t)} is a Cauchy sequence in Ll,oc.
Proof By the definitions made above, we apply Theorem 3.1,

lu,(x, t)- u(x, dx

<= [ lUo,,(x)- Uo,(x)l dx + trVx(f,(uo,,(x))-f(uo,,(x))).
./

As for the corresponding result in [8] the right-hand terms vanish; the first by Lemma
4.2, and the second by the construction off. Note that allf have the same discontinuity
at fi, and are continuous elsewhere. Thus, the function F,..j defined by Fu(u) =f(u) -f(u)
is continuous, which makes the second term vanish [8].

Since f is double valued at u--t, we cannot conclude from Lemma 4.3 that the
sequence of fluxes, {f(ui)} converges. However, by the knowledge of the Riemann
problem solution we find the following lemma.

LEMMA 4.4. If the original Uo(X) is continuously increasing at Xo, where Uo(Xo)=
then for large the approximated solution contains u_, and vice versa.

Proof Since Uo is continuously increasing, for sufficiently large, the approxima-
tion Uo, is also increasing at Xo. Thus, the Riemann problem solution of convex
envelopes invokes u_ but not u+.

LEMMA 4.5. {f(ui)} is a Cauchy sequence in Ll,lo
Proof By Lemma 4.3 we know that {f(u)} is Cauchy with respect to domains

where {u} is not converging to ti. Thus, it is sufficient to examine initial values close
to i. This is a study of cases, of which the continuously monotone cases are covered
by Lemma 4.4. The remaining are true Riemann problems, of which we may have only
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finitely many (by the restrictions of Uo and fo), and by the Riemann problem solution
algorithm, we have convergence also for these. D

We may now define the limiting functions of {ui} and {f(ui)} by defining the limit
u(x, t) to be the limit of ui(x, t) so thatf(u(x, t))f(u(x, t)). Note that this is a valid
definition since by Lemma 4.3 we may define a family {t(x, t)} so that for all g in this
family, ui- in Ll,loc. The ts differ only at sets of zero measure, or with respect to
u_/u+. Thus, as f is single valued, f(u)-.f(u) in L,o, and the problem where f is
double valued is resolved by Lemma 4.5, and thereby defining which fi value to give
the flux value f().

THEOREM 4.6. e limiting solution u(x, t) defined above is a weak solution of (4.1),
that is,

(u(x, t),(x, t)+f(u(x, t))x(X, t)) dxdt+ Uo(X)(x, O) dx=O

for all C
Proof Since every u(x, t) is a weak solution of u, +f(u) =0, we have

(u(x, t)t(x, t)+f(u(x, t))x(x, t)) dxdt+ Uo(X)(x, O) dx

([u(x, t)-ui(x, t)],(x, t)+[f(u(x, t))-f(ui(x, t))]x(X, t)) dxdt

+ f (Uo(X)- Uo,(x))(x, o) dx

(l(x, - u(x, 1 I,(x, 1

+[f(u(x, t))-f(ui(x, t))[Idpx(x, t) I) dxdt

+ [ Io(X- o,(x)l I(x, dx.

Now let K =max {[b[, [bt[, [bx[}, and investigate each term of the above expression:

]u(x, t)-ui(x, t)l Ib,(x, t)] dx dt <-K ]u(x, t)-u,(x, t)[ dx dt--> O,

and

[U0(X Uo,i(X)] [(D(X, 0)[ dx K I [U0(X) U0’i(X)[ dx dt --> O,

by the definition of u(x, t) and Uo,(x). Finally, by Lemma 4.5 and the definition of
u(x,t),

for f lf(u(x, t))-f(ui(x, t))’14x(X, t)l dxdt

<- K If(u(x, t))-f(ui(x, t))l dxdt->O.

Having proved existence of a weak solution, it remains to prove uniqueness of
the solution. By uniqueness we mean that the constructive approach using front tracking
gives a unique limit solution.
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THEOREM 4.7. The weak solution defined from Theorem 4.6 is the unique limit of
the constructed sequence ofpiecewise constant solutions with respect to L,loc.

Proof. Assume that both v(x, t) and u(x, t) are weak solutions of (4.1) constructed
by the front tracking method. Then

A I lu(x, t)- v(x, t)l dx

the latter by Theorem 3.3 and Vo(X)= Uo(X). The sum runs over intervals I where Uo
is continuous. Thus, by the definitions of Uo,(x), Uo,,,(x), u(x, t), v(x, t), , and
vanishes as i- m. U

5. Finitely many discontinuities. The extension to a flow function with finitely
many discontinuities where the one-sided limits exist is straightforward by the observa-
tion that the zero shocks that may occur at each Riemann problem solution are well
defined. By well defined, we mean that given u and u we may have only one zero
shock traveling to the leR, and one traveling to the right. By symmetry arguments, the
results of this paper are valid for zero shocks traveling in both positive and negative
directions. Zero shocks colliding at a dual collision are identical, and, therefore, the
algorithmic procedure for solving multiple Riemann problems is still valid when being
careful about changing the correct leR and right states at neighboring fronts and
interactions.
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ASYMPTOTIC BEHAVIOR OF ONE-STEP COMBUSTION MODELS WITH
MULTIPLE REACTANTS ON BOUNDED DOMAINS*

JOEL D. AVRIN?

Abstract. The author considers reaction-diffusion systems on bounded domains modeling one-step
reactions with Arrhenius kinetics in cases where the fuel consists of several species. The author assumes
zero Neumann boundary conditions for the mass fractions and it is shown that one mass fraction decays
to zero while, generally, residual amounts ofthe other species remain. These amounts are calculated explicitly
from spatial averages of the initial conditions and it is shown that only if certain precise conditions are met
will all mass fractions decay to zero. If additionally the temperature satisfies zero Neumann boundary
conditions or fixed positive Dirichlet boundary conditions, then the temperature’s asymptotic behavior is
explicitly calculated as well.

Key words, reaction-diffusion equations, boundary conditions, spatial averages, steady-state
convergence
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1. Introduction. We consider one-step reactions with multiple-species fuels that
arise in combustion theory. An example of this type of reaction is (see, e.g., [6, p. 6])

(1.1) 2NO+ C12- 2NOCI.

The general one-step reaction involving the reactants and products A1,..., An can be
written as

N N

(1.2) b’iAi --> E tziAi
i:1 i:1

where the stoichiometric coefficients ui and/xi are positive integers;/x 0 (respectively,
ui 0) for each Ai that is not a product (respectively, not a reactant) in (1.2). In (1.1),
for example, if AI= NO, A2=C12, and A3 NOCI, then Ul =/x3=2, u2 1, while
/3 fi/’l J-/’2 0.

By relabeling, if necessary, we can assume that for some M with < M < N
A1,..., AM are the reactants, i.e., ui O, i-- 1,..., M. Let Y Y(x, t), i-- 1,..., M
denote the respective mass fractions ofthe Ai and let T T(x, t) denote the (dimension-
less) temperature. Here x 12, a bounded domain with smooth boundary 0f, and >= 0.
For positive constants B and E let f(T) denote the Arrhenius rate law f(T)=
B exp (-E/T), and set

(1.3) co=[i=l YT’]f(T).
For 1,..., M set ai miui, where mi is the molecular mass of the ith species, then
the following system of reaction-diffusion equations models the reaction (1.2) within
the framework of the isobaric approximation of slow combustion:

(1.4a) T, A T+ Qw,

(1.4b) Y/t diA Y ogio.), 1,..., M.
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Here Q, d, d2,..., dM are positive constants, with Q denoting the heat release. By
way of example, the reaction-diffusion equations for the reaction (1.1) are, with
o) y y2f T

(1.5a) Tt=AT+Qw,

(1.5b) Y,, d,A V, 2m,w,

(1.5c) Y2, d2A Y2- m2w.

For further physical background on (1.3) and (1.4), see, e.g., [6], [27], or 13, pp. 57-59].
There is a wide body of literature associated with the simpler one-step reaction

A- B and its associated set of reaction-diffusion equations. With 11- R, the existence
of traveling-wave solutions has been considered in [5], [14], [15], [23], [25], [26] and
their stability vs. instability analyzed in [7], [21], [24]. The general Cauchy problem
with 11 =R has been considered in [1], [13], [19] and a similar model describing platelet
aggregation has been studied in [17], [18]. The general Cauchy problem when f is a
bounded domain has been studied, for example, in [2], [9], [10], [16], [20]; see also
the references contained therein. Our purpose here will be to extend the qualitative
theory developed in [2] to the system (1.4). Our basic tools will consist of standard
comparison principles, a lemma appearing in a paper by Fitzgibbon and Martin [8,
Lemma 2.5], and some integral estimates which we develop here that generalize some
arguments used in [3].

We consider the following sets of boundary conditions on T and the Y, i=
1,..., M" either

(1.6) OT_OY_o on0f,i=l,...,M,

where , is the outward normal on 11, or for a sufficiently smooth function g on 011,

(1.7a) T g on 011,

(1.7b) 0Y_0 on011, i=l,...,M.

Under these conditions it is possible to establish the following global existence and
uniqueness result; the proof, by appealing to the techniques developed in [22, Chap.
14], is only a slight generalization of [2, Thm. 2.4] and can therefore be safely omitted.

THEOREM 1.1. Let To=--T(x, O) and Yo=-Yi(x, 0), i= 1,..., M, be nonnegative
and in C (11) and let w be the solution of the Dirichlet problem

(1.8a) Aw=0 in 11,

(1.8b) w= g on 011.

For a given integer k >= 2 choose g smooth enough so that w ck((). Then for either set

ofboundary conditions (1.6) or (1.7) there exist unique nonnegative global strong solutions
T and Y, 1,..., M, of (1.4) such that T, Y C((O, +c); ck(11)) f3 C([0, +);
C(11)) for each j>-1.

Before stating our main result we first note a fairly standard fact about the Laplace
operator on 11. Let W(t) exp (dA) where A is equipped with zero Neumann boundary
conditions. Then for any h C(I)) we have that

(1.9) lim W(t)h hav
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uniformly in x, where

(1.10) hAv lfl
h(x) dx.

See, e.g., [2, Prop. 3.1] for a proof of this very intuitive result.
If we assume the conditions (1.6) and set G(x, t) T(x, t) + (Q/al) Y(x, t), set

Go G(x, 0) and let (Go)Av equal the right-hand side of (1.10) with h replaced by
Go, then by taking appropriate linear combinations in (1.4), integrating over f, and
dividing by I we obtain

(1.11)
la

G(x, t) dx Go)Av.

Equation (1.11) will be useful to us in what follows; additionally, (1.11) serves as a
basis for establishing uniform bounds on T. Bounds on all the Y follow immediately,
since it is easy to see from the maximum principle that [[Y(., t)ll_-<llYoll, i-
1,..., M, for all --> 0. That there exists a constant Mr such that II(Y(’, t)])-M for
all _-> 0 follows from (1.11), using previous work by a number of authors on a particular
class of reaction-diffusion systems of which (1.4) is a special case; see, e.g., [11] and
the references contained therein. If conditions (1.7) are assumed, a bound on T can
be obtained by modification of these arguments, but in fact boundedness of T in this
case will follow independently from our convergence results below.

Let YiO)AV equal the right-hand side of (1.10) with h replaced by Yo, 1,..., M.
By relabeling, if necessary, we can assume that (1/a)( YO)AV
mini=M {(1/ai)(Yo)av}. Set (Zo)Av=(1/a)(Yo)Av--(1/a)(Yo)av, i=2,..., M,
then each (Zo)av is nonnegative. With these preliminaries in mind we are ready to
state our main result.

THEOREM 1.2. Let To, Yo, i= 1,..., M, and (Zgo)av, i=2,..., M, be as above
and suppose without loss of generality that all of the (Zio)Av are nonnegative. Suppose
under either ofthe conditions (1.6) and (1.7) that To is not identically zero and ifconditions
(1.7) are assumed suppose that g(x) > 0 for all x 0. Then Y(x, t) converges uniformly
in x. to zero as t- o, while

(1.12) lim Y(x, t)= a(Zo)av, i= 2,..., M
t---

uniformly in x. Ifconditions (1.6) are assumed, T(x, t) converges uniformly in x to Go)Av
as , while if conditions (1.7) are assumed, T(x, t) converges uniformly in x to w as

o, where w is as in (1.8).
Remarks. (a) Note that Theorem 1.2 provides a complete description of the

asymptotic behavior of the system (1.4), subject to the boundary conditions (1.6) or
(1.7), whenever g is everywhere positive. The physical interpretation of (1.12) is that
a residual amount of A always remains unless (Zo)AV is identically zero, 2,..., M.
There is certainly a precedent for the positivity assumption on g: see, e.g., [9], [20],
and [10, 5.1, 6.1, and 10.2] wherein the condition g--1 is assumed in a model of
the one-species fuel case.

(b) The convergence of the Y to their respective steady-states is eventually
exponential in if and only if u 1. If ’1> 1, the eventual convergence is no faster
than a negative power of t, as we will see in the proof below.

The spatial averages of T and the Y for _-> 0 will also play a key role in the
proof of Theorem 1.2. Following [8, 2] we introduce the following notation for these



ASYMPTOTIC BEHAVIOR OF ONE-STEP COMBUSTION MODELS 293

quantities"

(1.13a) T(t)= T(x, t) dx,

(1.13b) Yi(t) - Yi(x, t) dx, 1,..., M.

The following lemma follows from the proof of [8, Lemma 2.5] with only slight
modifications made to the arguments so that they apply to (1.4) as well as the systems
considered in [8].

LEMMA 1.1. Let T and Yi, i= 1,..., M, be as in (1.13). Then under the conditions

of Theorem 1.1 we have that

(1.14) lim Y/( , t) Y(t)[[ 0, i=l,...,M

and if conditions (1.6) are assumed we also have that

(1.15) lim lIT(., t)- T(t)ll= 0.

We will, for completeness, give a proof of Lemma 1.1 in 3 below. The proof of
Theorem 1.2 will appear in 2. We close this section by demonstrating that under the
conditions of Theorem 1.2 there exist constants a > 0 and t > 0 such that T(x, t)>= a
for all x in f and all => h.

PROPOSITION 1.2. Under the conditions of Theorem 1.1 and the boundary conditions
(1.6) there exists ce and tl as noted above whenever To is not identically zero.

Proof We have by Theorem 1.1 that T(x, t) and Y(x, t), {1, 2, 3}, are nonnega-
tive for all t=>0. Hence to(x,s) is nonnegative for all x12 and all s->_0 by (1.3). Let
Wo(t) exp (tdoA) where A is equipped with zero Neumann boundary conditions, then
T satisfies the integral equation

(1.16) T(t)= Wo(t)To+Q Wo(t-s)to(s) as,

where we have suppressed the dependence on x. Since W0(t) preserves nonnegativity,
it follows from (1.16) (or the maximum principle) that T(x, t)>= (Wo(t)To)(X) for all
t_>0. The result then follows from (1.9) with h replaced by To, since if To is not
identically zero then (To)av is strictly positive; here we can have c (To)av--e for
any e with 0 < e << To)Av.

PROPOSITION 1.3. Under the conditions of Theorem 1.1 and the boundary conditions
(1.7) there exist o and tl as noted above for any g with g(x) > 0 for all x Of.

Proof This result is almost identical to [2, Thm. 4.2]; we include a proof for
completeness. Again we have that to(x, s) is nonnegative for all x f and all s => 0.
The integral equation for T is now (for w as in (1.8))

(1.17) T(t) Wo(t)( To- w) + w + Q Wo(t- s)to(s) as,

where now A is equipped with zero Dirichlet boundary conditions. Again Wo(t) is
nonnegativity-preserving, thus

(1.18) T(x, t)>-(Wo(t)(To-w))(x)+ w(x)

for all >- 0. Since 0f is compact there exists an Xo 0f such that g(x) >-_ g(xo) > 0 for
all x 0. By the maximum principle w(x)>= g(xo) for all x e f. Meanwhile, itf A is
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the first eigenvalue of-A then A l> 0 and there exists a constant Ko such that for all
hC()

(1.19) Wo(t)h[] <- Ko[[hll e-a’

for all => 0. The result now follows by substituting To-w for h in (1.19); here we can
have a g(xo) e for any e with 0 < e g(xo).

2. Proof of Theorem 1.2. We first prove the theorem in the case that the (Zo)AV
are all positive. Setting Z (1/a)-(1/a) Y we have, by taking appropriate linear
combinations of (1.4b) and integrating over fl, that Z =(Zo)Av, i= 2,..., M, and
hence that =a(Zo)Av+(a/al)Y, i=2,...,M. By (1.14) we then have that

(2.1) lim ((x, t)--(/a)Y(t))=a(Zo)AV, i=2,..., M.

Then by (2.1) and the nonnegativity of Y we have that there exist constants b 0
and t 0, 2,..., M, such that for all x and all t

(2.2) (x, t) b,;

in (2.2) we can take b (Zo)Av--e, i= 2,..., M, for any e with 0< e << a(Zo)AV.
From Proposition 1.2 or 1.3 we have that there exist an a > 0 and a t > 0 such that

(2.3) T(x,t)a

for all x and all t t. Set to=max {t, t2,..., t); then from (2.2), (2.3), and the
monotonicity if f we have that

=- (x,t)(2.4) ca Y1 (x, t) > aw
Mfor all x and all to, where c b2b3,..., b f(a). Standard comparison prin-

ciples (see, e.g., [22]) now assert that if u u(t) is a solution of the ODE initial-value
problem

(2.5a) -cau ’,

(2.5b) u(0) Yoll,

then for all x and to

(2.6) O Y(x, t)u(t-to).

But (2.5) can be easily solved by the methodof separation: if 1 then u(t)=
]lYolexp(-ct), while if u>l then u(t)=(at+b)2, where y=l/(u,-1), a=
ca,/(u-l), and b=llYo]],. In either case we have from (2.6) that Y(x, t)’O
uniformly in x as . Hence Y(t)O by the bounded convergence theorem. The
stated convergence of Y2,..., Y now follows from (2.1). The stated convergence of
T(x, t) in the case that conditions (1.6) are assumed follows from (1.11), (1.15), and
the convergence of Y (and hence Y) to zero.

We now focus on the case of boundary conditions as in (1.7) and let w be as in
(1.8). By replacing Toand Ko, 1, 2, 3, by T(x, to) and K(x, to), 1, 2, 3, if necessary,
we can without loss of generality assume that (2.6) holds with to 0. Then, combining
(2.6) with (1.19) we have for K Y2oll Y3oll Yol]KoB that

(2.7) Wo(t-s)(s) dsN g e-,(’-’[u(s)] ’ ds,
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where, on the left-hand side of (2.7), we suppress the x-dependence. In the case Vl 1
we then have, for A2 --C.OllP and K g Y,oll, that

Wo(t-s)to(s) ds<=K1 e-x’(t-s) e-2S ds

(2.8) K e-’t e(-)s ds

K (e_,_e_,,).

We have dealt with the right-hand side of (2.8) in earlier works; see, e.g., [3], [4]. If

> 1, let , a, and b be as above so that u(t)=(at+b)-,, then

io io(2.9) Wo(t-s)(s) dsNK e-(’-S(as+b)-ds,

where /( 1); note that b > 0 so that the integral on the right-hand side
of (2.9) is well defined.

Since > 1, given e > 0 we can select a constant k > 0 such that

(2.10) K (as + b)- ds <-.
2

Then, for this choice of k,

K e-,(’-(as+b)- dsNKb- e-, e ds+-
o 2

(2.11)
E

K e-’X +-
2’

where K2=(1/A1)Kb-ez(exlk- 1). We thus see by (2.11) that the right-hand side of
(2.9) can be made as small as we wish by choosing large enough. Hence from (2.8)
and (2.9) we see that

(2.12) lim Wo(t-s)w(s) ds=O

uniformly in x. The convergence of T to w now follows from (1.17), (2.12), and (1.19)
with h replaced by To-w.

We now consider the "critical" cases when some or all of the (Zio)av are zero.
By relabeling, if necessary, we can assume that (Zio)AV O, i= 2,..., Mo, for some

Mo with 2<-Mo<-M, and that (Zo)av>O, i=Mo+l,..., M. Then from the remarks
preceding (2.1) we have that

(2.13) (t)-(a--! ’l(t) 0, i= 2,..., Mo.
\o1]

Combining (2.13) with (1.14), we obtain that

(2.14) lim[[Y("t)-(cr-) =0, i=2,..., Mo.

Thus given e < 0 there exists a constant > 0 such that

(2.15) Y/(x, t) > (Y(x, t)- 8), i=2,..., Mo
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for all x f and all _-> ti. Meanwhile, as in the first part of the proof, we can find
constants bi > 0 and ti > 0 such that (2.2) holds for all x 12 and ->_ ti, Mo+ 1,..., M.
Let tl and a also be as in the first part of the proof and set to max {tl,..., tM},

M b ’ d of(a ). Thend min {a2/al,..., aMo/a,}, Vo v2 +" + VMo, and c al[I-I_-Mo+,
standard comparison principles now assert that if u u(t) solves the ODE initial-value
problem

(2.16a) =-cu’(u-e)

(2.16b)

then for all x 1) and all t-> to

(2.17) 0<= Yl(X, t)<=u(t-to).

Setting u(t)- u(t)-e, we can rewrite (2.16a) as

(2.18) ft -c(u + e)’(u).
Then u(t)<= O(t) where 0 solves the ODE initial-value problem

(2.19a) -c(O)

(2.19b) (0)--II Y,ollo- e

with ,= + Uo. Since ,i_-> 1, i= 1,..., M, we have that ,> 1; hence O(t)=(at+b)-where y=l/(,-1), a=c/(,-1), and b=(llY,ollo-e) ’-. Since u(t)=u(t)+e <-

a(t)+e, we have from (2.17) that for all x6f and all t>=to

(2.20) 0 <- Yl(X, t)<--(a(t-to)+b)-V+e.

Since e is arbitrary we conclude from (2.14) and (2.20) that Y(x, t)0 uniformly,
1,..., M0, as t-.
The stated convergence of T in the case that conditions (1.6) are assumed now

follows exactly as before from (1.11). In the case that conditions (1.7) are assumed,
we need only slightly modify our arguments: (2.9) becomes

Io’ IoWo(t-s)to(s) ds<-K e-,t-(as+b)-’ds+eK e-,’- ds

(2.21)
<- K e-(’-(as + b)- ds + e K.

The integral on the right-hand side of (2.21) goes to zero exactly as before; combining
this with the fact that e is arbitrary we see that (2.12) again holds here. The convergence
of T to w now follows as before, thus completing the proof of the theorem.

3. Proof of Lemma 1.1. We have seen in 1 that T and the Y(x, t) are uniformly
bounded (specifically Y/(’, t)ll --< r,oll , i= 1,..., M, and liT(., t)ll _-< for all
t_-> 0). Hence by the Schauder estimates (see, e.g., [12]) there are uniform bounds for
IV T and IV YI as well, 1,..., M. Differentiating (1.4) through by V, and using these
gradient estimates, the product and chain rules, and the smoothness of f, we then
obtain uniform bounds for ]O/OtV T] and IO/OtV Y], i= 1,..., M. Let Q, 11 [0, t] for
each > 0. Integrating (1.4b) over Qt we obtain

(3.1) gl(’, t)ll, / Oil O.)(X, s) dx ds <-_ Ylo[[1
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where II" I1 denotes the norm on LP(’), 1-<p< co. Hence

(3.2) oo(x, s) dx d <-_ Yoll.

Multiplying (1.4b) by Y/and integrating over Q, we obtain

(3.3) IV r,I = dx ds -<--II Y,oll i-- 1 M.

If conditions (1.6) are assumed, we multiply (1.4a) by T and integrate over Q, to obtain

(3.4) Z(., t)IIN + I TI= dx as <- QM ,o(x, s) dx d +- Zoll.

From (3.3) and by combining (3.2) and (3.4) we thus see that

(3.5 I 1 x as < oo, i= ,..., M,

and if conditions (1.6) are assumed that

(3. I rl ax a <

The uniform bounds on 10/0V TI and 10/0V YI, i= 1,..., M, H61der’s inequality, and
(3.5), (3.6) then show that

(3.7) lim IV (’, t)l I1 0, i= 1,..., M
t

for all p 1 and, if conditions (1.6) are assumed, that

(3.8) lim VT(., t)l lip 0

for all p 1.
If A is the first positive eigenvalue of the operator -dA equipped with zero

Neumann boundary conditions, then by eigenfunction expansion we see that

Ai[l (., t)- (/)ll ’, t)l II, i ,..., M(3.9)

and hence

(3.10) lim Y( ", t)- Y(t)l] 0

From (3.10), the uniform bounds on the Y, and H61der’s inequality, we then have that

(3.11) lim Y(’, t)- Y(t)ll --0, i= 1,..., M

for all p -> 1. Selecting p > n, we have from the standard Sobolev embedding theorems
that there exists a constant K K (n, p, ) such that

(3.12) r,(., t)- Y,(t)ll<= K[II Y,( ., t)- r,(t)ll/ IIIY,(’, t)l I13, i- 1,.., M,

where we note that VY(t)=0. Thus (1.14) follows from (3.7), (3.11), and (3.12).
Similarly, starting with (3.8), (1.15) follows if conditions (1.6) are assumed. This
completes the proof of the lemma.

Remark. From (3.6) on, the arguments used here are virtually identical to those
employed in the proof of [8, Lemma 2.5].
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ON A DISSOLUTION-GROWTH
PROBLEM WITH SURFACE TENSION

IN THE NEIGHBORHOOD OF A STATIONARY SOLUTION*

F. ABERGELt, D. HILHORSTt, AND F. ISSARD-ROCHt

Abstract. The authors consider a one-phase Stefan problem with surface tension in dimension
two and show a well-posedness result in the neighborhood of a stationary solution, in the case that
the moving interface is parametrized in the form y f(x,

Key words. Stefan problem, surface tension, free boundary, nonlinear parabolic PDEs

AMS(MOS) subject classifications. 35K55, 35R35

1. Introduction. Consider a system composed of a solid phase of a single com-
pound and an incompressible liquid phase which is a dilute solution of that compound,
and suppose that the evolution in time of the system is governed by two processes:
a diffusion process in a diffusion layer in the fluid and a dissolution-growth process,
located at the interface between solid and fluid.

The mathematical problem can be described by three basic equations

(1.1) Ct AC in the diffusion layer,

where C C(x, y, t) is the concentration in the liquid phase,

oc
On-lr(t)

where F(t) denotes the interface between solid and fluid, n is the normal unit vector
to the interface directed towards the fluid, and Vn is the normal velocity of F(t),

(1.3) Vn -aeK -- CIl-,(t

where is a positive constant, the positive constant is proportional to the surface
tension of the interface, and K is the curvature of the interface. Let us note that in
view of (1.3), the boundary condition (1.2) can be rewritten as

(c-  nC)
In this paper, we consider the case where the interface can be parametrized in

the form y f(x, t) and denote by e the width of the diffusion layer. Then f and C
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Institute for Mathematics and Its Applications at the University of Minnesota.

tLaboratoire d’ Analyse Numrique, Centre National de la Recherche Scientifique, et Universit
Paris Sud, 91405 Orsay Cdex, France.

299



300 F. ABERGEL D. HILHORST AND F. ISSARD-ROCH

satisfy the following (rescaled) problem:

(x, t) e 11 x lie+,

(x, t) e x ll+,
(x,y,t) eQi,

(x,t) eNxN+,
(,t) e R x 11+,
meN,

where f0 and Co satisfy the hypothesis H0:
-.3+Afo 6 ,pe (), Co 6 per (I) for some A 6 (0, 1), and Co satisfies the compati-

bility conditions

Co

OCo fo(z) + o x e

OCo ole-/(f’ /(1Tf;2)3/2) (x

(By the subscript per we denote functions periodic in the variable x with period 2L.)
We remark that pairs of the form (C, f) (a, constant are stationary solutions

of problem P0. The purpose of this paper is to prove the following existence and
uniqueness result.

THEOREM 1.1. There exists a positive constant Po po(T) such that if the initial
data satisfies the condition

(3+A) (2+A)Ilfoll / IICo- ll , _< po,

/.3-I-A’(3-t-)Q/2(]I x [0 T]) x per (Q)then Po has a unique solution (f, C) in ,per

where Q := {(x,y,t) e Ql,t e (0,T)}.
The paper is organized as follows. In 2, we present a physical derivation of the

problem which is due to Cournil [5]. In 3, we transform problem P0 into a problem
on a fixed domain. In 4, we recall the definitions of the Hhlder spaces that we use and
prove some properties which are useful in the following sections. In 5, we consider a
related linear problem and prove its well-posedness.

We prove Theorem 1.1 transposed to the coordinates of the fixed domain in 6
and 7. An improved uniqueness result is given in 6. The existence proof is given
in 7. It is done by means of a fixed point method: we iteratively solve the linear
problem of 5, while considering as known the nonlinear terms. The idea is to show
that the iterative map is a strict contraction from a ball of small enough radius p > p0

into itself.
Let us remark that our proof would carry over to the case of a domain given by

{(x, y, t) e R2 x N+, f(x, t) < y < A}

with A a fixed constant. A suitable change of variables for transforming the problem
to a fixed domain is then given by (A y)/(A f(x, t)), and the constants p0
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and p should be chosen small enough so that the interface does not hit the boundary
y--A.

In a forthcoming paper we shall extend our method to the proof of local existence
and uniqueness for arbitrary initial data. For the well-posedness of a very similar
problem in the case of spherical symmetry we refer to [4], [7].

For local existence and uniqueness results for related problems we refer to a study
of Duchon and Robert [6] of a quasistationary problem and to papers by X. Y. Chen
[3] and Xinfu Chen [2] about a two phase problem.

2. The physical derivation. In heterogeneous media, a problem of interest
is the creation or the consumption of one or more phases. These phenomena are
accompanied by a change in the geometry of the reaction field and, in particular, by
an evolution of interfaces. The interfaces are of essential importance: on the one hand,
they determine the geometrical configuration of the system and on the other hand they
intervene, by means of their curvature, in the equilibrium and stability conditions.

In this paper, we consider a system composed of a solid phase of a single compound
and an incompressible liquid phase, which is a dilute solution of that compound. The
evolution in time of this system induces mass transfer processes: a homogeneous one
which consists of a diffusion process in a diffusion layer in the fluid and a heterogeneous
one, namely, a dissolution-growth process, located at the interface between solid and
liquid.

Let y f(x,t) be a parametrization of the interface, let e denote the width
of the diffusion layer, and let C(x,y,t) with f(x,t) < y < f(x,t)+ e denote the
concentration in the liquid phase. The equations of the problem are deduced from the
following physical laws.

(i) Mass balance. We shall assume that the fluid is essentially at rest, so that
the convective velocity is negligible; let J denote the diffusion flux, which we suppose
given by Fick’s law:

(2.1) J -D grad C,

where the diffusion coefficient D is a positive constant.
Upon writing the conservation of mass for an arbitrary subdomain w consisting

of the same particles for each time, we obtain

d ( ) o j.gda+o (C_V_l)g.gda"0 - Cdx Ctdx +

In (2.2) Ow (respectively, 0w) is that part of Owt which makes contact with the
liquid (respectively, solid) phase, V-1 is the concentration in the solid phase, and is
the velocity of the interface.

From (2.2) we easily obtain the governing equations

(2.3) C DAC

in the fluid domain, and

oc

at the interface.
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From now on, we shall assume that V-1 is much larger than C, and write (2.4)

OC
(2.5) D--n V-lg.g.

Upon using the fact that the interface is the graph of a function f(x, t), we eventually
write (2.5) under its final form

(2.6) D
OC

V_ ft
-n V/1

(ii) Dissolution and growth of the solid. We suppose that the kinetics of dissolution
and growth follows Nernst’s law, which derives, either from a rate determining diffusion
in a layer of constant thickness, or from a rate determining first order interface reaction
[8], namely,

J nlu=f(x,t -h(C, R),

where R is the radius of curvature of the interface

(2.8) R(x, t) -(1 + f2)3/2

and the function h is given by

(2.9) h(C, R) K(C- sock

where K is a kinetic constant, so is the concentration at saturation of the solution,
and , is proportional to the surface tension of the interface.

Using (2.6)-(2.9), we deduce that

(2.10)
1
vft (1 + f2x)l/2K(C(x, f(x,t),t)- 80e-[fxx/(1Tf2)3/2),

whereas (2.1) and (2.7)-(2.9)imply the boundary condition

(2.11) D
OC

K(C- soe-fx/(l+I)/)On

on the interface y f(x, t), where n is the normal to the interface directed towards
the fluid.

(iii) Other boundary conditions. We assume that C and f are periodic in the
x-direction, namely,

C(x + 2L, y, t) C(x, y, t)
f(x + 2L, t) f(x, t)

in QI,
in ]1( R+,

and that C satisfies the Neumann condition

(2.12)
OC

(x f(x, t) -f- , t) O,On (x, t) E x I+.
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Finally we set

Kx Ky K2t
D’ O= D’ D

C=VC,
gf KL ge

D
c-Vso,

D
g=

D

and omit the tilde. The equations (2.3), (2.11), (2.12), and (2.10) transform into

which, together with periodic boundary conditions and periodic initial conditions for
C and f, yield Problem Po.

3. Transformation of the problem to a problem on a fixed domain. Let
us define new coordinates by

&,=x, l=y-f(x,t), =t

and set

g(x, , t) c(, u, t) -., (,, ) g(x, , t), ](, ) f(x, t).

Some easy computations permit us to show that and ] satisfy

P

^2+ + fg (] ]) ]
in Q0 {(x,y,t) e R2 x +,0 < y < e},
/, ( 0, ) + / ( o, )(2, 0 ) -(1 + ,; (l+f)/2

(+]) -1) (2,)ez+
(1 +/(, , ) (1+])/(, , ) o (, ) e +
(2 + 2L, , ) (2, $, ) in Qo
(, $, o) o(, ) (, ) e (o, ),
where

o(, $) Co(x, ) (with fo(z)),
and

/(1+) (, o, ) ) (, ) e +

where
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Remark 3.1. In what follows, it will be convenient to write

(1 + f)l(e-’S::l(+P=)i 1)
-,’),f + (1 + f)l(e-’rS::l(+P=) 1 + "ff:,/(1 + f)/:)

and
(1 + f2)ll2g(x, O, t) g(x, O, t) (1 (1 + f2)ll2)g(x, O, t);

this permits us to separate linear from nonlinear terms.

4. A few properties of Hlder spaces. In this paper we work with the HSlder
spaces C,l=( x [0, T]) as defined by Ladyenskaja, Solonnikov, and Ural’ceva [9].
We indicate below some notations and properties which will be useful in what follows.

Let f 1R x f’, where f’ is a smooth open set of 11N-1 and QT x (0, T).
We define the space- { C,/2er \T]-- f e (-T)’

f(Xl A- 2L, x’, t) f(xl x’, t) for all (Xl x’, t) e ]R ’ x (0, T)

of 2L-periodic functions in the xl-direction and define Cpger() in a similar way.
In what follows we often use the notation

C’+x,(’+)I2(-QT); then m [g] and A g- [/].

Next we state some technical results which will be useful in the sequel.
LEMMA 4.1. (i) Let m E N. There exists a constant C > 0 which depends only

on m such that
IlSgll " < cIISll ’  + )llgll " 

for all f, g Cm+,(m+a)12(-OT), 0 < A < 1.
(ii) There exists a constant C > 0 such that

1+)

(1+))2< C(llfllp 
Qr

for all f CI+a,(I+)I2(-QT) such that f > 1.
(iii) There exists a constant C > 0 such that

(I+A) (1+1)II<;ofll,  < CIIoI[(_M,M) max 1,(llfllp

for all f CI+,(I+a)I2(-QT such that-M <_ f < M and all o CI+I([-M,M])
(by which we mean the space of continuously differentiable functions with Lipschitz
continuous derivatives).

Remark. We will use Lemma 4.1 (i) in cases where g C’+,(m+)/2(-QT)
and f C’+a,(m+)/2(T) with Y]T ]1 X (0, T). Then we implicitly work with

](x, y t) f(x, t) for all (x, y, t) e T 80 that ] e Cm+)’(m+A)/2(-T and lifi] (’+)QT
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In what follows we will have to estimate terms of the form

E=exp --(1+f2)3/2 -14- (1+f2)1/2

as well as differences of such terms. To that purpose we set

X(s) e8 1 /s.

Then

(4.1) S X -(1 + fx2)3/2 4- "/fx (1 + fx2)l/2 (1 + fx2)3/2

Next we prove the following result.
LEMMA 4.2. There exists 0 > 0 such that for all E (0,io) and for all r

(+) < there holdsC+’x’(+)/2 (T) satisfying Ilrllrr
(1+A) < .2C(llr )2

where C is the constant introduced in Lemma 4.1 (i).
Proof. We use the Taylor expansion

+oo k8k

k--2

oo 0/k_t_28k

( +k=O

then we deduce from Lemma 4.1 (i) that, with C being the constant introduced there,

LEMMA 4.3. There exists o > 0 such that for all (0, 50) and for all r, r’
+ (1+ < there exists K K o such thatC+,(1+)/2(T) satisfying Ilrllr.r IIr’llr.r

(1+,) ( K[[r r’11(+) ( 11(1+)0 (I+A)llx(") x("’)ll ,, max II",, II"’II ,.
Proof. We have that

x()- (,) .,( ,)
k=2

oo ,k k-1

k=2 p=O
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which yields

where
eCe 1 < 9/2CeCK=/

5. The linear problem. In this section we prove that there exists a unique
solution of the following linear problem:

(5.1) gt- Ag F in QT := {(x,y,t) e R x (0, e) x (0,T)},
(5.2) (g gv)(x, O, t) + a’fxx(x, t) F2(x, t), (x, t) e ET := N x (0, T),
(5.3) gy(x, e, t) F3(x, t), (x, t) e
(5.4) g(x + 2L, y, t) g(x, y, t), (x, y, t) e QT,

(.) (, , o) o(x, ), (x, ) e (o, ),
(5.6) ft c/fxx g(x, O, t) Fa(x, t) in ET,
(5.7) f(x + 2L, t) f(x, t), (x, t) e ET,
(.s) l(x, 0) fo(x), x e ,

(.,k,,k/2[ y.l-t-,k,(l+,k)/2 (T)where T is a fixed (arbitrary) positive number, F1 E -per \’gT], Fi ,-,per.... m3+,x m2+(]l{ x [0, e]) and satisfies thei 2, 4, for some A (0 1), f0 ,’per (]l), g0 -per

compatibility conditions

o(X, ) =F(, 0), x

(go goy)(x, O) + a’f;’(x) =F2(x, 0), x

THEOREM 5.1. Problem (5.1)-(5.8) has a unique solution

(.2+A,1 .3+A,(3+A)/2 (T).(g, f) e -per +/2(T) X -per

Furthermore, there exists a constant C C(T) such that

+ IIF1][ (),) 11(1+)0

Proof. We consider the mapping . f --, (f) h defined as follows. Given

3+’(3+)/2(T) with f(0) fo (where we use the notation f(0) fit=o)f ,-per

we consider (5.1)-(5.5). By [9, Thm. 5.3 p. 320] this problem has a unique solution
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g E C2/’’1/)/2(-T), and the uniqueness property together with the periodicity of the
/.2T),ITX/2 /"3TX’(3+)0/2(T)data implies that g E .per (T)" We then compute h /:f .per

as the unique solution of (5.6)-(5.8) [9, Whm. 5.1 p. 320]. The following results on
continuous dependence then hold:

(5.10)

where Cl and C2 only depend on T, A and on the parameters e, c, and %
Clearly if f is a fixed point of Z:, i.e., if Z:(f) f and if g is the solution of the

problem (5.1)-(5.5), then (f, g) satisfies (5.1)-(5.8). Moreover, Z: is an affine mapping
(-.3TX,(3T)Q/2(T) into(’’3+X’(3+A)/2(T) f(0)= f0} of .perfrom the affine subspace {f .per

itself. The linear mapping A/[ corresponding to , which is such that

(5.11) (f) Z(f) .A(f- f),

is defined on

/3+A’(3-t-X)/2 (T)f(0) 0}’per/3-t-)’(3+A)/2(T) :-- {f per

by

where k is the solution of

f -- J/l(f)- k,

(5.12)
kt a.k, w(x, 0, t)
k(x + 2L, t) k(x, t)

=o

in T,
in ET,
xR,

where w is the solution of

(5.13)

In what follows we shall prove that (Id- 4) is a continuous invertible mapping from

3+’(3+)/2(T) into itself; next we show that this property is equivalent to theper

existence of a unique fixed point of . Adding f f to both sides of equality (5.11)
yields

(f) -/(f) + f- f- A4(f- f) f- f
so that

(Id- .A4)(f f) ,(f) f- (f) + f.
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Thus solving

is equivalent to solving

which gives

(f)- f

(Id- ]l)(f f) C(f) f,

f f-+-(Id- AA)-I (2(f-) f).

In a first step we shall prove that A/I is a compact operator and in a second step
that Ker (Id- A/g) {0}. It will then follow from the Fredholm alternative (see, for
instance, Brezis [1, Thm. 6.1]) that the operator (Id .M) is invertible.

3+X’(3+)/2(T) into itself.(i) A/[ is a compact operator from ,per

3+X’(3+X)/2(T); by [9] the solution w of (5.13) belongs toLet f be given in ,-per

per (T) SO that also by [9] the solution k of (5.12) belongs to ,-’per

.a+x,2+:V2(T) Using,.3+,(3+)/2(T) into ,perThus j[ is a bounded operator from ,p
furthermore, the compactness of the embedding from

33+A,(3+A)/2(T)-perg4+A’2+)/2(T) into ,-per

we conclude that A/[ is a compact operator from ,-perI’Y3+A’(3-I-A)/2(T) into itself.
(ii) Ker (Id- A/l)= {0}.

3+’(3+X)/2(T) be such that (Id A/)f 0, i.e. A/f f. Then if wLet f ,-per

is the unique solution of (5.13), f satisfies the system

(5.15)
ft aTf w(x, O, t) in ET,
f(x + 2L, t) f(x, t) in ET,
f(x, 0) --0, x e IlL

Next we multiply the differential equation in (5.15) first by f and then by -aTfx,
and integrate by parts on (-L, L). This gives

(5.16)

L L
1 d f f2(x t)dx + aT f f2(x, t)dx
2 dt

-L -L

L

/ w(x, O, t)f(x, t)dx
-L

and

(5.17)

L L
aTd2dt / f2x(x’t)dx +c29/2 f f2x(x’t)dx

-L -L

-L

w(x, O, t)f(x, t)dx.
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Now we multiply the differential equation in (5.13) by w and deduce from the boundary
condition that w satisfies

(5.18)

1 d
w2(x y, t) dx dy + (grad w(x y, t))2dx dy2 dt

0 --L 0 --L

L

i (w(x, O, t) + a/fxx(x, t))w(x, O, t)dx.
-L

Using Young’s inequality we deduce from (5.16) that

(5.19)

L L

2 dt
-L -L

L L

<_ w2(x, O, t)dx + - (x, t)dx.
-L -L

Adding (5.17), (5.18), and (5.19) yields

L L L L

i J1 d
f2dx + a’ f2dx + --2 dt

-L -L -L -L

+ w2dx dy + (grad w)2dx dy
0 -L 0 -L

L L

/ 1/o, t)a +
-L -L

Finally we use the following result which we shall prove later.
LEMMA 5.2. Let 12 be a bounded Lipschitzian domain in R2; for all > 0 there

exists a positive constant Ce such that

S w2(s)ds ii(grad w)2dx + Ce fi w2dx

.for all w E Hl(fl).
We set e 1/4 to deduce that

(5.21)

1 d
f2dx + at f2 dx + w2dx dy

2 dt
-L 0 -L

1 S f2dx + 2C114 w2dx dy.
-L 0 --L
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The inequality above is of the form dY/dt <_ CY, with

/ / 11 a/ f2 dx + w2dx dyY(t) - f2dx + - --L -L 0 -L

and since Y(0) 0 we conclude that Y(t) 0 for all t. This implies that f and w are
identically equal to zero and, therefore, that Id- is an invertible mapping.

Finally the continuous dependence of the fixed point f of f on the data Fi,
1, 2, 3, 4, f0, and g0 can be seen follows. Choose f(x, t) fo(x) in (5.14); then f is
given by

(5.22) f fo + (ld- M)-l((f0) fo),

d dd, fom (.a), (.0) that

11(3+A) <C3 (llfol} (3+A)
(5.3)

11(2+X) ii () IIFII + IIFII+llg0,,(0,) + IIF1 QT + (+X)

(a+)where we have used the fact that [[f0[,nw [[f0[[a+). Therefore, since (Id-)-
is a bounded operator, we have that

(+) < c, (llS011+) + IlC(So)ll ).(5.4) IISlI
The result of Theorem 5.1 then follows from (5.9), (5.23), and (5.24).

Proof of Lemma 5.2. We have that

for all 5 > 0. Next we use the following result given, for instance, by [10, p. 47]"

H1/+() [HX(O),HO()]i/_
so that

1/2+

Choose for instance . Then

3/a /4

that is,

Using the inequality

I111/, < C(llll )/(11o11(,) )1/4() ()

b ) lla ba3/abl/a (a)3/a - < a +

for all a, b, > 0, we deduce that

Ilwll 2 < C(ellwll, /H3/4() ()

which implies the result of Lemma 5.2.
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6. Uniqueness of the solution. We can prove a uniqueness result that holds
in a larger class than that for which the existence result of 7 can be proven.

THEOREM 6.1. There exists at most one solution (g, f) of Problem P such that
Tr3,g e L(0, T; uz2’(R.,per X (0, e))), gt e L(QT) and f e n(O, T; ,,per (]1)), ft e

Proof. A detailed proof of this result would make the paper too bulky and we
shall only sketch it briefly. The main idea is, similar to the linear problem, to obtain
a differential inequality for the difference of two solutions. In fact, we can prove that
the function

Y(t) (gl --g2)2 + (fl f2) + (fl f)2
0 --L --L --L

satisfies an inequality of the form

dY < MY with Y(0)- 0,
dt

where M can be chosen (using numerous integrations by parts and interpolation in-
equalities) so as to depend only on the bounds of gl, g2, fl, f2 in the spaces given in
the statement of Theorem 6.1. This, of course, is enough to prove Theorem 6.1.

7. Existence. Upon omitting the tildas, we can rewrite the nonlinear problem
P in the form

(7.1) gt Ag f2gyy 2fxgxy fxxgy + ftgy in QT,

(g gy)(x, O, t) + a’yfxx(x, t) a(e-l/(+12)3/2 1 +

+ ((1 + f2)/2 1)gy(x, O, t) (1 + ]’9) 1/2gx(x’ O, t), (X, ) e Y]T,

ft -oo/f -g(x, 0, t) -a(1 + f2)/2 e-l/(l+l)a/ 1 + "y
(1 + f2)/2

+ ((1 + f2)/2 1)g(x, O, t) in ET,

(7.7) f(x + 2L, t) f(x, t), (x, t) e ET,
(7.8) f(x, O) fo(x), x e R.
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Remark that the lehand sides of the equations in the linear problem (5.1)-(5.8) and
in problem (7.1)-(7.8) coincide. Here again we suppose that

.+( x [0, ]), f0 e o ()g0 E per

and that go satisfies compatibility conditions, namely, (7.2) and (7.3) in which f and
g are replaced by fo and go.

Next we define

(7.9) F(f,g) 2fgvv 2fgy fgv + ftgv,

F2(f,g) =a(e-Tfx=/cl+f)3/ 1 +
f+ ((1 + fx2) 1/2 1)gy(x, 0, t) (1 + ]u)l/2gx(x’ O, t),

(7.11) F3(f,g) (1 (1 + f2)l/2)gy(x,e,t)+
(1 + f2)l/2gx(x,e,

( )(7.12)
Fa(f, g) a(1 + fx2) 1/2 e-7f=/(1+12)3/2 1 + 7 (1 + f2)I/2

+ ((1 + f2)1/2 1)g(x, 0, t),

and prove the following preliminary lemma.
LEMMA 7.1. Let o > 0 be arbitral.
(i) There exists a positive constant K1 KI (o) 8ch that for each

4
[I(3+A)(+) < K(llf,, + IIg,,QIIF(L g)ll + liF,(f, g)ll

i=2

(3+) (2+x)oa f C+’(+)/(T) ad g C+’+I(GT) ti]yig IIf,, +llgilQ

(ii) There eist a constant K K:(o) such that Ior each (0, o) and Ior a
L h Ca+,(a+)/(T), g,k C+,+I(T) satisIying

(+) (+) (+) (+)m(llfli +ltgllQ ,llhll +llk,,Q ,
there holds

4

IlFi (f g) F1 (h, k) ,,Q + liFe(f, g) Fi(h, k)l[(+)
i=2

(3+1K2ti II.f- hll + IIg- kllQ. ).

Proof. (i) For Fi the property directly follows from Lemma 4.1 (i). Next we show
the property for F2. By Lemma 4.1 (i), (ii)

f (1+)
(1+1 1+< cIIf,, (11(1 + f)/:ll for j 1,3.

(1 + f)j/2
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Using also Lemma 4.1 (iii) we deduce that if f e C3+,(3+’x)/2(T) there exists a
constant K1 K1 (5o) such that

Similarly we can check that there exists K2 K2(50) such that

11(1+ )/= ,, _<

and K3 K3(50) such that

(1 + f2)1/2 (1 + f2)3/2 [T
< K3 Ilfll

Thus using also (4.1) and Lemma 4.2 we deduce that

and that similar results hold for F3 and Fa.
(ii) The property is obvious for F1. For instance,

As for F2 we first consider the term

+/-’)/a(x’ o, t)(1 +
(1+)II_<C

(1/ fx2)l/2

+ CIIk(x, O, t) IIT

(1+A)

(1 + h2x)l/2 kx(x, O, t)
Er

(1+)IIg (, o, t) k(x, 0, t)ll

fx hx
(1 + fz2)l/2 (1 + h)/2

(1+A)

ET

Since

(1 + fx2) 1/2
hx

(1 + h2x)l/2
dO

(1 + (Ofz + (1 -O)h))3/
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we deduce that

so that

The term ((1 + f2)1/2 1)gy(x, 0, t)- ((1 + h2)1/2 1)ky(x, 0, t) can be estimated in
a similar way. Finally let us consider the term

-A )E=X (1+f2)3/2 + (1 + f)3/2

in (4.1). Then we can estimate the difference

f2f hh,x
E2 (1 + f)3/2 (1 + h)3/2

as it has been done above with F. Finally we consider

( -,.. ) ( )E1 X (1 + fx2)3/2 + X (1 + h2x)3/2

We have that

(1 + f2)a/

(I+A)

T

II(I+)Q ( (1+))’ 2
< CIIA,,r. II(1 + f)z/ellr, <- K5

so that by Lemma 4.3,

E1 <_ K’5 f
(1 q- fx2)3/2

(a+,)

(1 + h2)3/2

A similar proof can be given for F3 and F4.
Next we state the main result of this section.
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THEOREM 7.2. There exists a positive constant Po po(T) such that if the initial
data satisfy the condition

(7.13) (2+x)Ilfo]](3+) + Ilgol](o,) < o,

then there exists a constant p > po such that (7.1)-(7.8) has a unique solution (f, g)
g-3-FA’(3-FA)/2(T) X y.2-FA,1TA/2 (3-FA) (2-FA)

Proof. We consider the mapping T

(f, g) --+ (f, g) (f’, g’)

defined as follows: (f’, g’) is the solution of the linear problem (5.1)-(5.8) with initial
conditions f0 and go and where the right-hand sides Fi, 1,..., 4 are given by the
formulas (7.9)-(7.12).

By Lemma 7.1 (i) and Theorem 5.1 the mapping T is well defined from the affine
space

A (f, g) e per ,AT} X -per (T), f(0) fo, g(0) go

into itself. Next we define the norm I1" on A by

(3+x) (2+)II(f,9)ll Ilfll + IlgllQ

In what follows we prove that if the constant p0 in (7.13) is small enough, then the
mapping T has a unique fixed point in a certain ball. It follows from the study of the
linear case (Theorem 5.1) that

(7.14)

1(3H-A)

(3-FA) (2-Fik) ()Q (1-FA)_< c IIf011 + I101,(0,) + IIFlll + ] IIF, II
i=2

where C is a constant that depends on T. This implies that

( ’(1liT(f, ) T(h, k)l
(7.15) 4

/ IIF(f, g) F(h, k)ll
i--2

Also using Lemma 7.1 (ii), we deduce that if (f, g) and (h, k) satisfy

II(f, g)ll , II(h, k)ll 5,

then

so that if

liT(f, g) T(h, k)ll CK2II(f- h, g- k)ll;

(7.16) <
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and if B(0, 5) denotes the ball of center zero and radius 5, T is a strict contraction
from the closed convex set B(0, 5) N A into A.

Finally we deduce from (7.14) and from Lemma 7.1 (i) that if

(7.17) "IRx(O,e) -1- K1 Ilf"T + IIIIQT 5,

then T maps the set B(0, 5)N A into itself. In turn, (7.17) is implied by the condition

(7.18) C(po + K52) <_ 5

with
max(C, 1).

Note that (7.18) implies that 5 > p0 so that the set B(0, 5) ;q A is nonempty. Choose,
for example,

1 1
5 and Po

2CK 4CK

with K max(K1, K2). Then we can check that (7.16) and (7.18) are satisfied.
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GLOBAL BEHAVIOR OF POSITIVE SOLUTIONS TO NONLINEAR
DIFFUSION PROBLEMS WITH NONLINEAR ABSORPTION

THROUGH THE BOUNDARY*

NOEM[ WOLANSKIf

Abstract. The author studies the global behavior of positive solutions to u, Ab(u) in BR (0, T);
Odp(u)/Ou=f(u) on SR (0, T); and u(x, 0)--Uo(X) in BR. Here f and 4) are increasing functions of u,
positive for u positive which go to infinity as u- c, and 0 < b’(u)< c in R. (b may degenerate in either
way at u=0 if Uo>- 6=>0.) It is proved that when b’(u)= C>0 in R there exists a unique global solution
when f is sublinear and finite time blowup occurs when (ds/f(s))<. On the other hand, if one allows
b’(u) to go to zero as u c finite time blowup may occur with f being sublinear. The author gives precise
relations between b and f that guarantee global existence or finite time blowup. Results are illustrated with
a couple of examples.

Key words, blowup, nonlinear diffusion, nonlinear absorption

AMS(MOS) subject classifications. 35K60, 35K55, 35B35

1. Introduction. In this paper we study the global behavior of positive solutions
to a nonlinear diffusion problem with a nonlinear absorption-like boundary condition.

The problem we analyze is

u, Ab(u) in BR X (0, T),

(1.1) Och(u)-f(u) on Sa x (0, T),
Ou

u(x, O)= Uo(X) in BR,
where BR {Ix[ < R}; S {]x] R} and Uo is a smooth nonnegative function such that

(1.2) --0dp(u-----):f(uo) on SR.
Ou

b and f are increasing functions of u that are positive for u positive together with
their derivatives, and which go to infinity as u goes to infinity.

The case b(u)= u is well understood. In fact, classical results show that when
f(u)/u is bounded there is a global solution for any Uo L(BR). On the other hand,
we have proved in [LMW] that every solution blows up in finite time in L-norm if

I (ds/f(s)) < oo.
The general case is not well understood. For a proof of local existence and

uniqueness of weak solutions when u0 is allowed to vanish and 4’(0)= O, we refer to
[A]. In fact, in this case we do not expect to have classical solutions since moving
fronts could exist on which V u is discontinuous.

In this work we are interested in the local boundedness or finite time blowup of
the solutions and not in their behavior near u O. This is the reason why we will
assume throughout the paper that O< b’(u) <oo in R. (If this is not the case we will
assume that u-> 6 > 0, which is guaranteed by Uo being larger than 6 and modifying
b on the interval (-6/2, 6/2) so as to have 0< b’< everywhere.) In this case the

* Received by the editors October 2, 1991; accepted for publication (in revised form) July 9, 1992.
? Departmento de Matemfitica, Facultad de Ciencias Exactas, Universidad de Buenos Aires, (1428)

Buenos Aires, Argentina. Member of CONICET. This author’s work was partially supported by the Institute
for Mathematics and Its Applications, University of Minnesota, Minneapolis, Minnesota and Fundaci6n
Antorchas, Argentina.
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compatibility condition (1.2) implies that any radial solution is a classical one if

f CI(R) (see Proposition 2.1).
We find that the results valid in the case 4(u)= u continue to hold as long as

b’(u)-> C>0. Instead, when lim infu_)b’(u)=0, blowup may occur with f being
sublinear.

In fact, if b is concave, lim inf,_f( u)x/b’( u / b u > 0, and (x/ok’( s )/f( s ds <
every solution blows up in finite time. On the other hand, if (f(u)V’ck’(u)/ck(u)) is

bounded every solution exists globally.
We want to point out that as in [LMW] these results hold for every initial datum

Uo (not necessarily radial). Blowup results for some Uo by concavity methods in the
one-dimensional case can be found in [A].

Let us illustrate our results with some examples.
(a) Let f(u) u q, ok(u) u’. There are two cases (Uo_>- 6 > 0).
(i) rn >= 1.

If q > 1 every solution blows up in finite time.
If q <-1 every solution exists globally.

(ii) 0 < rn < 1.
If q > (m + 1)/2 every solution blows up in finite time.
If q_-< (m + 1)/2 every solution exists globally.

These results were first found in the one-dimensional case by Filo in [F]. Although
the case 0<re<l, q=(m+ 1)/2 was not covered by his proofs.

(b) Let 4(u)=log(u+l).
Iff(u) < Cx/u+ log (u/ 1) every solution exists globally.
Iff(u)>=Cx/u+l(log(u+l))1+ as u for some e>0, every solution blows

up in finite time.
Our results generalize [F] in two ways. First, we allow for general nonlinearities.

Second, our domain is an N-dimensional ball (and even any simply connected two-
dimensional smooth domain; see Remark 3.1).

In fact, some of the proofs in [F] require very special initial data, whose existence
is proved only in the one-dimensional case with homogeneous 4 and f

For other papers dealing with the balance between reaction and diffusion or
convection, or two reactions of opposite sign, we refer to [F], [ChLS], [LPSSt], [L],
[LS], [LSm], [LMW2], and [ChFQ].

The rest of the paper is organized as follows. In 2 we state and prove the global
existence and in 3 the finite time blowup results.

2. Global existence results. We state without proof the following result on local
existence and continuation of classical solutions.

PROPOSITION 2.1. Let ch C2+, f C and Uo6 C2+(/R), Uo--uo(r) satisfy the
compatibility condition (1.2). If ck’(u)>O in R there exists T>O and u
C2+"’1+(/)(/R [0, T)) solution of (1.1). Ifu cannot be continued as a classical solution
beyond time T we have

lim sup [u(R, t)l +.
tT

The proof is a trivial modification of the one in [LMW] for the heat equation. It
is based on a fixed point argument in the space C+’+)/:(R x[0, T]) and the
existence of classical solutions to the third boundary value problem in the linear case
(see [LMW, Thm. 1.2, Cor. 1.2]).

For a proof of local existence, continuation, uniqueness, and comparison of weak
solutions in the nonsymmetric case we refer to [A].
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It is clear from the continuation results that in order to prove global existence it
is enough to show that any local solution is a priori bounded on any finite time interval.

In order to state this result we need to consider two different situations, 4’(u) => C >
0 or 0< 4’(u) <- C.

THEOREM 2.1. Let f be a smooth domain. Let u be a weak solution of
u, Aq(u in f x (0, T),

-f(u) on Off x (0, T),
O

u(x, O)= Uo(X) in .
Let us assume that ’(u) C > 0 andf(u)/(1 + u) M <. ere exists a constant

L depending only on T and Uo such that

u(x, t) L in fl x (O, T).

Proof We follow here ideas in [LSU], IS], and [A]. Let k > [[Uo[[. Then,

(u k), div (’(u)V(u k)).

By taking (u-k)+ =max (u-k, 0) as a test function, we obtain

l ((uo_k)+)2(x)dx

+ div (’(u)V(u k))(u k)+(x, s) dx ds

’(u)V(u k)+[2(x, s) dx ds

+ f(u)(u k)+ d ds

-C ]7(u k)+ dx ds +M u(u k)+ d ds

+ M (u k)+ d ds.

Thus, if k 1,

2

M ((u k)+)2 d ds + 2Mk (u k)+ d ds.

On the other hand, if (k) meas {(x, s) fl (0, T): u(x, s) > k},

(u-k)+ dgdsK (u-k)+ &ds+ IV(u-k)+]

((U k)+)2 & ds
2Mk

Iofa Mc
IV(u k)+] dx ds +-- K(1 + C- k(k).+2Mk 2
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Since

I ((u-k)+)2 d’<--K{Ia((u-k)+) dx+ IalV((u-k)+)21dx}
=K{fa ((u-k)+)a dx+2 f (u-k)+lV(u-k)+l dx},

for any e > 0,

((u k)+)2 dods<=e IV(u-k)+[ dxds+C ((U-- k)+)2 dxds.

So, we have - ((u k)+)2(x, t) dx + C--
4 IV u k)+12 dx ds

<=Klk2p.,(k)+K2 ((u k)+)2 dxds.

Using Gronwall’s inequality we see that the right-hand side is bounded for t_-< T
by K3k2t(k).

On the other hand, for any function v(x, t),

O<_s<_t

thus,

((tl k)+) 2((N+2)/2) dx dt <= Ksk2p,(k).

Let h > k _-> (ll Uoll,+ 1). The latter inequality implies

(2.1) (h k)2/a, (h) N/(N+2) Ksk21a,(k),
and a simple modification of Stampacchia’s argument ([KS], page 63), which is
necessary due to the presence of k2 on the right-hand side of (2.1), shows that there
exists a constant L > 0 such that/z(L) 0.

In fact, let k= Iluoll/ 1 in (2.1). Since for any k, (k)=< Tmeas f we have for
h > uoll / 1,

tx(h) N/(N+2) <
Ks(ll uoll+ 1)2 T meas

(h -II Uo - 1 )2
Let fl =(N+2)/N and tr= 2/3/(fl- 1). From the inequality above we see that we

can take ko ko( T, N, f, uoll) large enough so as to have ko > (1 + uoll) and

x/5 2+/z(ko)-/ <= 1.

Set d K52(a+)k3tx(ko)- and k, ko+d/2-(d/2/2"). We claim that

(2.2) /z(k,) <
(k)
2

In fact, for h > k,

/x(h) <_-
Kfk2la,( k)
(h-k)2/3
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Thus

/(k.+l) <= Kf k/3/x(k.)/3 2

For n 0 this gives

/Z(kl) <
Kfk/3p,(ko)/3-12213 tz(ko) tx(ko)

K--2-(4+----k--;(-oS_1/z(ko) 2/3(2+(
<-’
2

Assuming that (2.2) is true,

Kk22("+’) (ko)
d 2"
22/3( .+ )-/3 (4+o-)- .crfl j[d,(ko)

since by construction k,/ko-<-2. By the choice of r,

2nfl o-fl(n + 1)_-< -r(n + 1).

Taking limit as (n- oo) in (2.2) we get

/x(ko + d 1/2/3 0o

This means that u(x, t) <- ko + d /2/3 <- 2ko in f x (0, T).
Let us now analyze the case 0 < b’(u)_-< C in R.
THEOREM 2.2. Let f and qb be strictly increasing smooth functions such that 0<

th’(u) <= C. Assume qb concave orf(u)/ dp(u) nondecreasing. Let v/dp’(u)(f(u)/ch(u)) <- M
for u R. For any positive d ssical solution of (1.1) there exists a constant L depending
on Uo and T such that

u(x,t)<-L inBRX(O, T).

Proof We prove it first for radially symmetric, radially increasing solutions such
that u _-> 0. The result follows by comparison with these solutions.

Assume first that f(u)/ck(u) is nondecreasing. Let ]3(v)=b-(v) and O=C-,
then/3’(v)->_ 0 for v 6 R. v is a solution of

fl(v), Av in BR X (0, T)
(2.3) vr(R, t)= g(v(R, t)) on (0, T),

v(x,O)=vo(X),

where Vo fl(Uo), g(v)=f(fl(v)). From the hypothesis we have that

(2.4) (g(t)))
2

<-- Mfl’(v).

Let

( ’ Io’Ioh (r, t) 1 + exp -- v( q, r)

then for 0 <_- r -< R, 0 < =< T,

(2.5) 2=>h=>l,

dq ds dr);
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g(v(r,t))
(2.6) O>=hr>- h,

v(r, t)

(2.7) h (g!_v_(_r, t))
2

--<= v(r, t) /
h,

n g(v(r, t))
(2.8) Xh_->--- h,g v(r,t)

(2.9) h,=<0.

These inequalities are trivially verified by direct differentiation using the fact that
g(v(r, t))/v(r, t) is nondecreasing in r and and the estimate

h>_ 1 g(v)
h.

r R v

Let V(r, t)= e-my(r, t)h(r, t). Then

/’(v)V,--AV+2-Vr+ K- fl’(v)+--2h.jV=O inBx(0, T),

Vr(R, t)--( (R, t)+
g(v(R’ t))} V(R, t)=0, t>0,
v(R, t)

V(r,O)=vo(r)(r,O).

From (2.4) and the fact that ’(v) 0 > 0 we find that for another constant M,

(2.o g( ’(

By (2.4)-(2.10) we see that there exists K > 0 such that

Kh(r, t)[3’(v(r, t))>=htfl’(v)-Ah+2 h2
h

Also by (2.5),

hr g(v(R,t))
(R, t)+

v(R, t)
>-0.

By the maximum principle we see that

V(r, t)<-II roll <_- 211Volley.

Thus,

v(r, t)-<_ 2[[Voll L e s:’.
Now, if g(v)/v is not nondecreasing but/3 is convex, let G(v) be defined by

(v) g(s)
max

I.) O<=s<=v S

then

<= Mfl’(v).
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Let w be the solution of

wr(R,t)=G(w(R,t)),

w(x,O)=vo(X)

in B (0, T),

t>0,

in BR.

Then, since G(v)>= g(v) in R, w >= v in BR (0, T). Thus v is bounded.
The general case with no further assumptions on u follows by comparison with

the solution of (1.1) that starts with initial value u(Ixl) satisfying

UlrO,

Ab(ul) => a > 0,

6(u)() =/(u()),

in B. The solution that starts with initial value ul will have nonnegative time and
radial derivative. We state this result as Lemma 2.1. In Lemma 2.2 we show that we
can always find such a function.

LEMMA 2.1. Let ul be a radially symmetric classical solution of (1.1). Ifur(x, O) >= 0
and Ad(u)(x, O) >-- a > O, u satisfies

ur>=O
in B (0, T).

ult>=O

Proof Let 0 < " < T; then u, ur and u, are bounded in B (0, ’). Thus, there
exist constants 0, K > 0 such that 4’(u), Ib"(u)l =< 0 in B (0, -), and if/3 b -1,
v= 6(u),

K>_-vt.

Letting w e-mv(r, t) it is easy to see that w satisfies

’(v)w,-z=- r +"(v)v,+K v) w,

so it is clear that w cannot attain a negative interior minimum. On the other hand,
w -> 0 on 0 and r R. Thus w -> 0 everywhere.

In order to prove that u is nonnegative we need a different argument. In fact
the C+’+(/ regularity of Ul does not allow us to use flux boundary conditions for
u,. Following the approach in [LMW] we consider the functions u(x, t) u(x, + e).
Since Ul,(X, 0) >_- a > 0 and Ul, is continuous there exists eo> 0 such that u(x, 0) >-_

u(x, 0) in BR for 0< e < e0. It is easy to see that u is a solution of (1.1). Also since

Ul is bounded in B x (0, " + eo) if " + eo < T we may assume that 4 and 4/are bounded
from above and below. Classical comparison principles then give us the inequality

u(x,+>-u(x,

in B x (0, ’) for every e < eo. This is u _-> 0.
LMMA 2.2. Let % L> 0. There exist radially symmetricfunctions u, u C+()

such that u>-O, u>-O, d(ui)r>=a, d(u)(R)=f(u(R)), and u>-L, u<-y in B.
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Proof Let wi-_>0 smooth such that wi(0) =0, wl(r)>=a, wi(R)=f(c), and

o
Wi(r) dr<=1/2dp(ci),

where
(i) cl is large enough as to have b(Cl)->2b(L);
(ii) c2-- y.
Then

ui(x) =dp -1 b(ci) wi(r) dr
xl

are the functions we are looking for.

3. Blowup results. In this section we prove the blowup results stated in 1. As in
the previous section we have to consider two different situations, depending on whether
or not 6’(u) C>0.

THEOREM 3.1. Letfand be strictly increasing smooth functions with ds/f(s) <. Every positive solution of (1.1) blows up in L-norm in finite time.

Proof The proof follows step by step that of Proposition 3.1 in [LMW], so we
omit it here. The blowup result is proven first by very simple arguments for radially
symmetric, radially increasing classical solutions and obtained afterwards for any
positive solution by comparison by using Lemma 2.2 and the fact that any nonnnegative
solution is strictly positive in BR for > 0.

A different argument has to be used to get a sharper blowup result when
lim inf, 6’(u) 0.

THEOREM 3.2. Let f and be strictly increasing smooth functions such that is

concave, lim inf, f( u )(6’( u / u > 0, and ( ’( s )/f( s ds < . Every positive
solution of (1.1) blows up in L-norm in finite time.

Proof As in the proof of Theorem 3.1 we first consider radially symmetric, radially
increasing classical solutions and get the general result by comparison with these
solutions by using the construction in Lemma 2.2.

Let us first find some energy identities to be used in the proof. First multiply (1.1)
by 6 (u), and integrate to get

’(u)u, {v(u)l)+ ’{u)f{u)u,aat.
B

Let (u)= 5o g’(s) ds; F(u)= o (s)f(s) ds. Then,

fo zlf 12=1 12 fs s(3.1) I(u),l+a lv6() IV6(uo) + (u) a- (Uo) a.
BR B B

Next multiply (1.1) by (u) and integrate to get

6(u)u, IV6(u)l+ 6(u)f(u) ddt.
BR BR BR

Let O(u)= o (s) ds. Then,

(3.2) O(u)(x, t) dx + ]V(u)l= O(uo) dx + (u)f(u) d dr.
BR BR BR
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Let us now compute

,( u ,4) u)

44’(u)6(u),(6(u).+
>-,/6’(u)6(u)6(u)

= 14(u)rl 2.

Thus

fB 1 f th"(u)
IJ(U)t/)(U)r -’ BR

ul(U)rl2

1
+-R"-’w,_,x/ch’(u(R, t))(f(u(R, /)))2.
2

Now, since b"<- 0 and Ur => 0,

d(u),cb(u) > R "-1 x/ch’(u(R, t))(f(u(R, t))) 2.
B - (l) --1

Applying Schwarz’s inequality to the left-hand side and integrating in time we get

v/ch’(u(R, s))(f(u(n, S)))2 ds<= e [(U)r[2-3V K ](I)(b/)t] 2,
BR BR

By (3.2) the right-hand side is bounded by

Rn-1C, 4. K I(u) 124 ew,_, dp(u(R, s))f(u(R, s)) as,
BR

where C is a constant depending on Uo.
By hypothesis, cb(u)f(u) <= M + Cx/’(u)(f(u))2; so we have

V’c’(u(R, s))(f(u(R, s)))2 ds<= C24. [(I)(u),l 2.
BR

By (3.1) the right-hand side is bounded by

This is

C34. KF(u(R, t)).

(3.3) V/ch’(u(R, s))(f(u(R, S)))2 ds <= C3 + IF(u(R, t)).

Let G(u)=x/4)’(u)(f(u))2, g(t)=IoG(u(R,s))ds, and H=GoF-1 By (3.3)
since H is increasing,

(3.4) g’(t) G(u(R, t))= H(F(u(R, t)))>- H(g(t)- C3)K

Assume now that (du/H(u))<. We deduce that g blows up in finite time.
Therefore, u cannot exist globally. This implies that u must blow up in finite time.

The condition (du/n(u))<c translates into (x/4’(u)/f(u))du <o. Since
this is our hypothesis the proof is finished.
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REMARK 3.1. In the two-dimensional case our results extend to any simply
connected smooth domain f. In fact, under a conformal mapping of f onto the disc
B1, a solution v(y, t) of

v, Ab(v) in f x (0, T),

(3.5) b(v) =f(v) on 00 x (0, T),

v(y, O)= vo(y) in f

is transformed into a solution u(x, t) of

u, a(x)a6(u) in B1 (0, T),
(3.6) t(X)Ch(U)r =f(u) on S x (0, T),

u(x, O)= Uo(X) in B,
where 0< a <-_ a(x)-< fl < c in B. Since solutions of (3.6) can be compared to time
increasing solutions of

u, crASh(u) in B1 x (0, T),
(3.7) ,8ck(U)r =f(u) on S1 x (0, T),

u(x, O)= uo(x) in

and all our results are valid for (3.7), we can extend our theorems to problem (3.5)
for any smooth simply connected two-dimensional O (see [LMW] for the details).
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BUCKLING EIGENVALUES FOR A CLAMPED
PLATE EMBEDDED IN AN ELASTIC
MEDIUM AND RELATED QUESTIONS*

BERNHARD KAWOHLt, HOWARD A. LEVINE$, AND WALDEMAR VELTE

Abstract. This paper considers the dependence of the sum of the first m eigenvalues of three
classical problems from linear elasticity on a physical parameter in the equation. The paper also
considers eigenvalues i(a) of a clamped plate under compression, depending on a lateral loading pa-
rameter a; Ai(a), the Dirichlet eigenvalues of the elliptic system describing linear elasticity depending
on a combination a of the Lam constants, and eigenvalues Fi(a) of a clamped vibrating plate under
tension, depending on the ratio a of tension and flexural rigidity. In all three cases a E [0, cx). The
analysis of these eigenvalues and their dependence on a gives rise to some general considerations on

singularly perturbed variational problems.

Key words, eigenvalue, asymptotic, parameter dependence, plate equation, elasticity, singular
perturbation

AMS(MOS) subject classifications. 35J50, 35J55, 35P15, 49G05, 49G20

Introduction. Let, for 1, 2,... 7i be the eigenvalues of the equation for the
clamped plate under compression, Fi be the eigenvalues for the equations of linear
elasticity, and Ai be the eigenvalues for the equation for the vibrating clamped plate
under tension. Briefly, our first result says that -im=l 7i(a) and Eim__l Fi(a) are strictly
concave functions of a, while -im=l Ai(a) is concave. Moreover and in particular

lim ’1 (a) --(:x:) and lira
7)’1 (a)

2,

lim Al(a) < ,
a---cx

lim Fl(a) +oc but lim
F (a) ,1.

a-cx) a--x) a

(Here A is the first Dirichlet eigenvalue for the Laplacian which is also known as the
first eigenvalue for the fixed membrane.) The graphs of these functions are sketched in
Figs. 1, 2, and 4 along with the previously known upper and lower bounds. The plan of
the paper is as follows. In 1 we discuss i(a), hi(a) and Fi(a). We use some ideas of
[10], [11], [12] to obtain some of our results. In 2 and 3 we consider generalizations,
first to abstract linear problems and then to nonlinear problems. Throughout the
paper (Ai}iev denotes the ordered sequence of eigenvalues of the problem

A+A=O in f,
0 on 0,

while {j}jev denotes the corresponding sequence of orthonormal eigenfunctions.
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1. The first eigenvalue of a clamped plate under compression. Let C
N be a domain with smooth boundary and let a _> 0 be a parameter. Consider the
eigenvalue problem

AAu + au + 7(a)Au 0 in t,
(1)

u 0-- 0 on Oft,

where a > 0 is given and represents the elasticity constant of a medium surrounding
the plate. The function u stands for the transverse displacement [9] and "/l(a) is
the minimal compression at which the plate exhibits buckling. Payne established the
following inequality in [9]

a
(2) max{’71 (0), 2V}

_
")’l(a)

_
")’1 (0) q- A-’-

(Indeed, he showed that (2) holds for each eigenvalue 7i(a) of (1).) Moreover, Levine
and Protter derived the lower bound

m 47r2Nm(l+2/N
(a) E 7i(a) >_

(g / 2)(wgV)2/g
i----1

in [6]. Here WN denotes the surface area of the unit ball in/RN and V denotes the
volume of f.

THEOREM 1. The function F(a) Yim= 9/i(a) is strictly concave and strictly
increasing in a on [0,

For the proof we use the variational characterization of F(a). It is well known
that the Rayleigh quotient associated with (1) is given by

(4) ha(V) f (Av)2dx + a v2dx

where v e H(ft. Let us first prove that F(a) is concave by establishing that for any
a0 E [0, cx)) there exists M E such that

F(a)- F(ao) < M(a- ao) for any a e [0, c).

From the min-max characterization of eigenvalues (see [1, Vol. 1]) we know that

m

(6) F(a) <_ E
i--1

for every orthonormal system {v,..., vm} of admissible functions in H(fl). Here
{v, v2, Vm} are orthonormal with respect to fa VviVvj dx.

Let u denote the ith eigenfunction associated with (1), normalized to IVull/.(a)
1. Set vi u. Then (6) implies

m 2dx.F(a) F(ao) <_ (a- ao) E vi
i--1
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Therefore (5) holds with a positive M and F(a) is strictly increasing and concave.
To prove that F(a) is strictly concave, suppose the contrary. Then there exists an
interval [b, c] C [0, oc)such that

F(tb + (1 t)c) tF(b) + (1 t)F(c)

holds for every T e [0, 1]. In particular, setting t- 1/2 and a (b + )/

F(a) 1/2F(b) + 1/2F(c).
We observe that

(s) <_ rib(U?),

and that the same inequality holds with b replaced by c. Therefore we have from (7)
and (8)

1
m

1 "

i=1 i=1
m

Ua(U)= F(a).
i=1

But now equality must hold in (8) for every i 1,... ,m. In particular 7 (b)
aand 71(c) nc(t), that is, u u is an eigenfunction corresponding to both 7 (b)

and 7 (c). Subtraction of the corresponding differential equations (1) yields:

(9) (1(C) 1(b))u + (c b)u O.

If 1(c) (b) then (9) implies c b desired. Otherwise u is an eigenfunction
to the Laplace operator on and satisfies both u 0 and Ou/On 0 on 0, a
contradiction to Hopf’s second lemma. Therefore c b and this completes the proof
of Theorem 1.

Remark 1. In [10, p. 286ff] Polya and Schiffer proved concavity of sums of eigen-
values for some Neumann problems. Our result and proof are inspired by theirs. One
might conjecture that each of the eigenvalues is concave in a separately. Numerical
results in [5] indicate that in general this is not the ce. Notice, however, that (a)
is strictly concave.
om now on we concentrate on the first eigenvalue 7 (a).
COROLLARY 2. Inequalities (2) are strict for a > O.
Proof. By Theorem 1, equality cannot hold on the right-hand side of (2) for a > 0,

nor on the left-hand side when 0 < a < (0)/4. Moreover, we have after integration
by parts in the denominator and by Schwarz’s inequality

(a) na(U) fn(Au)2dx + a fa(u?)dx

(f(u)2dx)l/2 (f(u)2dx)1/2+ a

Thus (a) 2 if and only if

:a
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and

(Au)2dx f(u)2dx (fuAudx)
2

and equality holds if and only if Au + x/-du 0. But u 0 Ou/On on Oft, so
that u -0. Thus, the strict inequalities

(10) max{’l(O), 2x/’} < q’ (a) < ’)’1 (0) -[-

hold. This completes the proof of Corollary 2.
Of particular interest is the asymptotic behavior of the eigenvalue l(a) and the

associated eigenfunction u as a -- x. We can give the following partial answer to
this problem.

THEOREM 3. Let u be a first eigenfunction, normalized so that IIVullL2(f) 1,
and /l(a) the first eigenvalue of (1). Then ]lu?llL2(fl) -- 0 and /l(a)/x/ 2 as
a---> oo.

The proof of Theorem 3 will proceed in several steps. The results of Theorems 1,
3, and inequality (2) are illustrated in Fig. 1.

FIG. 1. yl(a).

LEMMA 4. (a) Iff is starshaped with respect to zero, then ")[l(a)/x/-d is decreasing,

(11) "Y1 (a) > (b) ]’or 0 < a < b.

(b) /f f is a bounded domain, then there exists a constant M E (2, cx) such that

(12)

It should be remarked that Rother [12] proved (12) under the assumptions of
Lemma 4(a). To prove Lemma 4(a), recall that

"1 (a) min Ta(U),
ueH2o (f)
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with n,(u) defined by (4). Using the transformation

y. --a/4x:i for j 1,...,N;

the expression Ta(u) is converted into

7a(v) x/ faa (Av)2dx + faa v2dx

Ou Ovall4__
Oxj Oyj

where fla al/4 is the image of fl under the above transformation. Therefore

71 (a)/V can be characterized through

(13) 71 (a)
min fa" (Av)2dx + fa v2dx

and (13) is equivalent to the original characterization of 71. At this point the star-
shapedness of [2 enters into the proof, because for starshaped domains we have

-a C -b for 0 < a < b.

Since functions from H(f) can be continued by zero in bb \ tic, property (11)
follows from the well-known monotone dependence of eigenvalues on the domain f.
This completes the proof of Lemma 4(a).

To prove Lemma 4(b) let B be a ball contained in ft. Without loss of generality
we may assume that [2 contains zero and that a > 1. Let be a first eigenfunction
associated to the first eigenvalue "1 (a) on B. Then by the monotone dependence of

71 on and by (11) we have

(14) i(a) < l(a)< 1(1),

and this completes the proof of Lemma 4.
Now we can prove the first statement of Theorem 3. Relation (14) implies

l(1)(15) lu 2

so that + 0 in L() of order :/. To complete the proof of Theorem 3it suces
to combine (4) with the followin result.

LEMMA 5. If is a ball or rectangular parallelepiped, then

lim
l(a)

2.(16)
a

To show (16), first in the one-dimensional ce, we take {a}ne
{n2r2}ne and [0, 1]. With Cn c sin(nrx), it is ey to see that there are

constants d, d2 > 0 such that for all n, with n (0, l/n) (1 l/n, 1)

IV.l2 dx
1/2

I
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where we normalize the Cn so that

]01 I12 dx A, 2 dx 1.

The eigenfunctions are uniformly oscillating on (0,1). The functions Cn are not ad-
missible for the Rayleigh quotient (4), since they are not in Ho2 (t). In order to modify
them near the boundary, we construct functions of the form Cn Cn, where 1/n
and vt is given by

o < x <

rt(x)- 1 - < x < 1n n’

<X< 1

where, for x E (0, e),

Ce(x)-- f e-eI(Y(-Y)) dy

f e-ea/(Y2(e2-Y2)) dy

y is of class C2 in (0, 1), r] 0 at x 0, 1, and there are constants d3, da,
independent of e such that max lY$1 -< d3/e, max ly$l _< d4/e2. Thus a tedious, but
routine, calculation yields, using ?- rtl/ for notation,

2 + dhA1/2

1 d6A112

1 f [(1 2)()2 + 2n,, dx

with constants dh, d6 independent of n. (Note that 1In 7/An’l12.) To verify (16)
for arbitrary domains in higher dimensions, it is necessary to have good estimates
for the local L2 norms of the eigenfunction and its gradient near the boundary. For
N-dimensional rectangles, however, the one-dimensional example is easily modified.
If t is the unit ball in g, then the radially symmetric eigenfunctions are given by

1/2where Jv is the usual Bessel function of order u, the numbers Aj are the roots of Jv
in increasing order and the cj’s are normalizing constants chosen so that

IVil2 dx=Aj / dx= l,

or

Precisely, we have

with

V/--- (j + (N- 3)/4)r + O ()
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and, for any index u > -1 as r --, +oo and some constant C,

(1 o

From these estimates we easily see that there are constants dl, d2 > 0 such that for
all j >> 1,

(r)rN-1 dr <_ dlA}-3/2

and

(11

Thus, if we take r/- /(r) to be one on the ball of radius 1 e, satisfy 0 < r/< 1 in

the annular region (1 < r < 1} with v/(1) 7’(1) 0 and with s A}-1/2 we see
that with Cj r/eCj, we again have

7x/(r/J) 2 + dh,/2

V/ 1 d6A-//2
for computable constants d5, d6. In fact we can choose e so that for some d3, da the
following estimates hold: max.{) _< d3/-1/2 and max I$I _< d4/-1. This together
with (10) completes the proof of Lemma 5 and thus of Theorem 3. [:]

Remark 2. The limiting process in Theorem 3 can be recast as the singular
perturbation problem of minimizing

I(v) f (Av)2+v2 dx over {vEH(2). /a ’Vv’2dx -1 }"
The formal limit problem for e 0 has no solution, but as the proof of Lemma 4
shows, for certain domains there exists a minimizing sequence v for I0 such that
Io(ve) --, 0 as O. Moreover, v is highly oscillatory and the oscillations of ve are
equidistributed. A similar qualitative behaviour has been observed by Miiller in [8].
He minimized

L(v) [e(v) + (v 1) + v] dx over Ho(O, 1),

and showed that minimizers ve of is are rapidly and regularly oscillating and converge
to zero in L(f). Moreover, the formal limit problem for e 0 has no solution, either.
Theorem a shows that oscillatory behavior of this nature is not restricted to nonlinear
problems, but can just as well occur for solutions of classical linear problems. In fact,
physical intuition tells us that the buckled state of the plate should oscillate while its
amplitude decreases as the ambient medium gets stiffer and stiffer.

Remark 3. Linear elasticity system. The above results were inspired by the paper
[11] of W. Rother, who investigated the dependence of the first eigenvalue Al(a) of
Lam(?s operator on a parameter a (A+#)/#, where A and # are the Lam( constants.
This eigenvalue can be characterized by

(17) Al(a) min {llVull2 + alldiv ull 2 I e [H01()]N, IlUlIL2(I’I)N 1},
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see, e.g., [2]. The associated system reads

Au + a grad div _u +
u=O on0.

Problem (17) is related to the so-called fundamental Stokes’ eigenvalue:

(18) ml min {[[Vu[[2 [u e [H(fl)]N, div u 0, liUliz -< > 1}.

It was shown in [2] that ml is an upper bound for A (a). In [11] Rother showed that
Al(a) is increasing in a. Using the ideas above it can easily be shown that in fact
-4m__ Ai(a) is concave in a. The lower bound

m 3 (22)2/3
i=1

m5/3

was derived in [6]. Under the technical assumption that 0D E C,, Rother showed
that the upper bound m is optimal in the sense that

(19) lim A1 (a) ml.
a---c

In [4], it was shown that

()A_<A(a) 1+
See Fig. 2 for a graphical summary of the discussion of the results for A1 (.).

m

hi

FIG. 2. Al(a).

The smoothness assumption on 0 was used in Rother’s proof because he decom-
posed the eigenfunctions orthogonally into divergence free and remaining components,
and he then applied some results for the divergence operator. We can avoid these dif-
ficulties (and thus derive (19) without any regularity assumption on 0) as follows:
let un be a sequence of eigenvectors associated with the eigenvalue A(n) and Suppose
that n --. oc. Since hi(n) _< ml we know that _un is uniformly bounded in [H(f/)]N
and that div un --, 0 as n --. oc. Therefore, after possibly passing to a subsequence,
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un has a weak limit uo in [H (t)]N. Moreover, uo has unit length in L2(f)N. Since
the map v fn (div v)2 dx is convex and hence weakly lower semicontinuous in

[H (gt)] N, we conclude that div uo 0. Finally it should be noted that un converges
strongly in [H(t)]N to uo, since [[Unl[-- [[uo][ and un converges weakly. Therefore
(19) must hold.

Remark 4. Clamped plate under tension. Instead of (1) consider the eigenvalue
problem

AAu aAu Fu O in

u==0 on0t,On
where a T/D is given. T describes tension and D the flexural rigidity of the
plate. The eigenvalues Fi of (20) are characterized by means of the following Rayleigh
quotient on H(f)

(21) Ta(V) ff {(Av)2 + a[Vv[2} dx

fa v2 dx
mAs in the proof of Theorem 1 it can be shown that -i=1 Fi(a) is strictly concave and

strictly increasing in a. The following estimates hold for F1 (a)"

(22) F1 (0) + aA _< Fl(a) _< FI(0) + av/FI(0) for a > 0;

see [9]. Here again A is the lowest eigenvalue of the corresponding fixed membrane
problem and v/F1(0) is the fundamental frequency of a clamped plate in the absence
of tension. Notice that (22) is sharp for a 0, and that (22) implies that the curve
(a, F (a)) stays inside a certain cone. A consequence of our results is that the inequal-
ities in (22) are necessarily strict, an assertion not claimed by Payne. The numerical
results of [14] indicate that F1 (a) is a concave function with an asymptote whose slope
is not smaller than A, see Figs. 3 and 4.

We claim that the eigenfunction Ua associated to F (a) converges to )1 and F1 (a)
converges to A1 as a --. ; see Fig. 4. Indeed, Fi(a) Ai for 1, 2,..., as a
This is easy to see once we realize that letting a --. cx is equivalent to letting the
flexural rigidity of the plate tend to zero. Thus, in the limit the plate should behave
like a membrane. Setting 1/a we can rewrite the differential equation in (20) as

AAu- Au- A()u 0,

and view this differential equation as a singular perturbation of the membrane equation
given at the end of the Introduction. In fact, asymptotic expansions for Ai() and its
corresponding eigenfunctions are well known and recorded, for instance, in [2, p. 392],
[3], [15].

2. More general results the linear case. The above result can be generalized
in several ways: For example, let H be a Hilbert space and D1, D2 (D2 C D1 C H)
be dense linear subspaces on which the nonnegative, selfadjoint operators El, E2 are
defined respectively. We shall assume that E2 is strictly positive, i.e., (x, E2x) > 0
unless x 0. Let (., .) and ]] ][ denote the scalar product and corresponding norm
on H. We let Di be the completion of Di in the norm {(x, Eix)/ lxl[ 2} 1/2.

(A.1) For every a _> 0 there exists Ya E D2 such that

F(a)--inf{(x, E2x) +a(x, Elx) I[x[[ 1, x e 02 }
(ya, E2Ya) + a(ya, ElYa) ga(Ya).
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Curve 1" Clamped Square Plate (,-r/2 >-x, y>--,’r/2)
Curx’e 2" Clamped Circular Plate (r= V’)
Curve 3" Clamped Circular Plate (r--2)

FIG. 3. Numerical approximations of Fl(a), copied from [14] (-= a).

FIG. 4. Fl(a).

THEOREM 6. Suppose that (A.1) holds.
(i) Ira < b, then

(23) (yb, Elyb) < F(b)- F(a) < (ya, ElYa)b-a

and F(a) is a monotone nondecreasing function of a.
(ii) F(a) is a concave function of a.
(iii) F(a) is strictly increasing on an interval ((,fl) C (0, oo) if and only if

(ya, Eya) > 0 for all a e (c, fl).
(iv) r(a) is strictZy concave i] E and E2 have no common eigenvector.
Co.o,.,.A.. 7. < (uo, E,uo)Ib-al. (r(a)i, Lipschitz continuous.)



EIGENVALUES FROM PLATES 337

(ii) F(a) (ya, Elya) is a nonincreasing function of a.
(iii) F(0) + a limbo(yb, Eyb)

_
F(a)

_
F(0) + a(yo, Eyo).

The proof of Corollary 7 is immediate. Let us prove Theorem 6. Statement (i)
is straightforward, since r(b) J(y) < J(y) and F(a) Ja(Ya) <_ Ja(Yb). To
prove concavity, and thus statement (ii), we have tF(a) tJa(ua) <_ tJa(yt) and
(1 t)F(b) (1 t)Jb(Yb) <_ (1 t)Jb(yt) for any t e (0, 1), where y is shorthand for

Yta+(1-t)b. Adding these inequalities, we have

(24) tF(a) + (1 t)r(b) _< F(ta + (1 t)b).

In order to prove (iii) we need only observe from (23) that (ya, Elya) > 0 in (a,/)
if and only if F(a) is strictly increasing in (a,/). To prove (iv) notice that equality
holds in (24) if and only if F(b) Jb(Yb) Jb(Yt) and Ja(Yt) Ja(Ya) F(a). The
latter is equivalent to

(25) E2yt + bEyt F(b)yt 0

and
E2yt + aElyt F(a)yt O.

Upon subtraction we see that

(26) Eyt r(b) r(a)yt,
b-a

so that yt is an eigenvector of the operator E. But now, using (25) or (26) it can be
seen that yt is an eigenvector of E2, too. This proves Theorem 6.

Remark 5. One particular consequence of (23) or Corollary 7(ii) is the following:
If (ya, ElYa) 0 for some a > 0, then F(a) is constant on [a, c) and (Yb, EIyb) 0
for b E [a,

In order to obtain information on the limit a -- oo we need more assumptions
about the relationship between E1 and E2, e.g., the following assumption.

(A.2) There exists a e (0, 1] such that (x,Ex) <_ (x, E2x) for all x e 02,

Then

(27) (ya, Eya)

_
(yo, Elyo)

_
(yo, E2yo) -F(0)".

For example, for the plate under tension, E2u AAu, Eu Au on H02(t)
and H](gt) respectively, property (A.2) holds with c 1/2. Or for the Lam operator
E2 A and E V(div on [H(t)]n property (A.2) holds with a 1. Also, by
unique continuation the hypothesis of Theorem 6(iv) holds for this example.

(28) r(a) _< inf {(x, E2x) llxll 1, x e D2, (x, Elx) 0}.

One has to distinguish two cases: (1) The infimum in (28) is taken over an empty set.
(2) The infimum in (28) is taken over a nonempty set.

In both cases the family {(ya, ElYa)}{a>O} is bounded in view of (27). In the
second case, however (x, Ex)i/2 is only a seminorm, since there are vectors for which
(x, Ex) 0 and consequently the kernel KerE {x Ex 0} is not trivial. If the
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infimum in (28) is taken over an empty set, it is oc by convention and we assume the
following.

(A.3.1) If KerE {0}, then D D2 and sequence which is bounded in D
posesses a subsequence which converges strongly in H and weakly in D. Equivalently,
D is compactly embedded in H.

If the infimum is taken over a nonempty set, F(a) _< M < oc for all a and some
M. In that case we assume (A.3.2)

(A.3.2) If KerE - {0}, then every sequence which is bounded in D2 possesses a

subsequence which converges strongly in H and weakly in D.
For reasons that will become obvious in the proof of Theorem 8(iii), we need an

additional assumption, namely, (A.4).
(A.4) Let a {Ya Ja(Ya) F(a)}. For every a _> 0 there exists a Sa such

that
(,E) inf{(y, Ey) Ya e a} --’: F(a).

We can now establish an analogue to (19) or Remark 4.
THEOREM 8. Suppose that (A.1), (A.2), and (A.3) hold. Then
(i))1 limax) (ya, ElYa) is the slope of the linear asymptote of F(a) and

,’1 <_ (yo, Elyo)

_
F(0)a.

(ii) Moreover 1 i8 the smallest eigenvalue of E1 and the family {Ua} contait8
a sequence {u } which converges strongly in H and weakly in D1 to an element of
the first eigenspace of E as an

(iii) Whenever F’(a) exists and (A.4) hotds, then F’(a) inf{(ya, Ey)
o}.

The proof of (i) follows from (27). To prove (ii) we notice that (i) and (A.3) imply
the existence of a sequence y which converges weakly in D1 and strongly in H to a
limit as a - oc we distinguish the above two cases.

(1) If KerE1 {0} the set {(ya, ElYa)} is uniformly bounded and {Ya} possesses
a sequence which converges strongly in H and weakly in Di to an element of Di.

(2) If Ker E1 {0} the set {(y,E:y)} is uniformly bounded and {Ya} possesses
a sequence which converges strongly in H and weakly in D to an element of D1. Let
us call the limit element y. We have

(, E.) + (a, E) r(a)(a, ) 0
a a

for every D:, so that y is an eigenfunction for El"

(,E) m(,) 0

with d lima--, F(a)/a. Notice that IlYII-- 1 by assumption (A.3). By definition of
A, d >_ . It remains to show that d- A, and we suppose in contrast that d > .
Clearly E has a smallest (nonnegative) eigenvalue # <_ A1 and some associated
eigenfunction 1 D. We claim d A1 #. Let < d- #1. Since D2 is dense
in H and D2 c D c H, we can approximate D1 with a function ee D2 such
that Ileell- 1 and (, Elee) < #1 + e. But this contradicts the choice of because

d
an -’-+(:) an

and thus concludes the proof of (ii). To prove (iii) we assume (A.4). Then for any
decreasing sequence an ---+ a there exists a number M such that J(a)
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Jal (/al) <_ M. Therefore (a } has a subsequence, still denoted by (an } with a limit
)aoo. We obtain

r(a) < J(faoo) <_ liminfr(a) _< r(a)

from the definition and the continuity properties of F. Therefore Yaoo
more, due to (27) and the monotonicity of F,

E a. Further-

F(a)

_
(yaoo,ElYao)

_
liminf(Ja,Ella)= liminf F(an)

_
F(a).

This proves that F(a) equals the one-side derivative of F from the right. Since F’(a)
is assumed to exist, the proof of Theorem 8 is complete. []

3. More general results, the nonlinear case. For i 0, 1, 2, let
+ be a nonnegative weakly lower semicontinuous functional on a separable Banach
space Xi.

THEOREM 9. Suppose that X2 c X1 C Xo, and that there exists a unique
minimizer uo in X2 of Jl(v) in XI N {v Jo(v) 1}. Let u be a minimizer of
J(v) :-- eJ2(v) + J (v) on X2 N {v Jo(v) 1}.

(i) Then F(e) J(u) is monotone nondecreasing and concave in .
(ii) IfX is compactly embedded in Xo and if J is coercive, then ue converges

to uo weakly in X1 and strongly in Xo.
(iii) If X2 is compactly embedded in X, then ue converges to uo weakly in X2

and strongly in XI and Xo.
The proof is straightforward if we use ideas from the proofs of Theorems 1 and

8. As an application for Theorem 9 consider the eigenvalue problem

(29)
cAAu- div 0 in ft C

Ou
u==0 on Oft,On

for l<p< 2n/(n p) Here J2(v) i[Av 12152(), Jl(v)= [IVvllp(a and Jo(v)=
Ilvllip(), while X2 H(Ft), X W’P() and X0 ip(Ft). Then, as -- 0, the
solutions of (29) converge to the (unique) ground state of the formal limit problem,

div (]Vulp-2Vu) + A]ulp-2u 0 in ,
u=0 on 0f.

For more details on this eigenvalue problem see, e.g., [7], [13].
Notes added in proof. Professor F. Goerisch has kindly informed us of [16],

in which it is shown that the entire spectrum of the elasticity operator converges to
the spectrum of the Stokes operator. Therefore Remark 3 of this paper extends to all
eigenvalues.

In [17], the author re-establishes the results of [11] in three dimensions. The
author’s method of proof relies on the decomposition of the Lam operator using
quaternians and a generalized Cauchy-Riemann operator. His result thus appears to
be restricted to three dimensions. However, no regularity of the boundary is required.

Acknowledgment. We thank L. Frank for bringing references [2], [3], [15] to
our attention.



340 B. KAWOHL H. A. LEVINE AND W. VELTE

REFERENCES

[1] R. COURANT AND D. HILBERT, Methoden der Mathematischen Physik, Springer-Verlag, Heidel-
berg, 1968.

[2] L. S. FRANK, Coercive singular perturbations, eigenvalue problems and bifurcation phenomena,
Ann. Mat. Pura hppl. (4), 148 (1987), pp. 367-395.

[3] P. P. N. DE GROEN, Singular perturbation of spectra, in Asymptotic Analysis, F. Verhulst, ed.,
Lecture Notes in Math. 711, Springer-Verlag, New York, 1979, pp. 9-32.

[4] B. KAWOHL AND (. SWEERS, Remarks on eigenvalues and eigenfunctions of a special elliptic
system, Z. Angew. Math. Phys., 38 (1987), pp. 730-740.

[5] A. W. LEISSA, On a curve veering aberration, Z. Angew. Math. Phys. (J. Appl. Math. Phys.),
25 (1974), pp. 99-111.

[6] U. A. LEVINE AND M. H. PROTTER, Unrestricted lower bounds for eigenvalues for classes of
elliptic equations and systems of equations with applications in elasticity, Math. Methods
Appl. Sci., 7 (1985), pp. 210-222.

[7] P. LINDQUIST, On the equation div(IVulP-2Vu) - )lulp-2u 0, Proc. Amer. Math. Soc., 109
(1990), pp. 157-164.

[8] S. MOLLER, Minimizing sequences for nonconvex functionals, phase transitions and singular
perturbations, in Problems Involving Change of Type, K. Kirchgissner, ed., Lecture Notes
in Phys. 359, Springer-Verlag, New York, 1990, pp. 31-44.

[9] L. E. PAYNE, New isoperimetric inequalities for eigenvalues and other physical quantities, Comm.
Pure Appl. Math., 9 (1956), pp. 531-542.

[10] G. POLYA AND M. SCHIFFER, Convexity of functionals by transplantation, J. Anal. Math., 3
(1953/54), pp. 245-345.

[11] W. ROTHER, New estimates for the first eigenvalue of Lamd’s operator, Z. Angew. Math. Mech.,
69 (1989), pp. 451-452.

[12] New bounds for the first eigenvalue of an elliptic equation occurring in the buckling
problem for the plate, Appl. Anal., 31 (1988), pp. 57-61.

[13] S. SAKAGUCHI, Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet
problems, Ann. Scuola Norm. Sup. Pisa C1. Sci. (4), 14 (1987), pp. 401-421.

[14] A. WEINSTEIN AND WEI ZANG CHIEN, On the vibrations of a clamped plate under tension,
Quart. Appl. Math., 1, Amer. Math. Soc., Providence, RI, 1943, pp. 61-68.

[15] M. I. VISHIK AND L. A. LJUSTERNIK, The solution of some perturbation problems of matrices and
selfadjoint or non-selfadjoint dierential equations, Russian Math. Surveys, 15, pp. 1-73.

[16] L. A. MINIS, e-Approximation of the spectrum of the Stokes problem, Soviet Math. Dokl., 32
(1985), pp. 211-214.

[17] K. GURLEBECK, Lower and upper bounds for the first eigenvalue for the Lamd system, in Bound-
ary value and initial value problems in complex analysis: studies in complex analysis and
its applications to partial differential equations, 1 (Halle, 1988), pp. 184-192, Pitman Res.
Notes Math. Ser., 256, Longman Sci. Tech., Harlow, 1991.



SIAM J. MATH. ANAL.
Vol. 24, No. 2, pp. 341-364, March 1993

1993 Society for Industrial and Applied Mathematics

006

REGULARITY OF BOUNDARIES OF QUADRATURE DOMAINS IN
TWO DIMENSIONS*

MAKOTO SAKAI-

Abstract. First, the author discusses regularity of the boundary of a bounded quadrature domain. It is
shown that the boundary is very beautiful and it consists of regular, degenerate, double, and cusp points.
Next the author discusses an unbounded quadrature domain and defines its global Schwarz function, showing
that it is obtained as a translation of the inversion of a bounded quadrature domain if it is not dense in the
whole plane. The author gives a complete description of unbounded quadrature domains of point differential
functionals of finite order and determines all null quadrature domains in two dimensions.

Key words, quadrature domains, Schwarz functions, inversions
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In a previous paper [11], the author proved a regularity theorem on a boundary
having a Schwarz function. Let be an open subset of a disk Br(O with radius r and
center sro such that the boundary 011 of12 contains the center sro, and let F (01)) fq Br(sro).
We call a function S defined on 12 1.3 F a Schwarz function of 12 (.J F, more precisely,
a Schwarz function of (_J F at sro or in Br(sr0), if

(i) S is holomorphic in 12;
(ii) S is continuous on f (_J F;
(iii) S(sr) sr on F, where " denotes the complex conjugate of ’.
REGULARITY THEOREM 11 ]. If there is a Schwarz function of 12 LJ F at sro, then

o is (1) a regular, (2) degenerate, (3) double, or (4) cusp point of F. Namely, there is
a small disk B B(o), and one of the following must occur:

(1) i-I fq B is simply connected and F fq B is a regular real analytic simple arc passing
through o.

(2) F(’I B {’o} or F fq B is an infinite set accumulating at o, and is contained in
a uniquely determined regular real analytic simple arc passing through o. F fq B is a

proper subset of the arc or the whole arc. 12 (q B is equal to B\F.
(3) 12fq B consists of two simply connected components, 1 and 122. (0fll)fq B and

(0122) fq B are distinct regular real analytic simple arcs passing through o. They are
tangent to each other at o.

(4) fq B is simply connected, and F fq B is a regular real analytic simple arc except
for a cusp at o. The cusp is pointing into l fq B. It is a very special one. There is a
holomorphic function T defined on a closed disk B (0) such that

(i) T(0) ro, T’(0) 0 and T"(O) 0;
(ii) T is univalent on the closure H of a half disk H {w 6 B(0); Im w > 0};
(iii) T satisfies FfqBc T((-e, e)) and T(H)ct_JF, where (-e, e)=

{w; -e < w Re w< e}.
Conversely, if one of statements (1)-(4) holds, then (1) f’) Bo(sro)) U (Ff3 Bo(sro))

has a Schwarz function for some p > 0.
In this paper, we apply the Regularity Theorem to quadrature domains and show

regularity of boundaries of quadrature domains in two dimensions. Let/x be a complex
measure on the complex plane C. A nonempty open set 12 in C is called a quadrature

* Received by the editors December 17, 1991; accepted for publication (in revised form) July 23, 1992.
Department of Mathematics, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji-shi,

Tokyo, 192-03, Japan.
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domain of/. if I/l(C\l)=0 and if J Ifldlgl < +oc and

f fdt_c f fa f(z) dx dy (z x + iy)

for every holomorphic and integrable function f in
Quadrature domains are closely related to domains that are solutions of an inverse

problem in potential theory. The Newtonian potential of a measure/ is equal to that
of the quadrature domain of/, in the exterior of the quadrature domain. Quadrature
domains are also closely related to Hele-Shaw flows with a free boundary. We interpret
a quadrature domain as a solution of a Hele-Shaw flow free boundary problem. On
the other hand, we can express the solution of the Hele-Shaw flow free boundary
problem as a quadrature domain of some measure. For these and further applications,
we refer the reader to [9].

This paper consists of two parts. We devote the first part to the study of regularity
of boundaries of bounded quadrature domains. In the second part we give a broad
perspective of unbounded quadrature domains.

If a quadrature domain l) of/z is bounded, then 1/(z-) is holomorphic and
integrable on l) for every fixed srC\l). Hence the Cauchy transform (’)=

1/(z-sr) dxdy of is equal to the Cauchy transform/2(’) 1/(z-’) dlz(z) of
on C\O. Since (z)+r is holomorphic in 1, we see that

fi(z)+ -(z)
S(z)

is a Schwarz function of (1(3 B)[A ((0)(3 B) if B and the support of are disjoint,
where B B(sro) and sro e 0. Applying our Regularity Theorem, we obtain a regularity
theorem on boundaries of bounded quadrature domains. Let 1 be a bounded quad-
rature domain of/z such that the support of/z is contained in . If we make a new
domain [] by adding all degenerate boundary points of 1 to , then [] is also a
quadrature domain of z, and the boundary of [1] consists of a finite number of real
analytic closed curves having at most a finite number of double and cusp points in
the sense of the Regularity Theorem.

In contrast with many known results on bounded quadrature domains, only a few
results are known on unbounded quadrature domains. For example, let 6o be the Dirac
measure at the origin. Then the bounded quadrature domain of ;o is the simplest
quadrature domain. It is determined uniquely and is equal to a disk with center at the
origin and radius 1/x/-. We know that there are many unbounded quadrature domains
of 6o, but we do not know all of them yet.

Here is a program proposed by Shapiro [12]. Let 1 be an unbounded quadrature
domain of a complex measure with compact support. Let S be a Schwarz function
defined on I)\B--- for some large disk B B(0). Namely, let S be a function such
that (i) S is holomorphic in I\B, (ii) S is continuous on I\B, (iii) S(’)= sr on
(O")\BR, and (iv)IS(z)]-< alz on 1\- for some constant a >0. We can show the
existence of the Schwarz function by using the generalized Cauchy transform. If

(,) S(z)-oo as

then Sg(z) 1/S(1/z) is holomorphic in fl’ {I/z; z e fl}CI B(0) for some r. By setting
S(0) =0, we see that S is continuous on ’LJ F’ and satisfies S(’)= sr on F’, where
F’= (01’)(3 B(0). Thus S is a Schwarz function of fl’(_J F’ at 0. Shapiro [12] showed
that if 01 satisfies some regularity hypotheses, then (.) is satisfied and the unbounded
quadrature domain is obtained as an inversion of a bounded quadrature domain.
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We shall show, by applying the Fuchs theorem, that (.) is actually satisfied if 0gl

is unbounded. This will enable us to carry out the Shapiro program on unbounded
quadrature domains. In particular, we obtain a complete description of unbounded
quadrature domains of finite order.

During the first reading of this paper, one could omit 2, except for the definition
of the Schwarz function of an unbounded set and the statement of Corollary 2.6.
Throughout the paper, denotes the complex conjugate of z if z is a complex number.
For a subset E of C, E denotes the closure of E. We usually denote a boundary point
by sr instead of z.

I. Bounded quadrature domains.
I. Bounded quadrature domains of a complex measure, which contain the support

of the measure. In the introduction we have already mentioned regularity of boundaries
of bounded quadrature domains. We summarize it as the following proposition.

PROPOSITION 1.1. Let 1 be a bounded quadrature domain of a complex measure

Iz, and let o (0f)\supp/z. Then there is a disk B B(sro), and one of statements
(1)-(4) of the Regularity Theorem holds.

COROLLARY 1.2. Let 12 be a bounded quadrature domain of a complex measure I.
If 012 is neither a regular, degenerate, double, nor a cusp point of Ol) in the sense of
our Regularity Theorem, then supp/z, namely, IIl(Br()) > 0 for every r > O.

For example, let/ be a positive measure defined by d/ 2(1 x/[) dx on (-1, 1),
and let ={z=x+iy; -l<x<l, x2/2-1/2<y<-x2/2+1/2}. Then fl is the unique
bounded quadrature domain of ; see [9, Ex. 14.10, p. 123]. (01)\{-1, 1} consists of
two real analytic simple arcs, but -1 and 1 are two points on 012 that are neither a
regular, degenerate, double, nor a cusp point. In this case, supp [- 1, 1 and supp/
contains -1 and 1, as asserted in Corollary 1.2.

Now we discuss a bounded quadrature domain l) of a complex measure such
that supp is contained in 12. To make things clear, we introduce a global Schwarz
function of a bounded open set.

DEFINITION 1.3. Let l) be a nonempty bounded open set in C. A function S
defined on l)\K for some compact subset K of 1) is called a global Schwarz function
of f, or a global Schwarz function of fl holomorphic in fI\K, if

(i) S is holomorphic in \K;
(ii) S is continuous on fI\K;
(iii) S(sr) sr on 01q.

The global Schwarz function of a bounded open set fl holomorphic in fI\K is
determined uniquely if \K is connected; see the note after Definition 3.1 in [11].
Next we prepare the following definition and proposition.

DEFINITION 1.4. Let 12 be an open proper subset of a disk B(sro). Let g be a
function continuous on B(sro)\f and holomorphic in the interior of Br(O)\-. We say
that g can be extended holomorphically from B(’o)\fl onto B(’o) if there is a
holomorphic function f in Br(o) such that f(z)= g(z) on Br(O)\l).

PROPOSITION 1.5. Let l-I be an open subset of Br(O) such that oOfl, and let
I’= Br(o) f’) Ofl. Then f F has the Schwarz function in B(o) i,,f and only if 12 can be
extended holomorphically from Br(o)\ onto Br(o), where fl denotes the Cauchy.
transform () 1/ (z ) dx dy (z x + iy) of the characteristic function of f.

Proof We write B for Br(O). Assume that f U F has the Schwarz function S in
B, and let be the function defined by (z)- S(z) in l) and (z)= on B\I2. Set
f(z)=(z)+Tr-Tr(z). Then f is continuous in B and holomorphic in B\F=
12 O (B\(fl U F)). Since F consists of real analytic arcs or is contained in the union of
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real analytic arcs by our Regularity Theorem, f is holomorphic in B and it is the
holomorphic extension of f from B\12 onto B.

Conversely, if a holomorphic function f in B satisfies f(z)--l(z) on B\12, then
12(z)+ zr-f(z) is holomorphic in 12 and continuous on 12 U F. Since F c B\f, (12(z) +
zr-f(z))/r= on F. Hence ((z)+zr-f(z))/Tr is the Schwarz function of
in B.

Remark. From our Regularity Theorem we see that S is Lipschitz continuous on
B(sro) for every 6 less than r; see [11, Corollary 5.5]. The proposition, together with
the above fact, asserts that if 12 can be extended holomorphically from Br(’o)\12 onto
Br(’o), then itself is Lipschitz continuous on B(ro) for every less than r.

We shall prove the following proposition.
PROPOSITION 1.6. Let 12 be a bounded quadrature domain of a complex measure

tx such that supp/x is contained in 12. Then there is a global Schwarz function of
holomorphic in 12\supp/x. Conversely, if there is a global Schwarzfunction ofa nonempty
bounded open set 12 holomorphic in 12\K, then, for every neighborhood U of K with
U , there is a complex measure tx such that supp/x is contained in U, and 12 is a
quadrature domain of

Proof. If 12 is a bounded quadrature domain of/z such that supp/x c 12, then
((z)+zr-l(z))/zr is a global Schwarz function of 12 holomorphic in l\supp
Conversely, if there is a global Schwarz function S of 12 holomorphic in 12\K, then,
from the proof of Proposition 1.5, we see that f(z)= l(z)+ 7r$-r(z), where (z)=
S(z) in I\K and S(z)= on C\12, is holomorphic in C\K. For a neighborhood U
of K with /)c f, take a modified function g off such that g is of class C in C and
satisfies g(z)=f(z) in C\U. Set iz=-(1/er)(Og/O)m, where m denotes the two-
dimensional Lebesgue measure. Then 02/0 Og/O in C and supp tz is contained in
U. Hence t2-g is holomorphic in C and tends to 0 as z--> co. Therefore, /2 =g in C,
and so

(1.1) I(z) f(z) fi(z)
on C\f. Since supp/x = 0 12, I/x1(C\12) 0 and Ih[dllx < +oo for every holomorphic
and integrable function h in 12. Equation (1.1) implies that

1
dtx(z) Z"- dm(z)z-

for every ’C\12. Since every holomorphic and integrable function in 12 can be
approximated in the mean by linear combinations of 1/(z-j) with j012; see
Bers [2],

Ihd=fahdm
holds for every holomorphic and integrable function h in 12. Thus f is a quadrature
domain of/x. [3

Now we shall show regularity of the boundary of a bounded quadrature domain
12 of a complex measure/z such that supp/x is contained in .

THEOREM 1.7. Let 1 be a bounded quadrature domain of a complex measure
such that supp/x 12. Then

(1) Every boundary point of 1 is a regular, degenerate, double, or cusp point in the
sense of the Regularity Theorem;

(2) Every nonisolated degenerate boundary point determines uniquely a regular real
analytic simple arc, which tends to supp/x and does not tend to the set of nondegenerate
boundary points of 12, or determines uniquely a regular real analytic simple closed curve,
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which does not meet supp/x and the set of nondegenerate boundary points of f. The
number of such arcs and closed curves is finite;

(3) There is at most a finite number of isolated degenerate boundary points that do
not belong to the union of arcs and closed curves mentioned in (2);

(4) The union [ of1 and the set ofdegenerate boundarypoints is also a quadrature
domain of Ix, and 0[f] consists of a finite number of real analytic closed curves having
at most a finite number of double and cusp points.

Proofi Let ’o be a nonisolated degenerate boundary point of a bounded quadrature
domain 11. Then, by (2) of the Regularity Theorem, there is a regular real analytic
simple arc J passing through ’o. Let " J and let q be a holomorphic and univalent
function defined in B(O) such that J((-e, e)) and (0)= sr. Then S.= -,
where (w) W(,), is the Schwarz function of (B()\J)t_J (J fq B()) at " for some
6>0, and J can be extended onto q((-e, e)).

We note that S, is equal to the global Schwarz function on 11 in a neighborhood
of sr. We extend J as much as possible. We denote it again by J. Then J has no endpoints
in f\supp Ix by the above argument. J does not tend to the set of nondegenerate
boundary points by the Regularity Theorem. Thus J is a regular real analytic simple
arc that tends to supp Ix or is a closed curve that does not meet supp Ix.

Next assume that there is an infinite number of such arcs or closed curves J. On
each J, we can find a nonisolated boundary points ’j. By choosing a subsequence if
necessary, we may assume that srj converges to a point ’o 0 because 0f is compact.
By the Regularity Theorem, ’0 should be a nonisolated degenerate boundary point.
Hence there exists jo such that J Jo for j =>jo. This is a contradiction, and there is
at most a finite number of such arcs and closed curves.

Finally assume that there is an infinite number of isolated degenerate boundary
points sr that do not belong to the union of such arcs and closed curves. Again we
may assume that ’j converges to a boundary point ’o. By the Regularity Theorem,
is a nonisolated degenerate boundary point and, for large j, ’ must be contained in
the same arc or closed curve passing through ’o. This is again a contradiction. Hence
the number of such is finite.

To show the converse of Theorem 1.7, we introduce and discuss the cluster set of
a regular real analytic simple arc. Let J be a regular real analytic simple arc, namely,
let 0 be a holomorphic and univalent function defined in a neighborhood of the
open interval (-1, 1), and let J= q((-1, 1)). We denote by Cj the union of
{q((-1, -l + 6)); 6>0} and fq {q((1-6, 1)); 6>0} and call it the cluster set of J. If
J is a regular real analytic simple closed curve, then we interpret Cj as the empty set.
It follows that J\J c C J.

Let J be a regular real analytic simple arc as in Theorem 1.7. Then, by our
Regularity Theorem, we see that J fq Cj . Namely, we obtain Cj J\J. By the same
reason, we see that if J1,..., Jn are regular real analytic simple arcs or closed curves
as in Theorem 1.7, then J (3 Jk for every distinct j and k.

THEOREM 1.8. Let [12] be a bounded open set surrounded by a finite number ofreal
analytic closed curves with at most a finite number of double and cusp points in the sense

of our Regularity Theorem. Let J1,..., Jn be regular real analytic simple arcs or closed
curves such that J [f] and Cjj J\J for every j, and J fq Jk for every distinct. j"
and k. Let be an open subset of [f] such that [f]\f is a compact subset of (_J J.
7-hen 1 is a quadrature domain of a complex measure Ix such that supp Ix is contained
in

Proof At each boundary point " of 1, by our Regularity Theorem, we can find
a disk Bp(’) such that there is a Schwarz function of (lfq Bp(’))(_J ((0f)fq Bo(’)) at
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’. By continuing them, we obtain a global Schwarz function of 1) holomorphic in f\K,
where K is a compact subset of f. Take a neighborhood U of K such that U c 1).

Then, by Proposition 1.6, f is a quadrature domain of a complex measure tz such that
supp

Let 1) be a bounded quadrature domain of/x such that supp/x is contained in 1),
and let [f] be the union of 1) and the set of degenerate boundary points of f. Then
every open set 1)’ satisfying 1) c 1)’ c [1)] is a quadrature domain of/z. Hence Theorems
1.7 and 1.8 give a complete condition for a bounded open set 1) to be a quadrature
domain of a complex measure/x such that supp/x is contained in 1).

II. Unbounded quadrature domains.
2. A Schwarz function of an unbounded set. In this section, we shall discuss a

Schwarz function S of an unbounded set in the complex plane C and show, in Corollary
2.6, that 1/S(1 / z) is a Schwarz function at 0.

First we define a Schwarz function of an unbounded set. We denote by B a disk
with radius 8 and center 0.

DEFINITION 2.1. Let be an unbounded open subset of C\B such that F=
(O)\B is not empty. A function S defined on 1) F is called a Schwarz function of
1) F, more precisely, a Schwarz function of 1)J F at or in C\B if

(i) S is holomorphic in 1);
(ii) S is continuous on 1 F;
(iii) S(sr)= " on [’;
(iv)
We note that condition (iv) is equivalent to the following if F is unbounded.
(iv’) IS(z)] _-< a[z[ in \B for some constants a, fl > 0, and some 80> 8. Indeed,

we apply the Fuchs theorem, Theorem 2.1’ in [11], to S(z)/z and obtain
lima, supz_ [S(z)[/Iz <= 1.

Next we note that the Schwarz function S is determined uniquely if F is an infinite
set. If there is an accumulation point of F in C\B, then the uniqueness follows
immediately; see the note given after the definition of a Schwarz function for a bounded
set, Definition 3.1, in [11]. In the case that there are no accumulation points of F in
C\B, we apply Corollary 2.6 below. Then 1/S(1/z) is a Schwarz function at 0, and
so S is determined uniquely.

In the definition, we do not assume that S(z)-o as z 1)-*. But it is true if F
is unbounded.

PROPOSITION 2.2. Let S be the Schwarz function of 1)UF in C\B. If F is

unbounded, then

IS(z)]> Iz--j
in I\B

5

for a large disk B.
Remark. If F is bounded, then the conclusion of the lemma does not hold, in

general. For example, S(z)= 1/z is the Schwarz function of (C\-)LJOB in C\B-
with 0 < 8 < 1 and limz_ S(z) 0.

To prove Proposition 2.2, we introduce a function F(z)= z(S(z)-cz) for a fixed
complex number c with Icl < 1. We set

m(r)=inf{[F(z)[;
for

LEMMA 2.3. It follows that
(1) F is not constant in any connected component of t\B, for some 8 > 8;
(2) The integralo, d arg F is well defined and it is finite ifF.(z) 0 on 1) f) OB
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Proof To prove (1), assume that Fc is identically equal to a constant k in a
connected component D of 12. Then
where sr= [srl e i. Namely, 1’[2w k, where w= 1-c e ’2. Since (OD)\- is not empty
and w 0, k 0. If c 0, then the line {w; arg w arg k} and the circle {w; [w 11 Icl)
crosses at most in two points. Hence e2 has at most two solutions to the above
equation, and so ’= e’ has at most four solutions. Thus (OD)\- consists of at
most four points and D 12. This contradicts that F is unbounded. Hence c 0 and

Iffl== k. This means that k > 0 and (OD)\B-- c OB,/-ff. Since F is unbounded, (OD)\B-=
OB,/-i and D is an annulus surrounded by OB and OB,/-. We note that such an annulus
as well as k exists at most one. We obtain the required 61 by taking 1 so that 61 >= ,,/.

Next we prove (2). Since Fc(z) Fc(sr) Isr]2(1 c e2) as z 12 sr Irl e 012,
mc(r)> 0 if F(z)O on 12rioBr. Let ds denote the line element of OBr. Then

d arg F
0 arg F ds

0 log IFI ds
Os Or

along 12 fl 0Br and

0 log IFI _<-I(log F)’I- [F’[
Or IF I"

It follows that F’(z)=(zS(z)-cz2)’= zS’(z)+ S(z)-2cz. Corollary 5.4 in [11] asserts
that limzn,z-.c S’(z) exists for every r on F and it is equal to S’(r) if " is an isolated
point of F, and its modulus is equal to one if r is not an isolated point of F. Hence
S’ is bounded on 12rlOBr. Since IF(z)l>-m(r)>O, we see that (Olog{F[)/(Or)is
bounded on 12 fl OBr. Thus the integral ,ronr la arg F is finite. This proves (2). []

Let go be the number as in (iv) of Definition 2.1, and let 61 be the number as in
(1) of Lemma 2.3. Take p so that p>max{6o, 31} and Fo(z)=zS(z)O on 12flOBo.
We note that mo(p)> 0 and nono d arg Fo is finite. Take e so that

(2.1) 0<e<,

(2.2)

(2.3)

m=inf{m(p);

=sup { In dargFc
(qOBp

We fix p and e.

Now take A so that 0<A <min{m, p2(1-3e)}, take c so that [cl<-e, and set

Since [F(z) _>- m > a on 12 fq OBo by (2.2), 12 f’l OBo Aa,c . Let
g-- O {O3etz( t2); t--> p},

take a neighborhood U(r) of sr F\Bo so that U(r) c B(,/3)II() and Fo(12 n U(’)) c
and set

u o { u(); e

Since IFc(z)-Fo(z)l=lczl=(1 + 1/3)21’12<2e112 in 1293 u(’), F(12 fq U)c V.
Take r > p, and let {12.} be a regular exhaustion of 12 such that there is at most

one connected component of 12. fqOBo (respectively, 12. OBr) on each connected
component of 12f-lOBo (respectively, 12f-IOBr). Take 12. so that (11\12.)f-I (B\Bo)c.U.
Since F(OClU)=V and dist(V,O)=p2(1-3e)>A, it follows that
(B\Bo) fq A, . Let

12x,c(r, n)= {z an n (Br\g); Iv (z)l > at.
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We may assume that Ol,c(r, n) consists of a finite number of piecewise real analytic
simple closed curves. We note that the number of components of O,c(r, n), which
are entirely contained in A,c, does not depend on the choice of n if we take fn so
that (\fn)CI (Br\Bo)c U. We denote it by ,,c(r). Set

LF.MMA 2.4. It follows that

1 fo. d(2.4) u,c(r) _-<- arg F + y,

where y=( +24 Arcsin e)/(2vr) and is the number defined by (2.3). The number
does not depend on the choice of, c, and r.

Proof We apply the argument principle to Fc in l),(r, n)"

fo arg F 0.d
,,c( r,n

It follows that jdargF<-O for every arcJ contained in A,f-IOlI,(r,n). If a
component J of 01,(r, n) is entirely contained in A,, then j d arg F is equal to a
positive integer multiple of-2r. Hence we obtain

0 / d arg Fc
fa,c(r,n)

(2.5) <--2,r,,.c(r)- f d arg Fc+ f( d arg fc
Bo)ClOl’,,c( n) Br)ClOl)lt,c( r,n

+ d arg Fc.
(OFt,,)ClOl)a c( r,n

Next we note that Fc(OlIn CI(B\Bo))c V. This implies that if J is a closed curve
contained entirely in (01".) (3 0.(r, n), then Ijd arg Fc 0. For arcs in (01)
01).c(r, n), we may assume that all endpoints of arcs in (0fn) CI Of.(r, n) are contained
in (OBo)U(OB). We write 0. for the union of the arcs in (0a.) n). we note
that IF(z)]> I on lIf30Bo. Let (lf3OBo)n (respectively, (a.cfiOB).) be the union
of connected components of IICIOBo (respectively, f.cTlOB), which contains a
connected component of fnClOBo (respectively, (Of)flOf,.(r, n)), and set 0’.
O,,+(aClOBo)n-lnClOBo-(la.f"lOBr)n+(OB)ClOlIa,(r,n ). Then, from (2.5), we
obtain

2r..c(r) _-< -J d arg F. + I( dargF+fo d arg F.

To estimate the integral on 0’., we consider three types of arcs contained in
(1) an arc whose one endpoint is on OBo and the other is on OB, (2) an arc whose
two endpoints are on OBo, and (3) an arc whose two endpoints are on OBr. Let J be
an arc of type (1), and let p e and r e q’ be the initial point and the terminal point of
J, respectively. Then, by the assumption that there is at most one component of 1). CI
(respectively, . f3OB) on each connected component of I710Bo (respectively,
OB), we can find uniquely determined circular arcs K(p)c (aflOBo) and K(r)c
(f.flOB)n such that the initial points of K(p) and K(r) are on 01 and the terminal
points of K(p) and K(r) are equal to p e and re 4’, respectively. Namely, we can
assign an arcJ’=K(p)+J-K(r) to J and regard it as an arc contained in 0’.. We
apply the same argument to arcs of type (1) whose initial points are on OB, arcs of
type (2) and arcs of type (3).
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We shall estimate the integrals on arcs of type (1). Let J1,..., J21 be arcs of type
(1), and let p e% and r e% be endpoints of J, j 1, 2,..., 21. We may assume that
0-<_ql < q2<’’. < q21 <2rr, qq < 2<""" < q,21 < qq+2rr, pe% is the initial point of J
for odd j and p e’ is the terminal point of J for even j. If p e’J is the initial point of
J, we can find qj < qj such that the circular arc K(p) between p e’J and p e’ are in

(12f"lOB,),, and pe;Of. We can also find q’<q9 such that the circular arc K(r)
between r ei; and r e% are in (fx.e f’lOBr), and r ei.; Of. Thus we assign an arc J

t.__K(p) + J Kj(r) to each J for oddj. Similarly, we assign an arc2J -K(r) + J + K(p)
to each J for even j. We note that Fe(J)c V, F(pei’)=p (1-ce2’) if p e’0f
and F(r e’) r2(1 c e2i+’) if r e+’ 0. We denote Arg w the principal value of arg w,
namely, -rr < Arg w =< rr. Then

for odd j and

d arg Fc Arg (1 c e2q’;) Arg (1 c

d arg F Arg 1 c e2;) Arg (1 c e2iq’;)

for even j. Hence

E d arg F E {Arg (1 c e2’*) Arg (1 c e-i*-,)}
j=l .j=l

Y {Arg 1 c e2iq’j) Arg (1 c e2iq’,-’)}.
j=l

Since q’ < ( ---<" < (O.l < q’ + 2rr and q,’l < {//< < i/t_/< 1//1! + 2rr, the absolute
value of each of the sums in the right-hand side is not greater than 4 Arcsin e, and so

Y d arg Fe <= 8 Arcsin e.
j=l

Next we shall estimate the integrals on arcs of type (2). For the sake of simplicity,
we consider arcs of type (2) contained in a simply connected open set D1, which is
surrounded by J1, Ll(r), J2, and -LI(p), where J1 and J2 are arcs of type (1), Ll(r)
denotes the circular arc between r e +, and r e +2, and LI(p) denotes the circular arc
between p e*, and p ei2.

The situation is complicated because D1 fq f,(r, n) may not be connected. Let
D’, be a connected component of D1 f’l llh.c(r, n) such that OD J1, and let
be arcs of type (2) contained in OD. Let p ei% and p e% be the initial point and
the terminal point of/, j 1,..., k, respectively. We may assume that ql < 01 < 0 <

< 02 < q2. By using an argument similar to the above, to each/, we assign an arc

I having endpoints pe and p e%-,. It follows that 01 < 0’1=< 0 < 02 <"

0’2k-1 <= O’2k < Ozk. Hence

Itj t

e2i(2.6) d arg F =< Y {Arg (1 c -,) Arg (1 c e2i%)}.
j=l j=l

Next we consider the case that there are arcs of type (2) contained in a simply
connected open set D2 surrounded by 11 and the circular arc between p e, and p e.
We take a connected component D of Dl\fa,(r, n) such that OD’2= 11, and let
i2),..., I k(2(2)- be arcs of type (2) contained in (OD’2)\I. As before, we can find arcs

1(2)’{2), and obtain an estimation similar to (2.6). We note here that the direction of
_

--j
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is opposite from that of I. Thus if we add the integrals on all arcs I’ assigned to I
of type (2) contained in D2, then it is not greater than

2
Id Arg (1 c e2i) I.

0

Hence

Y’, d arg Fc --< Id Arg (1 c e2i)] 8 Arcsin e,
(2) 0 =0

where Y() denotes the sum for arcs of type (2).
The same estimation holds for arcs of type (3), and we obtain

2rV,c(r) =< J d arg Fc+ I( dargF+24Arcsine.
INOBp). ,cnaBr)"

By letting n , we obtain

2,(r) d arg F + 27.

Now we apply the argument as in the proof of Theorem 1 in a paper of Fuchs
[4] and prove the following.

LEMMA 2.5. Inequality (2.4) implies that

,(r) <- y+2

for every r >--_ p.

Proof Since d argF=(OloglF(rei)[)/(Or)rdO along fa,cfq0B,, dividing by r
and integrating the inequality at the end of the proof of Lemma 2.4 from p to R we get

Ip Vx,c(r) fj OlglFc(rei)l
dOdr,(2.7) 2r dr<-_27ry log (R/p)+

r ,eiX,c(R) Or

where fx,(R)= fa, (q BR. We have already seen that S’ is bounded in ff’l (B\Bo),
and so we see that (0 log [Fcl)/(Or) is bounded in 12,(R). Hence we can reverse the
order of integration with respect to 0 and r. We fix 0 and consider

19 log [F(r ei)l
dr.

eiX,c(R) Or

The set fx,(R)(’1 {z; arg z 0} consists of at most a countable number of open
segments. The integral on each segment is equal to log [Fc(r ei)l-loglF(r ei)l,
where rl ei and r2 ei with r > r are the endpoints of the segment. The endpoints are
contained in 0f, Aa,c, or (OBp)LJ (OBR).

First we consider the case that {z; arg z 0} does not meet Aa,. If the endpoint
r e is contained in 0f, then IF(r ei)[ rll-c e2i[. Hence the integral is not greater
than loglF(Re)[-loglFc(pe)[ if pe and Re Oa,(R), 210g R+logll-ce2
log IF(p ei)l if p ei a,c(R) and Rei fa,(R), log IFc(Re’)]-2 og p -og ]1
C eEl if p ei : Iqa,(R) and Re 12a,c(R), and 2 log R-2 log p if p e and Re
12,(R). Since IF(pe)[>-_m by (2.2), the integral is bounded from above by
log IF(Re)l+ yl or 2 log R + Yl, where y denotes a constant independent of the
choice of A, c, R, and 0.
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Next we consider the case that {z; arg z 0} meets A,c. Since A,c fq BR consists
of a finite number of real analytic arcs and closed curves, {z; arg z 0} meets A,c
finite times. If the endpoint r ei is contained in A,, then IFc(r ei)l A. We note that
flf’IOBpfqA.= and see that the integral is not greater than log lF(Re’)l+
yl+log+h_-<loglF(Re)[+yl+log+m or 21ogR+3q+log+m, where log+h=
max {log A, 0}.

Since ]S(z)y<-alz[ in 12\B for some a by (iv) of Definition 2.1, we obtain
[F(z)[=lzl[S(z)-czl<-_(a+e)[z[2 in 12\Bo. Setting y2=yl+log+(a+e)+log+m,
we obtain

By (2.7),

Ireiag’t
c(R

IF(,.r e")[
dr<-_2 log R + 3’2.

log
Or

dr<-_ (y+ 2) log R + 1/3,

where ’/3 "}/2--’}/log p.
Since Uh,c(r) is a nondecreasing function of r, this inequality is possible for large

R only if u,,c(r) -< y + 2 for every r > p. [3

Thus we can find R such that all closed curves of Aa, are contained in f fq BR.
In the above argument, 3’+2 does not depend on the choice of h and c, but R may
depend on h and c. The final, step of our argument is to show that we can take R so
that R is independent of the choice of h and c.

Proof of Proposition 2.2. Set

u=sup{ux,(r); r>=p, O<h<min{m, p2(1-3e)}, Icl<  }
and take ro, Ao, and Co so that Uo,o(ro) u. By using the same argument as in the proof
of Lemma 3.3 in 11 ], for fixed ro and ,o, we can find el > 0 such that Uo,c(ro) u for
every c in B, (Co) f-I B. Take e2 > 0 and c so that B2(c) B, (Co) fq B. By the definition
of ro, we see that F(z) 0 in 12\B for every c in B2(c), namely, S(z) cz in 12\B
for every c in B:(cl). This implies that [S(z)-cz[>=e2[z[ in l)\Bro. We note that
F (0f)\B is unbounded, and we apply the Fuchs theorem, Theorem 2.1’ in [11], to
z/(S(z)-clz) in fI\Bo. We see that there exists R> ro such that [z/(S(z)-cz)[<=
2/(l-e) in O\Bn. By (2.1), we obtain

then

IS(z)l > Iz-j[
in f\Bn. [3

5
COROLLARY 2.6. Let S be the Schwarzfunction off U F in C\B If F is unbounded,

1

Si(z)-- S(1/z)
0

z(1/(fur))nB,
z--O,

is the Schwarz function of ((1/I) (3 B) U (((l/F) (3 B) U {0}) at 0 for some r < 1/,
where 1/E for a set E denotes the inversion {I/z; z E\{0}} of E.

Proof Take R as in Proposition 2.2. Then ]S(z)l > Izl/5 in 12\--n, and so 1/S(1/z)
is holomorphic in 1/(f\Bn), is continuous on 1/((UF)\Bn), and tends to 0 as
z 1/(12\Bn)-* 0. On I/F, 1/S(1/)= 1/(1/st) sr. Hence, S is the Schwarz function
of ((1/f)f3B)U(((1/F)fqB)U{O}) at 0, where r<-l/R<l/6. [3
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3. Regularity of boundaries of unbounded quadrature domains. In this section, we
discuss regularity of boundaries of unbounded quadrature domains. First we shall
define the generalized Cauchy transform of an unbounded open set. For two distinct
and fixed points, i and st2 in C, we define the generalized Cauchy kernel K (z, ’; i, ’2)

K(z, ; ,, 2)=
by

if r C\{ st,, st2}, and

if sr st1 or 2. We set

(Z )(Z I)(Z 2)

1 st2 sr 1

K(z, ’; st,, ’2)=0

/(’; ’,, ’2)= I K(z, ’; 1, 2) dtz(z)

for a complex measure/x and call it the generalized Cauchy transform of/x. It is finite
almost everywhere in C if

ff
ddsupp/zsupp/z

where m denotes the two-dimensional Lebesgue measure, and it is holomorphic in the
complement of supp because the total measure of a complex measure is finite. In
contrast with the Cauchy transform, the generalized Cauchy transform can be also
defined for a bounded measurable function in C that does not have compact suppo.
For a bounded measurable function g in C, we define the generalized Cauchy transform
g by

1, 2)= K(z, ; ,, 2)g(z) din(z).

We write (z) for (z; , 2). It is a continuous function in C, vanishes at and 2,
and satisfies

g
0

in the sense of distributions. Furthermore, it satisfies

for large ]z], where a is a positive constant; see, e.g., Chapter IV of Kra [7]. We write
for Xa, where f is an open set in C, and xa_denotes the characteristic function of. It is continuous in C and holomorphic in C. The function (z)+ is holomor-

phie in .
DEFINITION 3.1. Let be an unbounded open proper subset of CB. Let g be

a function continuous on (CBs) and holomorphie in the interior of (CBs)fl. We
say that g can be extended holomorphieally from (CB) onto CB with at most
a simple pole at if there is a holomorphic function f in CB such that

(i) f(z) g(z) on (CkB,)ka;
(ii) ]f(z)] az] in CB, for some a > 0 and some 60> 6.
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PROPOSITION 3.2. Let 12 be an unbounded open subset of C\Ba such tha F
(01))\Ba is not empty. Then 12 F has the Schwarz function at if and only if 12 can
be extended holomorphicallyfrom (C\Ba \12 onto C\Ba with at most a.simple pole at .

Proof. Let S be the Schwarz function of 12 U F at , and let ff be the function
defined by (z)=S(z) in 12 and (z)= on (C\B--)\12. Setf(z)=12(z)+Tr-Tr(z).
Then, by the same argument as in the proof of Proposition 1.3, we see that f is
holomorphic in C\-. By definition, f=l) on (C\-)\12. Since ]12(z)1_-< log Izl
and IS(z)l <-_ cr21zl for large ]z by (iv) of Definition 2.1, we see that If(z)l _-< Cea[Z log Izl
for large Izl, where c1, c2, and Ce are positive constants. Hence f has at most a simple
pole at and satisfies (ii) of Definition 3.1.

Conversely, if a holomorphic function f in C\Ba satisfies (i) for g=12 and
(ii) of Definition 3.1, then S(z)=(12(z)+Tr-f(z))/Tr is holomorphic in 12, is
continuous on 12 U F, is equal to on F, and satisfies

Is(z)l log Izl+  )lzl <  =lzl log Izl

for large Izl, where c, c1, and or2 are positive constants. If F is bounded, then S has
at most a simple pole at . Hence Is z)l <-  lzl for large Izl, If F is unbounded, then,
by the note mentioned after Definition 2.1, we also obtain IS(z)l_-<  41zl for large
Here a and a4 are positive constants. Hence S is the Schwarz function of 12U F
at . rl

Holomorphic extensions of the Cauchy transforms of open sets are closely related
to quadrature domains. We shall prove the following two lemmas.

LEMMA 3.3. Let l’l be a quadrature domain of a complex measure Ix. Let o
(012)\supp Ix, and let B Br(o) be a disk such that B n supp Ix . Then (12 n B) can
be extended holomorphically from B\12 onto B.

Proof. We note that 12 may be unbounded. We may assume that B\12 contains
more than two points.aTake two distinct points, sr and if2, on B\12, write /(’) for
/(’; sr, ’2), and write E for ), where E denotes a Borel set in C. Since the generalized
Cauchy kernel K (z, ’; sr, ’2) given before Definition 3.1 is holomorphic and integrable
on 12 for each fixed srC\12, we obtain (sr)=(") on B\12. Since 12=
(12 n B)"+ (fl\B)’

(12 f"l B)*’=- (12\B)=/]- (12\B)

on B\12. By the assumption that B n supp Ix , the right-hand side is holomorphic
in B, and so (12 n B) can be extended holomorphically from B\12 onto B. We obtain
the lemma because (12 n B)(sr) (12 n B)^(") + a" + b, where a ((12 n B)^(’)
(12nB)^(sr2))/(’2-’l) and b--(l(120B)^(2)-2(12nB)^(1))/(2-l) are

constants. 13
LEMMA 3.4. Let 12 be a quadrature domain of a complex measure Ix with compact

support. Let B BR be a disk satisfying supp Ix c B, and assume that (C\B)\12 contains
two distinct points, 1 and 2. Set (12\/) (sr) (12\/) (st; 1, 2). Then (12\:) can be
extended holomorphically from (C\B)\12 onto C\B with at most a simple pole at .

Proof. Since K(z, ; , 2) is holomorphic and integrable on 12 for every fixed "on C\12, we obtain

on (C\B)\12. The right-hand side of the equality is a holomorphic function of sr in
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C\/ because supp k c/ and neither "1 nor 2 is contained in B-. Since ]K(z, ’; st1, sr2)l =<
alsrl for large Isrl and for z on/, we obtain I/(sr; ’1, ’2)1 =< and 1( 71/)’(’; st1, ’2)1 =<
 21cl for large I 1, where a, a l, and a are positive constants. Thus, by definition,
(f\/) can be extended holomorphically from (C\/)\12 onto C\/ with at most a
simple pole at o.

Now we apply Corollary 2.6 and show regularity of the boundary of an unbounded
quadrature domain.

PROPOSITION 3.5. Let fl be an unbounded quadrature domain ofa complex measure
tx. Then, for every (0)\supp/x, there is a disk B B() and one of the statements
(1)-(4) of the Regularity Theorem holds. Furthermore, under the assumption that the
support ofIx is compact, we can find a disk B B such that one of the statements (1)-(4)
of the Regularity Theorem holds, if we replace 12 and F by (1/12)fqB1/, and ((1/F)
B/) (.J {0}, respectively, where p is chosen so that supp/x c B,.

Proof. The first assertion follows from Lemma 3.3, Proposition 1.5, and the
Regularity Theorem. For the second assertion it is trivial if the boundary of f is
bounded. If01) is unbounded, then, by Lemma 3.4 and Proposition 3.2, (\B,) (3 (F\Bo)
has the Schwarz function S at o. By Corollary 2.6, S(z) is the Schwarz function of
((1/) f-) B/o) (_J (((l/F) fq B/v) (.J {0}) at 0. The proposition follows from our Regular-
ity Theorem.

COROLLARY 3.6. Let fl be an unbounded quadrature domain ofa complex measure
with compact support. Then (area (f fq Br))/(Trr2) converges to - or 1 as r +.

The corollary was conjectured by Shapiro [12] and proved under some regularity
hypotheses on 0f. From the corollary, we can easily obtain the following result: If a
quadrature domain i2 of a complex measure with compact support has infinite area,
then n\B, Iz[- dm(z)= +; see in [9, Thm. 11.2].

Now we discuss an unbounded quadrature domain l) of a complex measure
with compact support such that (012)fqsupp/x =; in other words, a quadrature
domain of/x such that supp/z is compact and contained in fl. We introduce a global
Schwarz function of an unbounded open set.

DEFINITION 3.7. Let 12 be an unbounded open set in C. A function S defined on
l-l\K for some compact subset K of l) is called a global Schwarz function of iq, or a
global Schwarz function of f holomorphic in f\K, if it satisfies (i)-(iii) of Definition
1.3 and

(iv) Is(z)l<_- lzl in -\BR for some positive numbers a and R.
The global Schwarz function of f holomorphic in \K is determined uniquely,

if f\K is connected and if Of/is an infinite set, see the note after Definition 3.1 in [11].
Next we shall prove an "unbounded" version of Proposition 1.6.
PROPOSITION 3.8. Let f be an unbounded quadrature domain ofa complex measure

tx such that supp/x is compact and contained in f. Then there is a global Schwarzfunction
of holomorphic in f\supp/x. Conversely, if there is a global Schwarz function of an
unbounded open set holomorphic in O\K, then, for every relatively compact neighbor-
hood U of K with U 2, there is a complex measure tx such that supp/x is contained
in U, and is a quadrature domain of

Proof. If C\12 consists of at most two points, then the family of holomorphic and
integrable functions on 12 consists of just one function, the constant function with
value zero. See [9, Lemma 11.3]. Hence f is a quadrature domain of any measure
such that ]/x](C\f) 0. In this case, a global Schwarz function of fl always exists and
is not determined uniquely. For example, every rational function r(z) having at most
a simple pole at c and satisfying r(’) sr on C\fl is a global Schwarz function on
Hence the proposition holds in this case.



REGULARITY OF BOUNDARIES OF QUADRATURE DOMAINS 355

Thus we may assume that C\12 consists of more than two points. Take two distinct
points st1 and ’2 on C\12, write (’) for /](’; st1, ’2) and write E for ). If 12 is a

quadrature domain of / such that supp is compact and contained in 12, then,
S(z)=(12(z)+r-(z))/r satisfies (i)-(iii) of Definition 1.3 for K =supp/z. By the
argument in the proof of Proposition 3.2, we see that S also satisfies (iv) of Definition
3.7, and so S is a global Schwarz function of 12 holomorphic in 12\supp/z.

Conversely, assume that there exists a global Schwarz function S of 12 holomorphic
in 12\K. By Propositions 1.5 and 3.2, f(z) 12(z) + r- r(z) isholomorphic in C\K,
has at most a simple pole at , and vanishes at rl and ’2, where S denotes the function
defined by S(z) S(z) in 1 and S(z)= on C\12. For a relatively compact neighbor-
hood U of K with Oc 12, take a modified C 1-function g of f as in the proof of
Proposition 1.6. Then we see that =-(llrr)(Og/O)m satisfies OlO=Og/O in C
and supp c U. Since/z- gis a linear function in C and vanishes at ’ and ’2, g
in C. Hence (z)=f(z)=12(z) on C\12. We apply again the Bers approximation
theorem replaced the Cauchy kernel 1/(z-) with the generalized Cauchy kernel
K (z, ’; sr, st2) and see that 12 is a quadrature domain of/x satisfying supp/z c U. [3

Now we shall show regularity of the boundary of an unbounded quadrature
domain 12 of a complex measure/z such that supp/z is compact and contained in 12.

THEOREM 3.9. Let 12 be an unbounded quadrature domain of a complex measure

tx such that supp/z is compact and contained in 12. Then, by considering 12 and [12] in
the topology of the Riemann sphere, we obtain the same consequence as in Theorem 1.7.
Conversely, let [12] be an open subset of the Riemann sphere surrounded by a finite
number of real analytic closed curves with at most a finite number of double and cusp
points in the sense of the Regularity Theorem. Let J1,..., Jn be regular real analytic
simple arcs or closed curves such that J [12 and Cjj J.i\J for every j, and J f) Jk (

for every distinct j and k. Let 12 be an open subset of [12] f-)C such that [12]\12 is a

compact subset of J in the topology of the Riemann sphere. Then 12 is a quadrature
domain of a complex measure Iz such that supp/z is compact in C and contained in 12.

Proof. By using the same argument as in the proof of Theorem 1.7, we obtain the
first assertion of the theorem from Proposition 3.8. For the converse, we apply the
same argument as in the proof of Theorem 1.8 and Proposition 3.8 if the point at
infinity is not an isolated boundary point of 12 in the topology of the Riemann sphere.
If is an isolated boundary point of 12, then we take a function $ so that S is
holomorphic outside of a large disk and has at most a simple pole at . At each finite
boundary point of 12, we take a Schwarz function as in the proof of Theorem 1.8. Then
S becomes a global Schwarz function of 12, and 12 is a quadrature domain of a complex
measure/z such that supp/z is compact and contained in 12 by Proposition 3.8. [3

We shall finally prove the following.
THEOREM 3.10. Let 12 be an unbounded quadrature domain of a complex measure

I such that supp/z is compact and contained in 12. Then
(1) 12 C and all boundary points of 12 are degenerate in the sense ofthe Regularity

Theorem; or
(2) 12 is a translation of the inversion of a bounded quadrature domain 12o ofsome

complex measure io such that supp/z0 12o. Here the inversion of 12o is the image of
12o\{0} under a mapping w-- 1/w.

Proof If 12 C, then, by Proposition 3.5, all boundary points of 12 are degenerate.
Assume that C\12 and take a point sro in C\12. Set w= T(z)= 1/(z- ro), and let
S be a global Schwarz function of 12 holomorphic in 12\K of which existence is
guaranteed by Proposition 3.8.
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If 0f is unbounded, then, since S is continuous on 0 and S(z) o as z f - cby Proposition 2.2, we can take K so that S(z) # in f\K. Set ST S T-1 where
T(z)= 1/(z-’o). Then, ST is a global Schwarz function of a bounded open set
o T(f) holomorphic in o\ T(K). If 0f is bounded, then we again take K so that
S(z) in f\K. ST S T-1 is a global Schwarz function of a bounded open set
o T(f) {0} holomorphic in fo\ T(K)\{0}.

By Proposition 1.6, we see that o is a quadrature domain of some/Zo such that
supp tZo c fo. f is a translation of the inversion 1/(fo\{0}) ofo because z T-l(w)
1/w+ o. [3

4. Quadrature domains of point differential functionals of finite order. In this
section, we shall discuss "classical" quadrature domains, namely, quadrature domains
of representing measures/ of point differential functionals

L(f)= E Y ajkf(k-’)(Zj),
j=l k=l

where zj are distinct points and ajk are constants independent of functionsf We assume
that a,j # 0 for every j and put n Y.j= n. The natural number n is called the order
of L.

DEFINITION 4.1. Let 1 be an open set in C. We call 1 a quadrature domain of
L if

(i) {zl,..., Zl}C;
(ii) For every holomorphic and integrable function f in l-l,

L(f fa fdm,
where m denotes the two-dimensional Lebesgue measure. We say that l) is a quadrature
domain of order n if l) is a quadrature domain of some functional L of order n.

If gl is a quadrature domain of L, then we can find a complex measure /z such
that supp/z c 1 and

L(f) f fdl,

for every holomorphic functionf in 1. Hence 1 is a quadrature domain of the complex
measure/z.

DEFINITION 4.2. A nonempty open set 1 is called a null quadrature domain or
a quadrature domain of order 0 if

dm=O

for every holomorphic and integrable function f in
Null quadrature domains are called quadrature domains of order 0 by Shapiro

[12]; see Theorems 4.4 and 4.6 below. All null quadrature domains are unbounded.
They are completely determined by the author [8]. We shall call 1 a quadrature domain
of finite order if l) is a quadrature domain of order n for a natural number n or a null
quadrature domain. By Propositions 1.6 and 3.8 a quadrature domain 1 of finite order
has a global Schwarz function of 1. We note that it is determined uniquely if 01) is
an infinite set. The following lemma shows that the global Schwarz function of a
quadrature domain of finite order can be extended meromorphically onto . In what
follows, we call the extended meromorphic function the global Schwarz function of



REGULARITY OF BOUNDARIES OF QUADRATURE DOMAINS 357

LEMMA 4.3. A nonempty open set fl in C is a quadrature domain of order n if and
only if there is a global Schwarz function of 1, that can be extended meromorphically
onto gl and the extended meromorphic function has n poles in gl.

Proof First we note that if C\fl consists of at most two points, then the family
of holomorphic and integrable functions in 1 consists ofjust one function, the constant
function with value zero; see [9, Lemma 11.3]. Hence, in this case, 1 is a quadrature
domain of any functional L if {Zl,..., Zl} c . We can easily construct a meromorphic
function S such that S has n poles in 1), has at most a simple pole at c, and satisfies
S(sr) sr on 0f. For example, if C\f {’1, 2} and if n 0,

z- +-2 z-_____,S(Z) ’1
"1- ’2 ’2-- 1

is the required function.
Thus we may assume that C\I) contains more than two points. Let sr and ’2 be

two distinct points on C\12. Let L(sr; sr, sr2)= L(K(., st; sr, sr2)), where K denotes the
generalized Cauchy kernel. If 12 is a quadrature domain of order n, then by the proof
of Proposition 3.8, we see that

’(Z; "1, ’2) "[- "/T’ L(Z’ "1, "2)
s()

is a global Schwartz function of f. The function L(z; Srl, sr2) is meromorphic in f and
has poles in {Zl,..., Zl}. At z; it has a pole of order n. Hence S is meromorphic and
has n poles in 12.

Conversely, let S be a global Schwarz function of f. By the proof of Proposition
3.8, f is a quadrature domain of a complex measure/x such that supp/x is compact
and contained in f, and S can be expressed as

S(z)

in f\supp/. If S can be extended meromorphically onto f and has n poles in f,
then it is the same for . We denote the extension of/ by M. It is a rational function
that has n poles in f, has at most a simple pole at 00, and vanishes at ’1 and r2. Take
a point differential functional L of order n so that L(’, ’1, ’2)= (L(K(., st; sr, ’2))
has the same poles as M has as a function of sr. Then L(sr; ’, sr2) M(sr) is a linear
function in C and vanishes at st1 and ’2. Hence L(’; ’, ’2)= M(sr) in C, and so

L(K(., st; 1, 2))= M(sr) d(sr; 1, 2)= ff K(z, st; 1, 2) dldl,(Z)

on C\f. We apply again the Bers approximation theorem in [2] and see that is a
representing measure of L.

In contrast with a bounded quadrature domain l) of an arbitrary complex measure
/ satisfying supp c 1, the boundary of a bounded quadrature domain of finite order
has a special feature. Indeed, Aharonov and Shapiro proved in [1] that the boundary
of a bounded connected quadrature domain of finite order is contained in the set of
zeros of an irreducible polynomial of x and y. Gustafsson proved in [5] and [6] that
the boundary consists of all zeros of the polynomial except for a finite set, namely,
there are no nonisolated degenerate boundary points of a bounded quadrature domain
of finite order. The core of the proof is to make use of the Schottky double of a regular
domain.
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There are satisfactory arguments on bounded quadrature domains of finite order.
See the references cited above. Here we shall discuss unbounded quadrature domains
of finite order.

First we shall discuss the case 1)= C. Davis proved in his book [3] that if the
global Schwarz function of a bounded quadrature domain is a rational function, then
it is a linear fractional function. We make use of his idea and prove the following
theorem.

THEOREM 4.4. Let 12 be a quadrature domain ofa functional L oforder n such that
1)=C and C\12 consists of more than (n+ 1)2 points. Then the order is equal to 0 and

(1) C\12 is contained in a line or the order is equal to 1; and
(2) C\12 is contained in a circle.
In the latter case, the functional L is of the form L(f)= allf(zl), where Zl denotes

the center of the circle, and all denotes a positive constant that is equal to the area of
the inside of the circle.

In particular, if 12 is a quadrature domain of order n such that 12 C and if 1) is
neither an open set stated in (1) nor one stated in (2), then n # 0 and C\12 consists of
at most (n + 1)2 points.

Conversely, an open set 1) stated in (1) is a quadrature domain of order O, and an
open set 12 stated in (2) is a quadrature domain of L(f)= allf(zl), where Zl denotes
the center of the’ circle and all denotes the area of the inside of the circle. If 1) is an open
set such that C\12 consists of (n + 2) points, n >-O, then there is a functional L of order
at most n such that 12 is a. quadrature domain of L.

Proof Let 12 be a quadrature domain of a functional L of order n such that 1) C.
By Lemma 4.3, a global Schwarz function S of 12 is meromorphic and has n poles in
12. By (1) of Theorem 3.10 all boundary points of 12 are degenerate, and so S is
holomorphic on C\1). Hence S is a rational function having n poles in C and it has
at most a simple pole at . In other words, S is a rational function of order at most
n + 1 such that the denominator is a polynomial of degree n.

First we shall show that if C\12 consists of more than (n+ 1)2 points, then n =0
or 1 and S is a nonconstant linear fractional function such that = S- where
S(z) S(). The function S is also a rational function of order at most n + 1 such that
the denominator is a polynomial of degree n. The composite S S of S and S is a
rational function of order at most (n + 1)2 such that the denominator is a polynomial
of degree at most (n + 1)2-1, and so it has at most (n + 1)2 finite fixed points if it is
not the identity. Since (S S)(z) S(S(z)) S() S(z) z on 0f, S S is the identity
mapping of the Riemann sphere if C\12 consists of more than (n + 1)2 points. Since
(S S)(z) z on {; z 0f}, by the same reason, we see that S S is also the identity
mapping of the Riemann sphere. Hence S is a nonconstant linear fractional function
such that=S-1 and n=0or 1

Next we shall show that if 12 is a quadrature domain of order 0, then 012 is
contained in a line. The assumption n 0 implies that S has no poles in C. Hence
S(z)=az+b for some constants a0 and b. Since (z)=az+/7 and S-(z)=
(1/a)z-b a, a 1/a and 6=-b/a. Hence lal 1 and b/v/----a is real for a square root
/-a of -a. Set w z. Then az + b if and only if 2 Re w w + b/v/-.a.
Hence {z C; S(z)= az + b } is a line and 012 is contained in the line.

Next we shall show that if 1) is a quadrature domain of a functional L of order
1, then 012 is contained in a circle and L is the functional stated in (2). Since S is a
linear fractional function having a pole in 12, S can be expressed as S(z)=
(az+ b)/(z+ d), where a, b, and d are constants satisfying ad-b 0. Since S(z)=
(Sz + )/(z + ) and S-’(z) (-dz + b)/(z- a), we obtain a -d, k?= b, and = -a.
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Set w=z+d. Then (az+b)/(z+d)= if and only if
(z + d)(-a)= b-ad. Hence b-ad > 0, and 0f is contained in a circle with center
-d and radius v/b-ad. Since

az + b b- ad
S(z) +a,

z+d z+d

we see that
, Tr b ad
t(z; ,, ) + e, (z)

z+d

in a neighborhood of z -d, where g denotes a holomorphic function in the neighbor-
hood. On the other hand, if L(f) allf(zl), then, by the definition of the generalized
Cauchy kernel K (z, ’;

a -al/(z; 1, _)= + h(z),
Z Z1

where h(z) is a linear function of z. Hence a 7r(b-ad) and z =-d, namely, al
is the area of the inside of the circle and zl is the center of the circle.

Conversely, if C\l) is contained in a line, then fl is the union of two half planes
and a subset of the line. It is easy to show that each half plane is a null quadrature
domain; see the remark at the end of [8]. Hence is a quadrature domain of order
0. IfC is contained in a circle OBr(z1) then is a quadrature domain of L(f)=
rf(z) because CBr(z) is a null quadrature domain; see the same remark in [8],
and Br(z) is a quadrature domain of L(f)= rf(z).

The proof will be complete if we show that there is a functional L of order at
most n and is a quadrature domain of L if CO consists of (n + 2) points. We may
assume that n 1. The linear space of all holomorphic and integrable functions in
is of dimension n; see [9, Lemma 11.3]. Let (f,..., f,) be a basis of the space, and
let W(f,...,f,) be the Wronskian of (f,..., f,). Since fl,...,f, are linearly
independent, we can choose a point z in so that W(f,...,f,)(z)0. Then a
system of linear equations

a,j,(k-1)(Z1)= [ dm, j 1, n
k=l J

has a unique solution (al,..., a,). Thus is a quadrature domain of L(f)=
k=l al(k-)(Z) of order at most n.

Remark. In the proof of the proposition, we have chosen a point z in so that
W(f,..., f,)(z)0. There is an infinite number of such points z. Hence there is
an infinite number of functionals L such that is a quadrature domain of L if one
of dm is not equal to zero. Thus, by deleting a point from if necessary, we see
that there are an infinite number of global Schwarz functions of that are meromorphic
in if 0 is a finite set. It is also not difficult to show that ifC consists of n +2
points, then, for every given z,..., Zl in and for every given n,..., nl with n n,
there exists only one global Schwarz function of that has a pole at zj of order at
most n, j 1,..., and is holomorphic in {Zl,..., Zl}.

Next we give an example of quadrature domain of order such that C,
but CO is not contained in a circle. By Theorem 4.4, CO consists of four points.

Example. Let f(z, )= K(z, if; 0,-1) be the generalized Cauchy kernel, namely,

1 I+C C C(C+ 1)
(4.1) f(z,C)- =z-C z z+l (z-C)z(z+l)
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First we calculate the integral off(z, r) on C\{0,-1, st}. Let OBr(c) be a circle passing
through 0, -1, and sr. Here we set sr= se+ ir/ and assume that r/30. The integral is
equal to the integral off(z, ’) on Br(c), and so it is equal to rr2f(c, ). Substituting
c for z in (4.1), we obtain

f(c,  )-Ic-ffl2 Icl= Ic+llu"

Since all denominators of fractions in the right-hand side are equal to r, we obtain

f(z, ) am ,a-r2f(c, ) 7r(- 0 2"n’irl.

Now we shall take sr so that f=C\{0,-1, i, sr} is the desired example. Let
g(z, ) =f(z, )/f(z, i). If we can choose sr so thatf(zl, i) # 0 and g(zl, st) r/for some
z eft, then f is a quadrature domain of L(f)=alf(z), where a =27ri/f(z, i).
Indeed, (f(z, i), f(z, ’)) is a basis of the class of all holomorphic and integrable
functions in f. By definition, alf(z, i)=27ri=f(z, i)dm. On the other hand,
allf(Zl, ) 2orif(zl, )/f(z1, i) 27rig(z1, ) 2ori f(z, ) dm.

Finally we shall show that there is " such that f(z, i) 0 and g(zl, r)=r/ for
some -71 {0, -1, i, r}. By (4.1),

r(’+ 1)(z- i)
(4.2) g z, -ff - -)- -Hence g is a linear fractional function of z for fixed " and has a zero at and a pole
at r. Since limz_og(Z,)=(+l)/(i+l) and lim__,_g(z,)=/i, we can find Zle
{0,-1, i,’} if (’+1)/(i+1) r/ and /irl. These are equivalent to r/:+l and
: 0, respectively. Namely, if sr is not on the union of two lines { r/= r + 1 } and {: 0},
then the unique solution z to g(zl, sr) / does not belong to (0,-1, i, r}. From (4.2)
we obtain

If we take r/= 1, then

Z1
rli( + 1)- i(+ 1)
r/i(i+ 1)-if(if+ 1)

Hence if we vary " on a line {r/= 1}, then zl moves on a circle, and so f(zl, i) 0 for
some " i.

For a bounded quadrature domain of finite order, we have already mentioned
that there are no nonisolated degenerate boundary points. As we have seen in Theorem
1.7, the union [f] of f and the set of isolated degenerate boundary points is also a
quadrature domain of the same functional. Let S be the global Schwarz function of, then it is also the global Schwarz function of [f], and it is a meromorphic function
having n poles in f/, where n denotes the order of the functional.

DEFINrrION 4.5. Let f be a bounded quadrature domain of finite order. We call
a point z in [f] a singular point of f if S(z) 3. We call it a simple singular point if
z is a simple -point of S, namely, if S(z)= 3 and S’(z) O. We call a point z in []
a regular point of f if S(z) .

Let f be a bounded quadrature domain of finite order. We note that singular
points of are isolated degenerate boundary points of f or are points in.f. If sr is a
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singular point in 12, then 1)\{’} is also a quadrature domain of the functional. Hence
there is at most a finite number of singular points of 12. We note that every point in
12 is regular or singular and every boundary point of 12 is a regular, singular, double,
or cusp point.

Let 12 be an arbitrary open set in C. We say that 12 is the inversion of 12o with
respect to a point Wo if 12 is the image of flo\{Oo} under a mapping w-- 1/(W-Wo).
The following proposition is essentially due to Shapiro.

THEOREM 4.6 [12, Thm. 3.3]. Let 12 be an unbounded quadrature domain of order
n such that 12 C. Then

(1) 12 is a translation of the inversion of a bounded quadrature domain 12o of order
n + 1 with respect to a regular point or a regular boundary point of 12o;
Or"

(2) 12 is a translation of the inversion of a bounded quadrature domain 12o of order
n + 2 with respect to a simple singular point of 12o, a double point, or a cusp point of 012o.

Conversely, an open set 12 stated in (1) or (2) is an unbounded quadrature domain

of order n such that 12 C.
Proof. Let sro be a point in C\12, and set w T(z)= 1/(z-sro). Then, by the proof

of Theorem 3.10, 11 is a translation of the inversion of a bounded open set 12o T(12)
or T(12) U {0} with respect to the origin because z T-l(w) I/w+ o. ST S T-is the global Schwarz function of 12o and is meromorphic in 12o, where S denotes the
global Schwarz function of 12. Hence 1)o is a bounded quadrature domain of finite
order. We add all isolated boundary points of 12o to 120 and make a quadrature domain
[ao].

To determine the order of [12o], we note that [12o] is of order rn if and only if ST
has m poles in [12o]. We also note that ST has rn poles in [12o] if and only if S has m
sr--points in [1)]= T-([flo]) because (z)= 1/(z-sty). Here, if 0[12o], then we
consider [12] in the topology of the Riemann sphere and regard as a point in [12].

We shall apply the argument principle to S(z)-o and count the number m of
’o-points of S in []. First we consider the case that 012 is bounded, namely, [12] is
an open set containing oe in the Riemann sphere. Since S(z)-’o= -sro0 on
0112] c 012, the argument principle for domains in the Riemann sphere asserts that

1 fo d arg (S(z) ’-)

if S is regular at oe. Since S(z)-o -ro on 0112] and ’o belongs to the exterior of
[12], we see that

f 1 f darg(-sr)=l"
1

d arg (S(z)- o) =-
Hence m n + 1. We note that S is regular at oo if and only if ST(O) 0. Thus the
origin is a regular point of 12o. If S has a simple pole at oo, then, by the argument
principle, m- (n + 1)= 1, and so m n + 2. In this case, St(0)= 0 and the origin is a
simple singular point of 12o.

Next we consider the case that 012 is unbounded, namely, 0 is a boundary point
of [11o]. In this case, we note that S(z)- o as z-* o. For large R such that S(z)- o 0
on [12]\BR, we apply the argument principle to S-srl[fl] f’l BR. Then

1 f d arg S(z) ’).m n 2--- 3o([a]n)
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If 0 is a regular boundary point of [12o], then, by the Regularity Theorem and Corollary
2.6,

1 Jl d arg S(z)(4.3)
2r

)

tends to 1/2 as R- +oe. Since

1 f d if d arg (_ sr-)arg (S(z)- o) =-(4.4)
2r

tends to 1/2 as R- +oe, we obtain m-n 1. If 0 is a double or cusp point of
then both (4.3) and (4.4) tend to 1 as R - +oe, and so m n 2. Hence fo is of order
n + 1 if 0 is a regular boundary point of o and is of order n + 2 if 0 is a double or
cusp point of

To show the converse, let 12o be a bounded quadrature domain of order m, and
let f= r-’(ao\{Oo}), where z= r-(w) 1/(W-Wo)+ a denotes a translation of the
inversion with respect to o9o and wo is a fixed point on o such that it is simple if it
is a singular point. The global Schwarz function So offo has m poles and S T- So T
is the global Schwarz function of f because wo is simple if it is a singular point of f.
Hence f is a quadrature domain of finite order. Let n be the number of poles of S in
f; here we consider f as a subset of C. Then it is equal to the number of Woo-points
of So in [ao]\{Wo}.

If Wo [1)o] and if cc is a removable singularity of S, then So(Wo) Wo, and so

f 1 f d arg - l_1 d arg (So(w)--o)=-- tao
n m =2r

If Wo [fo] and if oe is a simple pole of S, then Wo is a simple singular point, and so
(n + 1) m 1. If Wo 0[o], for sufficiently small 6 > 0, we obtain

Jl d arg So(w) oo)n m
27r

1 j d arg (So(w)--o).+2--- _(oB (oo)) Vi [llo

The first term of the right-hand side of the equality is equal to

f( d arg (-o).
2r O[ao])\B (Oo)

Each term of the right-hand side of the equality tends to -1/2 as - 0 if Wo is a regular
point of 0[o] and -1 if Oo is a double or cusp point of O[fo]. Hence n-m =-1 or
-2. This completes the proof.

COROLLARY 4.7. Let 1) be a quadrature domain of finite order. If there is a
nonisolated degenerate boundary point of , then is of order 0 and of type (1) of
Theorem 4.4 or 1) is of order 1 and of type (2) of Theorem 4.4.

COROLLARY 4.8. Let be a quadrature domain of finite order such that O is
neither a line nor a circle. Then each connected component of the exterior of 1) is not a
quadrature domain offinite order.

From the corollary, we see that the inside of an ellipse, which is not a circle, is
not a quadrature domain of finite order because the outside ofthe ellipse is a quadrature
domain of order 0; see 5.

5. Null quadrature domains. By Theorems 4.4 and 4.6, we can construct all
unbounded quadrature domains of order n, if we know all bounded quadrature domains
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of order n + 1 and n +2. In [8], all quadrature domains of order 0 were determined.
They are

(1) A domain whose boundary is a proper subset of a line in C;
(2) A half plane;
(3) The exterior of a circle;
(4) The exterior of an ellipse;
(5) The exterior of a parabola;
(6) The complement of a closed parallel strip.
We shall here apply Theorems 4.4 and 4.6 for n 0 and construct all of them.
If 12 =C, then by Theorem 4.4 fl is a domain stated in (1) or in (6), where the

closed parallel strip is a line. If 12 C, then by Theorem 4.6 f is a translation of the
inversion of a bounded quadrature domain of order 1 or 2. A bounded quadrature
domain of order 1 is a disk and all points and all boundary points of the disk are
regular. The inversion of a disk with respect to a boundary point is a half plane and
the inversion with respect to an interior point is the exterior of a circle. Hence they
are domains stated (2) .and (3), respectively.

For a bounded connected quadrature domain of order 2, it is known that Ill] is
simply connected; see Aharonov and Shapiro [1] and (2) of 5 in [10]. By Corollary
to Theorem 2.1 in Gustafsson [6], we see that c+ 2d + e =< 1, where c, d, and e denote
the number of cusp, double, and singular points of l-l, respectively. Namely, there are
no double points and there is at most one cusp or singular point in this case. It is also
known that the domain is obtained as the image of the unit disk under a rational
function R of order two, which is Univalent in the unit disk; see Theorem 1 in Aharonov
and Shapiro [1] and Chapter 14 of Davis [3J.

If 0 is a singular point of the domain, then, as shown in [10, 5, eqn. (2)], we
may assume that the rational function R has the form R(w) w/(1 + Cl w + c2w2), where
0<]c21< 1. It is also shown there that S(z)=(1/)z+O(z2) in a neighborhood of 0,
and so 0 is a simple singular point. Now the boundary of the inversion of the domain
with respect to 0 is the image of {Iwl 1} under w-- (1 + cw+ c:zw2)/w. Since 1/w=
on (Iwl- 1), the boundary can be expressed as {if+ c2w+ c ;Iwl- 1). Since 0< Ic21 < 1,
it is an ellipse and the inversion is a domain stated in (4).

If there is a cusp point on the boundary of a bounded connected quadrature
domain of order two, we may assume that the domain is the image of the unit disk
under R(w)= w(1 + w/(2+ a))/(1-aw), where lal< 1, and R(-1)= -1/(2+ a) is the
cusp; [10, 5, eqn. (2)]. Hence the boundary of the inversion of the domain with
respect to the cusp is the image of {Iwl- 1} under

1 (2+a)(1-aw)
W -" R(w)-R(-1) (l+w)2

Since 1/w v on {]w 1}, the right-hand side of the equality is equal to

(2+ a)(,-a)(2+ a)(- a)
(1 + w)(ff+l) 2(1+Re w)

We set (-a)/(l+Re w)=x+iy, a=a+i and w=u+iv. Then x=(u-a)/(u+l)
and y=-(v+/3)/(u+l). Hence we then have u=-(x+a)/(x-1) and
v -(fix (1 + a)y -/3)/(x 1). Since u2 + v2 1 on {Iwl 1 }, we obtain (x + a)2 +
(flx-(l+a)y-fl)2=(x-1)2 on {Iwl=l}, namely, (l+a)(-2x+(1-a))=(flx-
(1 + ce)y -/3)2 on {[w] 1}. Since [a] < 1, it follows that 1 + a 0. Hence the boundary
of the inversion is a parabola. This is the case stated in (5).
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Finally, we consider a bounded quadrature domain of order 2 that is not connected.
Then each connected component is a bounded quadrature domain of order 1, and so
it is a disk. If these two disks do not touch each other, then all boundary points are
regular. Hence the only possibility is the case that these two disks touch each other
at one point. Then the point is a double point and the inversion with respect to the
point is the complement of a closed parallel strip with positive width stated as in (6).
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Abstract. The dual space method for solving the inverse scattering problem reformulates the inverse
problem as one in constrained optimization with weighted averages of the far field pattern u as data.
Unfortunately there exists a discrete set of values of the wave number such that the infimum of the cost
functional associated with the optimization scheme is not zero. In this paper, the authors show how this
difficulty can be removed if instead of u, u-u is considered, where u is the far field pattern of a
surface potential.

Key words, inverse scattering, acoustic waves, electromagnetic waves
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1. Introduction. In [5] and [6] Colton and Monk introduced a new method for
solving the inverse scattering problem for time harmonic acoustic waves that has
subsequently been referred to as the dual space method or the method of superposition
of incident fields [3]. This method has been extended to the case of time harmonic
electromagnetic waves by B16hbaum [1] and Colton and P/iiv/irinta [9]; see also [3].
The main advantage of the dual space method is that in the case of many incident
waves the number of unknowns is significantly reduced by means of an averaging
process. On the other hand, a disadvantage of the method is that it fails at a discrete
set of values of the wave number corresponding to an interior eigenvalue for the
obstacle problem or a transmission eigenvalue for the case of an inhomogeneous
medium. In the case of an inhomogeneous medium, this disadvantage was overcome

oo where u is the farin [7] and [4] by replacing the far field pattern u by u-u,
field pattern corresponding to a ball with impedance boundary condition. A more
flexible approach for the scalar case was given in [8] where u is again replaced by

o ou-u, where now u is the far field pattern corresponding to an arbitrary modal
expansion with an inequality constraint on the Fourier coefficients.

In this paper, we shall continue this study by examining the possibility of choosing
u to be the far field pattern corresponding to a surface potential. It has not escaped
our attention that in some ways the present approach resembles the modified integral
equation method for the direct scattering problem that is usually associated with the
names Brakhage, Leis, Panich, and Werner (cf. [2]). However, as pointed out in [8],
the resemblance is somewhat superficial since the failure of the standard integral
equation method for solving the direct scattering problem is due to the ansatz, whereas
the failure of the dual space method at an eigenvalue is due to the fact that for such
values of the wave number the set of far field patterns corresponding to arbitrary
incident plane waves is not complete.

Before stating more precisely what will be done in this paper, we formulate the
direct scattering problems under consideration. In the following, D c R is a bounded
domain containing the origin with C2 boundary OD such that De :-" R3\D is connected.
We denote the unit exterior normal to 0D (or to the boundary of any other domain)
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by v. The function n is a given positive function such that m := 1-n has compact
support and n C’(3) in the scalar case and n C TM (3) in the vector case, where
C’ and C1’ denote the usual H61der spaces (Co’ and Co will denote H6lder
spaces consisting of functions with compact support). The function n is called the
refractive index of the inhomogeneous medium. The incident field in the scalar case
is always u (x, d) :- exp (iKx. d), x 3, where K > 0 is the wave number and d :-
{x [3: [xl 1). For the electromagnetic case the incident field is always given by

Ei(x, d, p):=- curlcurl (p exp (ix. d)),
K

(1.1)
Hi(x, d, P) :-- curl {p exp (ix" d)), x [3,

where p 3 is a constant vector denoting the polarization, E is the incident electric
field, and H is the incident magnetic field. The corresponding scattered fields u and
E s, H are required to satisfy, respectively, the Sommerfeld radiation condition

)i,nar -; iu =0

and the Silver-Miiller radiation condition

lim (H xx-rEs) =0

uniformly for all directions ; := x/lx[, where r Ix[. Finally, the total fields u u + u
and E E + Es, H H + Hs, are assumed to satisfy the regularity conditions u
C2(De) C(;De) and E, H Cl(De)t3 C(De) in the case of obstacle scattering and
u C2(3) and E, H C(3) in the case of scattering by an inhomogeneous medium.

We can now state the following direct scattering problems, each of which has a
unique solution [3].

Direct acoustic obstacle problem. Find u u + uS such that

(1.2) Au+K2u=O in De
and

(1.3) u-0 on0D.

Direct acoustic inhomogeneous medium problem. Find u- ui+ u such that

(1.4) Au + 2n(x)u 0 in [3.

Direct electromagnetic obstacle problem. Find E Ei+ E and H Hi+ H such
that

(1.5) curl E iH 0, curl H + iE 0 in D

and

(1.6) vxE =O onOD.

Direct electromagnetic inhomogeneous medium problem. Find E E + E and H
H +H such that

(1.7) curlE-icH=O, curlh+iKn(x)E =0 inI3.

Note that since n is assumed positive the inhomogeneous medium for acoustic
waves is nonabsorbing and for electromagnetic waves is a dielectric.
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Of primary concern in this paper is the inverse scattering problem corresponding
to each of the above direct scattering problems. To formulate the inverse problems,
we first note that for acoustic waves u has the asymptotic behavior

uS(x, d)
exp

Ixl
(’ +

as Ixl- oe, where uoo is the far field pattern and for electromagnetic waves has the
asymptotic behavior

E (x, d,p)
exp(ilx])

E(, d,p)+
Ixl

as ]x[ , where E is the electric far field pattern. For obstacle scattering, the inverse
problem is to determine D from u or E, and for scattering by an inhomogeneous
medium the inverse problem is to determine n (or m) from u or E. The dual space
method reformulates each of these inverse problems as a problem of determining the
minimum of a functional over a compact or weakly compact set. For our purposes, it
is impoant to recall what form these functionals take.

Let be a given radiatipg olution of the Helmholtz equation (1.2) in 3{0} with
far field pattern , and let E, H be a given radiating solution of the Maxwell equations
(1.5) in 3{0} with electric far field pattern . For g L2(), define the acoustic far
field operator F by

(Fg)() :=

and the acoustic Herglotz wave function v by

v(x):= faexp(ix.d)g(d)ds(d), xN3.

For g L() a tangential vector field, define the electromagnetic far field operator Fe
by

(Feg)() :=

byand the electric Herglotz wave function

(x := (x,

i a exp (ix. d)g(d)ds(d), x 3.

Then the (unmodified) dual space method for solving the inverse scattering problem
can be formulated as follows, where S is the set of C surfaces that bound a domain
D containing the origin such that D is connected and B is an open ball containing
the support of m := 1 n.

Inverse acoustic obstacle problem. Find g L() and F S that minimize the
functional
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Inverse acoustic inhomogeneous medium problem. Find g L2(1"), m C’(B) and
w C2(/) a solution of (1.4) in B that minimize the functional

M:(g, w, m):: IIFg-all.)+llw-a-vl[2o)+ (w-a-v) L2(0B)

Inverse electromagnetic obstacle problem. Find a tangential vector field g L2(I)
and F S that minimize the functional

Inverse electromagnetic inhomogeneous medium problem. Find a tangential vector
field g L2(f), m C’(B), and (F, G) C1(/): a solution of (1.7) in B that minimize
the functional

Ma(g, F, G, m):= Ilreg- /ll2)+
/ x curl (F-

In the case of the acoustic inhomogeneous medium problem w and m are related by
the Lippmann-Schwinger equation with incident field v and in the electromagnetic
inhomogeneous medium problem F and m are related by the vector Lippmann-
Schwinger equation (cf. [3]) with incident electric field E.

If K is not an eigenvalue (as discussed in the opening paragraph), the infimum
of each of these cost functionals is zero for exact far field data, and a solution of the
inverse scattering problem is the limit of an appropriate minimizing sequence (cf. [3]).
The same holds for the inhomogeneous medium problem for all K > 0 in the case that
n is not always real valued, i.e., Im (n (x)) 0 for some x R (cf. 11 ], whose methods
also apply to the scalar case).

From the point of view of the numerical construction of solutions to the inverse
scattering problem, it is highly desirable that for exact far field data the above cost
functionals have an infimum equal to zero for all positive values of the wave number
g. Unfortunately, if g is an eigenvalue this is not the case for each of the above cost
functionals. This is due to the fact that for given far field patterns u and E, there
exist surfaces F and refractive indices n such that the integral operators Fa and Fe are
not in.jective for a discrete set of g values, and for such values of the functions ff
and E are in general not in the closure of the range of the operators Fa and Fe,
respectively (and hence the infimum of the cost functionals is not zero). The aim of
this paper is to remedy this defect by replacing the kernel in the definition of F and

0 0 0 0Fe by u-u and E-E, respectively, where u and E are the far field patterns
of a surface potential. This change will of course necessitate changing the remaining
terms in the cost functional in order to have the infimum be equal to zero.

To be more precise, consider the inverse acoustic obstacle problem, and let u be
the surface potential

1 f exp (ilx-yl)U(X, #(y, d) ds(y)d" :=
4r J[yl=a Ix-yl

where a is such that if D is the unknown scattering obstacle, then it is known a priori
that {x R3: ]xl =< a} c D. Then u has the far field pattern

o a2
u(x, d):= q(ay, d) exp (-iKa. y) ds(y).
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Now consider the operator F defined by

(Fg)() :- I_ [u(, d)-u(x", d)]g(d) ds(d)

(1.8)
| uoo(;, d)g(d)ds(d)-a21 (Rg)(d)exp (-iKaS. d)ds(d),

where

(Rg)(y) := p(ay, d)g(d) ds(d),

Then by choosing a and appropriately or, more generally, choosing a and the
operator R in (1.8) in an appropriate fashion, we will show that if in the definition of
M1 we replace the operator Fa by F and modify the second term, the resulting cost
functional will have infimum equal to zero. More specifically, the integral equation
Fg 0 will have only the trivial solution g 0, and ffo will be in the closure of the
range of F. A similar analysis will also be done for the inverse acoustic inhomogeneous
medium problem and the corresponding electromagnetic problems. These results
remove the disadvantages ofthe dual space method referred to in the opening paragraph
of this paper.

2. The inverse obstacle problem for acoustic waves. We denote by jl the spherical
Bessel function, by h1), h2) the spherical Hankel functions of the first and second
kind of order and by

1 exp (ilx-
(x, y) := xy,

47r x

the fundamental solution to the Helmholtz equation. Let a > 0 be such that {x 3: Ix]--<
a}c D and j(Ka)O for all lo, i.e., _2 is not an eigenvalue for the interior
Dirichlet problem for the Laplace equation in {x3: Ixl<a}. The condition that
{x3: Ixl-<_ a} D is only needed in the final step when we reformulate the inverse
scattering problem as a constrained optimization problem. We denote by Y, l=
0, 1, 2,..., k =-l,..., l, an orthonormal basis of spherical harmonics on f. For g
L-(),

we define

g=E E gY,
/=0 k=-!

(2.1) Rg:= E E ilgy
/=0 k=-!

and note that R: L2(12) L2(-) is a unitary operator.
We begin by defining the operator F for g L2(fl) by

(2.2)

(Fg)(;) := I uo(, d)g(d) ds(d)

a2 fc (Rg)(d) exp (-ia;. d) ds(d),

Our first aim is to prove the injectivity of the operator F.
THEOREM 1. Assume > O. If g L2(f) is a solution of Fg O, then g O.
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Proof. Let g L2(FI) be a solution of Fg =0. We define

U(x) := fa uS(x’ d)g(d) as(d),

(2.3) v(x):= faexp(iKx, d)g(d) ds(d), xR3,

u(x) := 47r Iyl dp(x,y)(Rg)(y)ds(y),
Then U e C2(De) C(De) is a radiating solution of the Helmholtz equation in De,
v is an entire solution to the Helmholtz equation, and US(x)+v(x)=O on OD. u is
also a radiating solution of the Helmholtz equation having the far field pattern

u()) a2 f (Rg)(d) exp (-iKa:. d) as(d)

f u(’, d)g(d) ds(d)= Uo(),

Hence, if R is such that /)c {x R3. ix < R} we have, by Rellich’s lemma [2], [3],
that US(x) u(x) for Ixl >-- R.

If g L(f) has the expansion

then

g=E E gtY),
I=O k=-I

v(x)=47r 2 2 gij,(lxl) Y(),
/=0 k=-l

where the series converges uniformly with its derivatives on each compact set of3 and

u(x) 4"a’aZi E E .t . i,)
/=o k=-I

where the series and its derivatives converge uniformly on each compact subset of
{x 3: Ix] > a}. Using Green’s theorem and US+ v =0 on OD we have

o o( +v)-( +v)( +v) as

(u+v)(u+v)-(u+v)(u+v) as
yl=U Ov

.o o p_p o ---v-- du ds+2iIm uO 0 0 o

But

(4’n’a2):z(-2i:) 2 E [g[2Jt(a)
1=0 k=-l
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and

u ds

(4"rr)ai 2 Y’, tglJ,(a)(h}’(R)J(R)-j,(R)hI’(R))R
/=0 k=-l

(4’)2a2 2 2 Ig12Jl(a),
/=0 k=-l

where we have used the Wronskian identities

W(hl 1), h2))(t) hl)(t)hl2)’(t)-h2)(t)hl)’(t)-

W(hll),jl)(t) hl’)(t)j(t)-jl(t)hll)’(t)=t i2.
Hence we conclude that g/k =0 for all l, k, and thus g =0.
Remark 1. It is possible to get rid ofthe assumptionjl(Ka) # 0 for all No by using

u(x) 4r (x, y)- i(x, y) (Rg) y ds(y) Ix[ > a,
yl=a Or(y)

and perturbing the kernel uo(, d) by the corresponding far field pattern. In this case
there are no longer any restrictions on a except that a > 0 and {x 3. Ixl =< a} c D.

Remark 2. In two dimensions with d (d, d2) we have

g(d) ’, gl(dl + id2)

and

(Rg)(d) Z i’gl(dl+ id2)l= Z gl(-d2+ idl)’.

Then

exp (-iKa. d)(Rg)(d) ds(d)= Ia exp (ia. d*)g(d) ds(d),

where d*= (-d2, dl) has a simple geometrical interpretation.
The next lemma estimates the decay of the spherical Bessel function as l- az.
LEMMA 1. For a fixed > 0 there exist positive constants M > 0 and C > 0 such that

jl(t)>= C
1.3... (21+1)

for all => M.
Proof Choose M > 2. For => M the sequence

p!l.3... (2/+2p+ 1)’
pNo,
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is monotonically decreasing. Then we have for 1-> M that

jl(t)=p
(--1)Ptl+2P

=0 2Pptl "J i-2p + 1)

>
tl ( 2

)=1"3’’:i2/+1) 1-2(2/+3 eC1"3’’’(2/+1)
for some constant C > 0.

The next theorem is a denseness theorem that is decisive in proving that the
functional we shall replace M1 with has infimum equal to zero for all > 0 (see the
Introduction for the definition of M).

THEOREM 2. Assume K > O. Then the linear space

span {(j/(tc[X[)+ ia2jl(a)h)(lx[)) Y()" Io, k=-I,..., I}

is dense in L2(OD).
Proof. For x, y 3 we define X by

(2.4) x(x, y)

By Lemma 1 the series converges together with its derivatives uniformly on each
compact subset of N x N3. Assume g e L(OD) and

Y()

for all No, k--l,..., I. We must show g 0. Define

u(x) := f g(y){dp(x, y) + X(X, y)} ds(y), x 3\OD.
D

Then Au + :u =0 in 3\OO and if r < a we have

IODg--{ichll)(clYl)jl(<r)
+ :.j,(lyl)j,(r) Y[(.) ds(y)
a Jl(Ka)

j,(tcr)
-; g(y){jl(ulyl)+ ia tjl(a)hl)([y])} Y() ds(y)
a jt(Ka)

=0

for all o, k =-l,...,/. Hence u =0 in a small ball with center at the origin and
by unique continuation [2], [3], u =0 in D.

For R such that/) {xN3: Ixl<R} we have u(R.)=Ul(R,)-k-u2(R), where"

Ul(R) := f dp(R, y)g(y) ds(y)
D

aklh)(cR)Y()
/=0 k=-!
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and

u2(R) := Ioo x(R, y)g(y) ds(y)

’=OE k=-lE a2ij,(a)
alj,(uR) Y()

with

’ foo ij,(,lyl) Yf()g(y) ds(y).

The series expansions for ul and u2 converge uniformly together with their derivatives
on Ixl R.

Using the fact that u 0 in D and the continuity properties of single layer potentials
with L2 densities (see [12]) we conclude from Green’s theorem that

um-O--u ds
Ou Ou

But

u - u-l U, ds
y]= R Ol

E , Ja12R2(h’)(R)h2)’(R)- h2)(R)hl’)’(R))
!=0

-2i

/( 1=0 k=-I

and

Yl =R
U - U2-- U2 -- U ds

1 1
Y. Y I]ZR (hI)(KR)j(KR)-jI(KR)hI)’(KR))

aziK 1=o k=-! jt(a)

/----0 k=-! jl(a

Hence a 0 for all No, k =-1,..., 1, and thus u =0 in De. We can now conclude
from the jump relation for the normal derivative of the single layer potential that g O.
The proof is finished.



374 DAVID COLTON AND PETER H,HNER

If we now let C2(R3\{0}) be a radiating solution of the Helmholtz equation
with the far field pattern g, we can choose for a given e > 0 constants a, 0,..., N,
k=-l,..., such that

+47r E E ait[jl(Kl’l)+ia2Kjl(Ka)hl’)(Kl’l)]Y
/=0 k=-l L2(0D)

Define

and

N

g:=E E aY,
/=0 k=-l

vrv(x) := fa exp (iKx. d)grq(d) ds(d)

N

=4r E E aklil(lxl)Y(),
/=0 k=-I

U(x) := Ia uS(x’ d)gN(d) as(d),

N

UN(x) := i47ra2 E , ail(a)hl)(lxl) Y(:),
1=0 k=-I

Then using Uv + VN--0 on OD we have that

and since

we have

7- (u%- uO)IIL(OD) ,

u%(x)=4ra2 fa (x, ad)(RgN)(d) ds(d),

Ixl>0,

0sup a(;) Urq,(x) u r,oo(x))l-<- Me

for some positive constant M, i.e.,

for all . Hence, if v and u are defined by (2.3), u is the exact far field data,
and S is the set of C surfaces bounding a domain D containing the origin such that
D is connected, the infimum of the functional

M,(g, r):= IIFg- 11.,+ Ila + v+ ull 2r)
for g e L(), F N is zero for all >0, and the solution of the inverse scattering
problem is the limit of an appropriate minimizing sequence. The aim of this section
of our paper is now accomplished.

3. The inverse inhomogeneous medium problem for acoustic waves. We define the
operator F as in (2.2), where u(, d) is now to be understood as the far field pattern
of the inhomogeneous medium problem corresponding to an incident plane wave
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propagating in direction d. In this section, a > 0 is only required to satisfy jl(Ka) 0
for all No. We again first prove that the operator F is injective.

THEOREM 3. Assume O. If g L-() is a solution of Fg 0, then g 0.
Proo The proof is almost identical to the proof of Theorem 1. The equality

= o + v)-( + v) o
+ v) ds

follows by Green’s theorem and the fact that w U + v) is a solution of Aw + 2nw 0
in 3, where n is real valued.

In the next theorem we assume that supp(1-n)c B:= {x3: Ixl<R}, where
R > a, and define

X := span {(jl(lx[)+ ia2jl(a)hl(lx])) Y()" lNo, k= -1,..., 1},

Y:= {we C=(B): Aw+=nw=0in B},

W:= h-w,(h-w) hX, we Y .c L2(OB)xL2(OB).

THEOREM 4. Assume > O. en W is dense in L2(OB) x L(OB).
Proo Suppose a, b L2(OB) satisfy

(3.1) (h-w)a+(h-w)g ds=O
B

for all h X, w K We must show a b =0. To this end, for X given by (2.4) we
define v by

v(x) := a(y){(x, y) + x(x, y)} + b(y) {*(x, y) + x(x, y)} as(y)

for x N3OB. We compute, for r < R,

. v(r) Yf() ds()

a(y) ij,(r)h([yl)+a=j(aj(r)j,([y[) g)(fi)ds(y)

+ b(y) ij,(r)hl(ly[)+a=ji(aj,(r)j(ly [) Y(fi) ds(y)=O

for all e No, k =-l,..., 1. Therefore, v 0 in B, and we are able to conclude by the
L2 jump relations for surface potentials [12] that v+ := v[axg satisfies

(3.2) v+ g and
0
V+=--
Or

on OB. From (3.1) we now have that, for all w e Y,

(3.3) w v+ ds O.
Or

We want to show through a suitable choice of w that v+ 0. The theorem then
follows by (3.2).
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We define vS and v by

vS(x):=
s

a(y)*(x,y)+b(y) (x,y) as(y),

v(x := a(x(x. + b(y (x. d(.

Then v(x) v(x) + v’(x) for Ixl > R, and

Y(x), rO,
/=0 k=-l

v(r) =4 2 2 i’(ia)J(a)hl(r) Y(),
/=o k=-!

where

r> R,

4"n’/)iia)(-i)’ fo [J’(K lYl) Yf()a(y)+ KjI(K lYl) Yf(fi)b(y)] as(y),

leNo, k=-l,...,l.
Since Y--o k=-I a is possibly divergent for N-* ee we define

N

g:=E E
l=O k=-l

:= jo. exp (ix. d)gs(d) ds(d)

N

=4 i’j,(lxl) Y()
/=o k=-l

and note that v%(x) v(x), N , together with its derivatives uniformly on since
v is an entire solution of the Helmholtz equation and v% are the paial Fourier sums
of v. From the Lippmann-Schwinger equation (see [3, Chap. 8]) we see that the
solutions Uu of the inhomogeneous medium problem corresponding to the incident
wave v% converge together with their first and second derivatives uniformly on any
bounded subset of3 to the solution U corresponding to the incident wave v, US U,
N. Again, using the Lippmann-Schwinger equation, we can conclude that the

0scattered fields U := Us vu converge together with their derivatives to U := U- v
uniformly on 3 UuU,N.

We now want to show that U(x)= v(x) for x > R. We know that

and using (3.3) and Green’s theorem we have that

v’(y) exp (-iy.)- (y) exp (-iy. ) ds(y)

v(y) (exp (-iry.)+u(y,-))
B Olyl

vs
(3.5) -oly (y)(exp (-iy. )+ u’(y, -)) ds(y)

v(y .(y.--(y.(y. - d(y

=- m(y)v(y)u(y,-) dy.
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From the reciprocity theorem [3, Thm. 8.8], (3.4), and (3.5) we now see that if Uo is
the far field pattern of Us, then

Uo() N-.olim fn gN(d)u(, d) ds(d)

vlim fn gv(d)uo(-d,-:) ds(d)

li.mo g(d) exp (i(d.y)m(y)u(y,-;) dy as(d)

K
lim Vlv(y)m(y)u(y,-;) dy

471"

2
l(

47I" f v(y)tn(y)u(y, -;) dy

1

4r
exp (-iY" )-O-I (Y) exp (-iy. :)] ds(y)

=v2(),

and hence by Rellich’s lemma [2], [3], U(x) vS(x) for [xl> R.
Finally, we compute for R1 > R that

o= (v+ v’) o__ (vo+ v,)_(vo+ v’) r (v+ as
yl=R1 Or

--v ds+2ilm vs-- --v ds
y[=R1 Or Or yl=Rl Or Or

(47rua:)2 E Jl(ra)elafl2W(h, hz))(KR)R
1=0 k=-I

=-2iu(4ra)2 E E Jl(a)2lak12,
/=o k=-l

where W denotes the Wronskian, and hence a 0 for all No, k =-l,...,/. We can
now conclude that v/ 0, and our proof is finished.

Now let C2(13\{0}) be a radiating solution of the Helmholtz equation with
far field pattern ff. If we set m := 1-n then, according to Theorem 4, for a given
e > 0 we can find the complex numbers a, 0,..., N, k =-l,..., l, and w Y such
that

(3.6)

w--4zr Y ai’[j,(<l.l)+ia2Kjt(a)hl)(ul.l)]Y
/=0 k=-I L2(OB)

+ -r w-a-4 , 2
/=0 k=-I LZ(oB)
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We define

v(x) :=
B

(x, y) (y)-0[ (x, y)w(y) ds(y),

W’(X):=--fB dP(x,y)(Aw(y)+K2w(y)) dy, XER3,

N

gs:=E E aY,
/=0 k=-l

v(x) := Ic exp (iKx. d)gN(d) ds(d)

N

=47r E E ailj,(lxl)Yf(;), xR3,
/=0 k=-l

u(x) := In u’(x, d)gN(d) ds(d), x e R3.

From Green’s representation theorem we can conclude that w v+ ws. Again, applying
Green’s representation theorem to

(3.7)
N

w--47r E ai’[Jt([’l)+ia2jl(a)hl)(l’l)]ykl
/=0 k=-l

in B and using (3.6), we have for R1 <R such that supp(m) c {x3" Ixl< R1} that

sup Iv(x)- v(x)[ _-< C,e,
Ixl=<R1

and hence from the Lippmann-Schwinger equation

sup Iw(x)-
x[R

for positive constants C1, C2 By applying Green’s representation thereorem to the
function (3.7) in 3\/ and using the L jump relations for surface potentials [12] we
get

ws- -4.zr Y’. Z ai’ia2Kjl(a)hl’)([ "I) Y <= C3e
/=0 k=-I L2(OB)

for a positive constant C We can conclude that, for R2 > R,
N

sup lug(x)- 6(x)-4,rr E ., afiliaZj,(a)hl’)(Klx[) Y(;)[ < C4e
[x[=R I=0 k=-I

for a positive constant Ca, and hence

sup fau(x*’d)gN(d)ds(d)-a2 faexp(-ia’d)(RgN)(d)ds(d)-()
for a positive constant C5. Therefore, if v and u are defined by (2.3) and u is the
exact far field data, the infimum of the functional

M2(g’w’m):=l}Fg-t[l&(sa)+]]w-t-v-u[]L2(B)+ 0---;0 (w__v_u)]l L2(OB)

for g L2(fl), m C"(B), w Y is zero for all u > 0, and the solution of the inverse
scattering problem is the limit of an appropriate minimizing sequence. This completes
the task of this section.
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4. The inverse obstacle problem for electromagnetic waves. In this section we shall
consider the inverse obstacle problem for electromagnetic waves in a manner analogous
to that of 2 for acoustic waves. We begin by defining some additional notation to
that given in the Introduction. Let a > 0 be such that {x R3: ]x]- a}c D, and

j,( Ka )(jt( Ka + Kajl(a # 0

for all , i.e., is not an eigenvalue for the interior Dirichlet problem for Maxwell’s
equations in {xR3"lxI<a}. We denote by y/k, l=0,1,2,...,k=-l,...,l, an
orthonormal basis of spherical harmonics on and by

1U(d) := Grad Yk (d), V(d) := d U(d) d 1(t(t+a)),/, k =-l,..., l, with Grad denoting the surface gradient, an orthonormal basis of
T2(), the square integrable tangential fields on 1 (see [3]). For g T2(),

(4.1) g= Y 2 aU/k+bV,
1=1 k=-I

we define

Rg:- Y ilakl Vkl +iilbkl Ukl
/--1 k=-I

and note that R" T2()-> T2(f) is a unitary operator. Furthermore, we define

M(x):-- curl {xj,(,lxl) yk()}, X3,
and

N(x) := curl {xhl)(lxl) yk()}, x 3\{0}.
We compute (use the asymptotic form of (6.71) and (6.26) in [3])

curl m(x)
4,n.i

exp (ix.d)Ukl(d) ds(d)=(l(l + 1))1/2i/
and

exp (ix. d) V(d) ds(d)=
--4rgi

(l(l+ 1)) 1/2 M(x), x3,

and note the relations

yI=R
V X N. curl N-kl ds l(l + 1)R2hlI)(R)

v curl N. curlcurl N ds

2 21 2) 1
=- g (/+l)h (R)(h)(R)+Rhl)’(R))616k,

v Nkl N as v curl N/k. curl N-kl as o
y[=R yl=g

for all l, ’e , k -l,..., l,/7= -l..., l’. There are similar relations if N/k is replaced
by Mk, in which case hl) has to be replaced by jl.

Analogous to the case of acoustic waves, we begin by defining the operator F for
g e T2(Q) by

(Fg)() := I E(:, d, g(d)) as(d)

(4.2) ia2 fa (Rg)(d) exp (-ia. d) ds(d),
4rr
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where Eo(, d, p) is the electric far field pattern corresponding to the incident field
(1.1) being scattered by the obstacle D.

We first show that the operator F is injective.
THEOREM 5. Assume > O. If g T(I) is a solution of Fg O, then g O.
Proof Let g 6 T(f) be a solution of Fg =0. We define

E(x) := S(x, d, g(d)) ds(d), x De,

;(xl:= (x, a,g(all as(a

(4.3)
=i faexp(ix.d)g(d) ds(d), xN,

E(x) := a curl (x, ad)(Rg)(d) as(d), [xl> a.

o =Eg and hence by Rellich’s lemma [2], [3]Since Fg=0 we have that Eg,
Eg(X) E(x) for Ix[> R, where g is such that = {x 63: Ix[ < R}. Using Green’s
theorem we have

i+Eg)-vx(Ei +E ).curl (E +E )]ds+ Eg).curl (Eg g g g g0= [vx(E
D

i+E)_ x(E’+E).curl(E’+EIv x (Eg+ E).curl (Eg v g g g)] ds

(4.4)
[ [vx E.curl E- o. o

g vxEg curlEg]ds

o. i.curl E] ds+2ilm [vXEg curlEg vXEg
yl=R

We will now calculate the series expansions of E and E and put them into (4.4).
Let g have the expansion (4.1). Then

(x)=i 2 2 a) exp(ix.d)U(d)ds(d)+b exp(ix.d)V)(d)ds(d)
/=1 k=-l

4 2 2 ila 1/2 curl M(x)
,= =_, [/(/+ 1)]

1
-4i E E ilb / M(x), x 3,

(x a 2 2 ’a cur *(x, av( as(
/=l k=-I

+ ilbi curl f,*(x, ad)U(d) ds(d)}
aa 2 ia -i /. j(a) curl N(x)

,=1 k=-l [/(/+ 1)]

+ a2 2 2 i(l+l)b i {jl(Ka)+ aj(a)}N(x).,, =_, [/(/+1)]’/ a
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Then we calculate for the first term in (4.4)

I v x E" curl Eg vXEg" curl Eg] ds

----2ia4K3 X X ak2" )21 Jl(a
/=1 k=-!

-2ia4 2 2 Ibl (j,(a)+ aj(a))
/=1 k=-l

and for the second term in (4.4),

i.curl ] ds[ x .curl g x
yI=R

=-4a 2 2 lalJ(a)
/=1 k=-l

-4a 2 2 b -(j(a)+aj(a))eR.
/=1 k=-l a

Hence we conclude from (4.4) that a= b =0 for all e N, k=-l,..., l, i.e., g=0.
The theorem is now proved..

The next theorem is the analogous result to Theorem 2.
THEOREM 6. Assume > O. en the linear space

span { x (4 curl M- iaj(a) curl N),

x (4M- ia{j,(a)+ aj(a)}N), eN, k= -l,..., l}

is dense in T(OD).
Proo We define for x, y e N a matrix valued function (x, y) such that for p

1 1
2 M(y)’p curl M(x)X(x, y)p -4 =12 l(l+ 1) a(j,(a)+ aj(a)) =_

(4.5 , 1 1 curlM(y).pM(x).-4
l(l+ l) al(a)

Similar arguments as in Theorem 2 show after some computation that the series
converges uniformly along with its derivatives on compact subsets of 3x 3. Now let
g T(dD) be ohogonal to the linear space stated in the theorem. Define for x

Eg(x) := curl ( (x, y)(y) x g(y) ds(y)+ X(X, y)((y) g(y)) ds(y).
D clOD

For r < a we have, using the vector addition theorem for the fundamental solution
[3, Thm. 6.27], that

for all , k -l,..., l, and hence by unique continuation Eg(x) 0 for x D. For
R such that {x 3: ix < R} we again have from the vector addition theorem for
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that Eg(R)= EI(R:)+ E2(R) with

El(x) := curl Ioo (x, y),(y) x g(y) as(y)

aN(x)+flcurl N(x),
/=1 k=-!

E2(x) := f0o X(x, y)(’(y) x g(y)) ds(y)

47r 47rfl
!=1 k=-I iKa Jl(Ka) ia(jl(a)+ ajl(a))

curl M(x),

where

i Io ((y) g(Y))" curl M(y) as(y),c= l(1- 1) o

)= (; (( x g(.M( s(.

By the continuity propeies ofvector potentials with L densities (cf. 10], 11 ]) we have

0 if0D { p X 1 + 2)" curl 1 + 2) p X 1 + 2)" curl (E +)} ds

{ x . curl- p x. curl } ds

+ 2i Im { x - curl N x. curl N} ds

By using the series expansions for N and N we have

{ x . curl E- x. curl } ds

2i
2 2 (+- 2 2 I(+

ff /=1 k=-I /=1 k=-I

and

{ El" curl E2 , x E2" curl El} ds
yl=R

47r=- Ice12/(/+l) 2 2.
1=1 k=-l l a jl(Ka)

2 [/31’12/(/+1)
/=1 k=-’ a(jt(a)+ :aj(a))

Analogous to Theorem 2 we can now conclude that Eg(x)=0 in De. We now have
that g 0 by the L2 jump relations for vector potentials [10], [11], and the proof is
finished.
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Now let /, C1(3\{0)) be a radiating solution to Maxwell’s equations with
electric far field pattern/. For e > 0 we can choose constants a, b/k C, 1,..., N,
k---1,..., such that

l= [/(/+ 1)] ./2
k=y’-, curl M_--iKa2jl(Ka)cur147r

E 47ril bkl Mk -ia(jl(Ka)+ Kaj(a)) Nkl
[/(1+1)]/ k=-I 4"a" L2(OD)

Define

N

g:= aUkl+bV,
/=1 k=-l

(4.6)
gN(X) := i exp (ix. d)gN(d) ds(d)

4"a’i
!=1 [/(/+ 1)]l/2k=-I a curl M- ibkl Mkl,

EgN(X) := fa ES(x’ d, g(d)) ds(d),

and

N

EOgN(X) ;’-- a 2

I=1

1

[l(l+ l)] 112

k:-I ( akl iKjl( ga curl N x b) -- (Jl( ga + gaJ(ga Nkl x ) Ixl>0.

Then, for Ixl > a,

Eg(X) a2 curl fa d(x, ad)(RgN)(d) as(d),

and hence

II. x (i -(Eg- EgN)) 2(om) < e

and

sup I(Fgw)(.)- Lo(;)l c

oand E g are defined byfor some positive constant C. We can now conclude that if E g

(4.3), Eoo is the exact far field data and S is the set of C2 surfaces bounding a domain
D containing the origin such that De is connected, then the infimum of the functional

+ E)llrM3(g,F):=IIFg f:ll.+ IIx (+E
for g T2(f/) and F S is zero for all K > 0, and the solution of the inverse electro-
magnetic obstacle problem is the limit of an appropriate minimizing sequence.
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5. The inverse inhomogeneous medium problem for electromagentic waves. In this
section we assume that n C1’([3) is a real valued function such that n(x)#O
for all xR and rn:= 1-n has compact sup,po. Again let a>0 be such that
jl(Ka)(jl(Ka) + raj(a)) # 0 for all N. Let B, B, B be open balls with center at the
origin such that

supp (m)c Bc Bc B

and n:={xl3: Ixl<R}, where R> a. We again define the operator F by (4.2),
where E(x, p, d) is the electric far field pattern corresponding to the incident field
(1.1) being scattered by the inhomogeneous medium. We first prove injectivity of the
operator F.

THEOREM 7. Assume > O. If g T2(f) is a solution of Fg =0, then g =0.
Proof. The proof is analogous to the proof of Theorem 5, where we use Gauss’

theorem and (1.7) to arrive at

+ (E’ ds =0.’+Eg).curl(Eg+Eg)-vX(Eg E).curlg g{/,’ X (Eg + E)}
yI=R

We will now prove the analogue of Theorem 4. We define

X := span {47r curl Mkl ia2jl(Ka) curl N/k,

47rMkl ia {jl( ra + aj(a }Nkl t, k=-l,..., l},

Y:= {(F, G) E (C(/))2: curl F-iG=O, curl G+ ir,nF=OinB},

and

W:= {(v x (E F), v x curl (E F)): E e X, (F, G) y}c T2(OB) x T2(OB).
THEOREM 8. W is dense in T(OB) x T2(OB).
Proof. Suppose a, b TE(oB) satisfy

(5.) {a. Iv x (E- F)]+ b. Iv x curl ( F)]} ds=O
B

for all E e X, (F, G) e Y. We must show that a b 0. To this end, we define

US(x) := curl v(y) x b(y)(x, y) ds(y)
B

+-- curlcurl u(y) x a(y)d(x, y) ds(y), x e
B

g(x) := -5 curl X(x,y)(v(y)x(y)) ds(y)
B

+--- curl (x,y)(v(y)xb(y)) ds(y),xeN3,
B

and U(x):= U(x)+ US(x), x eN3\OB, where X is defined by (4.5) and )(x,y):=
curly X(x, y) (the curl is applied to the row vectors of X).

We compute for r < R that

f U(r). U() ds()= f U(r). V() ds()=O

for all , k =-l,..., l, and hence U 0 in B.
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Defining U/ := Ul#\n we have by the L2 jump relations for vector potentials (see
[10], [11]) that vxU/=vx/and uxcurlU/=uxti on 0B in a L2 sense. Setting
E 0 in (5.1) and inserting these equalities into (5.1) now shows that

f
(5.2) 0 | { x curl U+. F+ v x U+. curl F) ds

doB

for all (F, G) Y.
We now compute

1U(x) 47r E E il
,=, :-, [/(/+ 1)]1/2 at

k curl M(x)

-47r Y, , iKi
,=l k=-, [/(/+ 1)]1/2Mkl(x)’

jl(Ka)
US(x)=-ira ,

1=1 k=-I [/(1+ 1)] 1/2 a/k curl NkI(x)

-a , ljl(ra)+aj(Ka)
1=1 k=-I [1(1+ 1)]1/2 flN(x)

for [x > R, where

k (--i)
[/(/+ 1)]l/2a2jl(a)

(_i)(/+1)
l( + 1 )]1/2a(jl(a + ajl(a))

If we now set

(5.3)

1 I0 curl M(y). (v(y) x a(y)) ds(y)

+Ion Mf(y).(v(y) x b(y)) ds(y)},
{Ion Mf(y).(v(y) x a(y)) ds(y)

+ Io. curl Mkl(y)’(u(Y) b(Y)) ds(y)}.

E(x) El(x)- curlcurl IR d(x, y)m(y)E(y) dy,

then from (4.6) U converges uniformly together with its derivatives on compact
subsets of to U as N --> oo, and EN converges uniformly together with its derivatives
on 3 to Eg as N-> c, where Eg denotes the scattered electric field corresponding to
the incident field U.

We will now show that Eg and U coincide outside of a large sphere. We first
note [3] that the vector Lippmann-Schwinger equation can be written as

EgN(X)-- E (x, d, gN(d)) as(d),

N

1=1 k=-I

UON(X) := I Ei(x’ d gs(d)) as(d)

iK In exp (ix. d)gs(d) ds(d),
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ES(x) -curlcurl I3(x,y)m(y)E(y) dy,

is the scattered electric field corresponding to the incident field E i. From this we deduce
that for 2, d E l), p e 3, the electric far field pattern Eoo can be represented in terms
of the total field E by

(5.4) Eoo(, d, p) -- exp (-i. y)m(y)( x E(y, d, p)) x dy.

Using the far field representation for the far field pattern Uoo of U obtained from the
representation theorem for U and (5.2), we compute, for arbitrary p e N3, e f, that

p.U()

p. 2x u(y)x US(y)+--[,(y)xcurl (y)]x2 exp(-i2.y) ds(y)

1 fo (z’(y)xUS(y) curly{pexp(-icy)}
4r

)(5.5) -z,(y) x--curly curly {p exp (-i).y)}.
1

curl US(y) ds(y)

1 fo (l(y)xUS(y)H(y, ,p)-,(y)xE(y,-;p)’l curlUS(y))ds(y)4"7"

-1-- I ( ’(y) x U(y) H(y’ -’ p) ’(y) x E(y’ -’ p) "--tKl curl U(Y)) ds(y)

re(y) U(y) E(y, -x, p) dy.
47r

Hence, from (5.4) and (5.5) we arrive at

p. Eg,()= lim p. EgN,(
N

lim f p. E(, d, gN(d)) as(a)
N-.e,

lim f gN(d)" Eo(-d, -, p) as(a)
N

lim f gv (d)
Noo da

--4-exp(id.y)m(y){(dxE(y,-,p))xd}dyds(d)

lim igs (d)
N

exp (iKd.y)m(y){(d E(y,-, p)) d} ds(d) dy

i___ f m(y)E(y, ,p) U(y) dy
47r

p" Uoo(2),
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i.e., Uoo())= Eg,oo()) for all 9 II. We can now conclude by Rellich’s lemma [2], [3],
that US(x)= E(x) for Ixl sufficiently large.

To complete the proof we will now show that U U + U vanishes identically,
and hence by the L2 jump relations for vector potentials a b 0. By Green’s theorem
we have for R > R,

0

(5.6)

Iyl=
RI

and

{vx(U+Eg).curl (U+Eg)

-v x U+ E). curl U+ E)} ds

{v x U+ US) curl U+ Us)

v x U + US) curl U + US)} ds

f {ux Us.curl Us- ux Us.curl Us} ds
yI=R1

+2i Im {Iyl=R, {uxUS’curl U-vxU.curl US}ds}

(5.7)

{ U" curl U Us. curl Us} dsX X
yl=nl

-2iK3a4 2 2 Jt(a)lafl
/=1 k=-!

(5.8)

-2ia2 Z Z (j,(a)+ ajl(a))ll3l,
/=1 k=-l

{ v x Us. curl U- v x U. curl Us} ds
yl=R1

y Y, 2a2jt(a)47rlce)l2

/=1 k=-l

+ Y Y 4,ra(jt(Ka)+aj(a))ll3)12e.
/=1 k=-l

Inseing (5.7) and (5.8) into (5.6) we can now conclude that a=B=0 for all leN,
k -l,..., l, i.e., U(x) 0 for x e N3B, and hence a b 0 by the L jump relations
for vectopoentials 10], [11]. This finishes the proof.

For E, H e C(N3{0}), a radiating solution to Maxwell’s equations with electric
far field pattern ,, we now define the cost functional

M4(g,F, G,m):=llFg Ell(m+llx(f g-Eg
+ IIcurl (F-g-Eg

0’(B), (F, G)e Y and Eg, Eg defined by (4.3). To prove that the infimumfor m e Co
of the functional M4 is zero for exact electric far field data E and all g > 0 define
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m:= 1-n and

N

N :--" E E olUkl"’V,
/=1

EigN(X) := iK fa exp (iKx" d)gN(d) ds(d),

EgN(X) := E(x, d, gN(d)) ds(d), x eN3,

DAVID COLTON AND PETER H,HNER

X []3,

N 1
UN(x) := Y’, E ci

1=1 k=-, [1(1+ 1)]1/2 (-ia2r,jl(a)) curl N(x)

N

l= k:-I [l(l+ 1)] 1/2 ia(jl(a)+ aj(a))N(x), x 3{0},

U(x) a

Then, from (4.6) and Theorem 8, for a given e > 0 we can find a, fl C, 1,..., N,
k=-l,..., l, and (F, G) Y such that

Jl x (F- N UN)IIL(OB) + II; X curl (F- E’gN
Defining

F(x) := -curl [ (y) x F(y)*(x, y) ds(y)+grad [ (y). F(y)*(x, y) ds(y)
B dab

[ (y) x curl F(y)@(x, y) ds(y), x e B,
B

F(x) := grad
n B

we have from the Stratton-Chu formula [3, Thin. 6.1] that F(x)= F(x)+ F(x) in B.
Since div F =0 in B (F, (1/i) curl F) is a solution to the Maxwell equations in B.
On the other hand,

F’(x) -curlcurl B m(y)F(y)@(x, y) dy, x e3

is the scattered pa of the inhomogeneous medium problem solution corresponding
to the incident field F. Using the representation theorems [2], [3], we now arrive at

(5.9) liE’ -Ell,= Cl,

(5.10) I1 x (Fs- U)ll=<o> C=
for .positive constants C, C. We, therefore, conclude from (5.9) and the vector
Lippmann-Schwinger equation that

(5.11) IIF-ELIl,o C3,

and from (5.10) and (5.11),

E,-E- U,II.. C4,
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IlrgN -/oo11,
for positive constants Ca, C4. It now follows that the infimum of M4 is zero for all
K > 0, and the solution of the inverse electromagnetic inhomogeneous medium problem
is the limit of an appropriate minimizing sequence.

REFERENCES

J. BLi3HBAUM, Optimisation methods for an inverse problem with time-harmonic electromagnetic waves:
an inverse problem in electromagnetic scattering, Inverse Probl., 5 (1989), pp. 463-482.

[2] D. COLTON AND R. KRESS, Integral Equation Methods in Scattering Theory, John Wiley, New York,
1983.

[3] , Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, Berlin, 1992.
[4] , Time harmonic electromagnetic waves in an inhomogeneous medium, Proc. Roy. Soc. Edinburgh,

l16A (1990), pp. 279-293.
[5] D. COLTON AND P. MONK, The numerical solution of the three dimensional inverse scattering problem

for time harmonic acoustic waves, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 278-291.
[6] , The inverse scattering problem for acoustic waves in an inhomogeneous medium, Quart. J. Mech.

Appl. Math., 41 (1988), pp. 97-125.
[7] , A new methodfor solving the inverse scattering problem for acoustic waves in an inhomogeneous

medium, Inverse Prob., 5 (1989), pp. 1013-1026.
[8] , On a class ofintegral equations of thefirst kind in inverse scattering theory, SIAM J. Appl. Math.,

to appear.
[9] D. COLTON AND L. PIVRINTA, Farfieldpatterns and the inverse scatteringproblemfor electromagnetic

waves in an inhomogeneous medium. Math. Proc. Cambridge Philos. Soc., 103 (1988), pp. 561-575.
[10] P. H.HNER, An exterior boundary-value problem for the Maxwell equations with boundary data in a

Sobolev space, Proc. Roy. Soc. Edinburgh, 109A (1988), pp. 213-224.
[11] , An approximation theorem in inverse electromagnetic scattering, Math. Methods Appl. Sci., to

appear.
[12] H. KERSTEN, Grenz- und Sprungrelationen fiir Potentiale mit quadratsummierbarer Dichte, Resultate

Math., 3 (1980), pp. 17-24.



SIAM J. MATH. ANAL.
Vol. 24, No. 2, pp. 390-406, March 1993

1993 Society for Industrial and Applied Mathematics

008

DECOMPOSITION OF THE DISPLACEMENT VECTOR FIELD AND
DECAY RATES IN LINEAR THERMOELASTICITY*

JAIME E. MUIIOZ RIVERA’

Abstract. The linear thermoelastic system is studied in the whole space ln, and it is proved that the
displacement vector field can be decomposed into two parts, one that conserves its energy, and the other
that decays uniformly to zero as time goes to infinity. The method used here is based on a new Lyapunov
function.

Key words, linear thermoelasticity, energy decay rates
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1. Introduction. In this work we will study the classical linear thermoelastic system
for homogeneous isotropic materials. The system in question consists of n hyperbolic
equations of motion coupled with the parabolic equation of energy. A first work about
the asymptotic behavior ofthe solution ofthe thermoelastic system is given by Dafermos
[3], who proved that they are asymptotically stable when time goes to infinity; in that
work regularity and uniqueness results are also proved. Here we will study the decompo-
sition of the displacement vector field and the asymptotic behaviour of the energy
associated with each part of this decomposition. The question of partition of the energy
was first investigated byLax and Phillips [7] for a classical solution of the wave
equation. There the authors established that the kinetic and the potential energies
become asymptotically equal as time goes to infinity. Another work in this direction
is that of Duffin [5], who proved that the equipartition is consummated in a finite time
provided the initial data have compact support. Corresponding results for abstract
hyperbolic equations have been obtained by Goldstein [6], Costa and Strauss [2],
among others. It seems that a first work about the partition of the energy in the
framework of isotropic linear thermoelasticity (system with dissipation) was given by
Dassios and Grillakis [4]. There the authors studied how the energy associated with
the longitudinal and thermal wave is divided into kinetic, strain, and thermal energy
in the case f R3. They concluded that the rate of decay of the energy stored in the
longitudinal and thermal wave is affected by the symmetric of the initial data, that is,
if Vo, vl, Vo are the lowest nonvanishing moments of the initial displacement, initial
velocity and initial temperature, respectively, then all of the three parts of the energy
associated with the longitudinal and thermal wave decay to zero as t-+ at the rate
-(m+3/2), where m min {Vo+ 1, vl, Vo}, and whenever the initial data have continuous

fifth derivatives with compact support in R3, while the transverse wave conserves its
energy.

For bounded anisotropic and inhomogeneous bodies Chirita [1] proved that the
mean thermal energy tends to zero as time goes to infinity and that the asymptotic
equipartition occurs between the Cesaro means of the kinetic and strain energies,
which implies that the thermal effects do not influence explicitly the asymptotic
equipartition of the mean kinetic and strain energies.

In special situations, that is, when the restoring force is proportional to the vector
velocity of the displacement vector field, Pereira and Menzala [10] proved that in a
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bounded, isotropic and inhomogeneous body the kinetic, strain, and thermal energy
approach zero exponentially as t-> +c.

In this work we will study the decomposition of the displacement vector field in
R (n > 1) into two parts. One of them, the solenoidal part, that is, the nondissipative
component that conserves its energy and the other, the dissipative component (irrota-
tional) part for n 3), decays to zero when approaches infinity. We will prove ( 3)
that both the displacement vector field in the dissipative direction and the deviation
of the temperature decay as -/2 when tends to infinity. For n- 1, the system is
totally dissipative in the sense that the total energy decays to zero as t-> 0 as fast as
-1/2. Moreover, we will find a parameter m for which the rate of decay increases with

increasing values of m. More precisely we shall prove that the rate of decay of the
energy increases as -m/"/2) if each component of the initial data is the m-derivative
of a function that belongs to L2(Rn) L(En).

Through this result we improve the work of Dassios .and Grillakis [4], which
proved that such a decomposition exists for the displacement vector field in E3. The
method we use here is different and simpler than that used in [4].

The outline of this paper is as follows: In 2 we consider the Cauchy problem
associated to the thermoelastic system. The existence of global solution under more
general assumptions is shown in [3 ], but for the sake of completeness we briefly indicate
the proof in the framework of semigroups of operators. In 3 we study the asymptotic
properties of the density function for the thermoelastic system with initial data in the
dissipative direction by using a method based on the construction of a suitable
Lyapunov’s functional. Finally, in 4 we study the decomposition of the displacement
vector field when the initial data is taken in the domain of the operator associated
with elliptic part of the thermoelastic system.

2. Existence, uniqueness, and regularity. In the absence of body forces and heat
sources the linear thermoelastic system of a homogeneous and isotropic body occupies
all space R" is given by

(2.1) utt-(a2-b2)Au-bEV{divu}+aVO=O in R xt,

(2.2) Or kAO + div u, 0 in x t,

(2.3) u(x, 0)= no(x), ut(x, O)= u(x), O(x, O)= Oo(x) in E,

where a2=(i,+A)/p, b= A/p, a T/P, u/k. We are denoting by / and A the
Lam6 constants; by p the mass density, k is defined by k Ao/C, where Ao is the
thermal conductivity and c is the specific heat. Finally u is the thermal diffusivity.

Let’s denote by A the operator on [L2(R)] and by A the operator on L2(")
with domain D(A)= [H-()]n, D(A)= H:(R"), respectively, such that

Aw -(a:- b2)Aw- b:V divw,

Aw -kAw,

where A, V, div stands for the Laplacian, the gradient and the divergence operator, w
is a vector w= (Wl,..., w), and for Aw we are denoting Aw= (AWl,..., Aw).

It is well known that A and A are positive selfadjoint operators in the Hilbert
space [L2()] and L2(), respectively.

Let us define the space ; as

W= [H’(Rn)] x [L2(Rn)] x L2(R)
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with norm given by

for any V=(u,v, 0); where u=(Ul,..., u,) and v=(vl,..., v,). We introduce the
operator

B*
with domain

D(,) [H2(")]" x [H’(a")]" x

where B is defined as Bw=Vw with domain D(B)= HI(R").
The existence result is stated in the following theorem.
THEOREM 2.1 (Existence and uniqueness). Let (Uo, Ul, 0o) D(M) and T>0,

then for any a, 3, k>0, there exist only one strong solution of system (2.1)-(2.3)
satisfying

u C(0, T; [n2(n)]n)Cl(O, T; [n(a")]") C(0, T; [L(a")]")
0 C(0, T; H(U")) C’(0, T; L(")).

Proof System (2.1)-(2.3) is equivalent to

d
--U=U, U(0)=Uo, UeD(),
dt

where

U= ,, Uo u,.

00

In order to establish the existence result it is sufficient to show that is the infinitesimal
generator of a strongly continuous semigroup. To prove this, let’s define the operator
3 -[ 1 + (a -/3)211 +, with D() D(), where I denotes the identity operator
in . First we prove that is dissipative. Let us take V= (u, v, 0) in D(); then it
follows that

=[+(-,) Ivl = dx+ lul dx- Ivo= dx

<1 ] k=[1+(-) [Ivll- lldx.

Consequently, N satisfies

( v)-[l+(-)]lIvll- I01dx.
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Our next goal is to prove that Im [I- , that is, for all F= (F1, F2, F3) we
can find V (u, v, 0) e D(4) D(I ) satisfying

/xI+ 4V= F;

here /z 2 + (a + fl)2. In fact, by taking the Fourier transform to system and solving
the result system we conclude that is maximal monotone. Finally, since D() is
dense in , using Lummer-Phillips’s theorem we conclude that is the infinitesimal
generator of a strongly continuous semigroup; so is 4. The required conclusion then
follows.

In order to obtain the decay of the energy associated to system (2.1)-(2.3), when
the initial data is taken in D(4), we will use the regularity result of system (2.1)-(2.3)
and the density of D(3) in D(4). The regularity and the density property are well
known, but to assist the reader we briefly indicate the following remarks.

Remark 2.1. Let us define D(2) and D(3) as

D(g2) { V D(/); gV D()},

D(43) {V D(42);V D(42)}.
It is easy to see that whenever Uo-(Uo, u, 0o) D(3), we have

U (u, g/t, 0)’r C2(0, T; D(M))

or, in particular,

U C3(0, T; H2(R")), 0 e C2(0, T; H2()).
3. Asymptotic behaviour. The total energy in linear thermoelasticity for R in

general does not decay to zero. In this section we will prove that the energy associated
with the thermoelastic system decays to zero at the rate of -/2 when time. goes to
infinity, provided the initial data is in the dissipative direction. Moreover, we will
prove that the rate of decay increases if each component of the initial data is the
m-derivative of a function that belongs to L2() CI L(R"); when this is the case we
will have that the total energy decays as -("+/2) when

Let O--(al,... Oln) and x=(x,...,x,)"; then we shall denote by lal,
x, and 0 the following expressions:

[a[= a,
i=1

X Xl X2 Xn n,

Let us consider the following lemmas.
LEMMA 3.1. Let v be a function in L:(g")L() for which there exist f

L2() L(") satisfying

Then we have

v=Oaf where lal= m.

f
(3.1) I()1 =< [2r]-"/lCI J,o If(x)l dx

where denotes the usual Fourier transform of v.
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Proof. Integration by parts of 3 implies that

(3.2) 3(sc) [27r]-’/:(-i)1"1[" fa, f(x) e ixe dx,

where i=1. Since fe L:(R") Ll(R’), (3.2) yields (3.1).
LEMMA 3.2. If r is a positive real number, then we have

(3.3) n2m e-rn dnN(2m)[r-m-l m=O, 1
o

Proof Let us denote by I the integral in the left-hand side of (3.3). Straightforward
calculations give the inequality

(3.4) Io e- d Nr-/.

Integration by pas of Im with m > 0 implies

I N (2r)-(2m -1) n- e-n d N (2r)-(2m l )i_"

Consequently,

INr-(2m)Io.

Substitution of (3.4) into the last inequality gives (3.3).
LEMMA 3.3. If the initial data Uo and Ul are such that

Oiu(x) Ojuio(X) Oiu(x) Oju l(X) fori#

where Uo= (u,..., ug), u=(ul,..., uT) then the solution u ofsystem (2.1)-(2.3) also

satisfies

Diu;(x, t) D;ui(x, t), Diu(x, t) D;ui(x,, t) in xN,.

Proo From system (2.1)-(2.3), it is easy to see that

Cou D,u

satisfies

Cou(x,O)=O, co.,(x, o) o.

By the uniqueness of the solution the result follows.
LEMMA 3.4. Suppose that

DiF(x, t)=DjFi(x, t)

holds for all iS j. Then we have
2

where 1, n )"
Proof. Consider the Fourier transform of identity (i). Then we have

sC,F jFi for all j.
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Multiply the equality below by Fi, and adding for j, we have

i,j i,j
ij ij

Using this identity we conclude that
2

g, ,1 f,I + Re ,F,F
i=1 i=1 i,j=l

ij

i=1 i,j=l i=1 i=1
ij

which proves Lemma 3.4.
Let us define the energy associated to system (2.1)-(2.3) as

E,(t)= lu,l+(a=-b),=l IVu’l+btdivul+ I01 dx.

Applying Plancherel’s identity to the energy function, we have

1 ) 21 12 b a I1= d,
i=1 i=1

where (1,..., ). Let us denote by E(, t) the energy density given by

E(, t) =lutl +(a-b)
,=,

Il=la, l=+ b=
,=

,u, + I1=.
Let us introduce the following functions:

E2(t) = I:IE(:, t)

F(, t)=sign (c) Re {iO(, t) :i(u),},
i=1

G(, t)= sign ()11= Re {,. }.
We will prove the asymptotic behaviour of the energy by studying the asymptotic

properties of the total energy density E(, t). By taking the Fourier transform of the
system (2.1)-(2.3), we have

(3.5) "+(a2-b2)l12fi+b2( i=l sct) :-ai:=0 inIxR,,

(3.6) O+kll-13i :(a,},=0 inRx,.
i=1

Under these conditions we have the following lemma.
LEMMA 3.5. With the same hypotheses of Lemma 3.3 we have that the derivatives

of the functions E, F, and G satisfy the following inequalities"

d k(3.7) d--- E(:, t)=- I1=11=
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d
F(:, t) -fl]:121fi 124dt

(3.8) + (a b)l:l
d
(, t) < I1=1 =- a=l14[l2 + 11 I1)11=11)(3.9) d

Proo Without loss of generality we can suppose that a > 0. By Remark 2.1 thg

functions E, F, G are differentiable. Multiplying (3.5) and (3.6) by , and (/fl)0
respectively, and adding the real pa of the product results we obtain (3.7). Let us
find the derivative of the function F:

dt
F(, t) Re iO, (u), + Re iO (u),

i=1 i=1

From (3.5) and (3.6) it follows that

dt i=1 i=1

-Re{ il’’(a-b)O(’’) i=1 i(u)}
From Lemma 3.4 we conclude that the above identity yields (3.8). Finally, let’s calculate
the derivative of the function G; then

d
dt
a(, t) Il=la,I = + I1=

i=1

uO.
i=1

From Lemma 3.4 we conclude (3.9). The proof is now complete.
Let us briefly mention a technical diculty arising in the proof of the main result

of this work. It is necessary to consider separately the asymptotic behaviour of the
energy density in the ball B(0, 1)= {"; [1< 1} and in its complementary set. We
proceed first to estimate the decay of the energy density function in kB(0, 1), and
in this case we will prove that it approaches zero exponentially when . Then we
prove that the density energy function decays algebraically in B(0, 1) when approaches
infinity.

TzOgZM 3.1. Let (Uo, u, 0o) D() such that

Uo, u [L(")] ", 0o L() and

o(x o’o(X, o,u(x ou(x for ai j,
where Uo Uo, Uo), u (u ,..., u ), anda > O. en there exist a positive constant
C such that the solution of system (2.1)-(2.3) satisfies
(i) E(t)+ E(t) C{E(0)+E(0)}t-/ when t+.

Moreover, ff there exist functions f,f, go L() L() such that

(3.10) of u, Oq u k, and Ogo Oo k 1,.. n.
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Then we have

(ii) EI(t)+E_(t)<-C{EI(O)+E2(O)}t-m-n whent+,

where m min {ICkl + 1, I1, I1; k 1,..., n}.
Proof. Without loss of generality we can suppose that c,/3 > 0. Multiplying by

I1= relation (3.7) we obtain

d c
41 2(3.11) d-Sllu(, t)--k-ll [

On the other hand from relation (3.8) it follows that

(3.12)
d--d F(sC t) < -1 21 12

k2

+/3 ]- [:141fil =

and from (3.9) we obtain

(3.13)
d G(,t)<]]2],]2l 1(a2)

From (3.12) and (3.13) we conclude that

(3.14)
d{ fl G(, t)} < fl 21 12 fla 2

d--- f(:, t)+ --11 , ---1:[4ll=

/--1141ffl=/ 4 + I1=11=
2fl fla 2 8a:J

For convenience we introduce the function H(sC, t) defined as

fl G(:, t)+ N(1 + I:I=)E(, t)H(, t)= F(, t)+-
where N is a positive real number satisfying

N>max ;4 /3a +8aJ+co,
where Co > 0 is chosen such that

(3.15) H(, t)->(1 +ll=)E(, t).

From (3.7), (3.11), (3.14), and the definition of H and N we conclude that

d fl fla 2

d- H(:, t)-<- 1:121fi,12---i--1:[4-Co(1 + 14,1)E(, t).

From there it follows that there exists a positive constant Cl satisfying

d
(3.16) d- H(, t)<=-Cll12E(, t) V.
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In order to prove part (i) we will consider two cases. First we will suppose that

Iscl _>-1. In this case the following inequalities are valid:

G(, t)= Re {l:12fi,} <_--{llla,l=+l141al=) vll >- ,
F(, t)= Re {iOilt}_-<-{ll=l,l=+ll-Il=} Vl :l_-> 1.

Thus, there exists a positive constant c2 such that

(3.17) H(:, t) >- c=ll=E(,
which, together with (3.16), yields

d
d--- H(, t)+ yH(, t)<=O,

where 3, c/c2. The last inequality, together with relation (3.15), implies that the
energy density function satisfies

(3.18) (1 +11)E(, t)H(, t)H(,O)e-rt

Integrating (3.18) in RkB(O, 1) implies that

(3.19) [ (1 + 112)E(, t) d c3E2(O)e -vt.

Finally we will show that the asymptotic form of the density energy integral for
the case 1 decays algebraically, and the rate of decay increases with the increasing
values of m defined in Theorem 3.1. First notice that the inequality

(3.20) H({, t) c4E({, t) vl l 1

holds. From (3.16) and (3.20) we obtain for ’= c/c4 that

d
d H(, t)+r’llH(, t)O,

which, together with (3.15), implies that

(3.21) (1 + [I)E(, t)H(, t)H(, 0)e-v’llt.
Integrating over B(0, 1) the last relation and applying Lemma 3.2, we conclude the
validity of the inequality

(3.22) (l +’’2)E(’ t) d2cs f, e-l’t
11

because H(, 0) is bounded in B(0, 1) since Uo, u [L(")], and 0o L("). From
(3.19) and (3.22) paa (i) follows. Finally in order to prove part (ii), let us suppose
that there exist functions f,f, g L2() L(") satisfying (3.10). Then it follows
that there exists a positive constant C satisfying

H(, 0) C{ll()l2 + I 1 1 o( )1 +
From 3.10 and Lemma 3.1 we have that

H(,O)C
k=,

[f[ d+ l12
k=l
Il fn- If’ d
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from where it follows that there exists a positive constant C2 such that

where

Since

C2=max{fn ]fkl d’ In" Ifl d’ fn" Igkl d; k=l’""n}"

+ [:[2)E (:, t)
:V--

=< H(:, 0)e
11

IN1 k=l k=l k=l

by iterated integration and applying Lemma 3.2 we conclude that

(3.23) f (1 + 112)E(, t) d N c6t--,/

fo som positiw constam c. The conclusion ofth theorem follows immediately from
(.19), (.).
o th on-imnsional cas th is no stdcfion on th initial data, that is,

th system is totally Oissipativ in th sense that th total
in th followin omllay.

OOLLAY 3.1. et (Uo, , 0o) () uch that o, , 0o() and 0.
en there exist a positive constant uch that the solution o

1
(i) () +() {(0) + (0)} +.

oreover, i there exist unction o,, o () () ch that

d d d

dx fo uo,
dx f ul and

dx
go 0o,

then we have
re+l/2

(ii) El(t) + E2(t) _-< C{EI(0) + E2(0)} when

where m min { r, s, l}.
Proof For this case the energy of the system is given by

E,(t)= lu,(x, t)[Z+a21ux(x, t)lz+-[O(x, t) dx,

and the energy density is given by

zl{" 221 a/.jE(’r/, t)--: lu,(rl, t)]/a (rt, t)[ /-2[(rt, t)l
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The auxiliary functions are

F(/, t) sign (a) Re {iqO(q, t)ut(l, t)},

G(/, t)- sign (a) Re {2(, t)(, t)}.

Finding the derivative of F and G gives

dE(’ t)=-fl k2 [,

dd F(, t)=< -2t[2+ k2ll{nlt[}+ a2

d
d-- G(,, t)-<_ 1[2- a2,lt$12+ I l}.

From here on we can repeat the proof as in Theorem 2.1. [3

4. Decomposition of the displacement field. In this section we will study the
decomposition of the displacement vector field in R". We will prove that it can be
decomposed into two parts, one of them the solenoidal part that conserves its energy
and the other, a gradient (the irrotational part for n- 3) that decays as indicated in
Theorem 3.1. In order to assist the reader we will show the conditions for which such
decomposition holds for any vector field of ".

Remark 4.1. Let us denote by U(x) the function defined by

1
U(x) =- In Ixl if n 2,

1
U(x)

(n -"’"’n’X’n-2e)II
if n > 2,

where tr, is the area of the unitary ball of R. The solution of the problem

(4.1) au =f in "
is given by

u(x) I.o U(x- )f(:) d:,

whenever f is a continuous function with compact support in N". First note that for
any v, and C2-function with compact support, the following identity is valid:

v(x) IR" U(x- )Av() d in N.

Now we will prove that u satisfies (4.1). In fact, let 4 be a C() function with
compact support in N". Then we have that

f.f()foU(x-#)A4,(x)dxd
fR.f()dp() d Vdp.

By DuBois Raymond’s lemma our assertion follows.
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In the following lemma we will establish some regularity properties of the solution
of (4.1).

LEMMA 4.1. Let f be a function satisfying

f C(Rn) o(f) o(Ixl-) when Ixl-, +; 0 > 2 for n 2.

Then there exists a continuous function u with 19u HI(In) for I1-1, satisfying (4.1).
Finally if

f L() f] LP(R) for n >- 3,

where p max { q, q’}, q > n/n 2 and (1 / q) + (1 / q’) 1. Then there exists a solution u

of (4.1) satisfying u Lq(n); 19u /-/’()11-1.
Proof. Let us denote by f the regularization of f, that is, the convolution

f=p*f,

where p is the mollifier, taken such that p(-x) p(x), Rn p(sc) dsc 1, and p(x) 0
if Ixl--< 1/v. It is well known thatf converge to f in L for any r => 1. Then the sequence
(u) given by

u(x)
JR1" U(x-sc)f(:) asc

satisfies the equation

(4.2)
First we will consider the case n 2. For this case the derivative of the function u
satisfies

u(x) _-<-- Ix-:1-1/(:)1 d:.

If we denote by X and Xc the characteristic function on the open ball B(0, 1) and its
complementary, respectively, we have that

o
Ix-l-’lf()l de- [xll-’] * Ifl / [xll-’] * ILl.

By the hypotheses on f we conclude that fE Lr(") for all r-> 1. From the fact that
0> 2, there exist p> 2 such that O-(1-(2/p))> 2. Since XI:I- E LI(") and xll-’
tP(Rn), we have that

[xll-’] * ILl LP(") and [xl:1-1] ILl LP(")

Therefore,

and

u(x)eLP(")
Ox

dx- xll-’dx Ifldx+ xlldx Ifldx.27r 27r

With the same reasoning we can conclude that

x)-x) dx
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hence (OUv/OXi)v is a Cauchy sequence Lv(R") then bounded. Since

Io’duv() u(x)-- u(t:- (1 t)x) dt

it follows that

u(’)- u(x) Vuv(t(+(1-t)x)" [C-x] dt.

Integrating over the ball B of center x and radius

; u(:) d:-lx-y[2u(x) -< [Vu(t+(1-t)x). [-x][ dtd
B B

-< [x-yl IVu(t(:-x) +x)l dtd.

Making a change of variable we obtain that

(4.3) u,,(:) d:--I-ylu() I-Yl
B

where D is disk of center at the origin of coordinates and radius equal to tl-Yl. Since
N 1, we then have that the tD D, from which it follows that

I( a /’ 1/’/’ I(1 a
tD D

The last inequality and (4.3) yield

01 (D )lip/P’-yl I+/p’ -+/P’ Vu,()p d

from where it follows that

u() d- Ix-ylu(x)

In the same way we obtain

u(:) d:--Ix-yl2u(y)

7"1"lIp’ P [x-yl ’+2/p’ IVu()]d:p-2 D

p-2
]Vuv(:)]p d:

By the triangle inequality we obtain

Ix- yll u(x) u(y)l
4

=< u(() d--[x--yl2u(x)
B

from where it follows that

P(4.4) ]u(x)- u(y)[ =< 8
p-2

. u(C) d:--]x-ylu(y)

Ix-yl 1-2/p IVu(:)[" d:
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With the same reasoning (for y 0 and uv- u on the place of uv) we can prove that

u(x) u(x)l _-< u(0)-

+8
p

Ixl 1-2/p IVu,,()-Vu.()lPd
p-2

Then in order to prove that (u).c is a Cauchy sequence we only need to prove that
the numerical sequence (u(0)) is convergent, but this follows immediately by the
definition of u and by the hypotheses on Then we conclude that there exists a
continuous function u such that

u u uniformly on bounded sets of

0u- 0u strongly in Lp(2) P > 2 ]] 1.

From (4.4) we also conclude that

lU(X)I lu(O)[ + 8 e ]xll-2/P [O()[p dp-2 D

Since o(f)= o(Ixl-), then o(f)= o(Ixl-) (consider the identity

L(x) [ p()f(x- ) a
and apply the hypotheses on f). We will prove that Ou H(") for [a[ 1. In fact
multiplying (4.2) by u and integrating in " we have

f. ’Vu(x)[2 dx f,, ’u"f(x)’ dx

dx.

By the choice of p we have

. [xll-/plL(x)l dx

C + C2 f Ix{ -e+-z/ dx

It follows that there exists a constant C such that

(4.5 (1 ax c.

Moreover, since fe U(N) for all r 1, we then have that
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from where it follows that Au is bounded. Then there exists a positive constant, say
C5, such that

(4.6) f IAu(x)l dx_-< C5.

From (4.5) and (4.6) the result follows for case n 2.
Let us consider the case n > 2. We will prove that (Ou) is bounded in H(E")

for crl 1. In fact,

u(x) [o u()L(x-) @

where by B and B we are denoting the unit ball with center at the origin and its
complementary set, respectively. Let us denote by X and Xc the characteristic functions
of B and BC, respectively. Then we have

u,(x) IR. X() U()f,(x- ) d+ IR. Xc() U()f(x- ) d
[xu] L + [xu] L.

It is easy to see that xU and xU belong to L(E") and Lq(n) for q> n/(n-2),
respectively. Then by the hypotheses on f (case n => 3) and Young’s inequality we have

and

[xU] * f Lq([n) and [xcU] *f Lq("),

In the same way we have

c Ixul dx ILl dx

+ c Igl dx ILl dxo

[u(x)- u(x)l" dx

<-_ C [xcU[ dx If-LI dx

+ c IxSl o dx [L-LI dx.

Hence (u) is a Cauchy sequence. Then it follows that there exists u in Lq such that

u u strong in Lq(").

Since f converges to f in La’(") we conclude that the product fu converges to fu
in L(’). Then by multiplying (4.2) by u and integrating in " we conclude that

Ou Ou strong in L:(") a 1.

Finally by the hypotheses on f and (4.2) Au is bounded in L:("). Then the result
follows.
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LEMMA 4.2. Let F be a vector field in [Hk([")] such that the divergence of F
(div F =g satisfies conditions ofLemma 4.1. Then we can decompose F into two parts,
both in [Hk([n)], one of them a gradient and the other as solenoidal function (that is,
with null divergence).

Proof. From Lemma 4.1 there exists a function p such that O"p HI(") for lal 1,
satisfying

Ap=divF in.

Since Ap div F Hk-() we then have that Op Hk() for all Ice l; moreover,
we have that

F= Vp + (F-Vp).

Then the result follows, l-I

As an application of Theorem 3.1 and Lemma 4.2 we conclude that the displace-
ment field in thermoelasticity can be decomposed into two parts, one of them in the
dissipative direction given by the gradient and the other, the solenoidal part that
conserves its energy. We will express this result as the following theorem.

THEOREM 4.1. Let Uo and ul be vector fields in [H2()] and [H(")], respec-
tively, such that divuo and diVUl satisfy the hypotheses of Lemma 4.2. Then the
displacementfield in n, n >= 2, can be decomposed into two parts, one of them solenoidal,
which conserves its energy, and another totally dissipative, which decays as mentioned in
Theorem 3.1.

Proof. From Lemma 4.2 we can decompose the displacement field into two parts,
say

i.Uo Uo+Uo, ul =u+u.
i=Vp for some functions Po P LetWhere div (u)=O, div (u)=O, and u i=c Vpo, u

us denote by u the solution of system

u,- (a2- bZ)AuS 0 in xt,
(4.7) uL (0) Uo, u(0)=u in

Taking the div operator on the above equation we conclude that

div us div u =0 in".
From Theorem 2.1 there exists a solution u of system

u i,,-(a2-b2)Au-b2V(divui)+aVO=O inQ,

(4.8) O,-kAO+fldivut=O inQ,

,(o) =’c ’,(0) ,, 0(0)=0o inQ.

It is easy to see that u=u +u is the solution of system (2.1)-(2.3). By (4.7) we
conclude that then solenoidal part conserves its energy, while the dissipative part,
given by the solution of system 4.8, decays as indicated in Theorem 3.1; then the result
follows.
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PERSISTENCE UNDER RELAXED POINT-DISSIPATIVITY
(WITH APPLICATION TO AN ENDEMIC MODEL)*

HORST R. THIEME
This paper is dedicated to Paul Waltman on the occasion of his 60th birthday.

Abstract. An approach to persistence theory is presented which focuses on the concept of

uniform weak persistence. By using the most elementary dynamical systems concepts only, it can
be shown that uniform weak persistence implies uniform strong persistence. This even holds under
relaxed point dissipativity. Uniform weak persistence can be proved by the method of fluctuation
or by analyzing the boundary flow for acyclicity with point dissipativity being only required in a

neighborhood of the boundary. The approach is illustrated for a model describing the spread of a

fatal infectious disease in a population that would grow exponentially without the disease. Sharp
conditions are derived for both host and disease persistence and for host limitation by the disease.

Key words, persistence, permanence, dynamical systems, point dissipativity, compactness,
acyclicity, epidemic (endemic) models, infectious diseases, endemicity, host limitation

AMS(MOS) subject classifications. 34C35, 92A15

Introduction. Persistence (or permanence) theory has developed into a math-
ematically fascinating area with important applications in mathematical ecology and
epidemiology. It addresses the long-term survival of certain (if not all) components
in ecological (or other) systems using and further developing the concepts and tools
of dynamic systems theory. Fortunately enough, two papers by Hutson and Schmitt
(preprint) and by Waltman (1991) will soon be available to give a survey of the theory
as it stands now. See also Hofbauer and Sigmund (1988).

This paper addresses the following three points.
Persistence theory in its present state is not only deep and powerful, but also

conceptually difficult to grasp. Persistence is too relevant a topic to be left out from,
let’s say, an advanced course on mathematical modeling in ecology or epidemiology. In
such a course we would expect that students are sufficiently familiar with differential
equations, but are not necessarily experts in dynamical systems theory. So we present
an approach which, at least for an important part, needs just the most elementary
dynamical systems concepts.

A standard assumption in today’s persistence theory is point dissipativity,
i.e., the existence of a bounded globally attracting set. This excludes the considera-
tion of populations which, like the human, have grown and continue to grow without
limits (at least in the time scale of interest). On the one hand, we try to establish
persistence results for systems where some components are allowed to show unlimited
growth. On the other hand, we suggest using persistence theory techniques to estab-
lish the boundedness of certain components of the system rather than assuming that
all trajectories will be bounded.

Persistence theory has so far focused rather on ecological than epidemio-
logical models. In the epidemiology of infectious diseases persistence has two faces:
persistence (or endemicity) of the disease and survival of the host population. We
address both questions for host populations whose population size would increase in
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absence of the disease. Further we derive conditions for the disease to limit the pop-
ulation growth.

Our approach is based on the concept of uniform weak persistence, which, to
our knowledge, has been introduced by Freedman and Moson (1990) to supplement
the concepts of weak persistence, strong persistence, and uniform (strong) persistence
(with the last being close to permanence). We like to explain these concepts in terms
of repelling sets.

We consider a metric space X with metric d. Let X be the union of two disjoint
subsets X1, X2, and (I) a continuous semiflow on X1, i.e., a continuous mapping (I)

[0, oo) x X --. X with the following properties:

(I) o (I) +, t, s _> 0; (I)0(x) x, x e X.

Here (I) denotes the mapping from X to X given by (I)(x) (t,x). The distance
d(x, Y) of a point x E X from a subset Y of X is defined by

d(x, Y) inf d(x, y).
yEY

We use the same symbol d as for the metric because d(x, y) d(x, {y)) for x, y e X.
Let Y2 be a subset of X2.
Y2 is called a weak repeller for X1 if

limsupd(Ot(Xl),Y2) > 0 VXl e Xl.

Y2 is called a strong repeller for X if

liminf d((I),(Xl), Y2) > 0 VXl ( Xl.

Y2 is called a uniform weak repeller for X1 if there is some e > 0 such that

limsupd(O,(Xl),Y2) > e VXl e X1.

Y2 is called a uniform strong repeller for X1 if there is some e > 0 such that

lim inf d(O(Xl), Y2) > e /Xl e X1.

Typically X1 is open in X, and X2 can be viewed as the "boundary" of X. The
dynamical system (I) is called (uniformly) weakly or (uniformly) strongly persistent if
X2 is a (uniform) weak or (uniform) strong repeller for Xl.

Though weak persistence is of some interest also, uniform strong persistence is the
desired property. Weak persistence does not exclude that certain components of the
system get close to the boundary of extinction every now and then and are eventually
wiped out by random effects. Most papers prove strong persistence first and show
uniform strong persistence in a second step. Our strategy consists in proving uniform
weak persistence rather than strong persistence as an intermediate result.

In our mathematical statements we speak about a certain set as a repeller for
another set rather than say that the dynamical system is persistent. This gives us
a greater terminological flexibility. For in endemic models, persistence of the host
population and persistence (endemicity) of the disease are of separate interest and the
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study of each question requires us to choose the above sets X1 and X2 in a specific
way. The repeller terminology has been used before, e.g., by Fonda (1988).

In 1 we give an elementary proof that uniform weak repellers are uniform strong
repellers. This proof even works under relaxed point dissipativity. A similar result
has been shown by Freedman and Moson (1990) under somewhat stronger assump-
tions. Point dissipativity can be removed completely at the cost of many technicalities:
see 6.

In many epidemic models the method of fluctuation (see 2) presents an efficient
and elementary way of proving uniform weak persistence. This method has been
developed by Hirsch, Hanisch, and Gabriel (1985) to study global stability in certain
monotone dynamical systems modeling the spread of parasitic diseases, but I feel
that its main destination is persistence theory. The fluctuation method also has the
advantage of providing some quantitative information.

In order to find sharp conditions for uniform weak persistence it may become
necessary to study the "boundary flow" in the repeller-to-be, X2 (4). Then a deep
plunge into dynamical systems theory becomes unavoidable, and we have to use an
acyclicity consideration that is very similar to that needed for proving strong persis-
tence (see Hutson and Schmitt and Waltman (1991) and the references therein, in
particular Hale and Waltman (1989)). In proving uniform weak persistence, however,
we are in the advantageous position that we can assume that the semiflow stays in a
small neighborhood of the repeller-to-be, X2. As already noticed by Freedman and
Moson (1990), this means, e.g.,.that, if X2 happens to be bounded, point dissipativity
is for free even if X is unbounded. We have not explored whether there is a difference
in proving uniform weak persistence as compared to strong persistence using aver-
age Lyapunov functions (Fonda (1988), Hofbauer and Sigmund (1988), Hutson and
Schmitt).

We illustrate our approach by applying it to a model describing the spread of an
infectious disease in a population that would grow without the disease. A special case
of this model has been suggested by Anderson and May (1979) to study the question
under which conditions infectious diseases can regulate population growth. With a
different infection law, variants of this model have been studied by Busenberg and
van den Driessche (1990) and Busenberg and Hadeler (1990). We introduce a contact
law that includes the ones used in the papers just mentioned. We establish conditions
for the disease and/or the host population to persist, as well as for the disease to
limit the growth of the population. In 3 we illustrate how far one can get in this
discussion with combining the method of fluctuations and the elementary persistence
theory in 1. In 5 we study a situation where one has to analyze the boundary flow.
Section 7 discusses a case where one has to work with almost no point dissipativity
at all. Other aspects of this model like the existence and stability of disease-free and
endemic equilibrium states are discussed elsewhere (see Thieme).

Although all the examples presented here are finite-dimensional, we have stated
and proved our theorems to apply in infinite dimensions as well. This requires some
compactness assumptions that are automatically satisfied in finite dimensions, but
adds little complication to the arguments. If point dissipativity is added, our assump-
tions are essentially the same as in Hale and Waltman (1989). Applicable hypotheses
that guarantee these compactness assumptions without point dissipativity will be de-
rived in a subsequent publication.

1. Uniform weak repellers are uniform strong repellers. In this section
we prove a persistence result, which, in the language of differential equations, only
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uses that solutions are continuous in time and depend continuously on their initial
data. For the formulation and proof of our result we use the dynamical systems
framework, however, because this is the most efficient and beautiful way of doing it.
But everything can easily be reformulated in terms of differential equations.

We consider a metric space X with metric d which is the disjoint union of an
open subset X1 and a closed subset X2. The results of this section state that, under
natural conditions, X2 is a uniform strong repeller for X1 whenever it is a uniform
weak repeller (for definitions, see the Introduction). This has already been observed
by Freedman and Moson (1990) in a slightly more restrictive setting than ours. Note
that the semiflow does not need to be defined on the whole state space, but on X1 only.
This will allow us to use persistence theory methods to prove boundedness results by
letting X2 contain infinity in an appropriate way. Accordingly, our assumptions will
only concern the behavior of the semiflow on X1. If (I) is defined on the whole state
space X, we require that X1 rather than X2 is forward invariant. It is sometimes
easier, however, to check certain properties of the flow (like forward invariance) on X2
rather than on X.

Remark 1.1. Let the semiflow (I) be defined and continuous on all of [0, cx)) X.
Then the following hold:

(a) If X2 is a weak repeller for X1 and X2 is forward invariant, then X is
forward invariant.

(b) If X2 is forward invariant, but not closed (i.e., X1 is not open), then X2 is
not a weak repeller for X.

Remark 1.1 implies that it is natural to assume that X is forward invariant and
open in X. As with all persistence results, this approach requires some compactness to
be associated with the system; compare Freedman and Moson (1990). But compact-
ness is only needed in a neighborhood of the repeller-to-be. First we use the following
assumption, which may appear somewhat technical:

(C1.1) There is some 5 > 0 with the following property: If 0 < e _< ti and
xj E X,tj > 0, are sequences such that t cx),j c, and d(d2tj(xj),X2) e for
all j, then the sequence (I)tj (xj) has a convergent subsequence.

PROPOSITION 1.2. Let X be a metric space with metric d. Let X be the disjoint
union of two sets X and X2, with X open. Let be a continuous semiflow on X1
such that the compactness assumption (C1.) is satisfied.

Then X2 is a uniform strong repeller for XI whenever it is a uniform weak repeller
for X.

Proof. Assume that X2 is a uniform weak repeller. Then there exists e :> 0 such
that

(1.1) limsupd((x),Z2) > e Vx e X.

We can assume that e < 5 in assumption (C.).
Now suppose that X2 is not a uniform strong repeller for X1. Then there exist

sequences xj X1 and 0 < ej --. 0 such that

(1.2) liminf d((xj),X2) < j j.
t---- o:)

We now find sequences rj < sj < tj with rj oc, j oc such that

(1.3) d(8,(xj),X2) -- O, j --(1.4) d(r,(xj),X2) e d(t,(xj),X2),
(1.5) d((8(x),X2) <_ ,, rj <_ s <_ tj.
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Moreover, we can choose any of the numbers Tj E (rj, sj, tj } in the form Tj pj / aj
such that aj oc, j oc, and both

(1.6) d(xj, X2) <_ e, d( (xj), X2) <_ e

for all j. Hence, by our compactness condition, we can assume that, after taking a
subsequence, the sequence (I)r (xj) converges.

Step 1. We claim that tj -rj is unbounded.
We suppose that tj-rj is bounded. Then sj-rj --, s after choosing a subsequence.

Let (I)r (x) --. x. As d(x, X2) e by (1.4), we have x E X1. On the other hand, we
have (I)8(x) (I)8-r((I)r(x)) -* (I)(x). As x e X1 and X is forward invariant,
(I)(x) X. As d(’s(x),X2) 0 by (1.3) and as X2 is closed, (I)(x) X2, a
contradiction. This finishes Step 1.

Step 2. The contradiction.
Let x be the limit of (r(xy),j - oc. As d(x, X2) by (1.4) and as X

X t2 X2, we have x X1. By (1.5),

d((I) o (I)r (xj), X2) _< e, O<_r<_tj-rj.

By Step 1, tj rj is unbounded. After passing to subsequences we can assume that
tj -rj is increasing and converges to infinity. Then

d(,,, o (,.(Xk),X2) <_ e, O<_r<_tj-rj, k>_j.

By the continuity of (I) we can take the limit for k :

d(ch(x),X2) <_ e, O<_r<_tj-rj.

As tj -rj -, c,j -, c, this estimate holds for all r _> 0, contradicting x E X1 and
(.).

If X is a subset of Rn with the induced metric, or, more generally, a locally
compact metric space, the somewhat technical condition (C.1) can be replaced by
requiring X2 to be compact. This generalizes a result by Freedman and Moson (1990)
who assume that the semiflow is defined on the whole state space and leaves X2
forward invariant (see our Remark 1.1a). Our version allows to prove boundedness
of trajectories by making X2 contain infinity in an appropriate way; see 3.3 for an
example.

THEOREM 1.3. Let X be a locally compact metric space with metric d. Let X
be the disjoint union of two sets X and X2 such. that X2 is compact. Let ( be a
continuous semiflow on X.

Then X2 is a uniform strong repeller for X, whenever it is a uniform weak
repeller for X.

Proof. If X2 is compact and X is locally compact, X2 has a compact neighbor-
hood. Hence (C1.) is satisfied if 6 is chosen sufficiently small.

If X is not locally compact, Proposition 1.2 can be improved by adapting the
idea of a compact attracting set. As we do not make explicit use of this concept,
we refer the reader to Hale and Waltman (1989), Hutson and Schmitt, and Waltman
(1991). We assume that a neighborhood of X2 is attracted to a certain set B. Point
dissipativity would require that B is bounded. For our purposes it is sufficient that
the intersection of B with some neighborhood of X2 is bounded. Then we assume
that the semiflow is compactifying on bounded sets.
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(C1.2) There are ti > 0 and a subset B of X1 with the following properties:
If x E X1 and d(x, X2) < 5, then (I)t(x) E B for all sufficiently large t;
If 0 < e < 5, the intersection of B with the e-shell (x X; d(x, X2) e} of

X2 is bounded.
If tj -. cx) and xj is a sequence in X1 such that the sequence j (xi) is

bounded, then (I)j (x) has a convergent subsequence in X.
Remark. The third condition in (C1.2) is satisfied if there exists some to > 0 with

the following two properties:
(i) (I)to is compact, i.e., it maps bounded sets onto relatively compact sets;
(ii) For any bounded set B1 there exists another bounded set B2 such that

(I)o (BI) C B2.
THEOREM 1.4. Let X be a metric space with metric d. Let X be the disjoint

union of two sets X1 and X2, with X1 open. Let ( be a continuous semiflow on X1
such that the compactness assumption (C1.2) is satisfied.

Then X2 is a uniform strong repeller for X1, whenever it is a uniform weak
repeller for

Proof. Let us revisit the proof of Proposition 1.2. Consider (1.1)-(1.6). As we can
always replace x by (I) (xj) with appropriate, arbitrarily large Tj, the first assumption
in (C1.2) allows us to assume that all xj and their forward orbits are in the set B. By
(1.4), we have that the sequence (I)rj (xj) is contained in the intersection of B and the e
shell of X2 that is bounded by the second assumption in (C1.2). The third assumption
then implies that, after taking a subsequence, the sequence (I)r (xj) converges. Then
we can proceed exactly as in the proof of Proposition 1.2.

Apparently there are two routes to uniform strong persistence. The first, tra-
ditional one, leads over proving strong persistence, the second, just established, uses
uniform weak persistence as an intermediate result. As far as we understand the
literature, there are basically two methods to establish strong persistence: using av-
erage iyapunov functions (Fonda (1988), Sofbauer and Sigmund (1988), Hutson and
Schmitt) or using an acyclicity condition for the flow on X2 (Hale and Waltman
(1989), Hutson and Schmitt, Waltman, (1991)). Everybody working with Lyapunov
functions knows that they are a wonderful theoretical tool, but sometimes difficult to
construct in practice. In surprisingly many cases it is possible to establish uniform
weak persistence by ad hoc methods. If X is a subset of Rn, it is often possible to
use the method offluctuation which yields additional interesting information (about
in Definition 1.1a, e.g.). This method is explained in the next section and applied in
3, where its limitations are also discovered. Sometimes the fluctuation method can
be extended to infinite dimensions. In Thieme and Castillo-Chavez, uniform strong
persistence for an HIV/AIDS model (Theorem 4) was established using Theorem 4.2
in Hale and Waltman (1989). The conditions of Theorem 4.2 were checked by estab-
lishing uniform weak persistence (Theorem 3b in Thieme and Castillo-Chavez). So we
could have concluded uniform strong persistence from our Theorem 1.4 as well.

The other method of showing strong persistence, acyclicity, works for establishing
uniform weak persistence as well. It even does so under relaxed point dissipatiwity
because, for checking uniform weak persistence rather than strong persistence, we
can completely restrict the consideration to the semiflow in a neighborhood of the
repeller-to-be. This will be elaborated in 4.

2. The method of fluctuation. The method offluctuation has been developed
and systematically used by Hirsch, Hanisch, and Gabriel (1985) for studying the spread
of parasitic diseases. It is a very convenient method for analyzing the asymptotic
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behavior of solutions of finite-dimensional differential equations. Hirsch, Hanisch, and
Gabriel mainly use it to establish the global stability of equilibria. If used for this
purpose, the advantage of the method lies in the fact that, if it works at all, it works
easily. The disadvantage consists in its restriction to differential equations, the vector
fields of which have to satisfy stringent monotonicity requirements. It is a powerful
tool, however, to show that certain sets are uniform weak repellers.

For a real-valued function f on [to, x) we define

f lim inf y(t),
t---(:x:)

f lim sup f(t).

The following lemma can be found in Hirsch, Hanisch, and Gabriel (1985).
LEMMA 2.1 (fluctuation lemma). Let f :[to, x3) -- R be a differentiable function

that has no limit for t -- cx. Then there are sequences Sn, tn X with the following
properties:

f(Sn) -- fo, f’(Sn) O,

f(tn) --* f, f’(tn) O

for n --, cx. If f is twice continuously differentiable, we have in addition that

f’(Sn) > O, f’(tn) < 0, n e N.

This statement is quite intuitive. If f has no limit for t x, it has to oscillate
between f and f. So we can choose appropriate sequences of local minima f(sn)
and local maxima f(tn) that have the desired properties.

PROPOSITION 2.2. Let f (to, x) --, R be bounded and continuously differen-
tiable. Then there are sequences Sn, tn -- C with the following properties:

f(s,) -- f, f’(sn) -- O,

f(tn) --* f, f’(tn) --* O

Proof. By Lemma 2.1 we can assume that f(t) has a finite limit for t --. c. If the
statement of this proposition does not hold, f does not change sign for sufficiently
large t and must be bounded away from zero. But this contradicts the convergence of
f(t) to a finite limit.

THEOREM 2.3. Let D be a bounded interval in R and g (to, c) D --. R be
bounded and uniformly continuous. Further, let x (to, x) --. D be a solution of

which is defined on the whole interval (to, ). Then there exist sequences sn, t --. cx
such that

Xxlim g(sn, x 0 lim g(tn,

Proof. As g is bounded, x’ is bounded and so x is uniformly continuous on. (to, x).
As g is continuous, so is x’(t) on (to, ). By Proposition 2.2, we find sequences
sn, t cx with the following properties:
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x(t ) -+ x’(t) g(t,x(t)) --+ O,

for n . As g is uniformly continuous, the assertion follows.
For establishing the uniform weak repeller relation we will mainly use the following

version.
COROLLARY 2.4. Let the assumptions of Theorem 2.3 be satisfied. Then

lim inf g(t,x <_ 0 <_ lim sup g(t,x),

(b) lim inf g(t, x <_ 0 <_ lim sup g(t, x ).

3. Applications of the fluctuation method to an endemic model: per-
sistence of host and disease. Host limitation. (Act I). We consider the spread
of a potentially fatal infectious disease in a host population that would increase expo-
nentially in the absence of the disease. The question of persistence can be posed in a
twofold way: persistence of the host population, i.e., the disease does not extinguish
the host; and persistence (or endemicity) of the disease, i.e., the disease does not go
extinct itself. Moreover, we can ask whether the infectious disease limits the growth
of the host population. In this section we use the method of fluctuation to show that
an appropriate set is a uniformly weak repeller, and we use Theorem 1.3 to establish
that it is a uniformly strong repeller. For host and disease persistence we could alter-
natively use the results in Freedman and Moson (1990) in order to get from uniform
weak to uniform strong persistence; for host limitation the analogous step seems to
require the more general Theorem 1.3.

Our model follows Anderson and May (1979), Busenberg and van den Driessche
(1990), and Busenberg and Hadeler (1990). The host population is subdivided into
susceptible, S, infective, I, and recovered, R, individuals (a latent period is ignored):

(3.1)

N=S+I+R,
d I
--S N #S C(N)S- + pR,
dt
d I
d-I C(N)S- (# + / + c)I,

+dt, # are the per capita birth and mortality (without the disease) rates, p is the rate
at which immunity is lost. - is the rate at which individuals recover from the disease,
while a is the extra per capita mortality due to the disease. All these constants are
assumed to be strictly positive with the possible exception of p, which may also be
zero in case the disease infers permanent immunity. As we are interested in the case
where the population size increases exponentially in absence of the disease, we assume

Model (3.1) is more special than the models considered by Busenberg and van den
Driessche (1990) and Busenberg and nadeler (1990) insofar as the disease only affects
the mortality of infective individuals and not the mortality of recovered individuals and
the fertility of infective and recovered individuals. Furthermore, vertical transmission
is neglected. Diekmann and Kretzschmar (1991) combine reduced fertility of infectives
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with pair formation. This leads to a behavior of their model (bistability of solutions,
global bifurcation of periodic solutions from a saddle connection) that is quite different
from the one observed in the above-mentioned papers and also in this paper.

The key feature of this model that makes it different from the models considered
by Anderson and May (1979) on one hand and Busenberg and van den Driessche (1990)
and Busenberg and Hadeler (1990) on the other, is the way in which the rate C(N)
of effective contacts (i.e., contacts actually leading to an infection in case they occur
between a susceptible and an infective individual) depends on the population size N.
Anderson and May (1979) assume the classical mass action approach C(N) const N,
whereas Busenberg and van den Driessche (1990) and Busenberg and Hadeler (1990)
assume C(N)- const. Anderson (1982) fits

C(N) const N

to various communities and various childhood diseases and finds i in the range be-
tween 0.03 and 0.07, i.e., the dependence of C on N is very weak for sufficiently large
N. We must take into account, however, that these estimates are taken from differ-
ent communities of constant size and do not necessarily reflect how the contact rate
changes in a community of varying size. Using a handling time argument in modeling
the contact rate for venereal diseases (in analogy to Holling’s (1966, p. 11) derivation
of a predator’s functional response to the amount of prey) suggests the form chosen
by Diekmann and Kretzschmar (1991) (see also Dietz (1982)),

C(N)
N

The handling time argument neglects, so to speak, competition in partner acquisition.
Modeling the formation of short time social complexes, Heesterbeek and Metz derive
an effective contact rate of the form

C(N)
1 + a2N + x/ + 292N

The two last forms of C(N) approximate the form considered by Anderson and May
(1979) at small population sizes and the form considered by Busenberg and van den
Driessche (1990) and Busenberg and Sadeler (1990) at large population sizes and
interpolate in between.

The importance of the contact function C came particularly into focus by mod-
eling the spread of HIV--see, e.g., Castillo-Chavez et al. (1989 a,b), Thieme and
Castillo-Chavez--and is now taken into account also in other models (Brauer (1990),
(1991), Pugliese (1990)).

The solutions of (3.1) have many interesting properties, which will be discussed in
detail elsewhere (Thieme): Depending on the parameters, in particular on the values
of C at zero and oc, there may be a steady state in which the disease controls the
population, or there may be exponential states in which both the sizes of the total
population and the infective and removed parts increase exponentially. If C(0) > 0
there can even exist a state in which the population size decreases exponentially, i.e.,
the disease has converted the originally exponentially increasing population into an
exponentially decreasing population. Here we concentrate on how the values of C at
zero and c affect the persistence of both host and disease and the limitation of the
host population by the disease.
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In view of the various forms of C discussed before, we make the following assump-
tions.

Assumptions 3.1. (a) C(N) is a continuous function of N > 0 and continuously
differentiable in N > 0.

(b) C(N) is monotone nondecreasing in N.
(c) C(N) > 0 if N > 0.
Reformulation of the model. It is convenient to reformulate the model in

terms of the fractions of the susceptible, infective, and recovered parts of the popula-
tion:

S I R
(3.2) X=g, y -, z N’

and express (3.1) in these terms:

(3.3)

d
d-N ( # ay)N,

d
--x =/(1 x) (C(N) a)xy + pz
dt
d
d-y C(N)xy (7 + a + Z)Y + aY2,

d
(Z + +

Equations (3.2) suggest

(3.4) x + y + z 1,

which allows us to get rid of either x, y, or z, but it is convenient to have all equations
available. Actually, it is easy to see that the manifold x / y + z 1, x, y, z _> 0, is
forward invariant under the solution flow of (3.3), which implies that, for any initial
data satisfying (3.4), the system (3.3) has a global (in forward direction) solution
satisfying (3.4).

3.1. Persistence of the host population. As a first application of the per-
sistence theory in 1 in combination with the fluctuation method, we show that the
host population persists in the original Anderson and May (1979) model, or, more
generally, if C(0) 0.

THEOREM 3.2. Let C(0) 0, N(0) > 0. Then the population is uniformly per-
sistent, i.e., liminft--. N(t) >_ with > 0 not depending on the initial data.

Proof. We have to show that the set X2 {N 0, x _> 0, y _> 0, z _> 0, x+y+z =
1} is a uniform strong repeller for X1 {N > 0, x >_ 0, y >_ 0, z >_ 0, x + y + z 1}.
As the assumptions of Theorem 1.3 are obviously satisfied, it is enough to show that
X2 is a uniform weak repeller for X1. We consider a trajectory for which N < oc
and apply Corollary 2.4(5) to the y equation in (3.3):

0 <_ C(N) (7 + )Y.

Here we have used that x, y < 1. We solve for y,

(3.5) y <_ C(N)
7+
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From the N equation in (3.3) we obtain

limt_inft _>/

Hence N increases exponentially unless

(3.6) y _>

Combining (3.5) and (3.6) we obtain

(3.7) C(N) >_ ( #)(’7

As C(0) 0 and C is continuous at 0, N >_ e > 0 with e not depending on the
initial data.

Actually we see from (3.7) that we can relax C(0) 0 and require

c(0) < (Z-

instead. But for obtaining a sharp persistence result (for the survival of the population)
the combination of the persistence Theorem 1.3 and the fluctuation method is not
sufficient. In the next section we will develop a more sophisticated method to prove
uniform weak persistence, which, following the lines of Hale and Waltman (1989),
analyzes the semiflow on the repeller to-be, X2. This method, which uses an acyclicity
requirement, will be applied to our endemic model in 5.

3.2. Persistence of the disease. As another application of Theorem 1.3 and
the method of fluctuation we look for conditions under which the disease is persistent.
There are different ways in which disease persistence can be interpreted in our model.
We have chosen to call the disease to be persistent or endemic in the population, if
the fraction of infective individuals, y, is bounded away from zero. As we do not
exclude that the population size increases or decreases, this is not equivalent to the
number of infectives being bounded away from zero. If the population dies out and
the fraction of infectives remains bounded away from zero, we would still say that
the disease is persistent in the population. On the other hand, we would not call the
disease persistent if both the population size and the number of infectives increase,
let us say, exponentially with the exponential growth rate of the number of infectives
being strictly less than the exponential growth rate of the total population.

We first derive a condition for the disease to be weakly uniformly persistent.
PROPOSITION 3.3. Let c + + " < C(oc). Then the disease is uniformly weakly

persistent in so far as
y lira sup y(t) >_

with e > 0 being independent of the initial data, provided that y(O) > O.
Actually, the proof shows that



418 HORST R. THIEME

Proof. We suppose that the disease is not uniformly weakly persistent and derive
a contradiction. We can assume that

The N equation in (3.3) implies that

dN
lim inf dt
,-oo

> 0,

i.e., C(N(t)) --. C(oc), t --. oc. We apply Corollary 2.4(b) to the z equation in (3.3)"

0 < 7y (Z + p)z + aye.

Here we have used that y < 1. Solving for zc we obtain

zoo< 7+yOO.

We substitute (3.4) into the y equation in (3.3):

d
d-y C(N)(1 y z)y (7 + cz +/)y + cy2.

Hence

liminft__.oo dt__y _>C(oc) 1-y 1+/3+p] -(7+a+/).

Hence, if in addition,

yC <
1 + c(o)f+p

we have
d

liminf ---Y > 0,

which implies that y(t) oc, t oc, in contradiction to the fact that y is bounded by
one. This shows the estimate for y mentioned after the statement of this proposition.

As Theorem 1.3 requires compactness of the repeller to-be, we are forced to
restrict our consideration to the ce that C() < . Without this restriction we
cannot guarantee that C(N) ends in a bounded set. In 7 we prove uniform strong
persistence of the disee if C() . This requires a modification of the persistence
results in 1, which unfortunately adds a lot of technicalities.

THEOREM 3.4. Let a + + 7 < C() < . Then

lim inf y(t) _> e > 0, lim inf z(t) > e > 0

with > 0 being independent of the initial data, provided that y(O) > O.
Proof. As we cannot exclude that g(t) is unbounded, we choose X {(N, x, y, z);

0 < N <_ oc, x,y,z >_ O,x+y+z 1}. In order to make X a metric space we introduce

N 0<N<o,(I+N)(N)
1, N cx,
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and set

If No < oc, the semiflow (t(No, xo, yo, zo) is defined to be the solution of (3.3) at time t,
for initial data No, x0, yo, z0. If No cxz, then t(oc, xo, yo, zo) (cxz, x(t), y(t), z(t))
with x, y, z being the solutions of the x, y, z equations in (3.3), with C(N) being
replaced by C((x)). It is easy to see that (I) is a continuous semiflow. Our metric
makes X a compact space. In a first step we show that y is bounded away from zero,
or, even more, that X2 ((N, x, O, z); O <_ N <_ o, x, z >_ O, x+y/ z 1} isa uniform
strong repeller for Xl {(N,x,y,z);O <_ g <_ o,x,z _> 0,y > 0,x / y + z 1}.
Notice that both X and X2 are forward invariant. By Proposition 3.3, X2 is a uniform
weak repeller for X and hence a uniform strong repeller by Theorem 1.3. Notice that
d((N,x, y, z), X2) y. Hence y is bounded away from zero, with the bound being
independent of the initial data. In order to show that the same holds for z we apply
Corollary 2.4(a) to the z equation:

0 >_ "yy ( + p)z.

We solve for z"

This finishes the proof.

3.3. Host limitation by the disease. We conclude this section by using persis-
tence theory for finding a condition to guarantee that the disease limits the population
growth. Here we restrict ourselves to the case that C(oc) cx). The case C(cx)) < oc
requires a more sophisticated acyclicity consideration and will be dealt with in 5.

We introduce the following expression:

(3.8) T,o=/3-#(l+ ’7 )a #+p

PROPOSITION 3.5. Let C(oc) oc, Po < 1, and y(O) > O. Then

lim infN t <_ 1 < oc

with 2Q not depending on the initial conditions.
The following result is in itself of interest.
LEMMA 3.6. (a) There exists unique solutions y > 0, z > 0 of the equations

1 yO + zo,
0 .yO ( + p)zo + ayOzO.

(b) Furthermore,
/3-#

yO> =:= P0<l.

(c) Finally, z <_ z .for any solution of (3.3). In particular,

1- z >_ yo > O and y >_ yO xO.



420 HORST R. THIEME

Proof. In order to show part (a) we substitute the first equation into the second:

(3.9) 0 ?(1 z) ( + p)z + ((1 zO)z =: o(zO).

The function o, defined in (3.9), is strictly concave, o(0) > 0, o(1) < 0. Hence, by the
intermediate value theorem, there is a solution z E (0, 1), which is unique.

In order to show part (c) we consider the z equation in (3.3) and the relation
1 x + y + z with x, y, x being nonnegative, and obtain the differential inequality

d
--z < "(1 z) (13 + p)z + (1 z)z.
dt

The fluctuation Lemma 2.1 provides a sequence tn --* cx, n - c, such that zP(tn)
0, z(tn) z, n --. cx. Hence

0 _< -(1 z) ( + p)z + c(1 z)z o(z).

As the function o is strictly negative for arguments in (z, 1], we obtain zm <_ z.
This implies 1 zm _> 1 z yO > 0 and ym >_ 1 z x _> yO xo.

In order to show part (b) we solve the second equation in Lemma 3.6 for z,
/3 + p cy’

and we substitute this expression into the first equation,

(3.10) l=yO l+/3+p_cy
We also notice the constraint

(3.11) yO <

otherwise z would be undefined or strictly negative. The right-hand side of (3.10) is
a strictly increasing function of yO > 0 under the constraint (3.11). We observe that

also satisfies the constraint (3.11). Hence yO > y if and only if

" )=P0l>y l+/3+p_ay
by the definition of P0 in (3.8). This concludes the proof of Lemma 3.6.

Proof of Proposition 3.5. Assume that C(N) > c > C(0) > 0. We will show
that c cannot be chosen arbitrarily large without obtaining a contradiction. The choice
of c will not depend on the initial data. Consider the y equation in (3.3). Recall (3.4),
x + y + z 1. By Lemma 3.6 (c) we have 1 z > 0, and we can assume

(t) >
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for large enough t, with e > 0 being independent of the initial data.
sufficiently large t,

d /
>_ {C(N)(e- y) (9/+ + ))Y.

/

Choose c > 0 such that

Hence, for

ce > /++.

c can be chosen independently of the initial data. As C(N(t)) >_ c for all large t, we
have that y(t) >_ for all sufficiently large t, with some 5 > 0, which is independent
of the initial data.. Now consider the x equation in (3.3):

d
d-X <_ + p 6(C(N) )x

for sufficiently large t. Choose c > ( and recall C(N) > c. Then

+p
(c )"

Choosing c large enough, we can achieve that

x <r/

for any given arbitrarily small > 0. By Lemma 3.6(c) we have

y_>y-x>yo-.

As P0 < 1, Lemma 3.6(b) implies that

yO>y.=-#

By choosing > 0 small enough, i.e., by choosing c > 0 large enough, we achieve that

y > yO-r] > y.

From the N equation in (3.3) we obtain that

1 d
limsup N</-#-ay<-#-ay=0

by the definition of y. Hence N decreases with a strictly negative exponential rate, a
contradiction to our assumption that C(N) > c > C(O).

Once it is established that the population size cannot tend to infinity, its bound-
edness can be easily derived from Theore 1.3.

THEOREM 3.7. Let C(oc) oc, 7)o 1, and y(O) > O. Then

limsup N(t) < c <

with c not depending on the initial data.
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Proof. We choose X as in the proof of Theorem 3.4 with the same metric such
that X becomes a compact space. Set

X1 ((N,x,y,z);O <_ N < oc, x,y,z >_ O,x + y + z- 1},
X {(,,U, z); ,U, z > 0, + U + z }.

By Proposition 3.5, X2 is a weak uniform repeller for X1. As X and X2 are compact,
we can apply Theorem 1.3, and X2 is a uniform strong repeller for X1. This implies
the statement of the theorem.

We mention that the condition P0 < 1 is almost sharp. For, if P0 > 1, the
existence of a solution to (3.3) can be shown with N being exponentially increasing
and y being bounded away from zero.

4. Uniform persistence via acyclicity of the boundary flow. As we have
noticed in the previous section we cannot always obtain sharp conditions for uniform
weak persistence by the fluctuation method. So we adapt an approach suggested by
Butler and Waltman (1986), Butler, Freedman, and Waltman (1986), and Hale and
Waltman (1989) for showing (uniformly) strong persistence.

Again we consider a continuous semiflow (I) on a metric space X, with X being
the disjoint union of sets two X1, X2, where X is open.

Note that we do neither assume that X2 is contained in the closure of X nor
that X2 is forward invariant.

4.1. Uniform weak persistence. As uniform weak persistence may be of in-
terest in itself and requires less stringent compactness properties than uniform strong
persistence, we discuss it in a section of its own.

We assume the following weaker version of the compactness assumption in 1:
(C4.) There is some 5 > 0 with the following properties-

If x E X such that d((t(x),X2) < 5 for all t _> 0, then the forward orbit of
x has compact closure in X.

If xn is a sequence in X satisfying

limsupd(Ot(xn),X2) ---, O, n --
then UneN W(Xn) has compact closure.
The w-limit set of a point y is defined as usual:

(u) n ([t, o) {}).
t>0

We say that an element y E X has a full orbit, if there is a function x(t), -c < t < oc,
such that x(0) y and x(t + s) Ot(x(s)) for all t _> 0, s R. The a-limit set of a
full orbit x(t) is defined by

N
t>0

We recall that a subset M of X is called forward invariant if and only if ffPt(M) C
M, t > 0, and invariant if and only if (t(M) M, t > 0. A compact invariant subset
M of Y C_ X is called an isolated compact invariant set in Y if there is an open subset
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U of X such that there is no invariant set with M C _/tT/C U n Y except M. U is
called an isolating neighborhood of M.

PROPOSITION 4.1. Let M be a compact invariant subset ofX2 which is an isolated
compact invariant set in X. Let (Xn) be a sequence of elements in X such that

limsupd((t(xn),X2) - O, n oo,

and w(xn)

_
M. Further assume that there is a sequence (pn),pn e O)(Xn), with

d(pn, M) -- O, n --+ oo. Then, after choosing a subsequence, the sets w(x) converge
(in the Hausdorff metric) to a subset w ofX2 that is invariant, compact, and connected.
Further, there exist an element u E w \ M with w(u) c_ M and an element w w \ M
with a full orbit in w c_ X2 whose a-limit set is contained in M. u can be chosen
such that its forward orbit is arbitrarily close to M. w can be chosen such that its
backwards orbit is arbitrarily close to M.

Remark. If all elements xn are identical, it is sufficient to assume that M is an
isolated compact invariant set in X2. This way we obtain a version of the Butler and
McGehee lemma (Waltman (1991)).

We mention that the w and cMimit sets in Proposition 4.1 are nonempty and
compact because of the compactness condition (C4.1).

Proposition 4.1 should be compared to the almost identical Lemma 4.3 in Hale
and Waltman (1989). Notice that we can arrange u, w w C X2. Our proof parallels
the proof of Lemma 4.3 in Hale and Waltman (1989). We give an even more detailed
proof here in order to convince the reader that our compactness assumptions ((Ca.1)
rather than point-dissipativity and asymptotic smoothness) are sufficient.

Proof. In view of our first assumptions in (C4.), we can assume that d(Ot(Xn), Z2)
< 5 for all t >_ 0. Otherwise we replace xn by (I) (xn) with suitably chosen Tn. It
follows from our compactness condition ((4.1) that the closure of l.J= w(x,) is
compact. Hence, after choosing a subsequence, the sets w(xn) converge towards a
set w in the Hausdorff metric, w inherits compactness, invariance, and connectedness
from the sets w(x,). Our assumptions further imply w c X2.

Let U, V be open sets in X such that M c V c V C U, and U is an isolating
neighborhood of M. We can choose U as small as needed and in particular as a
subset of the 6 neighborhood of X2. As U is isolating, we have w(x) = U because
otherwise U would contain the compact invariant set w(x) U M, which is larger than
the maximal (in U) compact invariant set M. As w(x) 9 pn --+ M we find sequences
rn < 8n < tn with

(4.1) Orn (Xn) e OY, Otn (Xn) e OY, Osn (xn) - M,

(4.2) (t(x) e V, rn < t < tn.

For each n, rn, Sn, t can be chosen arbitrarily large. In particular we can arrange
that

(4.3) d(ffPr(Xn),U(Xn)) -- 0, d(t-j(Xn),U(Xn)) --+ O, j 1,...,n, n -- oo.

As l.J,= w(x,) has compact closure, we can choose subsequences such that

(4.4) Or. (xn) u e OV n w, (s. (Xn) -- v e M, (t. (xn) -- w e OV n .
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We claim w(u) C M and that w has a full orbit whose a-limit set is contained in M.
In order to show w(u) C M, we first assume that the sequence sn- rn is bounded.

After choosing subsequences we may assume that sn- rn a, n -o oc. As (I) is

continuous, it follows from (4.4) that

v lim Cs. (xn) lim (I)8.-r. ((I)r. (xn))

As v e M and M is invariant, we have w(u) w(v) C M.
Hence we can assume that, after choosing subsequences, the sequence Sn- rn

converges to x) for n --, c. This implies that u has a full forward orbit in V g w.
As w is compact, the w-limit set of u is nonempty, compact, and invariant. Hence
w(u) C M.

To show that w has a full orbit with a-limit set in M we proceed similarly. First
we assume that the sequence tn- s, is bounded. After choosing subsequences we may
assume that tn sn --* T, n -o oc. As (I) is continuous, we have from (4.4) that

w lim ,_,, ((I), (xn)) (r(V).
n--o)

As M is invariant and v E M, we have w E M, a contradiction, because w OV. So
we can assume that the sequence tn sn converges to o after choosing subsequences
again. Let j N. Then Ot-j(xn) V for sufficiently large n. Now recall (4.3) and
(4.4) and the compactness .of the closure of UnC__i O.)(Xn). Employing a diagonalization
procedure we can assume that, after choosing a subsequence,

As (I) is continuous, we have j(wi) w, (1 (wi) wj-1. The definition

0_<s<l,

provides a continuous backward orbit in w starting from w. Further, by (4.2),

(-j+s(w) lim Cs(t.-j(Xn))= lim (t.+s-j(Xn) e V.

Hence we have a full continuous backward orbit in VNw starting at w. This backward
orbit has compact closure because w is compact. Thus the a-limit set of this orbit
of w is a nonempty, compact, invariant subset of the isolating neighborhood U, and
hence a subset of M.

LEMMA 4.2. Let Xn be a sequence of elements in X satisfying

lim sup d((I)t (xn), X2) -- 0, n-- (:x),

Then, after choosing a subsequence, W(Xn) -- w,n --, cx), in the Hausdorff metric,
with some compact, invariant, connected subset w of X2. Moreover, for every

z e := U
y.w

there exists a sequence p, W(Xn) such that Pn
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We remark that the w-limit sets in Lemma 4.2 are nonempty, compact, and
invariant by our compactness assumption (Ca.1)

Proof. We can assume that all forward orbits of x lie in the 5 neighborhood of
X2. The existence of w now follows as in Proposition 4.1. Let z E . Then z E w(y)
for some y w. Let e > 0. Then there is some t > 0 such that d(((y), z) < . As
(I) is continuous, there is some neighborhood W of y such that d(t(w),z) < e for
any w W. As w(xn) - w in the Hausdorff metric, we have w(xn) fq W for all
sufficiently large n. So, for any large enough n, we find some q W(Xn) such that
d((q), z) < e. As w(x) is invariant, p-- ((q) e W(Xn), d(p, z) < e.

We define

e e vt > 0}.

Our compactness assumption (Ca.1) implies that Ft2 has compact closure and is
invariant. Following Hale and Waltman (1989), a finite covering M LJkm__l Mk in X2
is called isolated if the sets Mk are pairwise disjoint subsets of X2, which are isolated
compact invariant sets in X.

A set M c X2 is said to be chained (in X2) to another (not necessarily different)
set N c X2, symbolically M -* N, if there is some y E X2, y t/M LJ N, and a. full
orbit through y in X2 whose c-limit set is contained in M and whose w-limit set is
contained in N.

A finite covering M LJkm=l Mk is called cyclic if, after possible renumbering,
M1 -* M1 or M1 -* M2 -*... H Mk -* M1 for some k (2,..., m}. M is called an
acyclic covering otherwise.

Notice that Y2 and so ft2 may be empty, e.g., if all orbits starting in X2 leave X2
and never return. Then "2 has an acyclic covering, namely, the empty set. In many
applications, however, X2 is forward invariant such that Y2 X2.

PROPOSITION 4.3. Let Xn be a sequence of elements in X1 satisfying

limsupd(t(xn),X2) O,

Let M ukm=l Mk be an isolated covering of f2 such that w(xn) Mk for all n, k.
Then M is cyclic.

Proof. As w c_ Y2, we obtain that f c_ f2. By Lemma 4.2 (after possible
renumbering of the covering M) we have ft f M1 q}, and there is a sequence
Pn e CO(Xn) such that d(pn, M1) ---+ O,n --. oo. As W(Xn) M1, Proposition 4.1
provides an element u w \ M1 with a full orbit in X2 whose c-limit set lies in
As w c Y2, w(u) c M. As w(u) is connected and the Mk are pairwise disjoint and
compact, w(u) c Mk for some k. Either k 1 and the proof is finished or, after
possible renumbering, w(u) C M2 and M1 -* M2. As u w, w(u) c M2, we have that
ft fq M2 q}, and Lemma 4.2 provides a (possibly different) sequence p, W(Xn)
with d(pn, M2) ---+ 0, n --. oo. Repeating our argument, we find that M2 is chained to
some Mk. Continuing this way we finally obtain a cyclic chain because there are only
finitely many Mk.

THEOREM 4.4. Let X1 be open and forward invariant under the continuous semi-

flow on X. Let the compactness assumption (124.1) hold. Assume that ft2 has an
acyclic isolated covering M ukm__l Mk such that each part Mk ofM is a weak repeller
for X1. Then X2 is a uniform weak repeller .for X1.
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Proof. If X2 is not a uniform weak repeller for X1, then, by definition (see the
Introduction), we find a sequence Xn E X1 satisfying

limsupd((t(xn), X2) --* O,

As each part Mk of M is a weak repeller for X1, we have w(xn) : Mk. Hence the
assumptions of Proposition 4.3 are satisfied and the covering M has to be cyclic, in
contradiction to the assumptions of the theorem.

4.2. Uniform strong persistence. The next theorem is general enough to ob-
tain all results for our endemic model that can possibly be obtained from an acyclicity
consideration.

THEOREM 4.5. Let X be locally compact, and let X2 be compact in X and X be
forward invariant under the continuous semiflow on X. Assume that t2,

y2 vt > 0},

has an acyclic isolated covering M [Jk__l Mk. If each part Mk of M is a weak
repeller for XI, then X2 is a uniform strong repeller for X.

In case that Y2 is empty, 2 has an acyclic isolated covering, the empty set.
Theorem 4.5 has been stated in Freedman and Moson (1990) as a remark in the

following form: If the assumptions of Theorem 4.5 are satisfied and X2 is forward
invariant and a weak repeller for X1, then it is a uniform strong repeller for X1.

Proof. As X2 has a compact neighborhood in X, the compactness assumption
(C4.1) is automatically satisfied. Hence, by Theorem 4.4, X2 is a uniform weak
repeller for X1. Thus X2 is a uniform strong repeller for X by Theorem 1.3.

If we face infinite-dimensional dynamical systems, more complicated assumptions
have to be made. We require the following compactness condition rather than point
dissipativity and asymptotic smoothness (Hale and Waltman (1989)):

(C4.2) There exist ti > 0 and a subset B of X with the following properties:
If x e X and d(x, X2) < i, then d(d2t(x),B) ---, 0, t ---, oc.
The intersection BNB(X2) of B with the 5-neighborhood of X2, B(X2)

{x e X; d(x, X2) < 5} has compact closure.
THEOREM 4.6. Let X1 be open in X and forward invariant under . Further,

let the compactness assumption (C4.2) hold. Assume that t2,

Y: {x x:; x: vt > 0},

has an acyclic isolated covering M ukm=l Mk such that each part Mk ofM is a weak
repeller for X. Then X2 is a uniform strong repeller for X1.

Proof. Apparently the assumptions of Theorem 4.4 are satisfied such that X2 is
a uniform weak repeller for X1. This implies that X1 is forward invariant under (I).

We now refine the arguments in Proposition 1.2. As X2 is a uniform weak repeller .for
X1, there exists some e > 0 such that

(4.5) limsupd(Ot(x),X2) > e Vx e X.

We can assume that e < 5 in assumption (Ca.2).
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Now suppose that X2 is not a uniform strong repeller for X1. Then there exist
sequences xj E X1 and 0 < ej - 0 such that

(4.6) liminf d((t(x),X2) < e /j.
t---o

For every j we can find sequences rjn < sjn < tj with rjn -- (x), n --. x), such that

(a.7)
(a.s) d((I)rjn (xj), X2) e d(t. (xj), X2),

d(t(xj),X2) < e, rj, < t < tin.

By (4.8) and assumption (Ca.2) we have that d(r(xj),B N B(X2))-- 0,n --. oc.
We choose numbers nj such that d(rn(xj),B 3 B(X2)) < 1/j. As B 3 B(X2)
has compact closure,we can assume that, after choosing a subsequence, ((I)rj (xj))
converges for j oc. We set rj rj, sj sj, tj tjn. By (4.7)-(4.9), we have
rj < sj < tj with rj cx, j --, x) such that

(4.10)
(4.11)
(4.12)

d((I)s (xj), X2) --* 0, j oc,

d((I)rj (xj), X2) e d((I)t (xj), X2),
< < <

with (I) (xj) having a limit .for j cx). Then we conclude as in Proposition 1.2. First
we show that tj rj --. cx). If not, the sequence (I)8 (xj) also converges, and we can
arrive at a contradiction in the same way as in Step 1 of Proposition 1.2. To perform
Step 2 in Proposition 1.2 we only need the convergence of (I)r(xj), which we have.
This finishes the proof.

5. Application of the acyclicity method to an endemic model: persis-
tence and limitation of the host population. (Act II).

5.1. Host persistence. We intend to derive a sharp condition for persistence
of the host population in model (3.1) under the assumption C(0) > 0. We have to
show that the set X2 (N 0, x _> 0, y _> 0, z >_ 0, x + y + z 1} is a uniform strong
repeller forX1 (N > 0, x_> 0, y_> 0, z_> 0, x+y/z- 1. We want to apply
Theorem 4.5. To this end we analyze the semiflow induced by (3.3) on the forward
invariant set X2, i.e., for N --0:

(5.1)

This is a special case of the model studied by Busenberg and van den Driessche (1990)
and Busenberg and Hadeler (1990). They show the following.

PROPOSITION 5.1. (a) Let C(O) <_ + / /. Then y(t), z(t) --, O,x(t) - 1,

(b) Let C(O) > + a + . Then there exist unique equilibrium solutions to (5.1)
such that x*, y*, z* > O, x* +y* +z* 1. Moreover, x(t), y(t)z(t) x*, y*, z* t --, oc,
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.for any solution x, y, z to (5.1) satisfying x(0) _> 0, y(0) > 0, z(0) _> 0,x(0) + y(0) +
z(O) 1. However, if x, y,z is a solution to (5.1) satisfying y(0) 0, x(0) _> 0, z(0) _>
O, x(O) + z(O) 1, then y 0 and x(t) - 1, z(t) -- O, t -+ x.

Hence f2 Jyex2 w(g) consists of one or two elements, the disease-free equilib-
rium N 0, x 1, y 0 z, and the endemic equilibrium N 0, x x*, y y*, z
z*. By Proposition 5.1 these equilibria cannot be chained to themselves. Furthermore,
they cannot be chained to each other in a cyclic way. So they represent an acyclic
covering for 2. To show that this covering is isolated and a weak repeller for X1, we
analyze the behavior of

d
(5.2) d-N (-#- ay)N, N(O) > O,

if y either stays close to zero or to y* (in case that the latter exists). If y stays close to
zero, N increases exponentially because we have assumed > #. If we can show that
N also increases exponentially if y stays close to y*, we are done: For every trajectory
starting with N(0) 0 converges to one of the two equilibria by Proposition 5.1, and
no trajectory starting with N(0) > 0 can stay close to N 0, x 1, y z 0 or to
N O,x x*,y y*,z z*.

In our case it is actually possible to determine the equilibrium solutions in Propo-
sition 5.1(b) explicitly. This seems no longer possible in the more complicated models
by Busenberg and van den Driessche (1990) and Busenberg and Hadeler (1990). Even
in our special case the explicit solution of y* is not very helpful in analyzing (5.2) if
y stays close to y*. So we try to obtain information from the equilibrium equations.
At this point it is not clear whether our procedure would also work for the above-
mentioned more complicated models. We can restrict our consideration to the case
that C(0) > f + c + q/:

0 C(0)(1 y* z*) (q/+ a + ) + ay*,

0 q/y* (, + p)z* + oy*z*.

We solve both equations for z*"

(5.3)

From the second equation we learn the constraint

+ c(0)

(5.4) ay* </ + p;

otherwise z* is not positive. We equate the two equations in (5.3) and reorganize
terms:

(5.5) 0 1 y*
q/+ a + a

Y*
q/y*

c(0) +c(0)
In the range (5.4), the right-hand side of (5.5) is a strictly decreasing function of y*
(recall C(0) > q/+ a +/ > a). Hence there is at most one solution to (5.3). If y*
approaches the minimum of 1 and ( + p)/, the right-hand side of (5.5) becomes
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negative. Hence, by the intermediate value theorem, we have a nontrivial solution if
and only if the right-hand side of (5.5) is strictly positive for y* 0, i.e., if

We are actually interested in the question whether

(Then we can conclude that N in (5.2) increases exponentially if y stays sufficiently
close to y*.) Assuming C(0) > " / a / fl, this is the case if and only if the right-hand
side of (5.5) is strictly negative for y* (/3- #)/a, i.e.,

1
/3-# "Y + a +# /(fl- #)

<0.. c(0) + p)

We reorganize this inequality:

with

c(0)

(5.6)
#+/+a.’

:P=/3-#(l+a #+P

with To being defined in (5.6)
tent, i. e.

We combine these considerations to the following statement.
THEOREM 5.2. Let

1
>To,

C(0)

Then the host population is strongly uniformly persis-

lim inf N(t) > e > O,

with e not depending on the initial data unless N(O) --O.
The result in Theorem 5.2 is almost sharp because it can be shown that there is

a solution to (3.3) with N(t) exponentially decreasing if l/C(0) < To (see Whieme,
Thm. 7.1).

5.2. Host limitation. In 3.3 we have shown that the disease keeps the host
population bounded if C(cx) oc and :P0 < 1. Now we will derive a sharp con-
dition for the case that C(oc) < oc. To this end we want to study an appropriate
boundary flow. As the boundary of interest contains N oc, we first have to ex-
tend the state space and the dynamical system. This is done in the same way as in
Theorem 3.4, and X becomes a compact metric space. We will show that the set
X2 {(N, x, y, z); N, x, y, z _> 0, x + y + z 1, N oc or y 0} is a uniform strong
repeller for the set X1 {(N,x,y,z);O <_ N < oc, x,z _> 0,y > 0,x + y 4- z 1}. JWe



430 HORST R. THIEME

want to apply Theorem 4.5. To this end we analyze the flow on the forward invariant
set X2, i.e., N _-- and

d
( ) (c() )+,

d

(.) c() ( + +)+,
d

7 ( + )z +,
l=x+y+z.

Again this is a special ce of the model studied by Busenberg and van den Driessche
(1990) and Busenberg and Hadeler (1990).

POPOSITION 5.3. (a) Let C() ++. Then y(t),z(t). (b) Let C() > + + . Then there exist unique equilibum solutions to (5.7)
such that x*, y*, z* > O, x* +y* +z* 1. Moreover, x(t), y(t)z(t)
for any solution x, y,z to (5.7) satisfying x(O) O, y(O)
(0) . Ho, iI, , i ogtion to (5.7) tiIuiy U(0) 0, (0)
O, x(O) + z(O) 1, then y 0 and x(t) 1, z(t) O, N(t)

Apparently the disee can only limit the host population if it becomes endemic,
i.e., in the situation described in Proposition 5.3(b). Thus we sume C()
Then the set 2 yex w(g) consists of two equilibria, the disee-free equilibrium
N , x 1, y 0, z 0, and the endemic equilibrium N
z*. Apparently the disee-free and the endemic equilibrium cannot be chained to
themselves or (in a cyclic way) to each other in X2. So we only need to show that
each of these two equilibria are isolated for the semiflow on X and that the two
equilibria do not attract orbits that start in X1. For the disee-free equilibrium,
this follows from Proposition 5.3 and from Theorem 3.4, which states that y remains
bounded away from zero if y(0) > 0 with the bound being independent of y(0). To
prove the same for the endemic equilibrium, we analyze the behavior of

N
dt

( ay)N

and derive a condition that guarantees that N decrees exponentially if the solution
stays close enough to the endemic equilibrium. This will imply that this equilibrium
is the largest forward invarant set in a sufficiently small neighborhood and cannot
attract orbits starting in X. The exponential decree of N will follow if

--ay*<0, i.e.,y*>,
for y*, z* > 0 satisfying

0 c()( u* z*) (7 + + Z) +
0 7y* (Z + p)z* + ay,z*.

A consideration analogous to the one leading to Theorem 5.2 shows that N exponen-
tially decrees if y, z approach y*, z*, provided that > 1/C(). We observe that

in (5.6) is a strictly increing function of long . Thus

1
(5.8) <

+7+a
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such that To > 1/C() implies the assumption in Proposition 5.3(b), C(cx) >/ +

We combine these considerations into the following result.
THEOREM 5.4. Let N(O) > O, y(O) > 0 and

1
> c(oo) > 0.

Then
limsupN(t) _< c < cx), liminfy(t) _> e > 0

with c, e being independent of the initial data.
Notice that To > 1/C(c) includes :P0 < 1. This condition is almost sharp because

it can easily be seen that there is a solution with y being bounded away from zero and
N exponentially increasing if To < 1/C(cx)) and C(oc) >/ + + ".

Combining Theorem 5.2 and 5.4 we see that the population size is bounded away
from zero and infinity if

1 1
(5.9) C(0) > To >

t()"cx"

i.e., the disease limits the population growth without eradicating the population. As
we will see later (Theorem 7.1), the disease is endemic under this condition irrespective
of whether C(x) < c or C(x)) c. For the interested reader we mention that (3.3)
has an equilibrium solution under (5.9). We will show elsewhere (Thieme, to appear)
that the above-mentioned special (equilibrium or exponential) solutions, if they exist,
are locally asymptotically stable in an appropriate sense.

6. "Weak" implies "strong" without point dissipativity. In this section
we make an attempt to drop the point-dissipativity assumption more or less completely
in order to find a sharp condition for endemicity of the disease without requiring that
the population size be bounded or that

Assumptions 6.1. Though we do not want to assume point dissipativity, we would
like to take advantage of the possibility that some components of the dynamical system
finally become bounded. Hence we assume the following:

(A) There is a subset Y1 of X1 such that, for all x E X1, there is some time

t(x) > 0 with Or(x) Y1 for all t >_ t(x).
As we cannot require that semiorbits are bounded, we assume that they satisfy

some kind of conditional compactness.
(C6.1) For any bounded subset B of X1 and any y Y1, the orbit (I)([0, cx))

{y}) N B has compact closure.
This set may be empty. Then it will be relatively compact automatically, w-limit

sets are defined as usual:

([t,
t>O

Under our assumptions, w(y) may be empty or unbounded. (C6.1) guarantees that
the intersection of w(y) with any bounded closed set is compact. Moreover, we require
that

(C6.2) JyY1 w(Y) N B has compact closure for any bounded subset B of Y..
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Dropping point dissipativity requires certain orbits to be repelled in a fixed period
of time.

(R) For any sufficiently small e > 0 there is a subset D of X1 and some i,
0 < 5 < e, and a time t > 0 with the following properties"

(i) There is no element x e Y1 \ D such that d(x, X2) e and d((8(x), X2) < e
for all 0 < s < t.

(ii) If x E Y1 \ D is an element in Y1 with semiorbit in Y1 and r E (0, t] is such
that d(x, X2) e d(fPr(x),X2) and d(8(x),X2) < e for all 0 < s < r, then
d((x),X2) > 5 for all 0 <_ s < r.

(iii) Dg Y1V Se(X2) is bounded, where Se(X2) {x X;d(x, X2) e} is the
e shell of X2 in X.

THEOREM 6.2. Let X be a metric space with metric d. Let X be the disjoint
union of two sets X1 and X2, with X1 open in X. Let be a continuous semiow on
Xi such that Assumptions 6.1 are satisfied.

Then X2 is a uniform strong repeller .for X, whenever it is a uniform weak
repeller .for X.

Proof. We follow the lines of the proof of Proposition 1.2. Assume that X2 is a
uniform weak repeller for X1. Then there exists e > 0 such that

(6.1) limsupd(t(x),X2) > Vx c:_ X1.

We can assume that e is sufficiently small for Assumption 6.1 (R) to apply.
Now suppose that X2 is not a uniform strong repeller for X. Then there exist

sequences xj X1 and 0 < ej --. 0 such that

(6.2) liminf d(t(x),X2) < e Vj.

For every j we can find sequences r, <Sjn < tjn with rn oc, n oc, such that

(6.a) d(’  jn (xj),X2) <
d((I)rjn X2) e (xj), X2),

< < <

Replacing xy by Or (xj) with a suitably chosen Tj, we can assume that d(xj, X2) _< e
and the semiorbits of all xj lie in Y.

We choose B, D and t, 5 according to Assumption 6.1 (R).
Case 1. For infinitely many j there are infinitely many rjn such that (I) (xj) D.
After choosing subsequences we can assume that (I) (xy) E D for all j, n. Let

Be D A Y1 Se(X2). By Assumption 6.1 (R) (iii), Be is bounded. Further, by
(6.4), (I)rj (xj) Be for all j, n. In particular, the sequence (I)rn (Xj) is bounded.
By the compactness assumption (C6.1), we have that w(xy) Be is nonempty and
compact, and (I)r (xj) -- w(xj) Be, n - oc. We now choose numbers nj such
that d((I)r (xj),w(xj)N Be) < 1/j. By the compactness assumption (C6.2), we can
assume that, after choosing subsequences, (I)rj (xi) converges. Setting ri ryn, sj
Sn, tj t, we now find sequences r < sj < t with rj --, oo, j - oc, such that

(6.6)
(6.7)
(6.8)

d(j(xj),X2)--0, j

d(’(xj),X2) e d(t(xj),X2),
d((x),X2) < e, rj < s < t,



PERSISTENCE IN EPIDEMIC MODELS 433

with (I)r (xj) having a limit for j -- x). Then we conclude as in Proposition 1.2. First
we show that tj rj -- x). If not, the sequences (I)s (xj), (I)t (xj) also converge, and
we can conclude as in Step 1 of Proposition 1.2. To perform Step 2 in Proposition 1.2
we only need the convergence of (I)r (xj), which we have.

Case 2. If Case 1 does not hold, we can find numbers rj < sj < tj with rj --.
x), j -- cx, such that (6.6)-(6.8) hold and (I)r (x) e Y1 \ D.

We claim that tj -rj _< t. If not, (6.7) and (6.8) contradict Assumption 6.1
(R) (i).

As tj-rj _< t and (I)r (xj) E Y1 \D, we conclude from (6.7), (6.8), and Assumption
6.1 (R) (ii) that d(s(xj),X2) _> 5 > 0 for all rj _< s _< tj. Noticing that 5 does not
depend on j, we realize that this contradicts (6.6).

7. Disease persistence in an endemic model. (Act III). Theorem 6.2
allows us to prove uniform strong persistence of the disease for model (3.3) also if
C(cx)) oc. In Theorem 3.4 we have dealt with the case c

We want to show that X2 ((N,x,O,z);O <_ N < oc, x,z _> 0, x + z 1} is
a uniform strong repeller for the forward invariant set X {(N,x, y, z); 0 <_ N <
oc, x,z >_ 0, y > 0, x + y + z 1}, if C(cx)) > c +/ + 9/. Proposition 3.3 guarantees
that X2 is a uniform weak repeller for X1. We check Assumptions 6.1. Note that

d((N,x,y,z),X2)--y.

As for (A) we simply choose Y X. (C6.1) and ((36.2) are satisfied because our
state space lies in Ra.

In order to determine D, 5, t (in dependence of ) we make the following consid-
eration.

Assume that y(0) e, y(s) <_ e, 0 <_ s <_ t. Notice from the N equation in (3.3)
that N is exponentially increasing on [0,t] if e is chosen small enough. Now, from the
z equation in (3.3),

dz _< ,e (Z + p)z + ae, o < s _< t.

Here we have used that z _< 1. Using this fact again we find

z(s) <_ e-(+) + 9/ +a
+p’

Hence there is a constant c > 0 and some s > 0 such that

z(s) <_ ce, s <_ s <_ t.

We substitute (3.4) into the y equation in (3.3)"

d
y C(N)(1 y z)y (9/+ +/)Y + ay2.

We obtain

u > J" -(, + + Z),
y , C(N)(1 el1 + c]) (9/+ a + fl),
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Let y C(oc) (7 + a + ) > 0. Let No > 0 be such that

27C(No) + + >

Choose e so small that

C(N0)(1 el1 + c]) (7 / + ) > .
3

As N(s) >_ No for 0 _< s _< t, we have

y(s) _> ee-(+-+), 0 _< s _< s,
y(s) >_ ee-(+a+Z)SCeV(s-s)/3, se

_
s

_
t.

Choose t t such that
e-(++)SeV(t-s)/3 > 1,

and D {(N, x, y, z) E X; N _< N0}. Revising the above considerations, we realize
that (R)(i) is satisfied. (R)(ii) readily follows from the y equation in (3.3),

d
d-TY >_ --(7 + a + ),
Y

and we can choose 5 ee-(++). (R)(iii) is obviously satisfied because D is
bounded.

We now conclude the following from Theorem 6.2.
THEOREM 7.1. Let a + + 7 < C(oc). Then

lim inf y(t) _> e > 0, lim inf z(t) _> e > 0,

with being independent of the initial data provided that y(O) > O.
Proof. If C(c) < cx, the statement follows from Theorem 3.4. If C(oc) cx),

the first estimate follows from X2 being a uniform strong repeller for X1. See the
considerations at the beginning of this section. The second estimate is established as
in the proof of Theorem 3.4 via the fluctuation method.

We mention that the condition in Theorem 7.1 is sharp because it can be shown
that y(t), z(t) -+ O, t -+ oc, if + + 7 >- C(oc) (see Thieme, Tam. 3.1).
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A GEOMETRIC PROOF OF THE KWONG-MCLEOD UNIQUENESS
RESULT*
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Abstract. Kwong recently proved the uniqueness of positive radial solutions of a semilinear
elliptic equation with a superlinear term of a specific form. This was then generalized by Kevin
McLeod to include a wide class of nonlinear terms. This paper gives a geometric context to the
proof of this result. While these previous proofs used comparison functions that work apparently on
account of certain striking calculations, this proof shows that the argument is equivalent to controlling
a certain unstable manifold in a transformed phase space.

Key words, uniqueness, semilinear elliptic equation, Emden-Fowler transformation, unstable
manifold
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1. Introduction. In this paper we provide a geometric proof for the uniqueness
of positive radially symmetric solutions of

(1.1) Au + f(u) 0

with appropriate boundary conditions and under certain assumptions about the non-
linear term f(u), which was formulated by McLeod [6]. From the work of Gidas, Ni,
and Nirenberg [2], we know that positive solutions of (1.1) on a ball are necessarily
radially symmetric. Thus our uniqueness result yields uniqueness of positive solutions
for the full problem (1.1), with appropriate boundary conditions.

Radially symmetric solutions of (1.1) satisfy the equation

n-1
(1.2) ur,. + ur + f(u) O,

r

together with the boundary condition

(1.3) u(O) =0.

On a ball, of radius R, we further impose the Dirichlet boundary condition

(1.4) u(R) O.

The first uniqueness result for positive solutions was proved by Coffman [1], in the case
n 3 and f(u) u3 -u. McLeod and Serrin [7] then generalized Coffman’s result
to obtain uniqueness for f(u) up u and 1 < p < n/(n- 2), provided n > 2, with
further restrictions on this range when n > 4. Recently, Kwong [4] proved uniqueness
in the model case f(u) up -u over the full range 1 < p < (n + 2)/(n- 2), thus
giving uniqueness whenever there is existence (an existence proof due to Strauss can
be found in [8]).
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Kwong introduced the use of Sturm oscillation and a continuation argument in the
space dimension n. Recently, McLeod [6] greatly simplified Kwong’s argument while
generalizing the allowable f(u) and avoiding the continuation argument. Simultaneous
to McLeod’s proof, Kwong and Zhang obtained another general result [5]. Our proof
is motivated by that of McLeod.

Both Kwong and McLeod compared the roots of 6u 6u(r, a)/ba with the func-
tion v := Au + rit. The quantity 6u satisfies the equation of variations for (1.2),
and the determination of its zeros naturally leads to uniqueness results; however, the
function v, which is used to control it, appears to work on account of certain striking
calculations. These calculations lead to an equation for v which is a forced version
of the equation of variations in which the forcing term depends only on u and A. It
turns out that the comparison function used by both Kwong and McLeod is related
to the vector field of a transformed version of (1.2).

We shall cast (1.1) as a first-order system and study the resulting phase space
from a geometric point of view. In order to make an autonomous system, we introduce
r as a dependent variable and change the independent variable to t via r et; thus
(1.2) becomes the system

(1.5)
it rv

d
) -(n- 1)v rf(u), c d-

Note that the singularity r 0 has now been removed and replaced by an invariant
plane! The set of solutions satisfying the boundary condition (1.3) form a manifold
in the phase space of (1.5), namely, the unstable manifold of the line of critical points

Uniqueness can also be approached through a study of the geometric contortions
of this manifold. This in turn is studied using tangent vectors to the manifold that can
be followed along trajectories as solutions of the equations of variation. The natural
tangent vectors are the vector field itself and a vector tangent to the intersection of
the manifold with a fixed r-plane. Indeed the approach described above for proving
uniqueness amounts to a comparison between these two vectors. The comparison of
these vectors is interpreted here as control over the tilting of this manifold. This
control can also be achieved through determination of the normal to this unstable
manifold, which is formed by taking the cross product of the vector field with this
tangent vector. In fact, for uniqueness it turns out that we need to determine the
sign of an appropriate component of this normal.

Unfortunately, this comparison (or equivalently control over the normal) does not
work in (1.5) due to the changes of sign of both f’ (u) and the first component of the
tangent vector; however, after a change of variables, this strategy can be rescued.
The change of variables is known as the Emden-Fowler transformation; see [3], where
y r’Xu, whence (1.5) becomes

(1.6)

In these variables, the differential equation which the normal satisfies involves the
same expression that appears as a forcing term in McLeod’s approach. As mentioned
above, a comparison between a tangent vector and a vector field is related to control
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over a normal. It is not evident in the Kwong-McLeod approach that the comparison
is between a tangent vector and a vector field. However in Emden-Fowler variables
the comparison between tangent vector and vector field is equivalent to the argument
they use.

Our goal in this paper is then to give an alternative proof to McLeod’s result,
which is naturally motivated by the geometry and we believe explains the underlying
mechanism for uniqueness.

The following assumptions will be imposed on the nonlinear term f(u):
(1) f(u) is in C1([0,
(2) f(O) 0;
(3) There is a fl so that f(fl) 0 and f(u) < 0 if 0 < u < .
These are standard conditions which say the zeros of f(u) are like those of up -u.

The most unusual condition assumed on f(u) was formulated by McLeod and it is
this condition that permits control over the forcing term mentioned above.

(4) Let I(u, ) ( / 2)f(u) Au(df/du)(u). Assume that for each U > there
is a A A(U) > 0 such that

I(u,A)<_O forO_<u<U, and

I(u,A) >_ O foru>U.

THEOREM. If f(u) satisfies the above conditions, then (1.2) with boundary con-

Remarks. (1) It is a pleasant exercise to check that f(u) up- u satisfies
condition (5), and that as A -- 2/(p- 1), V -- x).

(2) The assumption imposed by McLeod that A depends continuously on U is not
needed in our proof.

(3) The A in (5) will be realized as the exponent in Emden-Fowler transformation.

2. Set-up and basic lemmas. Consider again (1.5). The (r 0}-plane is
invariant, and its flow is governed by

/t=0 d
(2.1) - -(n- 1)v d-

Note that the u-axis is a line of stable points and that each vertical line is invariant.
A natural phase space for problem (1.5) is R2 [0, oc). The boundary conditions
translate to looking for a trajectory (u(t), v(t), r(t)) that satisfies

lim (u(t), v(t), r(t)) (a, O, 0), and
t--+--oo

lim(u(t) v(t) r(t)) (0, , R) gnR,

where/ < 0 due to the flow and the following phase portrait development.
At a critical point in the {r 0} plane, the linearization is

0 0 0

0 1-n f(a)

0 0 1
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((), ,(), ())

c’(-)

{r(r) R} plane

FIG.

with eigenvalues 0, 1- n, and 1. The stable eigenvector is (0,1,0). Eigenvectors
associated with 0 and 1 are (1,0,0) and (0, -f()/n, 1), respectively. The unstable
manifold points in the r > 0 direction. Near , the local unstable manifolds foliate
the center-unstable manifold of (, 0, 0) W. Now set Wlc :-- U>0Wlc(); then
W_ Ut>0(W. t) is the surface containing all the solutions to problem (1.6).

The manifold W_ is examined in more detail so as to isolate the properties as-
sociated with uniqueness. A solution u(r) to problem (1.2) would satisfy (0)
O, u(R) O, and in light of the last section, u(0) c where c is a positive constant;
henceforth, denote u(r): u(r, ). Similarly we denote a solution (u(t), v(t), r(t))
to problem (1.5) contained in W_ by u(t):- u(t, ), v(t):-- v(t, c), and r(t), where
c is given by limt_._ u(t) --c.

The presence of more than one solution to problem (1.2)-(1.4) would say that
there exists two trajectories, (u(t,(l), v(t,cl), r(t)) and (u(t,c2),v(t,c2), r(t)) of
(1.5), contained in W_ such that (u(T,), V(T,), r(T))- (0,/,R) and (u(T,2),

(o, R).
Consider the intersection of W with the {r(T) R}-plane, C(T): W

see Fig. 1. Nonuniqueness says that C(T) A {u 0} contains at least two elements.
Center-unstable manifold theory gives that W_ is sufficiently smooth so that the
following may be defined. Let T(t) (Su(t, ), 5v(t, c)) be a tangent vector to C(T)
at the point (u(t,a), v(t, a), r(t)). When 5r is set equal to zero, (Su(t,a),Sv(t, ))
is a solution to the equation of variations associated with system (1.5),

r(v

v -(n 1)hv r
dr(u) 5u.
du

Notice that limt__._ 5u(t, a)= 1, limt__._ 5v(t, )= O.
Two lemmas are used to prove uniqueness for r(t) R < cx. The first lemma sets

up the necessary configuration of C(t) in the case of nonuniqueness. This is related
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to a concept defined by Kwong as admissibility that is not strict. The second lemma
argues that this configuration is not possible.

LEMMA 1. Let T be such that r(T) R. Nonuniqueness to problem (1.1)-(1.3)
implies that there exists a trajectory (u(t,&), v(t,&), r(t)) contained in W_ with
the following properties: there exist T and &, where -oc < To < " < T, such that
u(, &) O, U(To, &) O, and u(t, &) 0 for t e (-oc, o) to (To, ). Moreover,
5u(, &) O, and 5v(, &) < O.

Proof of Lemma 1. Nonuniqueness at T implies that there exist two trajectories,
(u(t,cl), v(t,), r(t)) and (u(t,2), v(t,c2), r(t)), contained in W such that
u(-, c) U(T, C2) 0. Suppose < c2 and, for no other trajectory in W with
c e (0, (x)tO ((, a2), does U(T,C)= 0; see Fig. 2.

Via continuity with respect to initial conditions and the intermediate value the-
orem, there exist & and , where c1 < & < a2 and < T, such that C() is tangent
to the v-axis, and u(, &) iu(, &) 0.

Let C(t, ) be the portion of the curve C(t) defined by C(t, c) ((u(t, ), v(t, ),
r(t)) e C(t)la e (0, c]}. Also define the following curves in the tangent bundle
to W_ Sc(/,a) {(bu(+,),bV(T,&), 0) for (u(#,), v(#,a), r(T)) e C(#,&)}
and $7 {(iu(t, &), 5v(t, &)) for (u(t, &), v(t, &), r(t)) e "y}, where y is the curve
/ {(u(t,&), v(t,&), r(t))lt e (-,]}. Observe that C(,&) is homotopic to
because they bound a portion of W_ together with the u-axis and the r-axis. Also,
Sc(/,a) is homotopic to S.

Let I denote the winding number of a curve as in [3]. Since the winding number
is homotopy invariant and 5i rbv, we have I(S)- the number of zeros of 5u(t, &)
for -cx < t < #. Now, either v(T,a) > V(T, Oz2) or V(T,O2) > V(T,Oi). The first
situation would imply that I(ST) I(C(#, &)) 1. Because (u(t), v(t)) (, 0) is a
solution of (4.5) and is contained in W_, the first root of 5u(t, &) must occur at some
time before u(t,&) ; see Fig. 2. Ifv(T, c1) > V(T, a2), then I(S) I(C([,&)) 2,
and hence 5u(t, &) has one root for t E (-x), #), thus proving the lemma.

Now consider (1.6), which results from applying the Emden-Fowler transforma-
tion. The origin is a critical point. Linearizing about this point produces the matrix

0 1 O)-(+-) -(-:-) 0
0 0 1

The eigenvalues of the matrix are A, A n / 2, and 1. The associated eigenvectors
are (1, A, 0), (1, A n+ 2, 0), and (0, 0, 1), respectively. If A < n 2, a two-dimensional
(or three-dimensional if A > n- 2) unstable manifold Wlc is associated with the
origin. Set Wu A>0Wc t. The transformation from (u, v, r) to (y, u, r), defined
on R2 x (0, (x:)) by

(2.3)

y ru,
T , r+lv

r

carries Wlc to a submanifold of Wu, call is Wos. Next consider the curve C()
defined in the proof of Lemma 1. Let D() T(C(-)); then D() is a curve in the
(r } plane of the phase space associated with (1.7). Using the obvious definition
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Fro. 2

of the variables

5 (t, o (t,
Oa 5 (t, o (t,

Oa a---o

we have the exact analogue of Lemma 1 in these variables; see Fig. 3.
LEMMA 2. With the same hypothesis as Lemma 1 and T gnR, there exists

a trajectory (u(t,&), v(t,&), r(t)) contained in Wo with the following properties:
there exist To and &, where -c < To < < T, such that y(, &) O, 5y(To, ) O,
and 5y(t, &) # 0 for t 6 (-cx, To) U (To, ’). Moreover, 5v(#, &) < O.

Proof of Lemma 2. Lemma 2 follows easily from Lemma 1 because the zeros of
u(t, &) and y(t, &) agree since y ru. Furthermore, 5y(t, &) rSu(t, &), and so the
zeros of 5y and 5u agree. The fact that 5v(-, &) < 0 follows easily from the expression
for 5v obtained by differentiating (2.2).

3. Uniqueness proof. We shall interpret Lemma 2 in terms of the normal to
the manifold Wos. This is natural since Lemma 2 is a statement about a configuration
of the unstable manifold that is forced by the assumption of nonuniqueness.

The vector field (),, ) and the tangent vector (Sy, 5, 0) are both tangent to

Wos. We denote N(t, ), the cross product of these two vectors, (in the order given)
and use dual notation for its components.

N(t,a) (Sy*(t,a), 5,*(t,a), 5r*(t,a)).

We then have the following.
LEMMA 3. On the trajectory of Lemma 2, we have that the third component of

the normal, 5r* (-, &) > O.
Proof.

and t=9, a=&Sy=0, Su<0 and )<0.

An equation for the components of the normal can be easily calculated. The
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FIG. 3

equation of variations of (1.6) is

(3.1)
o [+S(_)] ,Ow

If we abbreviate this as

( )"5y

5r
A 5

5r

we can write the equation of the normal as

)" ( )Sy* 5y*
(3.3) 5t* (-A* / (Tr A)I) 5t*

r* 5r*

where A* is the transpose of A. Using the identity

-A*(vl V2) AVl V2 + V AWe TrA(w

from (3.3) we can calculate

Now

(Sr*)" +-rO [rA+2f(r_Ay)] 5y, (-2A + n- 2)Sr*.

0 Iv f(r- y)] ,gAT1 (,, --I-- 2)f() -/u rihTlI(u,/).Or



GEOMETRIC PROOF OF UNIQUENESS 443

Moreover,

so that (3.4) becomes

(3.5) (hr*)" +r+2I(u, A)hy- (-2A + n- 2)5r*.

Using equation (3.5) and Lemma 3 we can complete the proof of the Theorem. The
parameter A is still free to be chosen. The quantity 5y(t, &) changes sign at a certain
value of t To, and this is independent of A. Let U(To, &) ft. Then since u is
monotone along the trajectory assumed by Lemma 2 we can force I(u, ) to change
sign exactly once, at ft. We then see that I(u, A)hy has a fixed sign and it is easy to
check that I(u, A)hy < 0. We check that e-2X+(n-2)thr --+ 0 as t --+ -cx. But then
5r* (, &) < 0 from (3.5), which contradicts Lemma 3. It follows that the configuration
described above is not possible, and hence uniqueness holds.
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GEOMETRIC ANALYSIS OF A NONLINEAR BOUNDARY
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Abstract. A third-order nonlinear differential equation with two sets of boundary conditions
is considered. These boundary value problems arise as boundary layer problems from a model of
large scale ocean circulation. Using geometrical techniques from qualitative differential equations,
such as Wazewski’s theorem, invariant manifolds, and Lyapunov functions, the existence of solutions
for each boundary value problem is given in a uniform way for all positive values of a parameter of
the differential equation.
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1. Introduction. This paper presents a geometric analysis of the equation

,,, + (,, (,)) + 1 o

with the "no-slip" boundary conditions

(0) 0,

,(0) 0,

()

and also with the "stress-free" boundary conditions

(3)
(0) o,

,,(0) o,
(c) 1

for all positive values of the parameter A. This equation and its boundary values
arise from a similarity solution of the so-called barotropic quasi-geostrophic potential
vorticity equation for one layer ocean circulation. A derivation of the equation and
further references to the oceanography literature are in [11].

In [11] Ierley and Ruehr present extensive numerical calculations and matched
asymptotic expansions for the solutions of (1)-(2) and (1)-(3) in several parameter
cases. For (1)-(2) Ierley and Ruehr set "(0) =/ and then numerically determined
values/ for each parameter value ,k so that the boundary value problem has a solution.
Thus/3(A) uniquely identifies a solution to the boundary value problem through the
initial conditions (0) 0, ’(0) 0, "(0) =/. In Fig. 1 of [11] there is a curve
in the A-/ plane parametrically representing the solutions. For A _> 0 there is only a

*Received by the editors September 6, 1989; accepted for publication (in revised form) May 26,
1992. This research was supported in part by National Science Foundation grant MCS-8601528.

tDepartment of Mathematics and Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska,
68588.
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single solution, corresponding to a value of/ 1. For A in the range Ac _< A < 0,
where Ac -0.79130, there are two solutions which coincide at Ac. Ierley and Ruehr
also give asymptotic expansions for , which agree well with numerically computed
solutions. The graphs of the expansion solutions are also in [11]. A subsequent paper
by Troy [13] presents an analytic proof of the existence of at least one solution of
the equations in the special case A > (27/4)1/3, for which the solutions must be
asymptotically monotone.

The analysis in [11] for the boundary value problem (1)-(3) is analogous, using
(0) ft. For A > 0 there are two curves parametrically representing solutions; one
with fl > 0, the other with fl < 0; see Fig. 4 in [11]. In [13], Troy proved analytically
the existence of least one solution with/ ’(0) > 0 in the special case A > (27/4)1/3.

Section 2 of the present paper rigorously establishes the existence of a solution to
(1)-(2) for all A > 0 by a single geometric or dynamical systems method. Section 3
of the paper establishes the existence of at least one solution to (1)-(3) for all A > 0.
The proofs also give some bounds on the solutions as a secondary consequence of the
geometric techniques.

The techniques of dynamical systems are useful for the analysis of nonlinear
boundary value problems. A number of researchers have used these geometric tech-
niques for a variety of nonlinear problems. For representative examples, see [3], [9],
[10], [13], and [14]. Furthermore, the techniques employed here may give some insights
into similar problems, e.g., the Falkner-Skann equation; see [8].

Dynamical systems methods translate differential equation problems into equiv-
alent phase space problems in order to use the structure of the vector field, and the
properties of solution curves. In particular, arguments in three-dimensional phase
space are geometrically clear and easily motivated. Additional structure in the prob-
lem, such as invariant manifolds, is also revealed. The global structure of the invariant
manifold can show where solutions to various boundary value problems occur. The
Variation of the manifold as problem parameters vary shows how solutions to boundary
value problems can appear, disappear, coalesce, and vary with parameters. This is the
approach adopted here. All arguments here could be expressed purely analytically,
but they would lose motivation and geometric clarity. Moreover, no ingenious changes
of independent or dependent variable need to be made in order to reveal aspects of
the solution.

An overview of the paper will more fully describe the dynamical systems approach.
The basic idea is related to the shooting method, or more formally to Wazewski’s
theorem. To make the paper self-contained, 2 contains a useful version of Wazewski’s
theorem. The third-order differential equation (1) is converted to a system of three
first-order nonlinear equations by setting u(s) (s), v(s) ’(s), w(s) "(s),
giving

(4)
U V
V W
W ,V2 )UW + U 1.

The system has only one equilibrium point (1, 0, 0). The linearization of the system
about this point always has one positive eigenvalue, and (4) has a corresponding one-
dimensional unstable manifold. There are always two eigenvalues with negative real
part, and so there is always a corresponding two-dimensional stable manifold. The
two-dimensional stable manifold acts as a separatrix between the opposite branches
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of the unstable manifold. The unstable manifold as a set is attracting because it is
transverse to the stable manifold at the equilibrium point. In this system, solutions
along the unstable manifold are unbounded. Heuristically, any bounded solution of
the equation, in particular a solution which satisfies the boundary condition (x)) 1,
cannot approach the unstable manifold except at the equilibrium point (1, 0, 0). See
Fig. 1.

FIG. 1. The orbits near the stable and unstable manifolds.

An even simpler linear two-dimensional system analogous to (4) can convey the
essential geometric elements of the argument. The analogous system is

with boundary conditions u(0) 0 and u(c) 1. The equilibrium point is (1,0).
The solutions of the system are (1 + (u0 1)e-t, voet). The unstable manifold is
the line u 1, and solutions starting at (1, v0) on this line will be unbounded. The
stable manifold is the u-axis and all solutions starting at (u0, 0) will approach (1, 0)
as t -, c. Solutions starting at (0, v0) on the v-axis are (1 -e-t, voet). All solutions
(except when v0 0) become unbounded as they approach the unstable manifold.
The exception to becoming unbounded can be identified as the intersection of the
stable manifold, along which solutions approach (1, 0), with the initial condition set
with coordinates (0, v0). See Fig. 2.

( ,o)

FIG. 2. The simple two-dimensional analog system.
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This solution satisfies the boundary conditions and so is the solution we seek.
The situation for (4) is very similar but is complicated by the nonlinearity and the

three-dimensional setting. The method is to use regions of space to capture the essence
of the unboundedness along the unstable manifold. Removing a pair of regions in
three-dimensional phase space suggested by the unboundedness of orbits approaching
the unstable manifold defines a Wazewski set W which heuristically contains the
bounded orbits. The immediate exit set of the Wazewski set W is disconnected. An
interval E of initial values is defined. Orbits of the system starting at one end of the
interval E will exit W into one of the removed regions, while orbits starting at the
other end of E will exit W into the other region. By the connectedness of E, there
must be an orbit starting on the interval that does not exit W. We show this orbit
must remain bounded. Then, using the Lyapunov function

Vo(u,v,w)- (w_) (--) -(u-1)v,

with Lyapunov derivative

?0(u. v. u) -u v:.
and the LaSalle Invariance Principle, this orbit must approach the equilibrium point
(1,0,0).

The LaSalle Invariance Principle weakens the requirements demanded of a Lya-
punov function while still retaining a useful conclusion. This simplifies the task of
finding a suitable Lyapunov function. The Lyapunov function Vo(u, v, w) is not moti-
vated by any energy function or physical reasoning. The Lyapunov function Vo(u, v, w)
and the related family of functions

Auv2 (u 1)2 )y.()=
v

(u-1)v+ w
2 3 2 2

with Lyapunov derivative

(3Av 1) v2,(u, , 1 ( )+

play an important role in the paper. The family of Lyapunov functions Va suggest
yet another useful function

V(u. v. w) vv
)uv2 (u- 1) 2
2 2

with Lyapunov derivative

?(u. v. ) : +
3Av3

It is worth describing how such a family of Lyapunov functions can be obtained.
The equation system has simple polynomial terms so that "trial and error" arrange-
ment and cancellation of the terms easily yields a Lyapunov derivative

?0(u. v. w) -),uw v:.
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which is negative definite for u _> 0. Likewise, more "trial and error" arrangement of
the derivative terms of the system leads to the Lyapunov derivative

3cAv 1) V2"(’’) (-)+ -V-

which will be negative definite along bounded orbits with u _> 0 for a < 0 sufficiently
small.

Alternatively, multiply (1) by " and integrate from zero to s to obtain

f0("(s))2 ("(0))2
/ A(z)("(z))2 dz- A(’(s))3 +2 2 3 3

+ ’(s) ’(0) (z)"(z) dz O.

Integrate the second integral by parts, rearrange, and use (0) 0, ’(0) 0, "(0)
/, to obtain

2 2 3 fo
8

fos+’(s)-(s)’(s) A(z)("(z))2 dz- (’(z))2 dz.

The right side of the equation is clearly decreasing on intervals where (s) > 0.
Converting the left side of the equation to u, v, w suggests the Lyapunov function Vo.

A third approach is to use the general procedure for constructing Lyapunov equa-
tions for third-order equations in [1]. For the general Lyapunov function given in [1]
choosing c 0 and the weight function to be identically 1 yields the function Vo.
Using the constant c - 0 and the weight function to be identically 1 supplies

2. Existence of solutions to the no-slip problem. This section contains the
proof of the following.

THEOREM 1. For all > 0 there is at least one solution of the problem

,, + A(, (,)2) + 1 0,

with the "no-slip" boundary conditions

(0) 0,

,(0) =0,

(oc)- 1.

We begin the proof by converting (5) to a system of 3 first-order equations by
setting u , v , and w ". Here d/ds, so that s is the independent
variable. Occasionally, in the spirit of dynamical systems theory, we will refer to
the independent variable s as "time" even though the independent variable actually
represents a spatial extent in the similarity solution. The equation (5) is equivalent
to the system

U V
V W
W )V2 )UW 2t- U 1.
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The following proposition is a variant of Wazewski’s theorem, which is a formal-
ization and extension of the "shooting method." This proposition recognizes that the
flow defined by the solutions of a differential equation gives a topological mapping
between regions of phase space. The statement is the same as in [4], where the proof
is also given. Both the statement and the proof are variants of those given in [2]. The
notation is the same as that in [2].

Consider the autonomous differential equation

d
(8) y’- f(y), y e Rn, ’-

dS

where f Rn - Rn is continuous and satisfies a Lipschitz condition. Let y(s; yo) be
the unique solution of (8) satisfying y(0; yo) yo. For convenience set y(s; Yo) yo.s.
Let U. S be the set of points yo.s, where yo E U, s E S.

In order to state the proposition some definitions are necessary. Given W c Rn,
set

W-={yoeW:anys>0, yo’[0, s)W}.
W- is called the immediate exit set of W. The continuity of yo s in s implies that
interior points ofW are not in the immediate exit set, or equivalently W- C (OWVW).
Given c W, let

o {Yo " there is an so such that yo.so W}.

For Yo o define
T(yo) sup{s: Yo" [0, s]C W}.

T(yo) is called an exit time. Note that if y0" T(yo) 6 W, then yo" T(yo) E W-. Note
also that for yo 6 W, T(y0) 0 if and only if yo 6 W-. The notation cl(W) is used
for the closure of W.

PROPOSITION 2. Suppose
(1) If yo 6 E and y0" [0, so] C cl(W), then yo" [0, so] C W;
(2) If yo E, yo" [0, so] c W, and y0" s W- for each s [0, so], then there is

an open set V about yo" s disjoint from W-;
(3) E E, E is compact, and E intersects an orbit of (8) only once.
Then the mapping F(yo) yo" T(yo) is a homeomorphism from E to its image

on W-.
The proof is in [4]. Notice that the first hypothesis is trivially satisfied if the

set W is closed. The second hypothesis is satisfied if orbits from E have no tangencies
to the boundary of W within W, i.e., no internal tangencies. The set E corresponds
to an interval of initial conditions, and the third hypothesis is a technical hypothesis
which will be satisfied in all reasonable cases.

The system (7) has just one equilibrium point, namely (1,0,0). It is easy to check
that the Jacobian matrix of the linearization at (1,0,0) is

J(1,O,O)= 0 0 1
1 0 -)

The characteristic equation is

--r3 Ar2 q- 1 0.
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Using the Routh-Hurwitz criterion (see [5]), it is easy to show that for all values
of A there is always one positive eigenvalue r and two eigenvalues with negative
real part. If A _> (27/4)/3, there are three real roots. If A < (27/4)/3, there is a
complex conjugate pair of eigenvalues with negative real part. Label the roots so that
rl > 0 > Re(r2)

_
Re(r3).

Consider the eigenvector (1, r, r)T (where T is used for the transpose) corre-
sponding to the positive eigenvalue r. The unstable manifold of the equilibrium point
(1, 0, 0) is tangent to the eigenvector corresponding to the positive eigenvalue [7]. In
fact, due to the special nature of the nonlinearity in (7), the solutions on the unstable
manifold are precisely (1,0,0)T + C(1, rl,r2)Terls, where C is an arbitrary nonzero
constant; so the unstable manifold is the straight line through (1, 0, 0) in the direction
(1, ri, r21)T. Therefore, the octant

01 {(U,U,W)’U > 1, v > 0, w > 0}

contains one branch of the unstable manifold. The other branch of the unstable
manifold enters the region 02 {(u, v, w):u < 0}. The regions O1 and 02 surround
most of the unstable manifold. Technical reasons related to the second hypothesis
in Proposition 2 and the necessity to have the Lyapunov derivative of Vo negative
definite compel the choice 02 {(u, v, w) u < 0} rather than the more obvious
choice {(u, v, w) :u < 1, v < 0, w < 0}, which completely contains the branch of the
unstable manifold in {u < 1}.

w

( ,o,o)

01

FIG. 3. The regions 01 and 02.

Define the Wazewski set W R3 (O1 LJ (.02); see Fig. 3. The closed set W is
the exterior of the disjoint regions and contains the local stable manifold of the point
(1, 0, 0). Since W is closed, hypothesis 1 of Proposition 2 is satisfied. Although the
region W is the Wazewski set, it is more convenient and natural to work with the
removed regions O1 and (92. Thus, much of the following will be done in terms of O1
and 02 and then referred back to the main object of interest, which is W.

In order to apply Proposition 2, we need to examine the immediate exit set W’.
This will show that the exit set is disconnected. First examine the vector field on
the boundary of O1. This determines where an orbit that hits this portion of the
boundary of W will go.

(1) Verification that the side, v 0, is an exit set portion: On the plane quadrant
u > 1, v 0, w > 0, we have v w > 0 so that an orbit hitting this portion of the
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boundary of W will immediately enter the octant O1. Therefore, the plane quadrant
(u > 1, v 0, w > 0} c W-. We abbreviate this by saying the set is an exit set
portion.

(2) Verification that the front, u 1, is an exit set portion: On the plane quadrant
u 1, v > 0, w > 0, we have u v > 0.

(3) Verification that the bottom, w 0, is an exit set portion: On the plane
quadrant u > 1, v > 0, w 0, we have w Av2 ,kuw + u- 1 O.

(4) Verification that the edge u 1, v 0, w > 0 is an exit set portion: On this
edge, u v 0, and u" v w > 0 so that an orbit touching this edge has a
minimum in the u coordinate and has the v coordinate increasing. The orbit exits W
into the octant O1.

(5) Verification that the edge u > 1, v 0, w 0 is an exit set portion: On this
edge, v w O, v" w )v2 uw / u 1 > 0, so that v has a local minimum
here, and w u- 1 > 0, and of course u > 1, so that an orbit touching this edge
immediately enters the octant 501.

(6) Verification that the edge w 0, u 1, v > 0 is an exit set portion: On this
edge, w ,v2 Auw + u 1 > 0 and u v > 0. Therefore any orbit touching this
edge must enter the octant 1.

Next, examine the vector field on the boundary of 02.
(1) Verification that the face u 0, v < 0 is an exit set portion: Here we have

u v < 0 and so orbits touching this half of the face of (.92 must immediately exit
into 02.

(2) The face u 0, v > 0 is not an exit set portion: Here we have u v > 0 and
so orbits are actually entering the set W from 592.

(3) Verification that the negative w-axis, u 0, v 0, w < 0 is an immediate exit
set portion: On this portion of the face of (-2 an orbit has u v 0, u" v w < 0
so that the u coordinate has a local maximum, and the orbit re-enters the region

< 0).
(4) The positive w-axis, u 0, v 0, w > 0 is not an immediate exit set portion:

On this portion of the face of (2 an orbit has u v 0, u" v w > 0 so that the
u coordinate has a local minimum and the v-coordinate is increasing. Orbits passing
through points on the positive w-axis remain in the Wazewski set W.

(5) The origin (0, 0, 0) is part of the exit set since an orbit from this point has
u v 0, u" v w 0, and u" w -1. Thus the orbit has acubic
singularity in u at the origin, and immediately enters 592.

Therefore, all of the boundary of the octant 1 except for the corner equilibrium
point (1, 0, 0) is in the exit set W-. The portion of the exit set W- on the boundary
of (92 is an open half-plane {u 0, v < 0}, together with the nonpositive w-axis.
See Fig. 4. In fact, orbits in W may have internal tangencies to the boundary of W
along the positive w-axis. Lemma 5 will show that orbits starting from the interval
of initial conditions E cannot have these internal tangencies on the positive w-axis so
hypothesis 2 of Proposition 2 will still be satisfied. Referring back to the Wazewski
set W, the exit set W- is obviously a disconnected set.

Next we define the set needed by Proposition 2 to prove Theorem 1. The no-slip
initial conditions set ] will be a compact interval on the w-axis. Defining E requires
some technical lemmas.

Lemma 3 shows solutions with u(0) 0 and v(0) 0 cannot grow unboundedly
in the positive v or positive w directions without entering the octant 591.
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( ,o,o)

FIG. 4. The exit set W-.

Some notation is necessary. Fix w0 > 0, and let

v
Z

 o(v)
+

dz.

The integral clearly exists for all v _> 0 and no(v) is increasing. According to Grad-
shteyn and Ryzhik [6, 2.202, p. 71] it is not possible to express no(v) in terms
of the elementary functions. Let vo(u) be the inverse function. Additionally, let
A max(A, 1/x/). Define the box-like region

R {(u, v, w)" 0 _< u <_ 1, 0 <_ v <_ vo(u) + A, 0 <_ w <_ (v0(1) + A)v + w0};

see Fig. 5.
LEMMA 3. An orbit of (7) starting from the point (0, 0, w(0)) with 0 <_ w(O) <_ wo

cannot leave the bounded region R except transversally through the floor 0 <_ u <_ 1,
0

_
v

_
vo(u) + A, w O, or transversally through the back wall u 1, 0

_
v

_
v0(1) + A, 0 _< w _< (v0(1) + A)v + wo into the octant (91.

Proof. The proof proceeds by examining the vector field on the sides of the box-
like region. The vector field points inward on some of these sides, so that an orbit
cannot leave through these sides.

(Front Wall.) On the edge u 0, v 0, 0 < w _< w0, orbits have u’ 0 but
u" v’ > 0. Therefore orbits starting on the edge actually enter R with a quadratic
tangency. In the region R, the orbits have u’ v > 0; so the orbits cannot reverse
direction and exit through the front wall u O, 0 <_ v <_ A, 0 <_ w <_ (vo(1)+A)v+wo.

(Side wall.) In the region R the orbits have v’ w > 0; so the orbits are
increasing in v from zero and orbits cannot leave through the wall 0 _< u _< 1, v 0,
and 0 _< w _< w0.

(Curved side wall.) The orbit has w’ Av2 Auw + u- 1, so that as long as
the orbit is in the region where 0 _< u < 1, and w > 0, we know that w’ < Av2. Now
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FIG. 5. The bounded region R.

w’ v", so that this can be written as v" < ,V2. Multiply through by v’ w > 0
and integrate from zero to s to obtain

2 2 3

Rearrange and use w(0) < w0 to get

v’ < V/2Av3/3 + w.
Therefore, orbits of the system (7) must have

U V

v’ < V/2Av3/3 + w.
The outward normal (in the direction of increasing v) of the curved side wall

v- vo(u) + A, 0 <_ u < 1, 0 < w <_ (v0(1)+ A)v + w0 is (-X/2Ava/3 + w/v, 1,0).
The dot product of the tangents to the orbits and the outward normal of the surface
is therefore negative, and orbits cannot cross this side wall.

Because A _> 1/v/ and because vo(u) is increasing, the bottom edge of the
curved side wall, v vo(u)+ A, 0 < u _< 1, w 0 lies in the region where w’
Av2 Auw + u 1 > 0. Therefore, orbits from the initial condition set cannot leave
the region R from the bottom edge of the curved side wall either.

(Ceiling.) For the orbits starting from (0, 0, w(0)) with 0 < w(0) < To, we have
v’(0) w(0) > 0 and w’(0) -1 < 0. Thus the orbit starts below the upward sloping
open ceiling panel w (v0(1) + A)v + w0, 0 < u < 1, 0 < v < (v0(1) + h). Suppose
there is a first time s when the orbit hits the upward sloping ceiling panel:

w(s) (v0(1) + A)v(s) + w0.

Then
w’(s) >_ (v0(1)+ A)v’(s),



454 STEVEN R. DUNBAR

or equivalently,
Av2 Auw + u 1 _> (v0(1) -F A)w.

Now substituting w (v0(1) / A)v / w0 on the right"

(9) Av2 Auw + u- 1 >_ (vo(1) + A)2v + (vo(1) + A)wo.

But Av2

_
(vo(1)+ A)2v .on the region 0 _< v

_
vo(1)/ A and the remaining terms

on the left-hand side of (9) are nonpositive and the remaining term on the right side
of (9) is strictly positive which gives a contradiction. Alternatively, this argument
says that the projection of the vector field on the normal vector of the ceiling plane
is negative. That is, the vector field on the ceiling of the box points into the box and
the orbit cannot leave the box through the ceiling. []

LEMMA 4. Let

x/A-1/a forO < A < 22/3
A(A) V .for 22/3

_ ,.
An orbit from (0, O, w(0)) with w(O) > A(A) cannot leave the bounded region n through
the floor w O. Consequently, orbits from the w-axis with w(O) > A(A) can only leave
R through the back wall u-- 1 into the octant (91.

Proof. Observe that w > 0 when u > 1-Av2 and w 0. Thus, an orbit
cannot leave the region R given in Lemma 3 through the floor outside the parabolic
half-cylinder u 1 Av2 with v _> 0.

Note that u and v are increasing for an orbit in R. Therefore, it remains to show
that an orbit from (0, 0, w(0)) with w(0) > A() cannot go through the floor within
the parabolic half-cylinder. In fact we will show that all the more so, the orbit cannot
cross the downward sloping plane panel w A(A)- vA(A)v within the parabolic
half-cylinder. See Fig. 6 for a diagram of the sloping floor panel.

v

(O,O,A(,))

(1,0,0)

FIG. 6. The floor panel of Lemma 4.

At the initial time s--0,

w(O) > A(A)- x/A(A)v(O).



GEOMETRIC ANALYSIS OF A NONLINEAR BVP 455

Suppose there is a first time s the orbit touches the downward sloping floor panel so
that

w(s) A(A)- vA()v(s).
Then w’(s) + -A(A)v’(s) <_ O. If this inequality is impossible within the parabolic
half-cylinder, then the orbits cannot touch this plane panel.

Substitute the expressions from the differential equations and the equation of the
plane into w’ + /A(A)v’ to obtain

(10) -1 + /A + (1 AA)u- AA2v + (A)a/eAuv + Av.
If the minimum value of (10) over the half parabola 0 <_ u _< 1 Av2, 0 _< v is

positive, the proof is done. The expression (10) has only one critical point, which is
easily seen to be a saddle point. Thus, if the values of (10) on the boundary of the
half parabola over which the panel is defined are nonnegative, an orbit cannot cross
the plane panel in the interior of the half parabola.

Consider first the case when A > 22/3, SO A x/. Over the edge 0 < u < 1,
v 0 the value of (10) is

(A3/2 1)(1 u),
which is clearly nonnegative.

The value of (10) over the edge u 0, 0 _< v _< 1/v/ is

-1 + Av2 A2v q- A3/2,

which is also nonnegative.
The value of (10) along the parabolic edge u-- 1 Av2, 0 < v _< 1/vf is

A5/2v2(1- vfv),
also clearly nonnegative.

Now for the case 0 < A < 22/3, the expression for the projection is

(11)

Over the edge 0 <_ u _< 1, v 0 the value of (11) is

1 + (1 x/,xa/4)u,

which is clearly nonnegative. The value of (11) over the edge u 0, 0 < v < 1/v is

(1- vfv)2,

which is also nonnegative. Finally, the value of (11) along the parabolic edge u
1 Av2, 0 _< v <_ 1/v/ is

(2- x/A3/a + x/Ar/av2)(1- x/v),
also clearly nonnegative. [

Remark. In Lemma 1 of [13], Troy obtained the uniform (in > 0) estimate
that all orbits starting with w(0) > 7/3 enter O1. Lemma 4 provides an improvement
on this estimate for the range 4(3/7)a < A < (7/3)2. This range covers much of the
interval for which the results are new.
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LEMMA 5. Define

{(0, 0,fl): 0 _< _< A(A) + 1),

where A(A) is the constant defined by Lemma 4. Then orbits starting from the initial
condition set cannot have internal tangencies in the Wazewski set W.

Proof. The proof will be accomplished by examining several cases. The case-
by-case examination and variety of arguments among the cases seems to be required
because the proof necessarily determines the long-time nonmonotone behavior of a
family of solutions to a nonlinear initial value problem.

From the previous determination of the exit set W-, the only possible place for
an orbit to have an internal tangency in W is on the positive w-axis on the upper face
of the region (.92. Therefore, the proof will follow points from F forward in time and
show that the orbits cannot touch the positive w-axis.

Some initial notation is necessary to establish the cases. Suppose, for a contra-
diction, that there is an orbit from F with an internal tangency. That is, suppose that
there is an orbit from (0, 0, w(0)) that enters the region u > 0, crosses the u-w plane at
(u(T2), 0, w(T2)) for some T2 > 0 and then decreases to (0, 0, w(TT)) for some T7 > T2,
where w(TT) > 0. In Fig. 7 is a diagram of the u-v projection of such a hypothesized
orbit, together with the labeling of the important points. For the rest of the proof fix
attention on this orbit. The cases will depend on the value of u(T2). (The notation
for the times T2, T7 allows for additional intermediate times to be defined later.)

y

u=1-Xv2/3

u=I-Zv2

T6

FIG. 7. Diagram of the u-v projection of the orbit of the proof of Lemma 5.

It will be convenient to use the abuse of notation Vo(s) Vo(u(s), v(s), w(s)).
Case 1. u(T2) < 1
Subcase (a). A _< (27/16)2/3 1.4174.
The orbit from (0, 0, w(0)) enters the region u > 0 and crosses the floor w 0 at

T1 in the region 0 < u < 1, u < 1 Av2. The orbit then decreases in v, until crossing
the u-w plane with u(T2) < 1 and w(T2) < 0. The orbit continues decreasing in v
until recrossing the u-v plane at (u(T6), v(T6), 0) where v(T6) < 0, and then the orbit
approaches the point of internal tangency (0, 0, w(TT)).
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From the Lyapunov function Vo(u, v, w) w2/2 ,kv3/3 (u- 1)v we obtain that
Vo(s) > Vo(TT) (w(TT))2/2 > 0 for s < TT. In particular, V0(T6) -Av(T613/3-
(u(T6) 1)v(T6) > 0 so that u(T6) > 1 )v(T612/3. This means the orbit must
cross the parabolic cylinder u 1- ,kv2/3 at some Th. Therefore, at Th, we have
u’ + 2Avv’/3 v -f- 2Avw/3 >_ O. So at Th, w _< -3/(2A). At Th, V0(T5) w(T512/2 >_
9/(8A21. Therefore, at T2, V0(T2) _> w(T212/2 > 9/(8A21, and so we conclude that
w(T2) <-3/(2).

Now at T the orbit is in the region w 0, u > 0, v > 0, and u < 1- $v2.
The maximum value of Vo(u, v, w) on this region is 2/(3v/X) occurring at (1/v/X, 0, 0).
Therefore Vo(T2) < Vo(T) < 2/(3x/X). But for < (27/16)2/3, 9/(82) > 2/(3v/X);
so we have a contradiction and no internal tangency is possible.

Subcase (b). A > (27/16)2/3.
For this case, we need some additional bounds on the orbit. These bounds will

show that it is not possible for the orbit to loop around the "bubble" defined by
Vo(u, v, w) 0 in the region v < 0.

The previous argument shows that on the interval 0 < s < T2, where v > 0 an
orbit with an internal tangency, must decrease in w to w(T2) < -3/(2A). From the
vector field this can only happen if the orbit passes through the half parabolic region
w -3/(2A), v > 0 and 0 < u < (2/51(1- Av2). By examining the vector field on the
isocline surface w ,kv2 )uw -4- u 1 O, we see that the orbit can pass from the
region w < 0 to w > 0 in the half space v > 0 only where w > -1/A. Therefore, at
s T2 the orbit must still be in the region w’ < 0 so -Au(T2)w(T2) -+-u(T2)- 1 < 0.
Since w(T2) < -3/(2A) we must have that u(T2) < 2/5. Thereafter, in the region
v < 0, certainly u < 2/5.

The previous subcase showed that Vo(s) > 0 for all s < TT. Let T4 be the
time when the orbit crosses the parabolic cylinder u 1- Av2 with v < 0. Then
Vo(T4) w2(T41/2 + 2/v3(T4)/3 > 0 or w(T4) < -V/4/k/3(-v)3/2. In terms of u

along u 1 Av2, we have w < -V(1 -u13/4/,1/4. The orbit has its minimum
value of w at T3 when the orbit crosses the w 0 isocline surface Av2 -,kuw-4-u- 1 O.
At s T3 the u and w coordinates of the orbit satisfy Av2 Auw -4- u 1 O, so
w > (l/A)(1 l/u). For s > T3 the w coordinate is increasing and the u coordinate
is decreasing. In particular, w(T4) > (l/A)(1- 1/u(T4)) and we have all the more so
that at T4,

1 ( 1 )(l-u(T4113/aX 1
u(Ta) <-

Solving for u we obtain the estimate that u(T4) < (x/-/2)A-3/4.
Combining the arguments of the previous two paragraphs, we find that

U4

and

1 (1-4)(12/ X
ua)3/a< w(T4) <- ,1/4

Note that ua 2/5 for A _< (75/1612/3 2.8009.
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Next we show that the orbit cannot cross the plane

(13) w---2(1-u4)3/4 (1 u4)3/4
u4A1/4

u + A1/4

The previous estimates (12) on the u and w coordinates show that the orbit is below
this plane at s Ta. If for some s > Ta the orbit crosses the plane, then at that time
we would have that

w’ / 2/(1 ua)3/4
u > 0

u4,1/4
or

U4)3/4Av2 Auw -+- u 1 + 2/- uaA/
By factoring and rearranging, this can be written as

At this time, we know that v/v < 0 and -Auw + u 1 < 0. Thus, if we show that

Vv +2(1 u4)3/a
uaAa/a

>_ O,

we will have reached the desired contradiction showing that the orbit cannot cross the
plane.

To do this, we need a bound on the v coordinate. Now v has its minimum negative
value at s T6 when w 0. As shown above, V0(T6) -v(T6)3/3- (u(T6)
1)v(T6) < 2/(3v/). Since 0 _< u(T6) < 1, it is easy to see that v(T6) > -21/3/vf.
Therefore, we obtain the bound v(s) > -21/3/v/. Then the desired contradiction
can be obtained by showing that

-21/3 + 2-(1 u4)3/4
uaAa/a

>_ 0

for the values of A > (27/16)2/3 under consideration. For (27/16)2/3 < A _< (75/16)2/3,
u4 2/5 and the calculation reduces to showing that

A3/a< (_) 3/a 10
21/3 31/2

which is true for this range of ),.

For A > (75/16)2/3, U4 V/-/4,-3/4 and the desired contradiction reduces to
showing that

--21/3 -t- g 1- A-a/ _> O.

or

-3/4 -- (1-- (3"21/3) 4/3)8
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which is true for the range of A under consideration. This shows the orbit cannot cross
above the plane given by (13).

For T4 < s < TT, where 0 < u < u4 and the orbit cannot cross the plane

W__2(1--U4)3/4

_
(1 u4)3/4

U4/1/4
U - 1/4

then all the more so the orbit must satisfy

1 u)3/a
W < A1/4

This means that over the curve u 1 Av2 the Lyapunov function must be negative.
This is in contradiction to t(TT) > 0. Therefore, no internal tangency is possible.

Case 2. u(T2) _> 1.
Consider the "Lyapunov" function

(u, z) w
Auv2 (u- 1)2
2 2

with derivative along an orbit

Under the assumption that there is an orbit from (0, 0, w(0)) to (0, 0, w(TT)) with an
internal tangency, then along this orbit

0 v (0, 0, V (0, 0, + 3Av(z)32 ) dz.

If we show that f[ (w2 / (3Av3/2)) dz > 0, then we will have a contradiction. Thus,
V does not have a (positive) sign-definite Lyapunov derivative, but along hypothe-
sized orbits with an internal tangency its value is increasing, leading to a contradiction.
The proof is stated in terms of a single loop from the initial condition on the w-axis
back to the hypothetical tangency on the w-axis. Nevertheless, if there is a multiple
loop through the plane v 0 before returning to the tangency on the w-axis, the proof
is the same by setting To to the last time the orbit passes through the plane v 0
with v > 0 before the tangency at TT. If the orbit starts from the v-axis, the proof
is again the same, a comment that is important for the next section on the stress-free
boundary conditions.

We will show the integral is positive by breaking the interval of integration into
portions from 0 to T2, and from T2 to TT,

w2 dz + V3 dz + V3 dz

For 0 < s < T2 we have u(s) v > 0, so that it is possible to solve for s in terms of
u and express v as a function of u on the interval 0 < u < u(T2) -= u2, say the result
is vl (u). Likewise on the interval T2 < s < TT, u’(s) v < 0 and so we can express v
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as a function of u for 0 < u < u2, calling the result v2(u). The integrals can then be
expressed as

oTW2 dz / (0TM

vl(u)2 du- o V2(U)2 du)
We will show that vl (u) > -v2(u), and so the integral is positive.

At s T2, u(T2) _> 1, v(T2) 0, and w(T2) < 0 so that v’ w < 0. Thus
it is possible to express s in terms of v and so to express u as a function of v in a
neighborhood of v 0 and u u2. In fact, du/dv v/w 0 at s T2 and

d2u
dv2

1 v(T2)w’(T2) 1

T w(T2) w(T2)3 w(T2)"

Note that w’(T2) Av2 (T2) Au(T2)w(T2) + u(T2) 1 > 0. For T2 e < s < T2,
v > 0 and w < w(T=) < 0, Thus for v > 0, d2u/dv2 1/w- vw’/w3 > liT(T2).
Likewise for v < 0, d2u/dv2 1/w vw’/w3 < liT(T2). Then for v > 0, u(v) >
u2 + (1/w(T2))v2 > u(-v). See Fig. 8. In terms of the functions Vl(U) and v2(u), we
have that Vl(U) > -v2(u) for u- ti < u < u2, for some small 5. We want to show that
this inequality can be continued to the entire interval 0 < u < u2.

(u(s),v(s))
u u

u

FIG. 8. u as a function of v in a neighborhood of v 0 and u u2.

Consider u* max{0 < u < u2 "v(u) -v2(u)}. Let v* Vl(U*) -v2(u*).
There are two times 0 < Sl < T2 < s2 < T7 such that u(s) u* u(s2). Then at
the point u*,

w(s2) w(s2) dv
v* v(s2) du

dvl
U*

Therefore, w(s2) < w(sz).
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However, by the choice of u* u(sl) u(s2),

so that

u()() (()- 1) ()() (()- )()()+ < ()()+

Because It(81) U(82) and v(sl) -v(s2), this reduces to v(81)w(81) < V(82)W(82)
o (1) < -().

From the Lyapunov function V0 we know that

W(82)2 V(82)3 W(81)2 "V(81)3 -(u(s)- 1)v(s)
2 3

-(u(s2)- 1)v(s2) <
2 3

or
2Av(sl)3

2(U(Sl) 1)V(Sl).

From the previous paragraphs w(s2)2 > w(s)2, and so the u* and v* cannot occur
in the region u _> 1- Av2/3. Because w(s2) < w(si) < -w(s2), we cannot have
w(s) > 0.

Similar to what was shown in shown in Case 1, subcase (a), crossing the parabolic
cylinder u 1 v2/3 from u > 1 Av2/3 to u < 1 Av2/3 must take place with
-3/2 < w. The value of V0 at the crossing would then satisfy V0 < 9A2/8. But the
orbit cannot later recross the parabolic cylinder from inside to outside again, because
as in Case 1, subcase (a), that would require V0 > 9A2/8 in contradiction to the fact
that V0 is decreasing. Finally he orbit cannot cross the plane w 0 with u < 1-Av2/3
because then V0 < 0, in contradiction to the fact that V0 > 0 on 0 < s < TT.

Finally then, the conclusion is established by ruling out all possibilities for the
orbit to return to the positive w-axis.

LEMMA 6. Define E {(0, 0,) 0 <_ <_ A(A) + 1} where A is the constant
defined by Lemma 4. Then there is o, 0 <_ o <_ A(A) + 1 such that the the orbit
starting from (0, O, o) remains in W for all s; that is, E E0.

Proof. Consider an orbit starting from (0, 0, A(A) + 1). The orbit immediately
enters the interior of the bounded region R, where u v > 0, and so u is increasing.
The orbit must stay above the floor panel given in Lemma 4. In particular, the orbit
cannot approach the equilibrium point (1, 0, 0). The orbit also cannot exit through
w 0 because w > 0 for v > 1/v/ and w 0. In summary, the conclusion of the
technical Lemmas 3 and 4 is that the orbit must exit R through the back wall u 1 into
the octant (91. Lemma 1 of [13] reaches essentially the same conclusion, by analytic
rather than geometric techniques. However, that lemma does not simultaneously
establish the boundedness of the orbits.
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It is easy to see by the vector field examination done previously on the boundaries
of W that the orbit which begins at the origin (0, 0, 0) of the phase space immediately
enters the octant (.92.

Now define the initial set to be the connected interval on the w-axis from
(0, 0, 0) to (0, 0, w0), where w0 A(A) / 1 as mentioned previously. If all orbits
starting on leave the Wazewski set W then by Proposition 2, the exit time mapping
from the segment to the boundary of W is a homeomorphism. Yet Lemmas 3 and 4
show that one orbit exits W through one component of the exit set and goes into (91.
Another orbit leaves W through the other component of the exit set into 02. This is
a contradiction, so there is at least one orbit starting on F which does not leave the
Wazewski set W.

Finally, the orbit starting from (0, 0, 0) identified in the previous Lemma must
be the solution of (1) with the no-slip boundary conditions (2). This follows from the
next two lemmas.

LEMMA 7. An orbit not entering O1 or 02 must remain bounded with u > O.
Proof. From its initial point (0, 0, 0) E F the orbit enters the region R given in

Lemma 3. There is an upper bound on v for orbits in R, namely v0(1) + A. The orbit
cannot enter O1 and so must have v’ w < 0 if u > 1 and v > 0. Thus, the orbit has
v0(1) + A as an upper bound for v.

w2/2 :Zv3/3 (u-1)v _< w02/2

FIG. 9. A cross section for u

_
0 of the region containing the special orbit.

Since the orbit does not enter (92, the Lyapunov function Vo(u, v, w) is always
decreasing. Therefore,

(u-1)v<
3

where w0 A(A) + 1 is the maximum w coordinate of the initial condition set
Then for u >_ 0, v _< 0 the orbits must lie in the region

-lw02 + 2(u- 1)v + 2Av32Av3 < w < + 2(u- 1)v-3 3

See Fig. 9 for a sketch of the region. For each u _> 0 the maximum extent in v < 0
occurs when

2Av3w+2(u-1)v+
3

=0.

A graph of u versus v for this relation shows that there is a minimum value of v < 0
satisfying this relationship; see Fig. 10. Combining this result with the bound for



GEOMETRIC ANALYSIS OF A NONLINEAR BVP

V U=I

463

FIG. 10. The graph of u versus v for w + 2(u 1)v + 2Av3/3 0.

v > 0 gives a global bound on the v coordinate of the special orbit. This argument is
essentially the same as one already used in Lemma 5.

Since
w2 Av3

(u- 1)v < w2
2 3 2

and v is bounded, if u is also bounded above, then w must be bounded.
Now for the Lyapunov function V,(u, v, w) w2/2 .Xv3/3 (u 1)v A- o[vw +

)uv2 -(u- 1)2/2] choose c < 0 so small that 3v/2- 1 < 0 for all s. Then < 0
and Va(u, v, w) is decreasing along the special orbit. That is,

w2 v3
(u -1)v + Ivw + uv2 (u -1)21 < w

2 3 L 2 2

for all s. We see that if w is bounded, then u must also be bounded.
Consequently, if the special orbit is unbounded, then u and w must be unbounded

together. Since the orbit must always satisfy

w v3 w
2 3

(u- 1)v <
2

it is not possible for u and w to be simultaneously unbounded in v < 0. If u and w
are unbounded together in the region v > 0 then ultimately u > 1 and w < 0 since
the orbit cannot enter O1. But then w’ Av2 Auw + (u- 1) > 0 and so w cannot
decrease unboundedly.

This argument shows that the u and w coordinates must be bounded and so the
special orbit is bounded. [:]

LEMMA 8. The orbit starting from the initial point (0, 0,/0) must satisfy th
boundary condition u(oc) 1.

Proof. Since this special orbit must remain bounded with u > 0, consider the
Lyapunov function

w2 Av3

V0 (u, v, w)
2 3

(u 1)v.
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It has already been noted that the derivative along an orbit 0 -Auw2 -v2 is
negative so long as u > 0. By the LaSalle Invariance Principle, the w-limit set is
contained in the set where 0 0. Thus the w-limit set of the orbit is an invariant
set contained in the line u > 0, w 0, v 0 and so can only be the equilib-
rium point (1, 0, 0). That is, the special orbit must satisfy the boundary condition
u(oo) 1. [3

This completes the proof of Theorem 1.

3. Existence of solutions, to the stress-free problem. This section contains
the proof of the following.

THEOREM 9. For all > 0 there is at least one solution to the equation

,,, + A(,, (,)2) + 1 0,

satisfying the "stress-free" boundary conditions

(0) 0,

,,(0) =0,

(cx3)- 1.

The proof of this theorem is substantially the same as the proof of Theorem 1.
The Wazewski set W is still appropriate and many of the same lemmas still apply.
The main task is to identify the initial value set and to establish that there are no
internal tangencies.

LEMMA 10. The orbit of the system (7) starting from the point (0, 1lye, O) on
the positive v-axis leaves the set W and enters the octant 01.

Proof. The initial tangent vector has u’(0) 1//, and w’(O) Av2 -Auw /
u- 1 0 but with w"(O) 2Avw- Avw- Auw’ / v 1/v/X > 0 so that the orbit
immediately enters the region R described in Lemma 3. Then the orbit has w > 0 and
so v is increasing. This means in turn that the orbit stays in the region v > 1/v/-.
Therefore, the orbit cannot exit the region R through the floor w 0 since w’ > 0
for v > l/yrs. Furthermore, just as in Lemma 3, the orbit is bounded above in the
v and the w coordinates. The u coordinate is increasing since v > 0. Thus the orbit
must continue to increase until it exits the set W through the back wall u 1 into
the octant O1. [3

LEMMA 11. Define

{ 1}z=

Then orbits starting from the initial condition set cannot have internal tangencies
in the Wazewski set W.

Proof. The proof is the same as that of Lemma 5 since that proof does not depend
on the initial conditions. [3

The last argument to be filled in is the following.
LEMMA 12. There is o, 0 < /o < 1/V/ such that the orbit starting from

(0, o, O) remains in W for all s; that is, o.
Proof. Consider the orbit starting from (0, 1/vf, 0). By the conclusion of tech-

nical Lemma 10 the orbit must exit R through the back wall u 1 into the octant
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O1. As noted before, the orbit from the origin (0, 0, 0) of the phase space immediately
enters the region (.02.

Suppose all orbits starting on the connected interval defined in Lemma 11 leave
the Wazewski set W. Then by Proposition 2, the exit time mapping from E to the
boundary of W is a homeomorphism. Yet one orbit exits W through one component
of the exit set and enters (.01. Another orbit leaves W through the other component
of the exit set into (.02. This is a contradiction, so there is at least one orbit starting
on which does not leave the Wazewski set W.

The orbit starting from (0, 0, 0) identified in the previous Lemma 12 must be
bounded with u > 0 as shown by the proof of Lemma 7. The orbit starting from the
initial point (0, f0, 0) satisfies the boundary condition u(oc) 1 by the same argument
as in Lemma 8. This finishes the proof of Theorem 9.

Acknowledgment. I would like to thank Professor Lloyd Jackson for helpful
conversations during the course of this work.
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BOUNDARY AND INTERIOR SPIKE LAYER FORMATION FOR AN
ELLIPTIC EQUATION WITH SYMMETRY*

ARNALDO S. DO NASCIMENTO"

Abstract. Consider the problem V[k(IIxlI)VG]+AT(G)--O, xn: unit ball in R", V U./0B=0.
Conditions are given on k and f that guarantee the formation of boundary layer and also of a spike layer
around the origin as h- ee for some particular radially symmetric solutions to the above problem. In the
first case, the nodal curve of the solution approaches OB as h- ee, while in the second one it shrinks toward
the origin as h oo. Range location for the value of the solution on OB, in the first case, and at the origin
in the second one, is given for h sufficiently large. Only radially symmetric solutions are considered since
they are the only ones that can be stable equilibria of the corresponding parabolic equation.

Key words, convergence in measure, nodal curves, maximum principle, radially symmetric solution

AMS(MOS) subject classifications. 35B25, 35B40, 34E15

1. Introduction. Consider the following nonlinear eigenvalue problem:

VEk(I}xll)v u]/ AT(ux) :o, x B,
(1.1)

v u. t/o 0,

where B is the unit ball in R n, t the unit vector orthogonal to OB, II the Euclidian
norm, A (0, ), k(llxl]).a positive function in C2(/, R), and f C2(R, R) satisfies

(hi) =la, bR,b<O<a:f(b)=f(O)=f(a)=O, f’(O) > O,

(h2) sgn f"(U) -sgn U ’U R, U 0.

To simplify notation we shall drop the subscript A in the notation of the solution Ux
and consider n--2.

We restrict our study to the radially symmetric solutions to (1.1) due to the fact
that if the corresponding parabolic problem is considered, that is,

OU
-V[k(IIxII)VU]+AT(U), (t,x)(O,)xB,

(1.2) Ot

VU’/0 =0,

then any stable equilibrium solution to (1.2) in WI’2(B) must exhibit such symmetry.
Conversely, if Wr’:(B) stands for the space of radially symmetric functions of WI’(B),
then any radially symmetric equilibrium of (1.2), which is stable in Wlr’e(B), turns out
to be stable in the larger space WI’a(B), too. Also it is well known that if
constant, then any stable equilibrium solution of (1.2) must be a constant function.
This is no longer the case if k(llxll) is allowed to vary in a suitable manner. These
results will appear in a forthcoming paper.

Roughly speaking, by boundary layer formation we mean that a radial solution
U(x, A) to (1.1) exhibits the following geometrical feature: for any R, 0< R < 1, r=
U(r, A) converges uniformly to a constant solution on [0, R], as A--> and u(r,
varies abruptly in [R, 1] so that IUr(r, A)I assumes arbitrarily large values in JR, 1] as

Received by the editors June 24, 1991; accepted for publication (in revised form) May 28, 1992.
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The very same interpretation can be given for interior spike layer formation by
replacing the above interval by [0, R].

Borrowing the terminology used in the literature for reaction-diffusion equations,
we herein refer to k as the diffusion function and to f as the reaction term.

The following result has been proved in [1]. Let n, n _-> 0, be the nth eigenvalue
of the linearized problem (o 0)"

(1.3)
(k(r) Ur)r+k(r) Ur+Af’(O)U=O, re(0, 1),

Ur(O) =0, U,(1) =0.

Suppose that f satisfies (hi) and (h2) and the diffusion function k satisfies

(1.4) r2( kl/)r d- r( kl/)r <= k 1/2 0 < r < 1

Note that k---const, satisfies the inequality.
If A (n, tn+l), /1 1, then there are exactly (2n + 3) radially symmetric solutions

of (1.1), three of them being the constant solutions 0, a, and b. For A (0, ), the only
solutions are the constant ones: 0, a, and b.

If Ck, k ->_ 1, denotes the branch of radially symmetric solutions of (1.1) bifurcating
from the zero solution at A tk, then Ck is defined for all A-> k, and the solutions
in it, denoted by bk(r, A), 0 <_-- r_--< 1, are characterized by having exactly k simple zeros
in (0,1) and satisfy b<Ck(r,A)<a, r[0, 1].

Moreover, Ck=CUC-, where bkC if bk(0, A)>O, rkkC- if bk(O, A)<0.
Throughout this paper by b+(r, A)[b(r, A)], n-> 1, we mean a solution to (1.1)

in C+[CS], A> n, and r(A),..., rn(A), where 0< r(A)<.." < rn(A) < 1 stand for the
zeros of b+(r, A)[b(r, A)] in (0, 1). They are simple zeros and, in particular,
(d/dr) qb-(r, A)<0 [(d/dr)dp-(r, A)>0] in (0, 1).

In other words, the above results yield the global bifurcation diagram for the
radially symmetric solutions to (1.1). We are concerned here with the asymptotic
behavior ofthe solution b/ (., h)[ bl (., h)] as we follow the bifurcation branch C[ C]-].

We prove that if, besides the assumptions (hi) and (h2), f and k are related to
each other according to

(h3) km f> kM f,

where k,=min0____r__< k(r) and kM--maxo<__r_<__l k(r), then r(A)l as Ac. Also
4-(r, A) converges uniformly as A to the constant solution U(r)= a in [0, ] for
any ? such that 0 < < 1.

It follows from (h3) that there are number a and/3, b </3 <-a < 0 satisfying

k,, f= f and

Then we also prove that /3 =< lim,_.+ inf b,+ (1, An) <= limn_ sup b,+ (1, A) _--< a < 0
for any sequence {An}nN such that A,o as n c. Note that the closer k,, is taken
to kM, the nearer a is to /3. See Fig. 1 below. In particular, for the case of constant
diffusion, that is, k( r) =- const., then limx_. b-(1, A) c where c is the unique negative
number, b < c < 0 so that

where b < c < 0 < a.
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+E

FIG.

Condition (h3) means that the area of the negative bump of f, namely, f, is
bigger than the area of the positive bump of f, namely, S f, multiplied by (kM/k,,).
In particular, altogether it implies that

 -Io
Using hypotheses (h), (h2) and (h3) similar results hold for solutions b-(r, A),

as we follow the bifurcation half branch C-, except that now rl(A)- 0 as A - o. Also
it follows that for any e > 0, e" small, there is A A(e) such that b </3 + e < b-(1, A) <
a+e<O for A=>A.

Note that by setting , 1/e, then as A c, (1.1) can be viewed as the following
singularly perturbed semilinear elliptic problem:

V[k(llxll)v U] +f(U) =0,

U./, =0.

There is a vast literature in singularly perturbed problems, and among others the
reader is referred to [2], [3], [4], [5], [8], [10], and [11].

In this paper the following should be seen as the major contributions: the emphasis
on the relationship between the diffusion function k and the reaction term f in
determining the asymptotic behavior of the nodal curves of b(., h) and b -(., h), the
formation of layer along with its location, and finally the asymptotic behavior of the
solutions on the layer’s locus.

Herein, once a solution b(., h) C+ is taken, we follow the bifurcation branch,
and the results are accomplished by using comparison techniques based on maximum
principles, convergence in measure to the equilibrium solutions and equalities that
relate the areas of the negative and positive bumps of f, up to the end points of the
first half loops of the solution b-(r, h) in the phase plane and the maximum and
minimum attained by k(r), r e [0, 1].
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Condition (1.4) above was assumed in [1] to guarantee that each C,+, C, n >-1,
was monotone in h and did not present secondary bifurcation. However, for the purpose
of this work (1.4) need not be assumed. Indeed, all we need here is to have each C,
C, n => 1 defined for all h, h > , and the nodal properties which follow from the
work of Rabinowitz [6] and from the Sturm-Liouville theory, respectively.

2. The case 41(., A)e C-: boundary layer. In this section we only deal with the
solution 4-(., A), and, therefore, for simplicity in notation we drop the superscript +,
thus just writing bI(., h).

In view of the previous considerations, instead of problem (1.1), it suffices to
consider

(k(r) Ur)+k(r) Ur+Af(U)=O, 0<r<l,
r

(2.1)
Ur(O)=Ur(1)=O.

LEMMA 2.1. Let k mino__<__<l k(r), kM maxo<____<l k(r) and suppose thatfsatisfies
(hi), (h2), and (h3). Then it holds that

k. f< kM f
dO

for any A > , where is the first positive eigenvalue ofproblem (1.2).
Proof The solution 4(r, I) satisfies

+ ds+ A k(s)-ds F(ch,(s, A)) ds =0
dr 2 s

for r 6 (0, 1), where F() If
Therefore, the expression between brackets is constant in [0, 1], and taking r O,

we conclude that this constant is zero. Since ,(1, A)= O, we obtain

J"l(k(S)l’s)2o S for d
ds+A k(s) F(,(s,A)) ds=O,

which, by its turn, implies that

kf($l)$l,sds+ kf($l)$l,sds <0,
0 r(X)

for all A > .
On [0, r(Z)] it holds thatf(6(r, Z)) 0, 6, 0 and on [rl(Z), ],f(6,(r, ))0,

and $, 6 0.
Hence

f rl(A)

r(A) d 0

and with & and & as defined above:

f fo" (s,))ds.
d d

O< k F(O,(s, a)) ds <--kM
r(X)

But F(l(r, A))=0, and then &F((1, A))< &F((0, A)), that is,
bl(l’A) f OI(O’A)

k f<kM
dO

and the lemma is proved.
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In what follows, Lemma 2.1 will be useful in the sense that if {A.},N, h, as
no is such that bl(1, h) converges as nc, then we easily conclude that b<
lim_ b(1, h,)_-<0. This yields information about the asymptotic behavior of rl(h,)
for if rl(h,)7 1, as n c, by constructing a supersolution in a convenient interval we
are able to prove that lim,_ b(1, h)- b.

We will work now toward proving that rl(h) 1, as h-o and to this end let us
consider the following linear eigenvalue problem:

(2.2)

(k)+kP--+lf’(O)=O R<r<l,

q(R) q(1) 0,

where 0 < R < 1. It is well known that the eigenfunction J(r) corresponding to the first
eigenvalue/Xo of (2.2) is of one sign in (R, 1). By multiplying by a constant, if necessary,
we can suppose b < J(r) < 0 in (R, 1).

LEMMA 2.2. Suppose that there is R, 0<R<I and a sequence {A,},N, h,> 1,
h. - c as n - o such that rl(h.); the unique zero ofdl(r, h.) in (0, 1 satisfies 0 < rl(h.) _-<
R for any n. Let Io and J(r) be the principal eigenvalue and eigenfunction of (2.2), as
above. Then J(r) >- c (r, h. in R, 1 for n sufficiently large.

Proof On JR, l] we have 4l(r,h.)_-<0 and bl.r(1, h.)=0. Moreover, J can be
taken as negative in (R, 1).

Let us suppose by contradiction that for any A, there is n such that An-> A and
e[R, 1] such that 0> b(, A,)> J(). By continuity there are numbers l(An) and
:(A,), I(A,) <= (A,) < (A,) < 1 such that J(l) b(l, A,), J(2) b1(2, A,),
and 41(r, A,) > J(r) in (1, 2).

There are two cases to consider.
Case 1. r(A,) < R for infinitely many n.
In this case, as a consequence, R < I(A,)< 2(A,)< 1. In order to resort to a

comparison technique, we set

s(r)
J(r)

4,(r, h.)’

which satisfies

k_ 2gbl,r]+ +-+ r
r bl

f(bl(r, A,))]
for ?I(A,) < r < 2(A,) and sc(l) sc(2)= 1.

Note that by virtue of hypotheses (hi) and (h2) in (71, 72) it holds that

f’(O) > f
(qbl(r, A,))

> f(J(r))
> f...(J,) > 0,)l(r,,n)--- J(r)=

where Jm min {J(r), ?1(A) --< r=< 2(A)}.
The assumption that for any A there is A, => A and , R < < 1, such that 41(, A,) >

J() prevents 41(r, A,) from approaching the equilibrium solution b=const, for
large, and this by its turn yields a lower bound for [f(ql(r, An))/ql(r, A,)]. Therefore,
by taking A large enough it is possible to make the coefficient of in equation above
negative in (, 2).

Summing up we have sc(Y)= sc(2)= 1 and s(r)>0 in (Yl, 2). In particular,
assumes its maximum in (;, 72) since sc()> 1. But this is impossible according to the
remarks above and a well-known maximum principle. See [9].
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Case 2. rl(h,,) R for infinitely many n.
In this case we have R 71(h,)< 2(hn)< 1 and sc would still satisfy (2.3) with

different boundary conditions, namely, sO(R) > 0, s(1) =0, set(R) =0, and :> 0in (R, 1).
The computation (R) 0 can be accomplished by applying l’H6pital’s rule twice

and using (2.2) and (2.1).
Now an application of the maximum principle referred to above yields a contradic-

tion, and the lemma is proved.
LEMMA 2.3. Under the hypotheses and notation of Lemma 2.2 it holds that

lim J(r)f((r, h))r dr=O.

Proof Since (r, h,) is an equilibrium solution of (2.1), with the notation set
foh there, but by dropping the index n for simplicity we have

J(r)(rk(r),) -hrf((r, h))J(r), R r 1.

But (rk,rJ)r J(rk,r)r+ rJrl,rk(r), and, therefore, -Arf(l)J(r) (rkl,rJ)r-
rJ,rk. Again (rkJ)r r,+l(rr) r,Jk-f’(O)orJ, since J satisfies
problem (2.2).

Hencefoh by combining the last two equalities, (rJkl,r)-(rkJr)r-
f’(O)orJ -hrJf(l).

Integrating the above equality from R to 1 and bearing in mind that J(R)=0,
,(1, h) 0 we obtain

[-rk(r)(r, )J(r)]/-f’(O)o J(r)l(r, )rdr=- J(r)f[(r, )]rdr.
R R

In [R, 1], b<(r, 1)<0, for any 1 and since J does not depend on I we
conclude that

lim J(r)f(l(r, ))rdr=O.
R

LEMMA 2.4. Under che hypotheses of Lemma 2.2 and with notation set forth there
it holds that r, b in R, 1 ], in measure as n . In particular, (1, b as

Proo Again for simplicity we just write I for I.
Roughly speaking, the idea of the proof consists of first concluding that (., I)

approaches in measure a zero of which can be seen from the previous lemma and
second by using Lemma 2.2, which yields a super solution to the equilibria of problem
(2.1) in [R, 1] and, consequently, prevents (., I) from approaching the zero solution
in [R, 1].

There remains only the constant solution b for (., I) to converge to, as I.
A similar idea has previously been used by de Figueiredo in [7].
To this end let us take e>0 arbitrarily small and set L ={r[R, 1]: R+eNrN

l-e}. Recall that by Lemma 2.2 0J(r) l(r, )> b, in L for I suciently large.
Therefore, there is re(e)<0, m(e)=sup{J(r), rL} so that

f J(r)f(,(r, h))rdrm(e)f f((r, h))rdr>O

for any h sufficiently large.
Suppose now that there is a 6 > 0 and a subsequence {h.}, h. as n , such

that the Lebesgue measure m* of the sets L.. {r Im(e) (r, h.) b+ e} satisfies
m*(L..) 6 for any n.
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It follows from the hypotheses on f, namely, (fl) and (f2) that there is negative
constant f, so that f(ckl(r, A,))

Therefore,

m(e) Ii f(dpl(r, An))rdr>:m(e) I f(dpl(r, An))rdr

>=m(e)fmm*(I,n)>=m(e)fm>O forany n.

But this is a contradiction since from the first chain of inequalities in this proof and
Lemma 2.2 it follows that

f f(bl(r, A))rdr=O.lira
dl

*[Therefore, for any e>0, limnm (,,,)=0, and our claim follows Also
bl(1, A)-> b, as A-->, since bl,<0 on [R, 1).

The sequence of previous results culminate with the following theorem.
THZOREM 2.5. If km f> kM o fholds, with k, and K as before, then rl(A), the

unique zero of the solution qbl(r, A) in 0, 1], satisfies limx_ rl(A)= 1.

Proof. Suppose by contradiction that there is a subsequence {A} and R, 0 < R < 1
such that 0 < r(A) <= R.

The same notation of Lemma 2.2 is being used for simplicity, and hopefully this
will not cause any confusion.

By Lemma 2.1,

km IOhl(l’A") 4,(o.,.)

f< f, , > il,
dO

and limn_.o bl (1, An) b by Lemma 5.4. Therefore, taking the limit, as n --> , we obtain

If’ Io Iokm f<= lim kM f----< kM f,

which is against our assumption.
LZMMa 2.6. Under the hypotheses (hi), (h2), and (h3) it holds that bl(r, A)--> a, in

measure, for 0 <= r <= 1, as A --> oo. In particular, ckl(r, A)-> a, uniformly, in [0, ], as A ->

for any such that 0 < < 1.

Proof. Let us take e > 0. Consider r 1-(e/2) and the following eigenvalue
problem:

k6r)r -k k ’r+/zf’(0) 6 0, 0 < r <
r

Ir(O) (r8) O.

Let/Xo be the first positive eigenvalue ofthe above problem and J its corresponding
eigenfunction. We can take J(r)>0 in [0,

Hereafter the proof parallels the proofs of the foregoing lemmas, and, therefore,
we go rather fast, omitting some details.

Note that since r(A), the unique zero of bl(r, A) in (0, 1) satisfies rl(A)-> 1, as
A--> , we can suppose that for A" large enough, r < rl(A)< 1.

Proceeding as in the proof of Lemma 2.2 it can be proved that for A sufficiently
large, J(r) <= qbl(r, A) in [0, r].
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The very same computations done in the proof of Lemma 2.3 yield

(2.3) lim J(r)f(d(r, ))rdr=O.

We now use an argument similar to that used in the proof of Lemma 2.4 to
conclude, in view of the above equality that 4l(r, I)- a, in [0, r], as I oe, in measure.
Since (r, I) is a decreasing function in [0, r], the Lebesgue measure m* of the set
J(A) {re [0, r]: 0 l(r, A) < a e} satisfies limx m*J (A) =0, and so for A: large
enough we have J(A)=[1-e,r]. Hence for A: large enough m*{r[0,1]: b<
(r, A) < a e} < e. As for the uniform convergence of (r, A) to a, in [0, ?], as A
for any f (0, 1) it can be proved by contradiction once we realize that (r, A) is a
decreasing function in [0, 1] and use (2.3) above along with Theorem 2.5.

The claim follows.
LEMMA 2.7. Assuming the existence of ,(1)=lim (1, A,), it holds that

b< 1,(1)0, where A, as n.
Proof Taking the limit as n in the inequality derived in Lemma 2.1 and using

hypothesis (h3) we obtain

km
o

fN kM f< k f

which means that b < ,N 0. The lemma is proved.
As said before, it follows from (h3) that there are unique numbers

b < < a < 0, satisfying

kfoo kmlofok f= f and

Next we prove that b < fl ,(1) a < 0. To this end we need some additional
lemmas.

LEMMA 2.8. With notation set forth above and under hypotheses (h), (h), and
(h3) it holds that

lim
1 o ,(r, ) dr=O.

Proo Since (r, I) is an equilibrium solution to (2.1) it satisfies

The second integral in the above inequality has a uniformly bounded integrand
in [0, 1], and Lemma 2.6 assures us that (r, I) a in measure, as I, for 0N rN 1.
Then an application of the Lebesgue Convergence Theorem yields the desired result.

LMMa 2.9. Under hypotheses (h), (h), and (h3) it holds that any sequence
{ } , as n , has a subsequence { } such that

lim dr=O.
k An Jo

Proo To simplify notation we set

rk(r),(r,A)g(r)



474 ARNALDO S. DO NASCIMENTO

for 0 =< r =< 1. Then Lemma 2.8 says that

lim gn r) dr O.

Therefore, all we have to prove is that

fo’ k( r)
dr=O.

If we call

k(r)
hm (r) -- Xt1/m,1 ](r),

for 0<=r<= 1, m N, m > 1, where Xt/,,,l stands for the characteristic function of
[I/m, 1], then h,n(r)h(r), pointwise in [0, 1], as mc, where h(r)=k(r)/r2 for
r 6 (0, 1] and h(0) 0.

Let us call 6n,, Jlo hm(r)gn(r) dr. Then

k(r)
O< tnm gn(r)-3--X[1/m,1](r) dr

< r, A,.,)
dr=- k(r)-r F[c,(r, An)] dr

fotd<- k, F[6, (r, ,,)] dr kV, ,[0,

kMVF[6,(1, An), 1(0, An)] kMVF[a, b] <.
In the first equality above we used an equality derived in the proof of Lemma

2.1. Also Vy[a, b] stands for the total variation of f over [a, b], and VF[a, b]<
follows from the fact that f C2(R, R).

So the double real sequence satisfies 0< nm < Vy[a, b] < c, and hence it has a
subsequence (labelled again 6nm) that converges.

Moreover, for a fixed too, we have

lim ,, lim h,(r)gn (r) -<_ kMm lim gn (r) dr 0.

As a consequence the two limits can be interchanged, yielding limn_. limm_. 6n.,
lim._. limn_. 6n,. 0. Next, using the monotone convergence theorem, we obtain

Io’ Iolim h(r)gn(r) dr= lim lira gn(r)h,(r) dr

lim lira n, 0 by the above calculation.

The lemma is proved.
LEMMA 2.10. Let {An}nN be such that An-->o as n->o and ql(1, An) converges.

Then

f*l(l’Ank. lim f< kM lim f
n->c d 0

Proof. Since O< (h(1, A)<b for any AI, a sequence as above always exists.
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It follows from the equality (derived in the proof of Lemma 2.1) that

[k(r)qb"-(rAn)]2
k(r)-r F[qb’(r’ An)] dr=O"

This, along with Lemma 2.9, implies that

-,lim k r -r F[d r, An)] dr O

for any subsequence {ink}kN of the above sequence. For simplicity, we drop the
subscript k in the notation of the subsequence.

With the notation set forth before we have

k(r)f[qb,(r, An)]b,,r(r, A,) dr

lim 1/" FI(A
n---o 3 0

k(r)f[ch,(r, A,)]b,,r(r, A,) dr.

A careful examination of the signs of the above integrands over the respective
intervals of integration yields

0<= irn -kin F[qb,(r, An)] dr

-<lim kM F[b(r,)]dr
r(An

that is, lim. k ,o..)f lim. k o While comparing this to Lemma 2.1,
note that the roles of b(0, A,) and b(1, A) have been inveed here.

LEMMA 2.11. Under the hypotheses ofLemma 2.9, and with a and as before, and
assuming the existence of

b,,(1)= lim b,(1, A,), then

Proof From Lemma 2.9 and previous results we obtain

k,,, f<=kM

But o f=(km/ k,) Jo f and, therefore, $o f ")f that is, b < 6,(1) a < 0.
On the other hand, Lemma 2.1 and the assumption that

where b </3 < 0 < a, yield

o
f_<-- ---- f= f< f

Therefore, l,x(1) =>/3, and, summing up, we have b < fl =< ,(1) =< a < 0.
Note that if we knew that lim_. 4,(1, A) existed, then there would be no need

to resort to subsequences in the proof of Lemma 2.9.



476 ARNALDO S. DO NASCIMENTO

COROLLARY 2.12. With the above notation we have b </3 _-< lim,_ inf thl(1, h,)_-<
lim,_ sup bl(1, h,)=< a <0 for any sequence {A,}N such thath as n-c.

It follows by noting that lim_ inf bl(1, h) and lim_ sup bl(1, h) are, respec-
tively, the smallest and largest cluster points of the sequence bl(1, h,).

COROLLARY 2.13. If the diffusion function is constant, that is, k(r)= const., then
limh_ b(1, 3,)= c, where c is the unique negative number so that o f= ofand b < c <
0<a.

Proof It follows once we note that in this case o f= o f= o f with b < a < 0
and b </3 < 0, and, therefore, a =/3 in view of hypothesis (h2).

3. The case 41-(., A)e C-: interior spike. This case can be handled in essentially
the same way we handled the previous one, except for the order in which some lemmas
are applied. Also, as a consequence of the fact that now rl(A), the unique zero of
b(r, A) in (0, 1) satisfies r(h) 0 as A -; modifications must be introduced in some
lemmas. We just indicate these modifications and how the proofs can be accomplished
based on the foregoing results.

To start with we remark that in this case Lemma 2.1 provides insufficient informa-
tion about the behavior of r(h) as h-o, since it does not contradict hypothesis (h3).
However, that can be overcome by adapting Lemma 2.9 to suit this case. Recall that
(d/dr)b-;(r, A)>0 in (0, 1).

LEMMA 3.1. Suppose that {A, } N is such that r A, , as n where 0 <- <- 1
and lim,_ b -(0, A and lim_ b- 1, A. exist.

Then under hypotheses. (hi), (he), and (h3)
4, (o,,x.) I e, -(1,,x.)

k,,. lim f<= kM" lim f.
0 0

Proof. First, consider 0<f< 1. Also take e >0, e" small and set r-= -(e/2),
+r ?+(e/2).

Then by constructing a supersolution to problem (2.1) in [0, r-] and a subsolution
r+to the same problem in 1] we can follow mutatis mutandis the proof of Lemma

2.6 to conclude that b-(r, A,) b in measure, as nc, in [0, ?] and b]-(r, A,)- a, in
measure, as n- o, in ?, 1 ]. In particular, for any e > 0, 4-(r, A,)- b, uniformly, as
n e, in [0, r-].

Also, since 4 - (r, h,) satisfies

h--n k r dp [, r, h 2 r dr dp -( r, A f dp -( r, A r dr,

we can use the Lebesgue Convergence Theorem to conclude that the limit as n - o of
the left-hand side of the above equality is zero.

The same argument used in the proof of Lemma 2.9 yields

1 fot [k(r)qb-.r(r, hn)]2

dr=Oirn -. r
and, therefore,

i ]lim k(r)--;- F(4l (r, I)) dr+ k(r) -;- F(4-(r, A)) dr =0.
n->eo d 0 r(h.)

Following the proof of Lemma 2.9, with natural adaptations, the desired result is
obtained. The case f 0 as well as -- 1 can be proved in a similar way.

Toward proving that r(A) 0, as A , we suppose by contradiction that there
is a sequence {A.}.N SO that rl(hn)--> P, as n-->, with 0<-<1. Hence Lemma 3.1
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can be evoked to conclude that limn_ 4-(0, An)= b and, therefore,

k., lim f k f k lim f k
0 0

which contradicts hypothesis (h3).
Hence rl(h)0 as h-.
Also, following the proof of Lemma 2.6 we can show that b -(r, A) - a, in measure,

for 0 =< r <_- 1, as h - o. In particular b ]-(r, A) a, uniformly in , 1 ], as h - c for any
such that 0 < < 1.
Now Lemma 2.1, which also holds in this case, and our hypotheses assure us that

if limn_, b-(0, An)= b-,(0), then

io f--- f_--< f,

that is, b < (l-cx(0) < O.
On the other hand, Lemma 3.1 yields

;of=< f= f and so b </3 =< 4,1-.--- a < 0.
o

Likewise b </3 =< limn_ inf b]-(0, An) <-- limn_ sup 4-(0, An) =< a < 0.
Note that since bythe maximum principle b < &]-(., A) < a in [0, 1], for any A > 1,

it follows that for any p, 1_<-p_-<e% lim_ 114]-(., A)-a lip =0, where as usual 11. lip
denotes the norm of the space LP[O, 1].

In view of the above conclusions it is easy to see that given any e > 0, e: small
there is A=A(e) such that b<-e<c-(O,A)<a+e<O for A_->A. See Fig. 2.

Remark 3.1. As for the general case 4,+(., A) C,+[4(., A) C], it still should
hold, under hypotheses (h), (he), and (h3), that the area determined by the negative

l(r,x)

r=l

FIG. 2
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bumps of b+( A)[b( A)] approaches zero as . Let us point out that if ri(h)
1,..., n stand for the zeros of 6+ r, A) 6 (r, A) ], 0 < r < 1, where 0 < rl(A) <. <

r,()<l and A>X/1, then there are unique si(), l<=i<=n-1 such that 0<rl(A)<
sl(A) <" < r/1_1 < s,_l(h) < r(X) < 1, and

[ ]d- +(s)=O -r )- Si O l<__i<_n-1.

Now it seems that the asymptotic behavior of ri(), 1,..., n, for n _->2 bears
no resemblance to the case n 1. Actually the fact that the unique zero of b-(r, A)
[b-(r, A)] in (0, 1) satisfies rl()- 1 [rl(A)-* 0] as A -c might be a mere consequence
of (h3) forcing the area determined by negative part of b-(r, A) [4-(r, A)] in its graph
shrink to zero as and should not be taken as a clue for determining the asymptotic
behavior of ri(A), 1,..., n for n -> 2. Instead, it seems that in the general case the
focus should be shifted to the asymptotic behavior of si(A), 1,..., n- 1.

Remark 3.2. By reversing the inequality in hypothesis (h3) it is possible to obtain
the very same results of 2 and 3 with the roles of the equilibria a and b switched.

Remark 3.3. Let us consider, instead of (1.1), the more general equation

(3.1)
V" [k(r)V U(x)] + As(r)f(U(x)) =0,

X7 U" /o 0,

where r= Ilxll and s(r) is a positive function in C2([0, 1], R). The existence of two
solutions, U(r, A) and U]-(r, h), of (3.1) having the same properties of the solutions
b-(r, A) and b-(r, A) considered in this paper can be deduced from [1].

Set s, mino=<r__<l s(r), SM max0r__<l s(r), and let

smkm f> s4kM f

Then under hypotheses (hi), (h2), and (h), the techniques used in 2 and 3 can
be easily adapted to suit the above equation. Hence the same conclusions concerning
the formation of boundary and interior spike formation can be drawn for the solutions
U-(r, A) and U-(r, A), respectively.
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SPECTRAL AND NONLINEAR EFFECTS IN CERTAIN ELLIPTIC
SYSTEMS OF THREE VARIABLES*

LIGE Lit AND YAPING LIUt
Abstract. In this paper, the authors use the method of decomposing operator to prove the

existence of positive solutions to certain elliptic biological interacting systems of three species in
all possible patterns of interactions in terms of the combinations of competition, symbiosis, and
predation under the homogeneous Robin-Dirichlet boundary conditions. The existence of positive
solutions on large domains and the asymptotic stability of positive steady states for some cases are
also proved. The main idea is that the existence of positive solutions and their properties can be
characterized by the spectral properties of certain operators of Schrbdinger type and by the equilibria
of the system.

Key words, positive solutions, reaction-diffusion equations, steady states, principal eigenvalues
of linear operators, equilibrium, spectral radius, bifurcation, stability
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1. Introduction. In this paper we are concerned with the problem of positive so-
lutions to nonlinear elliptic systems with three unknown functions. To better demon-
strate the methods and the underlying ideas, we shall first investigate the following
system:

(1)

-Au uf(u, v,
-Av vg(u, v) in ,
-Aw wh(u, w),
Blu= B2v= B3w=O on0,

where 2 is a bounded domain in Rn with smooth boundary 0 and Biu a(x)u +
b(x)Ou/On are the Robin-Dirichlet boundary conditions with a,b E C(Rn), 0
hi(X) >_ O, bi(x) >_ O, and hi(X) + bi(x) > 0 on 0 for i 1, 2, 3. Moreover, f, g, h are
C monotone functions. This is the steady state of the reaction-diffusion system with
initial data fi, , :

Au uf(u, v, w),
v Av vg(u, v) in (0, T) ,
wt Aw wh(u, w),
Blu-B2v-B3w-O on [O,T) ,
u(O,
v(O,x) (x) in

x)=

Here u, v, w may represent the densities of interacting populations in problems arising
from ecology, microbiology, immunology, etc. The functions f, g, h serve as the relative
growth rates of these populations. We say that two species are in cooperation if
each of their relative growth functions is increasing in the other; and that they are
in competition if these functions are decreasing in the other opposer. In case of
predation, one of the functions involved will be increasing in the prey while the other
decreasing in the predator. For example, if w is a predator with u as its prey, then
fw < 0 and hu > 0. See [40, Chap. 14] for details.
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In 4, we shall extend the results on system (1) to the following more general
elliptic system:

(3)

-Au uy(u, v,
-Av vg(u, v, w) in ,
-Aw wh(u, w),
Blu B2v B3w- 0 on

The problem of positive solutions for single and two interacting species with dif-
fusion can be traced back to the late 70s and early 80s. The pioneering investigations
along this avenue include [2], [5], [9], [10], [11], [15], [16], [23], [24], [34], [36], [38], [39],
[40], and many others. Since then a considerable amount of interest and intensive
studies have been devoted to the systems of two interacting species, which may be
termed as 2 2 systems in short. See [3], [4], [6], [7], [12], [14], [20], [21], [26], [29],
[30], [35], [41], etc. In [16], [26], [37], [42] a good account of biological background was
provided.

An important early discovery on the problem of positive coexistence of 2 2
systems is the following: the instability of the marginal densities, i.e., the individual
species with the other species absent, implies the positive coexistence of both species
provided that the interacting species are a priori bounded. See, for example, [2],
[4], [9], [34], [37] for various predation and competition models. Later it was found
that the stable marginal densities can also yield positive coexistence in competing
interactions. See, for instance, [14], [30]. These two facts together tell us that it is
the signs of the principal eigenvalues of the linearization of the PDE system at the
related marginal densities that determine the positive coexistence when considering
predation and competition. This includes the above instability principle. In case of
symbios,is, the positive equilibria play an essential role. More specifically, for a system
of two cooperative species, if the positive marginal densities exist and the system has
a positive equilibrium, then it has a positive solution [21], [29]. We thus conclude that
the positive coexistence for a 2 2 interacting system is determined by the spectral
properties and the distribution of the equilibria of this system.

The problems arising from experimental and natural sciences, engineering, and
technology often involve more than two components and challenge us to deal with
3 3 interacting systems. Recent research in neurobiochemistry has shown that
the mechanism of the process of pain inducing and suppressing of human beings is
closely related to the interactions between certain biochemical substances distributing
along the neuropath nets. For example, it is known that two neurotransmitters,
acetylcholine and triethylcholine, compete for chemical receptors. The first one can
induce the pain while the second one serves as a suppressor. These two are both
predated through deprivation of receptors by a third neuropeptide of a choline with
a double group of

ICHaN+\CH
in its structural formula (see [43]). The positive coexistence of such three species will
affect the physiological feeling in an individual in response to a pain stimulation in
terms of sensitivity and of tolerance. This problem can be modeled by system (1) or

(3) with a suitable choice of the terms f, g, h.
As we have pointed out, the problem of the existence of positive solutions to

2 2 reaction-diffusion systems has been well investigated. However, the problem of
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three variables is far from being solved. To our knowledge, only some particular cases
have been studied. A two predator, one prey model in a particular form of system
(1) was considered in [42]. In [45], a special case of system (3) in a predator-prey-
mutualist model was discussed. In [25] certain properties of positive solutions for a
model of three species prey-predator system were investigated using the monotone
scheme of upper-lower solutions. A general formulation of the mathematical problem
of reaction-diffusion systems can be found in [16], [40]. In [31] the following system
was studied:

(4)

Here di, ai, Ki, fl,- are positive constants. This is a model of two competitors with
one cooperator. In [31] the authors applied the technique of upper-lower solutions to
give certain conditions for the existence of positive solutions to system (4) and to its
steady state under the homogeneous Dirichlet and Neumann boundary condition. In
[22] the following system (one predator u, two preys v, w) was investigated:

(5)

-Au u(a u cv dw),
-Av v(e + fu v + gw)
-Aw w( flu -v w),

U--V--W-"O on 0gt.

Taking a or e as a bifurcation parameter, the author applied the fixed point index
theory on positive cones to give a set of conditions under which the system (5) has
positive solutions. In [17] the theory of fixed point index was also applied to a 3 3
predator-prey chain model.

The goal of this paper is to investigate the existence of positive solutions to 3 3
elliptic systems. As we mentioned in the foregoing paragraph about the 2 2 sys-
tems, the spectral properties of the linearization at marginal densities determine the
positive coexistence in case of predations and competitions while it is dominated by
the equilibria of the system in symbiotic interactions. We shall prove in this paper
that the above principle for 2 2 systems carries over to 3 3 systems. More pre-
cisely, it may be formulated as follows. If the system is purely of symbiosis, then
we have the positive coexistence provided that the system has a positive equilibrium
(el, 62, 63), i.e., f(C, C2, 63) g(C1,62) h(Ci, 63) 0 in the case of system
(1) and f(C1, C2, C3) g(C, C2, C3) h(C, C3) 0 in system (3). If the system
involves only predation or competition or both, then the positive coexistence is char-
acterized by the signs of the principal eigenvalues of certain differential operators that
are determined by the marginal densities. That is, the spectral property of the system
plays the primary role. If the system involves symbiosis together with predation and
(or) competition, then the conditions for positive coexistence of three species will be
a cocktail of the property of the equilibria and the spectral property of the system in
question.

The results we are going to present in the following cover all possible interactions
involving three species defined by the system (1) and (3), which include some of the
earlier results as special cases. Moreover, the functions f, g, h are not specifically
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given and could be nonlinear. In this sense this paper gives a somewhat more general
and systematic treatment of the problem on positive coexistence to certain general
3 x 3 elliptic systems. The methods employed in this paper are different from those
used in the above mentioned papers. Our major approach is based on the method
of decomposing operator, which is motivated by the idea used in [3]. In 2 we first
improve this method by showing that the decomposing operators are C mappings
and their derivatives are either positive or negative operators. Then we combine this
with the fixed point theory in order intervals due to [1] and with the bifurcation
analysis to develop the techniques for the proofs.

Part of the results in 3 under the special case of Dirichlet boundary condition
were presented in the AMC(1990) meeting and its proceeding.

2. Preliminaries. In this section we give several lemmas that are important in
the sequel. In what follows, A1 (L) will denote the first eigenvalue of a suitable linear
operator L and r(L) the spectral radius of L. First we define the class 2" C C( x R)
by the following.

DEFINITION 1. p E 2- if and only if p E C( x R), p is C in second component,
-L < p(x, u) < 0 in x R for some L > 0, and

lim p(x, u) < A1 uniformly for x t.

Here A1 A(-A) is the first eigenvalue of the equation

(7)
-Au Au in
Bu 0 on OFt,

where Bu a(x)u+b(x)Ou/On is the Robin boundary operator with a, b
a(x) > O, b(x) > O, and a(x) + b(x) > 0 on 0t: The above inequality (6) will be
satisfied if p(x, C) < A1 in gt for some constant C > 0.

LEMMA 1. Let c(x) L () and P be a positive constant such that P + c(x) > 0
for almost every x . Then

(1) A(A + c) > 0 , r[(-A + P)-(P + c)] > 1;
(2) A1 (A + c) < 0 = r[(-A + p)-l(p + c)] < 1;
(3) ,1(A + C) 0 = T[(--A + P)-(P + c)] 1.

Proof. See Lemma 2 [29].
Let g C()+ be the positive cone of the ordered Banach space C(). For

u, u2 e C(), define the order interval [[ul, u2]] := {u e C()’ui < u < u2 in }.
Let e be the unique solution of

-Ae=l in,t,(8) Be=O on0.

Then define the ordered Banach space C() by C() [.Jert+ A[[-e,e]]
ert+[[-Ae, Ae]] with norm Ilulle inf{A > 0" -Ae _< u < Ae}, the Minkowski
functional. Let g := Ce()+. (See [1] for details.)

LEMMA 2. Let p . Consider

-Au up(x, u) in ,(9) Bu 0 on 0.

(i) If AI(A + p(x, 0)) > O, then (9) has a unique positive solution.
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(ii) If 1 (A + p(x, 0)) <_ O, then u =_ 0 is the only nonnegative solution of (9).
Proof. (i) Let AI(A + p(x,O)) > 0. Define operator A’C() --, C() by

Au (-A+p)- (up(x, u) +Pu), where (-A+p)-i is under the boundary condition
Bu 0. P > 0 is to be chosen. Since A’(0) (-A+p)-(x, 0)+p] and
A(A+p(x, 0)) > 0, we have r(A’(O)) > 1 by Lemma 1. A’(0) is strongly positive from
C(fl) to Ce(g) for P > maxe{-p(x,0)}. (See Theorem 4.2 in [1].) By Theorem
4.3 and Lemma 7.5 of [1], there exist e E (0, 1] and u > 0 such that A(Tu) > -u for
all T E (0, e).

Let (x) b(x) + i with~ i > 0, and let~ -A) be the first eigenvalue under
the boundary condition Bu 0, where Bu au+ bOu/On. By the continuous depen-
dence of eigenvalues on the boundary conditions (see, [13, Chap. 6] or use directly the
variational formula for the principal eigenvalue), we chose 5 small enough such that

lim p(x, u) < 1 uniformly for x .
Let u be a positive eigenfunction corresponding to 1. Claim: u > 0 on . u > 0 in

by the maximum principle. If x0 0 is such that u(xo) O, then u attains its
nonpositive minimum at x0. By the Hopf lemma (see [40, Chap. 8]), Ou/On < 0 at x0.
On the other hand, Ou/On -(a/)u 0 at x0, a contradiction. Thus the claim is
true and we can choose uK with K large enough such that
for all x e . Therefore, -A 1 > p(x,). Then (-A + P) > p(x, )+ P.
We also have B >_ B. 0 on
0. Thus fi > (-A + p)-l[zp(x, ) + p] A by the maximum principle. Let
Co maxxefi(x) and P > 2max{sup(,)eH[0,Co Ip(x,u)l,Con}. Then A is an

increasing, compact operator on the order interval [[TU, fi]] for a fixed e (0, e). By
Corollary 6.2 in [1] A has a maximum fixed point E [[ru, ]]. is thus a strictly
positive solution.

For the proof of the uniqueness see, for example, [17], [25].
(ii) Suppose u is a positive solution of (9). Then (A + p(x, u))u 0, and hence

A(A + p(x, u)) O. Since p(x, O) > p(x, u) in , we have A(A + p(x, 0)) > A1 (A +
p(x, u) 0, a contradiction.

Note 1. The above lemma generalizes Lemma 3 in [29] and the related result
in [26] since we do not assume here the existence of a constant Co > 0 such that
p(x, Co) <_ O, for all x , and the boundary condition is also more general. When
the applications to biology and chemical reaction are concerned, the assumption that
p(x, Co) <_ 0 for some Co > 0 rules out many particularly important and useful models
with mild change rates in the growth functions, p(x, u) cg(x)/(1 +g(x)u) with c > 0
and g(x) > 0 is such an example.

In view of Lemma 2, for all p e ’, let Up be the unique positive solution of (9) if
AI(A + p(x,O)) > 0 and Up =_ 0 otherwise. The following result is motivated by the
method in [3] 3 for a 2 2 predator-prey model.

LEMMA 3. If the constant L in the definition of the class is independent of
functions p, then

(i) The mapping p Up is continuous in sense of - C1,(2 R) where
e (0,

(ii) Ifp >_ P2 P, then either Up1 > Up2 or Upl Ups. =_ O.
Proof. See Lemma 4 in [29] where it was proved for the Dirichlet boundary

condition. But the arguments work also for the Robin boundary condition. See also
[1].
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LEMMA 4. Let c E L(f). If l(i-[-c(x)) < O, where A is taken under the
boundary condition Su 0 on Of], then (A +c(x))-1 is a negative operator on C(-),
i.e., it maps the positive cone K into --K. More precisely, if 0 (A + c(x)) _> 0,
then < O.

Proof. See Lemma 2.2 in [30], where it was proved for the Dirichlet boundary
condition. But the method applys also to the Robin boundary condition as well
because the maximum principle still applies. D

The following is a well-known result on a general version of the Hopf lemma.
LEMMA 5. Assume c(x) L(t). Let 0 u >_ 0 and Au + c(x)u <_ 0 in . If

u(xo) 0 for a point xo Ogt, then Ou(xo)/On < O.
Note 2. In this lemma no restriction on the sign of the function c(x) is imposed

due to the assumption u _> 0. For a proof see [18, 1].
We impose the following hypotheses on the functions f, g, h:
(H1) f CI(R a a), g,h C(R a). f(., v, w), g(u, .), h(u, .) for

any fixed u, v, w C()+. fv, fw, gu, hu 0 and all partial derivatives are uniformly
bounded on R R R and on R R, respectively.

(H2) mAn(f(0, 0, 0), g(0, 0), h(0, 0)} > 1 (--i).
The hypothesis (H1) implies that the species u, v, w can survive by themselves in

the absence of the other species, i.e., the equations

-Au uf(u, O, O) int, BlU--0 on

-Av=vg(0, v) inf,B2v=0 on0t,

-Aw=wh(0, w) int, B3w=0 on

have positive solutions u0, v0, w0, respectively. This follows immediately from Lemma
2 since A (A + f(0, 0, 0)) > 0, A (A + g(0, 0)) > 0, A (A + h(0, 0)) > 0.

The functions u0, v0, w0 will always denote the unique positive solutions of the
above equations, respectively, in the sequel.

By hypothesis (H1), fv, fo, gu, h do not change signs. So the pattern of interac-
tion between each pair of two species is either predation, or symbiosis, or competition.
We will use the following notation:

u ---, v if u preys on v,

u -o- v if u, v cooperate,

u v if u, v compete.

For example, v -- u w represents a one predator(u) two prey(v, w) model,
whereas v -o- u- w means that u, v cooperate and u, w compete.

According to Lemma 2 we define the operators S, T’C() -. C(f) as follows.
For u C(f), Su is the unique positive solution of the equation

(10) -Av--vg(u,v) in’t,
B.v 0 on 0t,
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if A1 (A + g(u, 0)) > 0 and Su =_ 0 otherwise. Tu is determined similarly from the
equation

-AT wh(u, w) in t,(11) B3w-0 on 0ft.

Let U1 {u e C(t)" Su > 0}, U2 {u e C(ft)’Tu > 0}. ByLemma3, it
is easy to see that the operators S and T are continuous operators and that if u, v
cooperate or u is a prey of v, then S is a strictly increasing operator in the sense that
ul u2 >_ u and u2 E U implies Su2 > Su, and that if u, v compete or u preys on
v, then S is a strictly decreasing operator in the sense that u u2 _> u and u E U1
implies Su2 < Sul. A similar conclusion is true for T with respect to U2. Moreover,
we have the following.

LEMMA 6. The operators S, T defined above are C mappings on U1 and U2,
respectively. Moreover, the Frdchet derivative S (or T) is either a positive operator
or a negative operator.

Proof. Define F" C()@ C() -- C() by F(u, v)"= -v + (-A)-[vg(u, v)],
where (-A)- is taken under the boundary condition B2v 0. Let D2 repre-
sent the derivative with respect to the second component. Then it can be verified
that D2F(u, v) -I + (-A)-[vg(u, v)]= -I + (-A)-[g(u, v) + vg,(u, v)], i.e.,
D2F(u, v) - + (-A)-[g(u, v) + vgv(u, v)] for e C(). Let u e Vl. We
claim, that (D2F)- exists and is bounded at (u, Su). It is equivalent to showing
that 1 is not an eigenvalue of the operator (-A)-l[vg(u, v)]v at v Su. Suppose
that there exists a e C(), 0 such that (-A)-l[vg(u,vO)]v . Then
(A + [vg(u, v)]) 0 0. . This implies 0 e a(A + [vg(u, v)]). On the other
hand, -Av vg(u,v) implies AI(A + g(u,v)) 0. Since gv < 0, it follows
that A(A + [vg(u, v)]) < ,1 (t -- g(u, V0)) 0. Thus 0 a(A + [vg(u, v)]).
This contradiction shows that D2F is nonsingular at (u, Su). Applying the implicit
function theorem in Banach spaces (see Chapter 8 in [33]) to F(u, v) 0, we see that
there is a unique C curve v (u) in a neighborhood V of u with (u) Su and
F(u, 7(u)) =- O. Note that F(u, v) 0 if and only if v is a solution of the equation

(12)
-Av vg(u, v) in t,
B2v 0 on 0.

Therefore, Su /(u) and S is a C mapping from U1 to K. We, therefore, denote
by S’(u) the Frchet derivative of S at u. Since F(u, v) -v + (-A)-l[vg(u, v)], we
have Fv -I + (-A)-l(vg)., Fu (-A)-vg. From F(u, Su) 0 we conclude
that F + FS’(u) 0 by the chain rule. (See Chapter 6 in [33].) Therefore, S’(u)
-F-IFu -[-I + (-A)-l(vg)v]-l(-i)-lvgu
-(A + g + Vgv)-i(vgu)I. Notice that AI(A + g) 0 because (A + g(u, v))v 0
for v Su > 0. Therefore, .X(A + g + Vgv) < 0 due to g < 0, and consequently
(i "4- g + Vgv)--1 is a negative operator by Lemma 4. Since v > 0 and g has a definite
sign, we conclude that S(u) is either a positive or a negative operator. The same
conclusion can be drawn from the operator T.

Note 3. If the functions g and h are C2 functions, then the operators S and T
are C2 mappings [33].

With the operators S and T discussed above, we define and denote the operator
A C() C() by Au (-A + p)-l[uf(u, Su, Tu) + Psi, where P > 0 is a
constant. Let Ae OA for 0 < 0 _< 1. Clearly, is a fixed point of A in K if and only
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#0 1 #o 1
(a) (b)

FIG. 1.

if (, ST, T-) is a nonnegative solution of (1). We are looking for the positive fixed
point of A with S > 0, T- > 0.

LEMMA 7. For a given C > O, the operator A defined above is a positive, compact
operator on [[0, VII for large P. If no predation is involved in system (1), then A is

[[0, vii P.
Proof. Since Au (-A + P)-l[uf(u, Su, Tu) + Pu] and S,T are continuous,

we see that A is compact. If P > supe[[0,c]] If(u, Su, Tu)l, then A is positive
on [[0, VII. Finally, if no predation is involved in system (1), then by Lemma 3
f(u, Su, Tu) is increasing in u in the second and third components. Choose P >
maxu[[0,c]] IDlf(u, Su, Tu)l, where D1 denotes the derivative with respect to the
first component. Then A is an increasing operator on [[0, C]]. [:]

Let X be a Banach space, K be a compact linear strongly positive operator on
X and F be a strictly positive continuous nonlinear operator on X with F(0) 0.
Consider the eigenvalue problem u #Hu with H KF, (#, u) E R x X. We have
the following.

LEMMA 8. Assume H’(O) exists with r(H’(O)) > 1. If there exists no # e (0, 1]
such that in its neighborhood the equation u- #Hu has solution u with
then H has a positive fixed point in K.

Proof. This is a simple consequence of the so-called nonlinear Krein-Rutman
theorem (see, for example, Theorem 7.H in [44]), which says that for a strongly
positive compact operator H, the 1/r(H’(O)) is the only bifurcation point of # for
positive solutions (#, u) > (0, 0), and that the bifurcation branch is unbounded. Note
that for # _< 0, the equation u #Hu has no positive solution and the possibility of
bifurcation from c in (0, 1] is ruled out by our assumption. Therefore, the bifurcation
diagram must be one of the cases in Fig. l(a) and l(b). Note that #0 r(H’(O))- <
1. The equation u #Hu thus has a positive solution for each # (#0, 1]. Let # 1
to conclude the lemma. [:]

LEMMA 9. The positive fixed points of Ao have an a priori bound for 0
no symbiosis relation is involved in system (1).

Proof. Let A(u) u, (0, 1], u0 K. Then

(13) Auo 0uf(uo, Suo, Tuo) + P(0- 1)no.

Consider the following cases.

(1) Both v and w are predated by u. Then f(u, Su, Tu) <_ f(u, C2, C3), where
C2 maxxev0(x), C3 maxxew0(x). Also f(O, Va, C3)

(2) v is a prey for u while w is not. Then f(u, Su, Tu) <_ f(u, C2,0) and
f(O, C2, O) _> f(O, O, O) > 1
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(3) w is a prey for u while v is not. Then f(u, Su, Tu) <_ f(u,O, C3) and
f(O, O, C3) _> f(O, O, O) > 1

(4) Neither v nor w is a prey of u. Then f(u, Su, Tu) <_ f(u, O, 0).
In any case, there exist C2, C3 _> 0, independent of 0 such that f(u, Su, Tu) <_

f(u, C2, C3) for any u e g and f(0, C2, C3) > AI(-A). It thus follows from (13)
that -Aus <_ Ousf(u, C2, C3).

In case that f(u, C2, C3) < 0 as u >_ C for some constant C > 0, the general
maximum principle implies immediately that us _< C.

In case that f(u, C2, C3) _> 0 for all u _> 0, we find that us is a lower solution of

-An= uf(u, C2, C3) in f,(14) Bu=O on OFt,

because 0 < 0 _< 1, f _> 0, us > 0. Since we have already shown f(0, C2, C3) >
A(-A) and limu_+of(u, C2, C3) < AI(-A) by hypothesis (HI), as in the proof of
Lemma 2, (14) has a unique positive solution , which is larger than or equal to any
lower solution to (14). Thus _> us. Note that does not depend on 0. Therefore,
K maxx (x) is the a priori bound we need.

PROPOSITION 1. Assume that no symbiotic interaction is involved in system (1).
Then A has a positive fixed point if AI(A + f(0, vo, To)) > 0.

Proof. A is strongly positive from C(ft) to Ce(f). (See Theorem 4.2 in [1]
or Proposition 7.51 in [44]). A’(0) (-A + P)-[f(0, vo, To) + P] and ,,I(A -I-
f(0, vo, To)) > 0 imply r(A’(O)) > 1. We apply Lemmas 9 and 8 to conclude this
proposition.

3. Results.

3.1. The existence theorem. In this section we give the conditions for the
existence of positive solutions to the system (1) in all possible ten cases of interactions
in three species in terms of the combinations of competition, symbiosis, and predation.

For ui, vi,wi e C(ft) or +oc, i- 1,2, let << (Ul,Vl,Wl),(u2,v2,w2)
{(u, v, w) e C() @ C(ft) C(gt) (Ul, v, Wl) < (u, v, w) < (u2, v2, w2) in

Let u0, v0, w0 denote, respectively, the unique positive density of species u, v, w
while the other two species are absent. (See the paragraph following the statement of
hypotheses (HI), (H2)in 2.)

THEOREM 1. Let f, g, h satisfy (HI) and (H2). Then the following are true.
Case 1. v u w. System (1) has a positive solution if and only if

f(O, Vo, To)) > O.
Case 2. v -o-- u -o- w. If system (1) has a positive equilibrium (C1, C2, C3), then

it has a positive solution in << (u0, v0, w0), (C1,62, 63)
Case 3. v -. u w. Assume AI(A + f(0, v0, w0)) > 0, AI(A + g(uo, 0)) > O,

A1 (A-+-h(u0, 0)) > 0; then system (1) has a positive solution in<< (0, O, 0), (no, vo, To)
Note 4. If one of A(A -+- g(uo, O)) and A(A + h(uo, O)) is O, the conclusion is

still true.
Case 4. v -o- u -- w. Assume that AI(A + f(0, v0, w0)) > 0 and the subsystem

(15) --Au uf(u, v, 0),
-Av vg(u, v),

has a positive equilibrium (C, C2), i.e., f(C1, C2, O) O, g(C1, C2) 0. Then system
(1) has a positive solution in << (0, v0, w0), (C1, C2,
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Case 5. v u -- w. Assume ,l(i -- f(0, V0, W0)) > 0, 1(A --g(u0, 0)) __) 0.
Then system (1) has a positive solution in << (0, 0, wo), (no, vo, +cx)) >>.

Case 6. v -o- u w. Assume that the subsystem

(16) -An uf(u, v, O)
-Av vg(u, v)

has a positive equilibrium (C1, C2) and that 1 (A+f(0, vo, wo)) > 0, .1 (A+h(C1,0)) _>
O. Then system (1) has a positive solution in

Note 5. The above conclusion generalizes the existence result of Theorem 2.7 in
[31, 2], where the condition c1(1 K2) > Aod implies A(A + f(O, O, wo)) > 0 in
our term and c2 -3’K > od2 implies )1 (A 2_ h(C1,0)) > O.

Case 7. v --- u w. Let u be the unique positive solution of

-An uf(u, vo, wo) in f,(17) Bu 0 on Of.

(Existence is guaranteed by Lemma 2 since ,1 (i
0). Assume that )(A + g(ui, 0)) >_ 0 and (A + h(ui, 0)) >_ O. Then system (1) has
a positive solution in

Case 8. v --o- u -- w. Let C maxxe wo(x). Assume

(18) -An= uf(u, v, C),
-Av vg(u, v)

has a positive equilibrium (C, C2) and A(A + h(C, 0)) >_ O. Then system (1) has a
positive solution in

Case 9. v +-- u w. Assume 1 (i+f(O, Vo, Wo) > 0 and Al(A+g(uo, 0)) _> 0.
Let u be the unique positive solution of

-An uf(u, vo, O) in ,(19) Bu 0 on Of.

(Existence is guaranteed by Lemma 2 since (A + f(0, vo, 0)) >_ A(A + f(0, 0, 0)) >
0.) Suppose A(A + h(u,O)) >_ O. Then system (1) has a positive solution in <<
(o, o, o), >>.

Case 10. v +--- u w. Assume 1 (A + f(O, vo, Wo)) > 0 and 1(+g(0, 0))
O. Then system (1) has a positive solution in << (0, O, wo), (+, vo, +) >.

Note6. The condition A(A+g(uo,0)) 0 can be weakened to A(A+g(u,O))
O, where u is the unique positive solution of

(20) -Au uf(u, O, wo) in f,
Bu 0 on Of,

if A(A + f(O, O, wo)) > 0 and u =_ 0 otherwise. Thus, for example, if I(A --f(O, O, wo)) <_ O, then (A + f(0, vo, wo)) > 0 would imply the existence of a positive
solution to system (1).

Proof.
Case 1. In this case fv, f < 0, g, h > 0. Let Au := (-A+P)-lu[f(u, Su, Tu)+

P]. Assume AI(A + f(0, vo, wo)) > 0. By Proposition 1, A has a fixed point T > 0.
ST > SO vo > 0, T > TO wo > 0. (T, ST, TT) is thus a positive solution of
system (1).
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Conversely, let (T, ,) be a positive solution. Then ST > SO v0,
TT > TO w0, and thus f(0, v0, w0) > f(0, , ). Therefore, 1(A + f(0, v0, w0)) >
1 (A + f(0, , )) > 0 since the equation

-Au uf(u,(21)

has positive solution T.
Case 2. In this case fv, f,, gu, h > O. -Auo uof(uo, O, O) < uof(uo, Suo, Tuo)

implies u0 < Auo. Equation

(22)
-Av vg(C1, v) in f,
B2v 0 on 0fl

has a unique positive solution vl SC1. The constant C2 is an upper solution of
(22), and the function eVl is a lower solution to (22) for e e (0, 1]. When e is small,
we have evl < C2. There thus exists a positive solution of (22) in [[evl, C2]]. By
the uniqueness, vl. This shows that SC1 <_ C2. Similarly, TC1 <_ C3. So
-AC1 0 Clf(C1,C2, C3) >_ Clf(C1,SC1,TC1). Thus C1 >_ AC1. By a similar
argument, we see that u0 _< C1. By Corollary 6.2 in [1] and Lemma 7, A has a positive
fixed point T e [[u0, 61]]. Therefore, (T, ST, TT) is a positive solution of (1). Also,
CLOT_< C1 impliesv0 SO < ST< SC1 <_ C2 andw0 =T0 < T-<TC1 <_ C3
by the strict monotonicity of the operators S and T. Since -Auo uof(uo, 0, 0),
-AT Tf(T, ST, T), -AC1 0 Clf(C1, C2, C3), and f(u, 0, 0) < f(u, ST, T-) <
f(u, C2, C3), we conclude that u0 < T < C1 according to Lemma 3.

Case 3. In this case fi,, fw, gu, h < 0. By Proposition 1, A has a positive fixed
point T. By Lemma 3, T _< u0. Thus vo SO > ST >_ Suo > 0 and w0 TO > TT _>
Tuo > 0. Then T < u0. Therefore, (T, ST, T) is a positive solution.

Case 4. In this case f, g, h > 0, f < 0. Since A’(0) (-A+P)-I[f(0, vo, To)+
P] and (A+ f(0, vo, To)) > 0, we have r(A’(O)) > 1. It is easy to check that the re-
striction of A on C(gt) is strongly positive. By the Krein-Rutman theorem, r(A’(O))
is an eigenvalue of A’(0) with a positive eigenvector and A’(0) has no other eigenval-
ues with positive eigenvectors. Let Ae OA and R C1. Suppose Aeu u with
u OBt(O) K for some 0 (0,1]. Then -Au Ouf(u, Su, Tu)+ P(O- 1)u.
Since u, Su, and Tu are in W2’p(gt) for any p > 0 and f is C1, we see from the
above equality that u W3’p(Ft) for any p > 0. By the Sobolev imbedding the-
orem, u C2(). Now u _< C1 implies Su <_ C2. If u attains its maximum at
x0 E f, let u(xo) maxu(x) C1 > 0. Since Tu > TO w0 > 0, we
have 0 _< -Au(x0) _< Ou(xo)f(u(xo), Su(xo), Tu(xo)) < Ou(xo)f(u(xo), C2, wo(xo)) <_
OClf(C1, C2, 0) 0, a contradiction. If u attains its maximum only on the boundary
of f, let u(xo) maxe u(x) C1 > 0 for some x0 E 0f. Because 0f is smooth, we

can choose a ball B C Ft such that B N 0f {x0}. Since f(u(xo), Su(xo),Tu(xo)) <
f(C1, C2, O) O, B can be chosen so small such that f(u(x), Su(x), Tu(x)) < 0 on B.
We have -Au(x) _< Ou(x)f(u(x), Su(x), Tu(x)) < 0 on B. Applying the Hopf lemma
(Lemma 5) to u in the domain B, we conclude that Ou(xo)/Om > 0 for any outward
pointing direction m with respect to OB. Therefore, Ou(xo)/On > 0 with respect to
0f. Then Blu(xo) al (xo)u(xo)+bl (xo)Ou(xo)/On > 0, contradicting the boundary
condition Blu O. In any case it shows that Ao has no fixed point on OBR(O) N K
for 0 < O _< 1. Therefore, Au = Au for all A [1, c) and for all u OBR(O) K.
By Theorem 13.2 in [1], The operator A has a positive fixed point T [[0, C1]]. Now
(T, ST, TT) is a positive solution of (1). TT-> TO w0. C1 T _< C1 implies
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V0 SO < ST < SC1

_
C2. Thus it follows from Lemma 3 that < C1, using a

similar argument to the proof of Case 2.
Case 5. In this case fv, fw, gu < O, hu > 0. By Proposition 1, the operator A has

a positive fixed point . Since T > TO wo > 0, we have by Lemma 3, < uo. Thus
vo- SO > ST > SUo >_ O. Therefore, (, S,T-) is in

Case 6. In this case fv,g > O, fo, hu < 0. That AI(A / f(O, vo, wo)) > 0
implies r(A’(O)) > 1. Similarly as in the proof of Lemma 2, we can show that
there exists u > 0 with u < C1 and Au > u. Since SC1 <_ C2 and TCI > O,
we have -AC1 0 f(C1, C2, O) > f(C, SC,TC). This shows C1 > AC.
By Lemma 7 and Corollary 6.2 in [1], A has a positive fixed point E [[u, C]].

C1 implies0 < TC1 < T-< TO--To and0 < v0 SO < ST < SC < C2.
It follows that < C by the argument used in the proof of Case 2. Therefore,
(,,T) e<< (0, v0, 0), (C, C., w0) >>.

Case 7. In this case, fv, fo > 0, g, h < 0. By Proposition 1, the operator A has
a positive fixed point T. Since in this case ST < SO v0, TT < TO w0, we have

f(O, ST, T-) < f(O, vo, To). Lemma 3 implies
Tul > O. Hence u0 < T and (T, ST, TT) is a positive solution to system (1).

Case 8. In this case f, fo, gu > 0, h < 0. Similarly, as in Case 4, the operator
A has a positive fixed point T e [[0, C]] and T #- C1. Therefore, v0 SO < ST <
SC1 < C2 and w0 TO > TT > TC >_ O. Thus u0 < < C. (T, ST, T-) is a
positive solution of system (1).

Case 9. In this case f. > 0, fo,gu, hu < 0. By Proposition 1, A has a positive
fixed point . ST < S0 v0 and T- > 0 imply f(O, ST, TT) < f(0, v0, 0). Lemma
2 then asserts that < u. Then 0 _< TUl < T- < TO To. By Lemma 2, either
ST > 0 or ST 0. Suppose ST _= 0, then T is the positive solution of

-Au uf(u, O, T-) in D,(23) Blu 0 on 0D.

The inequality f(0, 0, TT)
Suo > 0, a contradiction. Therefore, ST > 0. (T, ST, T) is a positive solution to
system (1).

Case 10. In this case fv, h > 0, fo, g < 0. By Proposition 1, the operator A
has a positive fixed point . ST < SO vo, TT > TO w0 > 0. Similarly, as in
Case 9, we can show that ST > 0. Consequently, (, ST, TT) is a positive solution of
system (1)in

What follows is a result on the existence of positive solutions over large domains.
In addition to the hypothesis (H1), we assume that there are constants Ci > 0,

2, 3 such that g(0, C2) 0, h(0, C3) 0. The hypothesis (H2) will be replaced
by the following weakened one.

(H2’) f(0, 0, 0) > 0, g(0, 0) > 0, and h(0, 0) > 0.
We say that a domain 2 is large if fl contains a ball BR(O) with large radius R.

Then we have the following.
PROPOSITION 2. Under the above assumptions on f, g, h, system (1) in the case

of (v ---. u w) has a positive solution on large domains if it has a positive
equilibrium (C1, C2, C3).

Proof. We first have C2 > C2 because g(C1, C2) g(0, C2) 0 and g > 0,
g < 0. Similarly, C3 > C3. So f(0, C2, C3) > f(Ci, C2, C3) 0. We claim that
when 12 is large, there exist unique positive solutions vo > 0, wo > 0, respectively, to
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the equations

--Av=vg(0,v) ingt, B2v=0 on0f,
-Aw=wh(0, w) ingt, B3w=0 on0t.

Because (-A) 1/(d(f))n, where d(t) is the diameter and n the dimension of the
domain fl, the d(t) can be chosen so large that min{l (A+g(0, 0)), 1 (A+h(0, 0))}
0. Lemma 2 then asserts the existence of v0, w0. We have v0 < C2, w0 < C3 since
C2, C3 are the a priori bounds for v0, w0, respectively, on every domain by the general
maximum principle. Thus f(0, vo(x), To(X)) > f(O, C2, C3) > 0 for all x. Therefore,
(A + f(0, v0, w0)) > 0 on large domains. Then apply Case 1 of Theorem 1 to
complete the proof.

Note 7. An interesting remark can be drawn by comparing this proposition with
Case 1 in Theorem 1. That is, on an ordinary domain the spectral property of a two
predator-one prey system determines the existence of positive solutions, while the
equilibrium of the system dominates on a large domain. The solutions to an elliptic
system over a large domain can be related to a singular perturbation problem, that
is, a problem with a small diffusion rate. Under certain conditions the equilibrium
might have a significant effect on the solutions. This idea had been adopted explicitly
or implicitly by various authors. See, for example, [5], [8], [19], [28].

3.2. Bifurcations. Consider the following system

-dAn uf(u, v, w),

(24) -Av vg(u, v) in f,
-AT wh(u, w),
Bu= B2v= B3w=O on0t,

where d > 0 is a constant and the boundary operators Bin ai(x)u + b(x)Ou/On
are defined as in 1. We assume that f, g, h are C2 functions, that (H1) is satisfied,
and that g(0, 0), h(0, 0) > A(-A). Let CB (’) be the subspace of C(gt), subject to
the boundary condition Bu O. Motivated by the method of [9] in two species of
predator-prey relationship over an interval in R, we give the uniqueness and stability
of the positive solutions of (24) on various patterns of interactions.

THEOREM 2. Under the above assumptions, if in (24), A1 (dA + f(0, v0, w0)) > 0
for some d > O, then there is a neighborhood Af of (0, vo, To) in CB1 ()
CB3 () such that there exists a unique positive solution (u, v, w) of system (24) in Af
for some range of d. This is true for all ten cases, and these solutions are stable in
cases 1, 7, 10 in Theorem 1.

Proof. Define F(d, u) dan + uf(u, Su, Tu), where the operators S and T
are those defined in the paragraph right before Lemma 6 and d > 0 is the diffusion
rate. It is easy to identify the linearization operator F(d, O) dA + f(O, vo, wo)I.
The first eigenvalue of F(d, 0) depends smoothly on d for d > 0. Note that the
spectral a(F(d,O)) in Csl () coincides with that in L2(). Using the variational
estimate of the selfadjoint operator F(d, 0) (under the boundary condition Bu 0),
we derive that AI(F(d, 0)) < 0 for d large enough. Therefore, by the assumption of
this theorem, there exists a d > 0 for which A (F(d, 0)) 0. Note that F(d, O) 0
for any given d. It is easy to see that d is a bifurcation point of d for the equation
F(d, u) 0. Indeed, let > 0 be the corresponding eigenfunction of F,(d, 0) 0.
Then an elementary calculation shows that Ker(F(d, 0)) (/, the linear space
generated by , and a function e Range(F(d, 0)) if and only if (,) 0, where
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(.,.) denotes the inner product in L2(Ft). Therefore, Codim(Range(Fu(,0))) 1.
Finally, Fud(, 0) A and Fud - Range(Fu(, 0)) because (, A) f IV12dx+
fof O/Onds < 0 (otherwise 0, which is contrary to > 0). Thus the Crandall-
Rabinowitz bifurcation theorem (see Theorem 13.5 in [40]) asserts the claim about
3. Therefore, we have a 5 > 0 and a C bifurcating pair d d(s), u u(s)
s( 4-(s)) with d(0) d, (0) 0, and F(d(s), u(s)) 0 for Isl < . We claim that
(u(s), Su(s), Tu(s))is a positive solution of system (24) for small s > 0. To this end we
note first that B1 al (x) 4- 51 (x)O/On 0 on 0f. For x e 0f, if bl (x) 0, then
(x) 0, and consequently O(x)/On < 0 by Lemma 5. If bl (x) > 0, then (x) > 0.
Otherwise (x) 0 implies O(x)/On (al (x)/bl (x))(x) 0, which is contrary to
Lemma 5. Let F1 (x E 0f" 51 (x) 0}. Then O(x)/On < 0 on F1. The continuity
of bl implies that F1 is compact. Thus there exists an open neighborhood U of F1
and a positive number el such that IO(x)/Onl > el on U. Let F2 0f \ V.. Then
F2 is compact and (x) > 0 on F2. Thus there exists an e2 .> 0 such that (x) > e2
on F2. The a priori boundedness of the solution u implies that u Cm(f) for some
m > 1 by the Sobolev imbedding theorem. Since u(s) s( 4- (s)) and e C,
it follows that (s) C’(). Combining the fact that is a C1 mapping of s, we
conclude that O(s)/Onlon is uniformly bounded for Isl _< 5. Putting all the above
facts together with (s) o(s), we can see that u(s) s( 4- (s)) > 0 for small
s > 0. Since SO v0 > 0, TO w0 > 0, and u(s) ---. 0 as s O, similar arguments
can show that Su(s) > O, Tu(s) > 0 for small s > 0.

The local uniqueness follows from that of the bifurcation solution.
In order to investigate the stability of the bifurcating solution, we first notice

that the eigenfunction f Range(Fu(d, 0)) (" (, ) 0}, and thus can apply
the Rabinowitz theorem on the stability of bifurcating solutions (see, for example,
Theorem 13.8 in [40]). In our case it claims that

sd’(s)Ai(d)(25) lim -1

where the function Al(d) Al(Fu(d, 0)) is the principal eigenvalue of the operator
Fu(d, 0), while r/(s) is the principal eigenvalue corresponding to the linearization of
the bifurcating solution u(s). By the variational estimate of the principal eigen-
value, it is clear that A(d) < 0. Let us estimate d’(s). We have -d(s)Au(s)
u(s)f(u(s), Su(s), Tu(s)). Na.ely, -d(s)A(s( 4- b(s))) s( 4- (s))f(s( 4- (s)),
S(s(4-(s))), T(s(4-(s)))). Dividing s on both sides and then taking the derivative
with respect to s and evaluating at s 0, it gives

-d’(0)A 3[A’(0)]
’(0)f(0, v0, w0) -4- [f(0, vo, w0) 4- f,(0, v0, w0)S’(0) 4- fo (0, v0, w0)T’(0)].

The existence of the Frchet derivative of the left-hand side is due to that of the
right-hand side. Multiplying on both sides and then taking integral by part, we
come up with the following equation:

(26) f. (ao)O x f. + f s’(0)o +

Here we have used the cancellation

(A’(0) + ’(O)f(O, vo, wo),) (’(0),3ZX + f(O, vo, wo)) (’(0), 0) 0.
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Note that by the proof of Lemma 6, S’(u) -(A + g + vgv)-l(vgu)I, and T’(u)
-(A + h + wh)-l(wh)I, where g g(u(s), v(s)), h h(u(s), w(s)), v(s) Su(s),
w(s) Tu(s). Notice also that (A + g) I(A + h) 0. Therefore, (A + g +
vgv) < 0 and A(A + h + wh) < 0 since gv < 0, hw < 0. First of all we consider
the case of v -- u w (Case 7 in Theorem 1). With the fact that g < 0 and
h < 0 in mind, Lemma 4 then concludes that S’ (u) and T’ (u) are negative operators.
Hence the right-hand side of (26) is negative because f < 0, fv > 0, f > 0, and
> 0. We then obtain immediately that d’(O) < 0. Therefore, d’(s) < 0 for small

s. As a consequence, the function /(s) in (25) must be negative for small positive s,
and, therefore, the bifurcating solutions are stable. In case of v u +---- w, fv < O,
fw < O, S’(u) and T’(u) are positive operators; in case of v u -- w, f > 0,
f < O, S’(u) is a negative operator while T’(u) is a positive operator. Thus in each
of these cases, the right-hand side of (26) is negative; therefore, d’(s) < 0 and the
same conclusion follows.

Note 8. To see that the above analysis on the equation dAu + uf(u, Su, Tu)
0 actually gives the bifurcation for system (24) at the point (d, (0, v0, w0)), let us
compute the spectrum of the linearization : of system (24) at (0, v0, w0). It is easy
to see that

(27)

[ dA + f(O, vo, wo) 0 0
vog (O, vo) A + g(O, vo) + vog (O, vo) 0
woh(O, w0) 0 A + h(0, w0) + w0h(0, w0)

Now/2 :1 + B, where Z:l (dA, A, A)T and B is a bounded linear operator on

CB () @ CB: () CBa (t) given by (27) with the differential operators dA, A, A
being deleted. Because/2 has compact resolvent, the spectrum of : consists of only
eigenvalues. Let :(1, 2, 3)T (1, 2, 3)T, where and (l, 2, 3)T is an eigenpair
of the operator 2. It is easy to check that if . - 0, then a(dA -4- f(O, vo, To)). In
case that 0, letting 2 0 or 3 0 alternatively, we arrive at the relation a(:)
a(dA + f(O, vo, w0))J a(A + g(0, v0) + Vogv(O, v0))[.J a(A + h(0, w0) + woh(O, To)).
Note that the spectrums of the last two terms are in the subset {z Re(z) < c < 0}
for some constant c. In order to have a bifurcation of system (24) we need the
principal eigenvalue of/2 across zero. This can take place only for that of the operator
dA + f(0, v0, w0), where d serves as a bifurcation parameter. This is equivalent to
letting (dA + f(0, v0, w0)) 0 as we did in the proof of Theorem 2.

Note 9. Theorem 2 gives the local results on the existence of positive solutions in
terms of certain small range of the diffusion rate d, while Theorem 1 yields the global
results, which are not subject to the diffusion rate.

4. Extensions. The methods developed in the previous sections apply also to
system (3). The hypotheses (nl) and (n2) can be modified in the obvious way to
accommodate the functions f, g, and h for this system. It is routine to verify that
system (3) has a grand total of thirty-two possible nonequivalent types in combina-
tions of the interactions between u, v, and w in terms of predation, competition and
symbiosis. Of them eight are predations. First we need the following notation.

Let the functions u0, v0, and w0 be as before. In view of the Lemma 2, let v be
the unique positive solution of the following equation

(28) -Av vg(O, v, To) in ,
Bv 0 on OFt,
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if AI(A+g(0,0, w0)) > 0 and v --0 otherwise. The functions u0 > 0, v0 > 0, w0 > 0,
and v _> 0, are totally determined by the shape of the domain f and the functions
f, g, h in the system.

Notice that in system (3) the density v is determined by both u and w through
the equation -Av vg(u, v, w) and that v has no direct effect on the density w since

hv =- O. By w v and w -- v we mean that go < 0 and gw > 0, respectively.
From the last equation in system (3), we write w Tu as before, where Tu > 0 or

Tu =_ 0 depends on A1 (A + h(u, 0)) > 0 or _< 0. Put w Tu in the second equation of
(3); we can define the solution v Su, where Su > 0 or Su =_ 0 depends on whether
AI(A + g(u, O, Tu)) > 0 or < 0. Plainly, v SO. Again, T is a strictly increasing
or decreasing operator on the subset U2 {u E C(Vt) Tu > 0}, but the same
conclusion may not be true for S in some cases. More precisely, S is strictly increasing
on U1 {u E C(f) Su > 0} if gu > 0 and gw" hu > 0, while S is strictly decreasing
on U1 if gu < 0 and gw" hu < 0. With the operators S and T in hand, we can define
the operator A in the same way as before, Au (-A + P)-[uf(u, Su, Tu)/ Pu].
The property of A depends on the particular pattern in system (3).

Lemma 9 is still true except for the case v -- u -- w -- v. For this excep-
tional case we can impose certain mild conditions on the nonlinearities f, g, or h to
keep Lemma 9 valid. For example, we assume that there exists a Co > 0 such that
h(u, Co) < 0 for any u > 0. Then for any positive solution w of

(29) -AT wh(u, w) in f,
,Bw 0 on 0,

w < Co. We have the following.
LEMMA 9’. The positive fixed points of Ao have an a priori bound for 0 (0, 1]

if no symbiosis relation is involved in system (3).
PROPOSITION 1’. Assume that no symbiotic interaction is involved in system (3).

Then A has a positive fixed point if A (A + f(0, v, w0)) > 0. [:]

The proofs ofLemma 9’ and Proposition 1’ follow the same arguments as in that
of Lemma 9 and Proposition 1, respectively.

The existence result is the following.
THEOREM 1’. Let f,g,h satisfy the corresponding (H1) and (H2). Then the

following are true.
Case 1. v -- u +--- w +---- v. System (3) has a positive solution if and only if

A (A + f(0, v, To)) > 0.
Case 2. v -o- u --o- w v. If system (3) has a positive equilibrium (C1, C2, C3),

then it has a positive solution in << (no, v, w0), (C1,62, 63) :>.
Case 3. v u w v. Assume AI(A + f(O,v,wo)) > O, .1(m +

g(uo, O, To)) > 0 and A1 (A + h(uo, 0)) > O. Then system (3) has a positive solution
in <<: (0, 0, 0), (u0, co, To) )).

Case 4. v -o- u -- w -- v. Assume that A(A + f(0, v, w0)) > 0 and that the
system

(3o)
-An uf(u, v, c),
-Av vg(u, v, w),
-AT wh(u, w)

has a positive equilibrium (C, C2, C3), i.e., f(C1, C2, c) g(C, C2, C3) h(C, C3)
O, where c minze To(x). (Note that ifb3(x) > 0 for all x Of in the boundary con-

dition, then c > 0.) Then (3) has a positive solution in << (0, v, To), (C1, C2, C3) >>.



496 LIGE LI AND YAPING LIU

Case 5. v -o- u w ----, v. Assume

--As uI(u, v, 0),
0)

has positive equilibrium (C1, C2) and A(A+f(O,v,wo)) > 0, AI(A+g(0, 0, To)) _> 0,
AI(Aq-h(C1, 0)) >_ O. Then (3) has a positive solution in (0, v, 0), (C, C2, To) .

Proof.
Case 1. In this case fv, fw < 0, gu, gw, hu > 0, and S is an increasing operator.

Let Au (-A / P)-u[f(u, Su, Tu) / P]. Assume (A / f(0, v, w0)) > 0. By
Proposition 1’, A has a fixed point T > 0. TT > TO w0 > 0, ST > SO v > vo > 0.
(T, ST, T-) is thus a positive solution to system (3).

Conversely, let (T,,) be a positive solution. Then TT > TO w0,

ST > SO v, f(O,v,wo) > f(O,,). Therefore, A(A + f(O,v,wo)) >
A1 (A / f(0, ,)) > 0 since the equation

(32)
-As uf(u,
Blu= 0 on

has positive solution T.
Case 2. In this case fv, fw, gu, g, h > 0 and S is an increasing operator. It is

similar to Case 2 of Theorem 1, showing that A has a positive fixed point T E [Is0, C]].
Therefore, (T, ST, T)is a positive solution of (3). Also, C T

_
C1 implies

wo TO < T < TC <_ C3 and v0 < v SO < ST < SC1 <_ C2. It then follows
from Lemma 3 that uo < T < C.

Case 3. In this case fv, fw, gu, gw, hu < 0. The operator A has a positive fixed
point T by Proposition ip. T _< u0 by Lemma 3. Therefore, T < TO w0 and
ST < V0. )1 (A -[- g(T, 0, TT)) > A1 (A + g(uo, O, To)) >_ O. Thus ST > 0. Then T < u0
and T > Tuo >_ O. (T, ST, TT) is a positive solution.

Case 4. In this case f,, g, gw, hu > O, fw < 0, and the operators S and T
are increasing. We argue similarly as in Case 4 of Theorem 1 that the operator
A has a positive fixed point T E [[0, C1]]. Now (T, ST, TT) is a positive solution
of (3). T > TO w0. That C T _< C implies TT < TC <_ C3. Thus
Vo < v SO < ST < SC <_ C2, and consequently we can show that T < C as we
did in the proof of Case 4 in Theorem 1.

Case 5. In this case fv, g > O, fw, gw, h < 0 and S is an increasing operator.
Similarly as in Case 6 of Theorem 1, we can show that A has a positive fixed point
T_<C1. TCimplies0<_TC <TT<TO=woandO<_v=S0<ST<SCx <_
C2. Hence T < C. Therefore (T, ST, TT) << (0, v, 0), (el, C2, W0) >. [-]

For the details on the statements and proofs of the other twenty-seven cases of
system (3), and for Case h h(u, v, w) in the system (3), see [32].

The analogue of Theorem 2 is the following.
THEOREM 2p. Consider the following system:

(33)

-dAn uf(u, v, w),
-Av vg(u, v, w) in
-AT wh(u, w),
Bu= B2v= B3w=O on

where we impose similar assumptions as in Theorem 2. /f AI(dA -[- f(0, v, w0)) > 0

for some d > 0 in system (33), then there is a neighborhood Af of (0, v, To) in
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CB1 () CB2 (-) @ C3() such that there exists a unique positive solution (u, v, w)
of system (33) in Af for some range ofd. This is true for all thirty-two patterns. These
solutions are stable in the following four cases of predations: v u -- w -- v,
v -- u --, w --- v, v ---. u -- w -- v, and v - u -- w ---. v.

The proof of this theorem is just a step-by-step imitation of that used for
Theorem 2. [:]

Note 10. The four cases of predation stated in the last assertion of the above
theorem are among the eight possible patterns of predation in system (33). In the
other four cases the local bifurcating positive solutions are, in general, not stable.
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ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS
II. VARIATIONS ON A THEME*
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Abstract. Several variations are given on the construction of orthonormal bases ofwavelets with compact
support. They have, respectively, more symmetry, more regularity, or more vanishing moments for the scaling
function than the examples constructed in Daubechies [Comm. Pure Appl. Math., 41 (1988), pp. 909-996].
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1. Introduction. This paper concerns the construction of orthonormal bases of
wavelets, i.e., orthonormal bases {$jk; j, kZ} for L2(R), where

(1.1) q%(x) 2-;/2q(2-;x- k)

for some (very particular!) L2(E). The functions (1.1) are wavelets because they
are all generated from one single function by dilations and translations. Note that
wavelets need not be orthogonal or even linearly independent. In fact, the "first"
wavelets were neither [1], [2]. See [3], [4] for discussions of wavelet expansions using
nonindependent wavelets, with continuous [3] or discrete [4] dilation and translation
labels. Even the special case of orthonormal wavelets need not always be of the form
(1.1). Basic dilation factors different from 2 are possible: there exist orthonormal bases
in which this factor is any rational p/q > 1 [5]; in more than one dimension we may
even choose a dilation matrix instead of an isotropic dilation factor. In these more
general cases, it may be necessary to introduce more than one (but always a finite
number). We shall restrict ourselves to one dimension here, and to the dilation factor
2, as in (1.1). Bases with factor 2 are by far the easiest to implement for numerical
computations.

All interesting examples of orthonormal wavelet bases can be constructed via
multiresolution analysis. This is a framework developed by Mallat [6] and Meyer [7],
in which the wavelet coefficients (f, Ojk) for fixed j describe the difference between two
approximations of f, one with resolution 2j-, and one with the coarser resolution 2.
The following succinct review of multiresolution analysis suffices for the understanding
of this paper; for more details, examples, and proofs we refer the reader to [6] and [7].

The successive approximation spaces V in a multiresolution analysis can be
characterized by means of a scaling function ok. More precisely, we assume that the
integer translates of b are an orthonormal basis for the space Vo, which we define to
be the approximation space with resolution 1. The approximation spaces V with
resolution 2 are then defined as the closed linear spans of the bk (k 7/), where

(1.2) dpjk 2-J/adp(2-Jx- k).

To ensure that projections on the V describe successive approximations, we require
Vo c V_l, which implies

(1.3)

* Received by the editors May 29, 1990; accepted for publication (in revised form) May 23, 1992.
? Mathematics Department, Rutgers University, New Brunswick, New Jersey 08903 and AT&T Bell

Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974.
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This imposes a restriction on b: since b Vo c V_l=Span{b_lk; k7/}, there must
exist c. such that

(1.4) (x) c,, (2x n).

In order to have a complete description of L2(), we also impose

(1.5) fq V {0}, U L().
jZ jZ

For every multiresolution analysis as described above, there exists a corresponding
ohonormal basis of wavelets defined by

(1.6) (x) Z (-1)"c_,+6(2x- n),

where c, are the coefficients in (1.4). We can prove [6], [7] (see also below) that the
4o, are then an orthonormal basis for the orthogonal complement Wo of Vo in V_I.
This phenomenon repeats itself at every resolution level j. It follows that, for every j,
the (f, qgk) determine the difference in information between the approximations Pf
P-lf at resolutions 2j, 2j-, respectively:

Pj-lf-- Pf+E (f, q’jk)qgk.

Consequently, by (1.3) and (1.5), the (jk’ j, k 7/) constitute an orthonormal basis for
().

One advantage of the "nested" structure of a multiresolution analysis is that it
leads to an efficient tree-structured algorithm for the decomposition and reconstruction
of functions (given either in continuous or sampled form). Instead of computing all
the inner products (f, ltjk directly, we proceed in a hierarchic way:

mcompute (f, (jk) for the finest resolution level j wanted (if the data are given
in a discrete fashion, then these discrete data can just be taken to be (f

--then compute (f q-k) and (f b-k) at the next finest resolution level by
applying (1.4) and (1.7),

1
(f, qg-,k) , (-- 1)"C-,,+2k+l(f 6j,,),

--iterate until the coarsest desired resolution level is attained.
The total complexity of this calculation is lower, despite the computation of the

seemingly unnecessary (f, b2k), than if the (f, q%) were computed directly.
This brief review shows how to construct an orthonormal basis of wavelets from

any "decent" function b satisfying an equation of type (1.4). An example of such a
construction is given by the Battle-Lemari6 wavelets, consisting of spline functions
[8], [9], [10]. In general, constructions starting from a choice of 4 lead to 4, q, which
are not compactly supported (see, e.g., [15], [25] for a more detailed discussion). The
construction can, however, also be viewed differently. The Fourier transform of (1.4)
is

which implies

(1.7) (s:) [= mo(2-Jsc)] (0),
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with mo()= 1/2 . c,, e i", so that, up to normalization, b is completely determined by
the c.. Fixing the c., therefore, also defines a multiresolution analysis. The c. have to
satisfy certain conditions. Combining (bok, 4o)= 6k with (1.4) immediately leads to

(1.8) C,,C.-2k 26k0,

where we have assumed, as we shall do in the sequel, that the c. are real. In terms of
too(sO), (1.8) can be rewritten as

(1.9) Imo()l+ Imo(:+ r)l2= 1.

To ensure that b is well defined, the infinite product in (1.7) must converge, which
implies too(0)-- 1 or

(1.10) c=2.

It follows that 4 is uniquely determined by (1.4), up to normalization, which we fix
by requiring dx 4(x)= 1. One can show (see, e.g., [12]) that (1.9) implies that b is
in L-(), but unfortunately (1.8) is not sufficient to guarantee orthonormality of the
bo,. A counterexample is Co=C3 1, all other c,-0, which leads to b(x)=] for
0 <- x < 3, 4(x) 0 otherwise. Such counterexamples are rare, however. If N N 3,
then the example above, o 3 1, is the only one. For a detailed discussion, see 12],
13], [22].

If we exclude these thin sets of "bad" choices for the c (which can be done by
various means [6], [7], [12] [13], [15]), then we can build orthonormal bases of
wavelets starting from the c,. Once orthonormality of the bOk is established, all the
rest follows easily. Formula (1.6) for q leads immediately to orthogonality of the qOl
and 4Ok,

1
(_l).c_.++,c,._(_,.

1

2
(-1) c_++c,_ 0.

The last equality follows from the substitution n m + 2(k + l) + 1 for the summation
index n. Similar manipulations prove

and

(1.11)
k

It follows that both {b-1,; n ;7} and {(0k, 0k; k Z} are orthonormal bases for V_I.
(In other words, (1.8) ensures that (1.4) and (1.6) describe an orthonormal basis
transformation.) It follows that Wo Span (qOk) is the orthogonal complement of V0
in V_, and hence that the {qgk; J, k 7/} constitute an orthonormal basis for L2(R).

Constructing q from the c, rather than from b has the advantage of allowing
better control over the supports of b and q. If c, 0 for n < N1, n > N2, then support
(b)c [N, N2] (see [lla], [14]). In [15] this method was used to construct orthonormal
bases of wavelets with compact support, and arbitrarily high preassigned regularity
(the size of the support increases linearly with the number of continuous derivatives).
These orthonormal basis functions and the associated multiresolution analysis have
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been tried out for several applications, ranging from image processing to numerical
analysis [16]. For some of these applications, variations on the scheme of [15] were
requested, emphasizing other properties. The goal of this and the next paper is to
present a number of these variations.

The construction in [15] relied on the identity

s (N--l+J)[(cosoz)2rV(sina)2J+(sina)2(cosa)2] 1.(1.12)
j=O j

Since

(1.12) suggests the choice

(1 13) mo()=(l+ei)
1

2
Q(e’)’

where Q is a trigonometric polynomial with real coefficients such that

(1.14) IQ(e’)l--- j=o j 2

By (1.12), any such mo will satisfy (1.9). To determine 0, we have to extract the "square
root" of the right-hand side of (1.5). This can be done by using a lemma of Riesz [17].
Denote the right-hand side of (1.14) by Pc(ei), and extend PN to all of C. We have
PN(Z)--PN() and Pc(z-1) PN(Z). Consequently, the zeros of Pn come either in
real duplets, rk and r{ or in complex quadruplets, Zl l, z-f and -P(z) =4-

\ N- 1 ]z- (z- rk)(Z-- r; 1)

[I (Z-- Zl)(Z- l)(Z-- Z;1)(Z- ;1)

=4- \N-1]
.U

(Z ZI)(Z l)(Z, Z-1)(/-- Z-1)

It follows that PN(e’) [Q(e’t)[, with

(1.15) Q(z)=2-N+I(2N-211/2N-l/ (z-r,) (zZ+lz, lZ-2Zlz, Re z,)

This gives a recipe for the construction of mo:
(1) For given N, determine the zeros of PN;
(2) Choose one zero out of every pair of real zeros r, r[ of PN, and one conjugated

pair out of every quadruplet Zk, Z-
(3) Compute the product Q, and substitute into (1.12).
The result is a polynomial in e of degree 2N 1, corresponding to an orthonormal

basis of wavelets in which the basic wavelet has support width 2N-1. Since (1.6)
can be rewritten as

0(l) ei((/-)+)mo + "rr
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and since (1.13) has a zero of order N at 7r, it follows that qN has N vanishing moments,

dxxld/N(X) =0, =0, 1,..., N- 1,

which is useful for quantum field theory [18] and numerical analysis applications [19].
The regularity of the PN constructed in 15] increases linearly with their support width,
qN Ca(N), with limu_ N-la(N) .2075 [23], [24], [25]. Plots of and q for various
values of N can be found in [15], [25].

Depending on the application they had in mind, several scientists (mathematicians
or engineers) have requested possible variations on the construction in [15]. The
following are the most recurrent wish items.

(1) More symmetry: the functions , 0 in [15] are very asymmetric. Complete
symmetry is incompatible with the orthonormal basis condition (see [15, p. 971], or
2 below), but is less asymmetry possible?

(2) Better frequency resolution" orthonormal bases with basic multiplication factor
2 correspond to frequency intervals of 1 octave. Is better possible (e.g., 1/2 octave),
without giving up compact support?

(3) More regularity: is better regularity than in [15] achievable for the same
support width ?

(4) More vanishing moments: for a fixed support width 2N-1, the PN of [15]
have the maximum number of vanishing moments. The functions eu do not satisfy
any moment condition, except dx eN(X)= 1. For numerical analysis applications, it
may be useful to give up some zero moments of 0 in order to obtain zero moments
for , i.e., to have

dx&(x) 1,

(1.16) I dx xlch(x) O, 1,..., L,

dxxl(x) =0, l=0,..., L.

How can such , be constructed? They would have the advantage that inner products
with smooth functions are particularly appealing:

f dx b-jk(x)f(x)-- 2J/2 f dx qb(2J(x-2-Jk))f(x)

2-J/f(2-Yk) + correction terms in f+l
(use the Taylor expansion off around 2-2k; the second through (L+ 1)th terms vanish
because of (1.16)). Moreover, if the (L+ 1)th derivative of f is uniformly bounded,
then the correction terms in this formula are of order 2 -(/’+l/2)j.

The purpose of this and the next paper is to show how such variations can be,
constructed. In 2 we handle symmetry, in 3 regularity, and in 4 vanishing moments
for . The next paper shows how to obtain better frequency localization.

2. More symmetry. If we restrict our attention to orthonormal bases of compactly
supported wavelets only, then it is impossible to obtain which is either symmetric or
antisymmetric, except for the trivial Haar case (Co 1, Cl =-l, all other c, =0). This
is the content of the following theorem.
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THEOREM 2.1. Let b, dp be defined as in 1, from a finite set of coefficients c,
satisfying (1.9) and (1.11 ), with orthonormalo. If is either symmetric or antisymmetric
around some axis, then is the Haar function.

A proof can be found in [25, Chap. 8].
It is thus a fact of life that symmetric or antisymmetric , however desirable they

might be in applications, are just not possible within a framework of orthonormal
bases of continuous, compactly supported wavelets. On the other hand, b and q do
not really need to be quite as asymmetric as in [15], where the extreme asymmetry of
q, proceeds from choices made in their construction. In practice, the 2(N- 1) zeros
of PN consist of one real pair r, r- and n quadruplets of complex zeros ZI, 1, Z-1

)-1 if N--2no is even, and of no quadruplets if N 2no+ 1 is odd. To construct QN,
we need to select one of the two real zeros, and one pair Zl, out of every quadruplet.
The choice made in 15] is the so-called extremalphase choice: we chose systematically
all zeros with modulus smaller than one. Other choices may lead to less asymmetric. The following argument shows why.

A sequence of real numbers (a,) is said to define a linear phase filter if the
phase of the function a(sc) a ei is a linear function of :, i.e., if, for some ;g/2,

This means that the a, are symmetric around l, a,- Ol21_ If the sequence does not
define a linear phase filter, then the deviation from linearity of the phase of c(:)
reflects the asymmetry of the a,. The Fourier transform of is given by the infinite
product (1.7). If c, were symmetric around l, then we would have mo(:)- eilelmo()l,
hence

(:) =exp il 2-: Imo(2-)11(o)1
j=l j=

so that would be symmetric around as well. As explained above, this is impossible
for c, satisfying (1.8). The closer the phase of mo is to linear phase, the closer the
phase of th will be to linear phase, and the less asymmetric b will be. In our case, mo
is a product of factors of type

(2.1)
z Zl)( z 1 e it ei R1 ei,)( 1 e-u:Rl e-’’)

ei[ei-2Rl cos al+ Ri e-ie],

with possibly an extra factor

(2.2) (a- r) eiU2[eiU2- r eiU2].

The total phase of mo is a sum of the phase contributions of each factor. Apart from
linear phase terms, the phase contributions of (2.1) and (2.2) are, respectively,

( (1- R) sin sc )(2.3) O(:)=arctg (l+R)cos-2RlCOSCl
l+r

(2.4) arctg
\l-r tg).

The valuation of arctg should be chosen so that (I) is continuous in [0,27r], and
ql(0) =0. Since the denominator in (2.3) has two zeros, namely,

2RI )Arc cos l+RCS
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and 2w :, 1(27r) /(0) + e27r, with e + 1. Something similar happens in the
(z-r) case. In order to extract only the nonlinear part of t, we define, therefore,

( (1- R) sin sc ) sc (27r)/(:) arctg
(1 + R) cos :-2R cos al

or

l+r
arctg i r

,I’,(2rr).

In order to obtain mo as close to linear phase as possible, we have to choose the
zeros to retain from every quadruplet or duplet in such a way that ,o,(:)=Y ()
is as close to zero as possible. In practice, we have 2 tN/2j choices (and not 2N-i, as
was mistakenly stated in [15]). This number can be reduced by another factor of 2:
for every choice, the complementary choice (choosing all the other zeros) leads to the
complex conjugate mo (up to a phase shift), and, therefore, to the mirror image of b.
For N 2 or 3, there is, therefore, effectively only one pair N, i]/N" For N >-4, we
can compare the 2 [S/2J-1 different choices for o, in order to find the closest to linear
phase. It turns our that the net effect of a change of choice from zt, to z-1, -i is
most significant if RI is close to 1, and if at is close to either zero or 7r. In Fig. 1 we
show the graphs for ot() for N =4 and 10, both for the original construction in
[15] and for the case with flattest tot. The "least asymmetric" b and q, associated
with the flattest possible ,ot, are plotted in Fig. 2 for N =4 and 10. A table for the
corresponding c, can be found in [25, p. 198], as well as figures for N 6, 8.

Remarks.
(1) In this discussion we have restricted ourselves to the case where mo and QI2

are given by (1.13) and (1.14), respectively. This means that the b in Fig. 2 are the
least asymmetric possible, given that N moments of q are zero, and that b has support
width 2N-1. (This is the minimum width for N vanishing moments.) If b may have
larger support width, then it can be made even more symmetric. These wider solutions
correspond to a variation on (1.14), i.e., to

(2.5) IQ(e’e)[2= + R(cos sc)
=o j 2 2

where R is any odd polynomial such that the right-hand side of (2.5) is positive for

.2
.5

0 0

--.5
--.2

-1

N=IO

FiG. 1. Plots of ,o,() for the cases N =4 and 10. In both cases we plot ,o, for the construction in

15], and the much flatter q,o, corresponding to the closest to linear phase choice. The horizontal axis gives

7r, the vertical axis

0 .2 .4 .6 .8 0 .2 .4 .6 ..8
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FIG. 2. Plots of bv, bN closest to linear phase, for the cases N =4 and 10. In every case, support
(bN) [0, 2N- 1], support (rv) [-N + 1, N].

all sc. The functions 4) constructed in {} 4, for instance, are more symmetric than those
in Fig. 2, but they have large support width

(2) We can achieve even more symmetry by going a little beyond the multiresol-
ution scheme explained in 1, and by "mirroring" the filters at every odd step. For
more details, see [25, p. 256].

(3) In [21] the construction of orthonormal bases of wavelets is genera.lized to
"biorthogonal bases," i.e., to two dual unconditional bases { {ljk; j, k 7/} and { Illjk; j, k
7/}. The construction in [21] corresponds to a decomposition+reconstruction scheme
in which the reconstruction filters differ from the decomposition filters. In this more
general framework, complete symmetry can be achieved. Orthonormality is then lost,
however, which is less desirable for some applications.

3. More regularity. The regularity of the wavelets g,, constructed in 15] increases
linearly with their support width, 0N C(N), lim N-la(N)=.2075. The technique
used in [15] to control the regularity of bN, $N involved constructing mo(:) so that
it contained the factor 1/2(1 + ei) with as high multiplicity as possible,

(3 1) mo()=(
N

\ 2

where QN is a polynomial in ei oforder N- 1 (see I). Since l-I=o (I + exp (i2-sc))/2
eie(sin so/so), we find (use (1.7))

N() e’Ne/2[sin so/2" N

s/2 II Q,,, (2-).
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T,ogether with control on the infinite product of QN (see [15]), this leads to decay for
thN as I:[ - c, hence to regularity for bs, N.

In this argument, imposing high order divisibility of mo by 1/2(1 + e i) is used as a
technical tool to obtain regularity. On the other hand, regularity for b implies that mo
is of type (3.1). More precisely, if b is compactly supported and th C L, then mo must
be divisible by [1/2(1 + ei)]L; see [22], [21]. Since bN C’N for large N, with /z-.2,
this means that at least 1/2 of the factors (1 + e) in mo,N are necessary. Can the others
be dispensed with, allowing even shorter support for the same regularity, or higher
regularity for the same support width? The answer is yes.

In [1 lb], an alternative way was used to determine the regularity of functions b
satisfying an equation of type (1.4). Unlike the methods in [15], the method of [llb]
does not use the Fourier transform. Instead, two N-dimensional matrices To, T are
defined, To)d ce__, T). c_, 1 <= i, j <= N, where we assume c, 0 for n < 0
or n > N. Divisibility of m0 by (1 + ei) with multiplicity L is equivalent to

N

(3.2) c,,(-1)"n 1=0, /=0,...,L-1.
n=0

In terms of the matrices To, T1, this implies that there exists a flag of subspaces
U1 c... c Ut of u, with dim U =j, such that

U is left-invariant under both To, T1.
The left restrictions of To, T to U have the j eigenvalues 1, 1/2,..., 2 -j+l.

Let V be the subspace for N orthogonal to UL; V is right invariant for To, T.
If, for some A < 1, C > 0, and for all rn

(3.3) Td,’’" Tdmlv,ll--<-- CA"2-"-’) (dj 1 or 0),

then (3.2) implies that b C L, and that its Lth derivative bt) is H61der continuous
with exponent ]log2 AI; if )t is best possible in (3.3), then [log2 A[ is the best possible
H61der exponent for bL). In principle (3.3) involves infinitely many inequalities; in
practice we substitute finitely many conditions sufficient to ensure that (3.3) holds for
all m [llb, Prop. 3.11]. The value of b and its derivatives at any point x in support
(4’) is governed by the behavior of the infinite product Td,(x)Ta)" Td,(x)..., where
d(x) are the digits in the binary expansion of x, x Ix] + Y=I d(x)2-. Special, "local"
inequalities of type (3.3), valid only for certain sequences (d),, can, therefore, be
translated into local regularity estimates, leading, in many examples, to a hierarchy of
fractal sets corresponding to different local H61der exponents. For more details, see
[llb].

This approach can be used to study the regularity of compactly supported basis
wavelets, which all correspond to an equation of type (1.4) with finitely many
coefficients. For the examples of [15], this analysis was carried out in [11b] for
N 2, 3, 4 (for higher N, checking (3.3) becomes very complicated). In these three
cases, the best possible H/Slder exponent for the highest order well-defined derivative
of bN was determined; these results were significantly better than what had been
obtained in [15] via Fourier analysis. Table 1 compares the regularity results of [15]
and 1 lb].

The optimal estimates obtained in [11] illustrate again that some of the factors
(1 + ei) of mo, or, equivalently, some of the sum rules (3.2), which we impose in order
to obtain regularity, are "wasted" in the final construction. N sum rules can deliver
up to N-1 continuous derivatives if everything else cooperates; because of the other
constraints on the cn (i.e., (1.8)), wavelets do not achieve this optimal number. We
can, therefore, drop some of the sum rules, and use the additional degrees offreedom
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TABLE
The regularity of the wavelets of [15], as obtained via Fourier methods (middle

column) or via the matrix method of b] (right column). The integer part of the
entry is the number of times ck is continuously differentiable; the decimal part is the
H6Ider exponent of the highest order well-defined derivative.

N Best estimate in [15] Optimal result, obtained in [1 b]

2 .5 e .5500...
3 .915 1.0878...
4 1.275 1.5179...

to obtain better A in (3.3), i.e., better regularity than in Table 1. We present here the
cases of wavelets with support width 3 and 5.

For Isupport b 3, there is a one-parameter family of choices cn satisfying (1.8)
and (1.10) (see [15, p. 946]), namely,

u(u- 1) (1- u) (u+ 1) u(u+ 1)
Co= (v2+ 1) Cl--(/,2-{ 1)’ c2=(v+ 1)’ c3= (v+ 1)

These cn satisfy c,(-1)" =0; imposing a second sum rule leads to v +3 -/2, which
corresponds to the "standard" case N 2. The matrices To and T are 3 3-matrices;
since we have one sum rule, we can restrict our attention to the reduced matrices

1 (v(v-1) 0 ) TI] 1 (v(v+l) v(v-1))TOlVl-v+l 1-v2 v(v+l) v, v2+l 0 1-v2

We restrict our attention to v-> 0. (A change of sign v-v corresponds to c,- c3_,

i.e., to mirroring b with respect to .) Since (3.3) has to hold, in particular when all
the d are identical, d-= 0 or d- 1, the constant Z is bounded below by the spectral
radii p(T[v,) of Tlv,, j 0 or 1. It follows that (3.3) can only be satisfied if v<l. For

M-v -> 1/x/, we can find M so that both MTIv, ,j 0, 1, are symmetric; consequently,

A_<max (]]MT]v,M-11]; j--O, 1) max (p(mTjlvm-1); j--0, 1)

=max (p(Tlv,)" j=0, 1)=
v(v+ 1)
1+/,2

This is, moreover, the best possible h. If v<l/x/, then Tolv, and Tl[v, are not
simultaneously "symmetrizable," and we have to do some more work. In every case

(3.4) A_-->max
l+v2 1+

For v=.25, e.g., the tricks of Proposition 3.11 in [llb] suffice to show that equality
holds in (3.4), and

1-1/16
A .88235

1+1/16

The lowest value for the right-hand side of (3.4), and, therefore, the best candidate
for the "most regular possible" b, occurs for v=.5. In this case, T1]v, has only one
(degenerate) eigenvalue, .6, and the matrix is not diagonalizable. Since (3.3) has to
hold for dj 1, it follows that we can at best hope to establish A .6(1 + e).
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In fact, we cannot achieve even this much. It turns out that [p(To, T12)] 1/13
.659676... >.6, meaning that we can certainly not hope for a smaller h than .659..-.
Using all the tricks in Proposition 3.11 in 1 lb], and checking a collection of building
blocks with up to 17 factors, we find h <= .666. More work leads to smaller upper bounds
for A; presumably the best value is the .659 obtained above.

Figure 3 shows the function 4’ for a few choices of u (, .75, .5 and .25). In each
case 4, is continuous, and we can compute its H61der exponent from our estimate for
A. Even with our less than optimal estimate h =<.666, the case , .5 leads to a better
H61der exponent than the "standard" example , 1/x/. This might be surprising: the
graph of d for ,- .5 seems more jagged than for u- 1/x/. However, the peaks in the
, .5 example are "less sharp"" the steepest slope of the peak around x 1, e.g., is

(a)
2

-1

(b)
1.5

-.5

(c)

v .25

0 2 3

I’ /
It

V .5 t
0 .2 3

.5

v .75

-.5 I,
,0 2 3

FIG. 3. The functions ck defined by Co ’( u + 1)/(1 + ,2), c] , + 1)/( u + 1), c2 (1 ,)/( ,+ 1), c3
,( ,- 1)/(,2+ 1), for different values of u. As outlined in the text we can prove that the H61der exponents of
these functions are at least (a) .180572, (b) .5864, (c) .251539. For a, c these numbers are sharp: for b the
true H61der exponent is conjectured to be .60017.



510 INGRID DAUBECHIES

less steep than its counterpart for v 1/x/, and this steepness is what is really expressed
by alow H6lder exponent.

For [support bl 5 we have no analytical expression for all the possible choices
of the c,. Since the "standard" example, with its 3 sum rules, achieves C 1-regularity
(see Table 1), for which at least 2 sum rules are necessary, we can drop at most one
sum rule. We explore what this extra degree of freedom can give us by perturbing
around the standard example. More precisely, we have

(3.5)
2

Q()’

with

(3.6)

(3.7)
a

P(x)=2-x+-(1-x)2,
4

where a can be chosen freely, subject to the constraint that the right-hand side of (3.6)
is nonnegative for all . The example of [15] with support width 5 corresponds to mo
with a zero of order 3 at sc =r, hence to P with a zero at x =-1, which gives a 3.
If we impose that P has a zero close to x =-1, e.g., at x =-1- 6 (where a _-> 0, since
otherwise the positivity constraint would be violated), then a 4(a + 3)! (a + 1 )(a + 2)2,
and P(x)=(x+ 1 + a)/(a+ 1)(a+2)2[x2(a+3)-x(a+3)2+2(a+2)2]. The other two
roots of P are, therefore, given by x+=1/2(a+3)+1/2[(a+3)z-8(a+2)2/(a+3)] /2. Each
of the three roots of P(x), namely, Xo -1-a, and x+, corresponds to two roots in
z=e of P(cossc) (use 1/2(z+z-)=x==>z=x+x/x2-1). This leads to the candi-
dates Q(sc) N(ee + a + 1 + ex/a(a + 2)) (ee- z+(a)) (ee- z_(a)), where z+(a)
x+(a)-x/x+(a)2-1 and e=+l. The choice e=+l corresponds to choosing all the
zeros of Q inside the unit circle; the choice e---1 gives one (real) zero outside, and
two complex conjugate zeros inside the unit circle. For e +1, the choice a 0 (i.e.,
the example of [15]) minimizes max (p(To[v), p(Tlv)) (where p denotes the spectral
radius), so that a 0 leads to the most regular 4. For e =-1, the situation is different.
We find a minimum for max (p( Tol v2), (p(Tlv)) at a .07645485... (value determined
numerically). As in the case where Isupport bl=2, this minimum for the spectral

(a) (b)

.5 .5

-5
0 2 4

-5
0 2 4

FIG. 4. Two examples of ch with Isupportchl=5. (a) Corresponds to the construction in [15], (b) is the
"most regular" qb constructed here. In both cases ch C 1" the H61der exponent of qb’ is .0878 for (a), and at

least .40198 for (b) (it is conjectured to be .41762 for (b)).



ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS II 511

radii p(T[v2) corresponds to a degenerate largest eigenvalue of Tllv2, and we find
again that T[v is not diagonalizable. Consequently, we can only hope to establish

h <_- 2(1 + e) max (p( Tol v), p( T[ v2)) (1 + e).74865....

In order to obtain e <.01, we already have to consider a large number of building
blocks Ta,’’" Ta,,, the longest of which has dj 1 for j 1,..., m, and m->_ 700! It
seems likely that arbitrarily small e can be attained by more work. Figure 4 shows
both the standard example of [15] and the most regular b obtained here for
[support b -5. It is apparent that the present example is much more regular; both
functions are C (even though the function of [15] seems to have peaks, these peaks
are not really sharp--see [llb]), but the H61der exponent of b’ is significantly better
in the example constructed here.

4. Vanishing moments for tb. In this subsection we want to construct b, q with
compact support,

and such that

Isupp 4,[ Isupp 4’1 2M- 1

dx c(x)= 1,

(4.1) f dx xtch(x) 0 for 1,..., L- 1,

dxxlp(x) =0 for l--0,..., L-1.

The need for orthonormal bases with this property first came up in the application of
wavelet bases to numerical analysis in the work of Beylkin, Coifman, and Rokhlin
[19]. The desirability of vanishing moments for b is explained in the introduction" if
(4.1) is satisfied, then the inner product of 4jk with a smooth function f only depends
on f(2Jk) and derivatives off of order =>L. (In a later version of their work, Beylkin,
Coifman, and Rokhlin did not require (4.1), however.) Imposing such vanishing
moments on b also increases its symmetry. Because these orthonormal wavelet bases
with vanishing moments for both b and p were requested by Coifman, I have named
these wavelets coiflets. Condition (4.1) corresponds to a coiflet of order L.

The Fourier transforms of b, q are given by (sc)=I-I= mo(2-sc) q(sc)
m(/2)(/2), with

N

mo() Cn ein, ml()= (-1)nc-n+l ein=-eimo(+).
=N

Note that the lower limit N in the sum over n will in general not be zero in this
subsection: we have lost our freedom to translate by integers because (4.1) is not
invariant under such translations (the conditions on are translation-invariant, but
the conditions on are not). The conditions (4.1) are equivalent to

(0)=1, (0)=0 forl=l,...,L-1,

(d)(0)=0 for/=O,...,L-1.
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In terms of mo, these become

(4.2) mol)(+.a-) =0 for/=0,..., L- 1,

(4.3) too(0) 1, mol)(o)= 0 for l= 1,..., L- 1.

By (4.2), mo has a zero of order L in : r. Consequently, mo has to be of the form

(4.4) too(,) (1 + ei)
L

2
Q(ei)’

where

(4.5) IQ(e’e)l: + R(cos )
j=o j 2 2

and R is an odd polynomial [15]. On the other hand (4.3) implies

(4.6) mo() 1 +(1-ei)LS(e’).

Together, (4.4) and (4.6) lead to L independent linear constraints on the coefficients
of S. Imposing that Q be of the form (4.5), with R an odd polynomial, leads to further
quadratic constraints. For small values of L, the whole collection of constraint equations
can be solved more or less by hand; for values of L larger than 6, the situation becomes
untractable. We propose, therefore, an approach which from the start satisfies (4.2)
and (4.3) (the linear constraints on S are built in), and we tackle (4.5) afterwards.

For the sake of convenience, we restrict ourselves to L even, L 2K. A similar
analysis can be carried out for L odd. We impose that mo be of the form

r (K-l+ k K

Since cos /2= e-e(1 +ee), this clearly has a zero of order 2K at = . On the
other hand, (4.7) can be rewritten as (use (1.13))

mo() 1 + sin
k

cs
k=0

+ cOS2

This clearly satisfies (4.3). It remains, therefore, to tailor f so that m0 satisfies (1.10).
For the sake of convenience we shall use f such that

K’

(4.8) f()= f.e ’’,
n=0

i.e., f, 0 for all n < 0. This is by no means the only choice possible; we could also
decide to distribute the f, as symmetrically around zero as possible, so that the suppo
of would be more symmetrical around x =0. It turns out, however, that this
symmetrical choice can lead to larger suppo widths for than (4.8) (this happens,
e.g., for K 3). From (4.5) we obtain

(K-l+k)(ksin) ( )rk=
+ sin2 f()

(4.9)
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where R is an odd polynomial. Rewriting (4.9) leads to

(4.10)

2-l (2K l +J )s2 + sKR(cos ,),+ slf(,)[
j=o J

where s2 denotes sin2 (:/2). We shall determine the f, by identifying coefficients of s.
Both f()+f() and If(#)l= can be written as polynomials in cos :, hence in s2.

It follows that only the first term in the left-hand side of (4.10), which is independent
off, contains terms in s withj -< K 1. Founately, these terms cancel the correspond-
ing terms in s in the right-hand side of (4.10) because of the identity

(4.11) Z
k=O k K- k K

(See [26, (5.27) ].)
We next concern ourselves with the terms in s, j K,..., 2K- 1. Only the first

two terms in the left-hand side of (4.10) contribute, leading to linear constraints in the
f. Define g by

K’

(4.12) f()+f(= 2 g,s.
n=0

Using s2 =- e-e(1- ee)2, we find that the f, and g, are related through

4-g,

(4.13)

f=(-1) 4-g fork0.

In practice we will determine the g and then calculate the f and f via (4.13).
Identification of the terms in s, j K,..., 2K 1 on both sides of (4.10) gives

=_+ k j-k

’,- j-l-kg=+
kj-K-k] j

Using (4.11) again, and substituting j K + l, =0,..., K- 1, we can reduce this to

(4.14) 2 g_ =2
=,(o,-, m =o k k K + l- k

This is a system of K linear equations in rain (K, K’ + 1) unknowns. It has no solutions
if K’ + 1 < K. If K’ K 1, then the inveibility of the triangular matrix

Mq= (K-l+i-J)i_j K-lijO

immediately leads to

2K-l+k)gt=2
K + k

k=0,...,K-1.
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(4.15)

It remains to determine the gK,..., gK,. They are given by the constraint that

k=0 ,=0 k
gl+’s+’+]f()

should be an odd polynomial in cos . Since (4.15) can be rewritten as a polynomial
of degree K’ in cos sc, this results in [(K’+ 1)/21 equations for K’-K + 1 unknowns.
It follows that K’>= 2K 1 (no miraculous cancellations occur). In the examples worked
out here, K’= 2K- 1. In these examples a solution has to be found for a system of
K quadratic equations in K unknowns; every such solution corresponds to a coiflet
of order 2K, with support width 3K- 1.

The system of K equations to be solved can be written out a little more explicitly.
Writing x,,, m =0,..., K- 1 for the K unknown gK+m, we have

with

(4.16)

(4.17)

2K-1 min(2K-1,2K-l-I)

I=--(2K --1) k=max (0,-1)

f (1 1/26o)(- 1) 2 k/4-k rI

+ 4-m-Kxm
,,=o m+K-k]

fk=(_l)k 2m+2K
,,,=,_ m + K k]

4-’-U"x" K <_k<=2K-1.

2K --2
il (_ 4-

2j O, K 1 m
X e 1) X X x,,.

/=--(2K--2) J=l/I J + m=max(O,j-K+l) j- m

The K equations in the unknowns Xo,..., x:-i are, therefore,

(4.18) fkf2r+, + 4- 2j 0,-1) K 1 +j- m
x 0,

=o j=2 + 2r m=max(O,j--K+l) j-- m

where r=0,..., K-1, and where (4.16), (4.17) have to be substituted for the f.
As a quadratic system (4.18) can have many solutions or no solutions at all. The

following heuristic argument suggests that (4.18) will have solutions for sufficiently
large K. We can rewrite (4.7) as

(e +em()=2+2-4+K K =o2k+l K+k
(4.19)

Let us concentrate on the first two terms in (4.19). For large K, the coecient of
e(+e tends to

2k+ 1 k K+k + (2k+ 1)’

2K-2, min(j,K-1)(K-l+j-m)I; s 2 x
j=0 m=max(O,j--K+l) J m

O<=k<=K-1

On the other hand, the first term in (4.15) can be rewritten as
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which is exactly the Fourier coefficient of the characteristic function X(:)= 1 for

I:1 -<- 7r/2, 0 for Iscl _-> 7r/2,

1 1 i(2k+1): -i(2k+l):).X(sc)=+ (-1) g (e +e
,--o zr(2k+ 1)

This is, in fact, a perfectly legitimate choice for mo" mo=X leads to (sc) 1 for
Isc[_-< zr, 0 otherwise, or b(x)=sin 7rx/Trx. The corresponding wavelet basis is C,
satisfies (4.1) for arbitrarily large L, but has rather slow decay at . Our ansatz (4.7)
or (4.19) for mo can, therefore, be viewed as a truncation to finite length of X, consistent
with the restrictions (4.2), (4.3), and where an additional f has to be introduced to fit
(1.9). Since for K -, X itself already satisfies all the conditions (1.9), (4.2), (4.3), it
seems reasonable to hope that for large K, a slight perturbation of X might satisfy
(1.9), (4.2), (4.3).

Based on this perturbation argument, we can look for a solution to (4.18) "close
to" Xm=O. For K 1,2,3,4, and 5 we have (1) determined the system (4.18) with
the symbolic manipulation package MACSYMA, (2) found a solution by Newton’s
method, starting from the initial point x,,- 0, m 0,..., K- 1. The resulting mo are
tabulated in Table 2. For K 5 the coefficients are given with less precision than for
K =< 4 because the roundoff error, even with double precision, was sufficient to perturb
decimals beyond the 10th decimal. Note that Table 2 corrects a mistake in the first
entry in the corresponding Table 8.1 in [25]. Graphs for the corresponding b, q can
be found in [25, Fig. 8.3].

Remarks.
(1) The functions 4 and q corresponding to Table 2 are almost symmetric. For

some of these examples, there exists a pair of biorthogonal bases very close to the
orthonormal basis (their graphs are almost indistinguishable), which have, moreover,
the advantage of corresponding to rational c, (see [21]).

(2) The approach given above has the merit ofgiving a method for the construction
of coiflets of any order L (modulo the solution of a system of L!2 quadratic equations
in L/2 variables). It does not necessarily give the smoothest coiflet of order L, however!
For small L, everything can be worked out more or less by hand, and we find some
solutions different from the coiflets given above.

For L 2, the smoothest coiflet is found by substituting

f() a e i + b e2i,
rather than (4.8) into (4.7), leading to a less symmetric coiflet with support width 5;
in this case support b [-1, 4]. The system of quadratic equations reduces to a single
equation, so that everything can be solved explicitly. We find

a=(s-1)/2, b=(-s+3)/2, withs=+x/T.

The choice s =-x/] gives the most regular coiflet of order 2. The corresponding b is
plotted in Fig. 5. This b is continuously differentiable; using the methods of [11] we
find that its derivative has HSlder exponent .191814

For L 4, we find, unlike the L 2 case, that the best regularity for b is achieved
by distributing its support as symmetrically as possible. This corresponds to choosing

f(() a e-i# 4;- b + c e’ + d e2’.

The resulting set of equations reduces to two linear and two quadratic equations. All
this can be reduced to one equation for a of degree 4, which has 2 real and 2 complex
solutions. One of the real roots leads to a twice continuously differentiable 4,
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TABLE 2
The coefficients for coiflets of order 2K, K or 5. Note" In this table, the coefficients are

normalized so that their sum is 1.

n 1/2c. n 1/2c.

K= -2 -.051429484095 K= 4
-1 .238929728471
0 .602859456942

.272140543058
2 -.051429972847
3 -.011070271529

K=2

K=3

K=4

-4 .011587596739
-3 -.029320137980
-2 -.047639590310
-1 .273021046535
0 .574682393857

.294867193696
2 -.054085607092
3 -.042026480461
4 .016744410163
5 .003967883613
6 -1001289203356
7 -.000509505399

-6 -.002682418671
-5 .005503126709
-4 .016583560479
-3 -.046507764479
-2 -.043220763560
-1 .286503335274
0 .561285256870

.302983571773
2 -.050770140755
3 -.058196250762
4 .024434094321
5 .011229240962
6 -.006369601011
7 -.001820458916
8 .000790205101
9 .000329665174
10 -.000050192775
11 -.000024465734

-8 .000630961046
-7 -.001152224852
-6 -.005194524026
-5 .011362459244
-4 .018867235378
-3 -.057464234429
-2 -.039652648517
-1 .293667390895

K=5

0 .553126452562
.307157326198

2 -.047112738865
3 -.068038127051
4 .027813640153
5 .017735837438
6 -.010756318517
7 -.004001012886
8 .002652665946
9 .000895594529
10 -.000416500571
11 -.000183829769
12 .000044080354
13 .000022082857
14 -.000002304942
15 -.000001262175

-10 -.0001499638
-9 .0002535612
-8 .0015402457
-7 -.0029411108
-6 -.0071637819
-5 .0165520664
-4 .0199178043
-3 -.0649972628
-2 -.0368000736
-1 .2980923235
0 .5475054294

.3097068490
2 -.0438660508
3 -.0746522389
4 .0291958795
5 .0231107770
6 -.0139736879
7 -.0064800900
8 .0047830014
9 .0017206547
10 -.0011758222
11 -.0004512270
12 .0002137298
13 .0000993776
14 -.0000292321
15 -.0000150720
16 .0000026408
17 .0000014593
18 -.0000001184
19 -.0000000673
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|.5

.5

-1 0 2 3 4

FIG. 5. Plot of d for the coiflet of order 2 with the highest regularity.

corresponding to

c_5 -.008089728693,
c_4 -.001473073456,
c_ .027620978693,

c_2 .000661782050,

C_l -.029586627843,

Co .168333606358,

Cl .503931298301,

c2 .443259223184,

c3 .010862015621,

c4 -.136801026363,

c5 -.004737936078,

c6 .026019488227.

As in Table 2, these c, are normalized so that their sum equals 1. We have plotted the
corresponding b in Fig. 6.

For L 6 explicit computation of all the solutions is more complicated, but still
feasible. There exists no solution so that support (b)= [-8, 9]. For the ansatz

f() a e-i + b + c e + d e + e e3 +fe4,
corresponding to support (b)= [-7, 10], there are two solutions. The most regular of
these solutions is twice differentiable; it is given by

c_7 -.000152916987,
c_6 .000315249697,

c_5= .001443474332,

C_a -.001358589300,

c-3 -.007915890196,

c_ .006194347829,

c-1 .025745731466,

Co -.039961569717,

ca -.049807716931,

c2 .269094527854,

c3 .558133106629,

c4 .322997271647,

c -.040303265359,

c6 -.069655118535,

c7 .015323777973,

c8 .013570199856,

c9 -.002466300927,

Clo -.001196319329.
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1.5

--.5
-5 0 5
FIG. 6. Plot of qb for the most regular coiflet of order 4.

1.5

-.5
-5 0 5 10

FIG. 7. Plot of c for the most regular coiflet of order 6, with support b [-7, 11 ].

The function b is plotted in Fig. 7. The coiflets used in 19] for L 2, 4, 6 correspond
to the scaling functions b in Figs. 5, 6, and 7.
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ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS
III. BETTER FREQUENCY RESOLUTION*

A. COHEN" AND INGRID DAUBECHIES

Abstract. Standard orthonormal bases of wavelets with dilation factor 2 use wavelets with one octave
bandwidth. Orthonormal bases with 1/2 octave or even smaller bandwidth wavelets are constructed. These
wavelets are special cases ofthe "wavelet packet" construction by R. Coifman and Y. Meyer [Yale University,
preprint, 1990].

Key words, wavelets, orthonormal bases, frequency resolution

AMS(MOS) subject classifications. 26A16, 26A18, 26A27, 39B12

1. Introduction. In the preceding paper [1] one of us showed how to construct
variations to [2] in order to obtain orthonormal bases of compactly supported wavelets
with various desirable properties. In this paper we show how to construct orthonormal
bases with better frequency localization.

We shall continue to use here the notation and terminology given in 1, 1 ]. When
we need equation (1.n) in [1], we shall refer to it as [1, (1.n)].

2. Statement of the problem. The Fourier transform and for an orthonormal
wavelet basis of type [1, (1.1)] is, in most cases of practical interest, concentrated
around a frequency band a-<ltol-<2a. This "concentration" should be understood
more or less loosely, depending on the example. For the Meyer basis [3], where , has
compact support, we find support () c { to; 7r e =< Ito[ =< 2 7r + 2e } for some e ]0, 7r/3]
(the "standard" choice is e 7r/3). For the functions constructed in [2], support() R
(since support() is compact), but graphs of show a reasonably good concentration
around r =< Ito] =< 2r (see Fig. 7 in [2]).

It is the use of the dilation factor 2 in the definition [1, (1.1)] of the orthonormal
basis that forces to have a bandwidth of at least one octave. In many applications,
especially those where a stationary high frequency component can be present (texture
in images, music in acoustical signal analysis), it is desirable to have better frequency
localization [4]. We present several approaches to the construction of such bases.

3. Noninteger dilation factors. Since the one-octave bandwidth is forced by the
use of powers of 2, a natural way to obtain smaller bandwidth is to use a smaller
dilation factor, e.g., . There do indeed exist orthonormal wavelet bases for noninteger
rational dilation factors a (for a (k+ 1)/k, kN this is an extension of Meyer’s
construction proposed by David [3]; for a p/q, a construction method is given in
Auscher’s Ph.D. thesis 5]). Unfortunately, these cannot correspond to a multiresolution
analysis with compactly supported b and /,. For ce =, e.g., Vo C V_I implies the

* Received by the editors May 29, 1990; accepted for publication (in revised form) May 23, 1992.
Centre de la Recherche de Mathematique de la Decision, Universit6 Paris IX Dauphine, 75016 Paris,

France.
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Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974. Part of this author’s work was done
while visiting the University of Paris IX, Paris-Dauphine.
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existence of two sequences, (Cl,n)nTZ and (C2.n)nZ, such that

(1)

6(x) =Z. c,,(x-n),
6(x-1)=Z,, c2,,,6( x- n).

If th were compactly supported, then both sequences would be finite. But (1) can be
rewritten as

2

e : c2,. e ’"e (:)
2

implying

Z Cl, ein ei3/2 C2,n e in,

which is impossible for finite sequences. The same phenomenon occurs for any
noninteger a.

In practical applications, it is desirable to have finite sequences c, for the hierarchic
decomposition + reconstruction scheme sketched in 1, 1 ]. We can, of course, always
use truncated versions of infinite sequences, but untruncated finite sequences are
preferable. Therefore, noninteger a does not seem to be a good solution. (Note,
however, that Kovaevi6 and Vetterli [10] have constructed subband filtering schemes
with FIR filters and rational noninteger dilation factors; these do not correspond to
a multiresolution analysis with a single b.)

4. Integer dilation factors larger than 2. Another candidate for wavelet bases with
better frequency localization is given by constructions with a dilation factor larger
than 2. In general, a multiresolution scheme with dilation factor N uses one scaling
function b, and N- 1 different wavelets qt, 1,..., N- 1 [5]. The function b satisfies
an equat}on of type [1, eqn. (1.4)], qb(x)=cncb(Nx-n), or th(:)
mo(/N)d(/N), with m0(:) N-1Y, c, e i"e. The different q,l can all be written as
linear combinations ofthe b(Nx n). There exist, therefore, trigonometric polynomials
ml so that l(:)= ml(/N)(/N) (we assume compact support for 4 and the i, so
that rno and the ml are indeed polynomials and not infinite series). Orthonormality of
the different subspaces in the multiresolution analysis then implies that the N x N
matrix M(sc) with entries

IM,k() ml-1 +-- (k- 1)

is unitary for all sc [5]. For N 2, this reduces to the standard requirements ml(:)=
eitmo(:+ 7r)A(:), with [A(:)[ 1, and A(+Tr)= A(), and Imo()12/lmo(/r)l- 1.
The second condition is [1, eqn. (1.9)] again. If both mo and ml are trigonometric
polynomials, then the only possible choices for A(:) are A(:) A e ikt, with A C, ]A] 1
and kZ. The simplest choice A(:)--1 corresponds to [1, eqn. (1.6)].

For general N, the step of one resolution space V to the coarser space Vj+
corresponds to a jump of log2 N octaves in frequency, since there is a dilation factor
N between the two resolutions, and every factor 2 corresponds to one octave. Each
of the N-1 wavelets corresponds therefore to, on average, a bandwiJdth of
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(N-1)-1 log2 N. For N =4, for instance, we would have 3 wavelets for 2 octaves,
corresponding to an average -octave per wavelet, which is better than the 1-octave
bandwidth attained by bases with N 2.

This naive computation of the average bandwidth of the ql is deceptive, however,
as illustrated by the following example. Given an orthonormal wavelet basis with
dilation factor 2, the following easy trick generates an orthonormal wavelet basis with
dilation factor 4. Let us, for this paragraph only, use a tilde to distinguish the wavelets,
spaces in the multiresolution analysis, etc for the N =4 construction from their
counterparts in the N 2 case. Define

rfio(:) mo()mo(2),

]q]l() mo()ml(2),

rfi2(c) ml()rn,(2),

rfi3(:) ml(sC)mo(2:),

where rnl(:) eierno( + r), and mo(:) is the trigonometric polynomial associated with
the given orthonormal wavelet basis with N 2. Because mo satisfies [1, eqn. (1.9)],
we easily check that the 4 x 4 matrix () is indeed unitary for all sc. The corresponding
function is given by

q() 1-I rfio(4-J:) 1-I [mo(2-zJ)mo(2-zJ+’)] R mo(2-J) (),
j=l j=l j=l

so that . The scaling spaces , spanned by the (4-x k), are, therefore, the
subsequence of scaling spaces V with even index, V. The wavelets , l= 1, 2, 3
are given by

In particular,

1(,) ml()mo()() ml()q()
or ql= q. Since the function q is essentially a 1-0ctave bandwidth function, this shows
that the computation above of the average bandwidth of -octave for the q was indeed
naive and misleading. The other two wavelets, q2, q3, are functions not existing in the
N 2 case, which have in fact better frequency localization. They generate spaces ff,
7j which together with if’)= W2j complement V2j to constitute -1 V2j-2,

Since V2j Wej= V2_,, it follows that ffj2. ft.}= Wzj-1. This construction of an N=4
multiresolution analysis from an N 2 case corresponds therefore to a splitting of all
the odd-indexed W2j_, into two spaces, each of approximately 1/2-octave bandwidth
functions, while the even-index Wej remain untouched, and are still generated by
1-0ctave bandwidth functions.

In the next section we show how to do better than this construction by splitting
every W (as opposed to only the odd-indexed ones) into two parts.

5. Wavelet bases with -octave bandwidth wavelets. At the end of the previous
section, we had split W1 into two 1/2-octave spaces, ",v’ "vr’3. Dyadic dilations of these
spaces are then 1/2-octave components for any Win, and these spaces can be used to
decompose all of L2(). This decomposition can also be derived directly. The key idea
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is to start from a conventional multiresolution analysis with dilation factor 2, and to
split every space W into two 1/2-octave bandwith subspaces. They key to this splitting
is [1, eqn. (1.8)] and the computation leading to [1, eqn. (1.11)]. As shown in [1, 1],
condition [1, (1.8)] ensures that [1, (1.4)] and [1, (1.6)] define an orthonormal basis
transform in V_l, from {x/b(2x- n); n Z} to {b(x- n), q(x- n); n 7/}. For the
argument to work, it is not essential that the functions appearing in the two sides of
[1, (1.4)] are dilated versions of each other. The same argument would work just as
well for any function f such that the f(x- k) constitute an orthonormal set; with the
definitions

gl(X) 2-1/2 E c,,f(x- n),

g2(x) 2-1/2 (-1)"c_,,+lf(x- n),

the functions (g(x-2n),g2(x-2rn)),,,,,z are another orthonormal basis for
Span (f(x- k)).

Given a, satisfying 1, (1.8)], i.e., . a,,a,,+2k 26k0, we can therefore define, for
any basic wavelet q,, the functions ql, q; by

{1(x) 2-1/2 Z Ond/(X n)

(2)
2(X) 2-1/2 E (--1)"a_,,+,q(x--n);

the functions q,(x-2n), ,2(x-2n) then constitute an orthogonal basis for Wo;
consequently (2-;/2,(2-;x-2n),2-;/22(2-Jx-2n);L n 7/) is an orthonormal basis
for L2(R). The Fourier transforms of q;1, q2 will be concentrated on .respectively the
higher and lower half of the bandwidth of q,. The bandwidth of qq is, therefore,
approximately log2 2- log2 3 octaves, that of /2 approximately log2 - log2 3-1
octaves. The supportwidth of q’l, 4’2 will of course be 1.arge.r than that of q,.

In Fig. 1 we show two different constructions of 4’1, 4’2, built from two different
functions q,. In each case we have chosen for a, the same coefficients c, as used for
the definition of q, (via [1,.(1.4.)], [1, (1.6)]). We may, of course, also choose different
a,. The support width of qq, t2 is twice as large as that of q,. In general, we have

]support({l)l---Isupport (q2)] (# of nonzero a.) l

+ (# of nonzero c,,) 1.

For the choice oe,, c,, made in Fig. 1, we have, therefore,

[support ql)] --]support q2)l 2[support )l.
Note that with the choice a, c, the two wavelets constructed here are (up to dilation)
exactly the two "new" wavelets constructed in the previous section.

The plots of [q], [q2[ in Fig. 1 have "side-lobes" that make the splitting less than
perfect. Such side-lobes are unavoidable. We have

Il()--- a()q(sc), q’2(:) eia(+

with a(s)=2-/2X, a.e’."e. Condition [1,(1.8)] implies la(sC)12+la(s+rr)12=2. For
small I1<_-:o we have Iq,,I-,/ll, or la(s)l---,/. Consequently, la(/)l---0 for
Iscl =< :o..Since a is periodic, this implies la(: / r)l-0 for Is-2rrl _<-o, or la(s)l
hence Iq;,I lql in this region also. This causes the "side-lobes" on the figure. The
only way to reduce them is to start from q, with very concentrated Fourier transform
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(a) N 6
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(b) N= 10
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FIG. 1. GrapAhs of the "1/2-octave bandwidth" functions 1, 2 and the absolute values of fieir Fourier

transforms I1, I=1. The dotted line in each case is the graph of I1. We have 211=- Ill=/l=l=. (This is

clearly^illustrated by the graphs. Note that we have plotted Ig,,I/4 and I=1/ in order to make the comparison

with I1.) In both cases the a (see (2)) are the same as the coefficients cnfrom which p is defined; thefunction
in these two examples corresponds to (a) the case N 6 in 1, 2] and (b) the case N 10 in 1, 2].
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[ql. This is why the effect becomes less pronounced as N increases. (The Fourier
transform I1 becomes more concentrated as N increases; see Fig. 7 in [2].)

Remarks.
(1) In case even better frequency localization is desired, this splitting trick can

be repeated" we can replace q by 2j functions, each corresponding to a 2-J-octave
bandwidth, and which have to be translated by integer multiples of U,

Span {q(x- n)}= Span {p(x- 2Jm); 1= 1,..., U, m 7/}.

At every splitting, the "side-lobe effect" takes its toll, however, marring the frequency
localization; see [8].

(2) The functions ql, q2 constructed are special cases of the "wavelet packets"
discovered by Coifman and Meyer [6], which in one framework encompass many
different choices of orthonormal bases, of which the wavelet is one extreme example.
Another extreme within the same framework is a basis closer in spirit to the windowed
Fourier transform; infinitely many intermediate choices are possible; see [9] for
applications.

6. Multidimensional "splitting." The "splitting trick" also allows selective splitting
in higher-dimensional multiresolution analysis. For the sake of simplicity we restrict
ourselves to two dimensions. A standard way of generating a two-dimensional wavelet
basis from a one-dimensional multiresolution analysis is to define [7]

(x, y)= ch(x)ch(y),

(3)
l(x, y)= d/(x)(y),

2(x, y)= ch(x)q(y),

att3(x, y)= (x)d/(y).

The orthonormal basis of wavelets is then given by the I3’.k, with 1, 2, 3, j 7/and

k (kl, k) 7/2 defined by

*,(x, y) 2-t(2-x- kl, 2-Jy- k).

A good way to visualize what this construction means is to look at it in the Fourier

plane for the special choice (sc) (27r) -1/2 if I:1 -< r, 0 otherwise, and the correspond-
ing q() (27r)-1/ if 7r < Il =< 2zr, 0 otherwise. We easily check that for this choice
the space V is exactly L2([-2-JTr, 2-Tr]), and W=L([-2-/lTr,-2-Tr]U
[2-7r, 2-J/lTr]), so that the whole ladder of one-dimensional multiresolution spaces
can be simply represented by the supports of the corresponding functions. Of course,
these particular b and q decay too slowly to be useful in practice, but the visualization
they lead to in Fourier space is still "morally true" for other, more useful choices,
even though the splitting is not as clean cut. The two-dimensional multiresolution
spaces Vj, and their complement spaces Wj, generated by (3) can also be written

w)=
2
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For the special choices of b, q, described above, these two-dimensional spaces are
again L2-spaces of particular domains carved out in the Fourier plane. For instance,
Vj L2([-2-JTr, 2-JTr]) (R) L2([-2-r, 2-JTr]) L2([-2-Jr, 2-r] x [-2-7r, 2-7r]); in par-

2ticular, Vo L2([-Tr, 7r]2). For everyj, the sum W) 0)Wj 0)Wj is the orthogonal comple-
ment in V-I ofVj, which corresponds to the annulus [-2-J+17r, 2-+r]2\[-2-Jm 2-7r]2.
All this is visualized in Fig. 2(a): the small central square corresponds to (say) Vo;
adding to it the two vertical rectangles corresponding to W, the two horizontal
rectangles for Wo, and the four corner squares for W lead to the bigger square
representing V_. The structure then repeats in the next annulus, to constitute V_2.
The angular resolution in the Fourier plane of this scheme is not very good, as shown
by the figure. Figure 2(b) shows what the same two-dimensional construction looks
like when we start from a one-dimensional multiresolution analysis with dilation factor
4, as given in 4. In this case the one-dimensional scheme has already three wavelets,

w0 ’,w0

Vo Wo

Wo ,Wo wo

FIG. 2. Visualization ofthe localization in the Fourierplane achieved by various two-dimensional multiresol-
ution schemes:

(a) the standard product scheme starting from a one-dimensional analysis with dilation factor 2,
(b) product schemefrom a one-dimensional analysis with dilation factor 4, derivedfrom a multiresolution

analysis with factor 2 as in 4,
(c) product scheme from a one-dimensional analysis with two 1/2-octave bandwidth wavelets rather than

one 1-octave bandwidth wavelet,
(d) a nonproduct scheme obtained by the "splitting trick."
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SO that the two-dimensional product scheme ends up with 23 +32= 15 wavelets.
Figure 2(b) represents one step (with dilation 4) in the multiresolution scale, as
compared to two steps (with dilation factor 2), i.e., two successive annuli in Fig. 2(a).
The central part of the two pictures is identical; the only difference between the two
pictures is that the outer annulus of Fig. 2(a) is split into many pieces to give Fig.
2(b), while the inner annulus is untouched. This corresponds to the "splitting of one
level out of two" shown at the end of 4. The result is good angular resolution for
some wavelets (corresponding to the outer layer in Fig. 2(b)), bad for others (corres-
ponding to the most central rectangles in Fig. 2(b)).

Figure 2(c) shows the same picture again, with two steps in a multiresolution
analysis with dilation factor 2, but for a product structure of type (3) starting from
the two 1/2-octave bandwidth wavelets constructed in 5, rather than the 1-octave
bandwidth wavelet q. The scaling function is the same, but there are now 2 2 + 22 8
wavelets (as opposed to 3 for Fig. 2(a), and 15 for Fig. 2(b)). Figure 2(c) can be
obtained from Fig. 2(a) by splitting every annulus (inner as well as outer) into halves
by cuts in both horizontal and vertical directions. This improves the angular resolution
on the squares in the corners (corresponding to the W} of Fig. 2(a), but does nothing
for the angular resolution of the rectangles (corresponding to W or W) in Fig. 2(a)),
which were split better in the outer annulus of Fig. 2(b). The best angular resolution
can be obtained by giving up a product structure analogous to (3) and just carving up
every one of the Wj spaces of Fig. 2(a) vertically and/or horizontally, by applying the
"splitting trick" in x and/or y, until the desired resolution is achieved. An example is
given in Fig. 2(d). This still corresponds to an orthonormal basis, and to a fast algorithm
for decomposing and reconstructing functions, as described in [1, 1], although the
organization is somewhat more complex. If even better angular resolution is required,
then we can repeat the splitting trick as many times as necessary.
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MARKOV-BERNSTEIN AND NIKOLSKII INEQUALITIES,
AND CHRISTOFFEL FUNCTIONS

FOR EXPONENTIAL WEIGHTS ON (-1,1)*
D. S. LUBINSKY AND E. B. SAFF

Abstract. Exponential weights w :-- e-Q are considered, where Q (-1, 1) R is even,
convex, and sufficiently smooth. For example, the results may be applied to

() := ( ), > 0,

w(x) :-- exp(--(1 x2)-a), > 0, or

w(x) := exp(-- expk(l x2)-a), > 0, k >_ I,

where expk exp(exp(...)) denotes the kth iterated exponential.
Weighted Markov and Bernstein inequalities such as

and
Cn

[P’wl(x <_ IIPwlIL[_I,I], Ixl < an,

are established for polynomials P of degree at most n. Here an is the nth Mhaskar-Rahmanov-
Saf number for Q. For the special weights listed above, a more explicit form is given to Q(a2n).
Estimates are deduced for Christoffel functions such as

sup Al(w2,x)w(x) <_ CQ’(a2n),

and also Nikolskii inequalities.

Key words. Markov-Bernstein inequalities, Nikolskii inequalities, non-Szeg6 weights, Christof-
fel functions, orthogonal polynomials

AMS(MOS) subject classifications, primary 41A17, 42C05; secondary 41A10

1. Introduction and statement of results. Throughout, 7n denotes the class
of real polynomials of degree at most n, and I1" lILT(S) denotes the Lp norm over any
measurable S c R (0 < p <_ x). Furthermore, C, C1, C2,..., denote positive
constants independent of n, P E 7n, and x E R, which are not necessarily the same
in different occurrences.

The classical inequalities of Markov and Bernstein are, respectively,

(1.1)

and

(1.2) IP’(x)l _< n(1

for P 7n and Ix[ < 1. The interest in these inequalities lies in their application to
rates of approximation by polynomials, to discretisation procedures, to approximation
processes, and so on.

Received by the editors August 26, 1991; accepted for publication (in revised form) June 8,
1992.

Department of Mathematics, University of Witwatersrand, P. O. Wits 2050, Republic of South
Africa. This author’s work was begun while visiting E. B. Saff at the University of South Florida in
1989.

Institute for Constructive Mathematics, Department of Mathematics, University of South
Florida, Tampa, Florida 33620-5700. This author’s research was supported in part by National
Science Foundation grant DMS-881-4026.

528



MARKOV-BERNSTEIN AND NIKOLSKII INEQUALITIES 529

Naturally, such important inequalities have been generalized to treat a host of
situations, such as in Lp spaces, and with weights inserted. We cannot hope here
to review the history and the contributions of the many authors. A fairly typical
example of those in the literature is [1, Thm. 8.4.7, p. 107]"

(1.3)

P Pn, n > 1. Here 0 < p < cx), and w(x) is either a Jacobi weight (1- x)(1 + x),
where , > -1, or something similar. See [15, Whm. 19, p. 164], [1], [2], [3] for
further discussion and references.

The aim of this paper is to treat weights w(x) that may decay more rapidly at
=kl than Jacobi weights; for example,

(1.4) w(x) := Wo,a(x)"= exp(-(1- x2)-a), a > 0,

or

(1.5)

where

w(x) :- Wc,o(x) exp(-exp.[(1 x2)-a]), a > 0, k > 1,

expk :-- exp(exp(exp...)) (k times)

denotes the kth iterated exponential. However, our results apply equally well to the
classical ultraspherical weight

w(x) := (1- x2)a, a > 0.

For a 1/2, the weight W0,a of (1.4) is similar to a Pollaczek weight, and its
orthogonal polynomials were considered in [15, pp. 82-83]. Asymptotics, and spacing
of zeros of the orthogonal polynomials for Wk,a, have been considered in [2], [12].

To the best of our knowledge, the Markov-Bernstein inequalities in this paper are
new for the weights Wk,, for all the range of parameters. To those with an interest
in orthogonal polynomials, it is noteworthy that Szeg6’s condition

(1.6) f lg w(X)
dx > -41 x2

is violated by W0,a of (1.4) if a and by all the weights Wk,a of (1.5). Since the
Markov-Bernstein inequalities have various applications to orthogonal polynomials
sociated with non-Szeg6 weigMs, such estimates for Christoffel Mnctions, they
are of particular interest.

In fact, the results of this paper bear a close resemblance to results for exponential
weights on the real line [4], [5], [6], [9], [10], [17], and more specifically to Erd6s weights
W2 e-2Q on R These have the property that Q grows fter than any polynomial
at infinity.

In the analysis of those weigMs, and the ones treated in this paper, the Mhr-
Rahmanov-Saf number plays an important role. Let us suppose that w e-Q,
where Q (-1,1) R is even, and differentiable in (0,1). Suppose, furthermore,
that tQ’(t) is positive and increing in (0,1) with limits zero and infinity at zero and
1, respectively, and

tQ’(t)
(1.7)

1 t
dt .
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Then the uth Mhaskar-Rahmanov-Saff number, a a(Q), is defined to be the root
of

2 oo atQ’(aut)(1.8) u
x/1 t2

dt, u > O.

The importance of a lies in the identity (cf. [13], [14])

(1.9) IIPwlizo[-,] -IlPwllzo[-a=,a=], P e Pn, n > 1,

which we refer to as the Mhaskar-Saff identity. Of course an --* 1 as n --, cx. As an
illustration of its rate of approach, we note that for w W0,a,

(1 10) 1 an n-1/(a+1/2)

and for w Wk,,,

(1.11) 1 an (logk n)-1/, n oc,

where logk log(log(log...)) (k times) denotes the kth iterated logarithm. Further-
C

(x)more, we are using in the sense of [15]" if { , }n=l and {dn }n_-i are real positive
sequences, then

Cn dn n --, oc,

means that for n large enough,

C1 < c.__n
dn

We are now ready to define our class of weights.
DEFINITION 1 1 Let w :----e-Q where

(i) Q is even and continuously differentiable in (-1,1), while Q" is continuous
in (0,1);

(ii) Q’ _> 0 and Q" _> 0 in (0,1);
(iii) f3 (tQ’(t))/(v/1 t2)dt oc;
(iv) Let

xQ"(x)(1.12) T(x) := 1 + Q’(x)
x e (0,1).

We assume that

(1.13) (b)
(c)

T is increasing in (0,1);
T(0+) > 1;
T(x) O(Q’(x)), x --. 1-.

Under the above conditions, we write w E 142.
We remark that (1.13) is a rather weak regularity condition, while (iii) is required

for the existence of an. Further, we note that most of our results really only require
the above hypotheses to be satisfied for x near 1. However, for simplicity, we shall
not pursue this point. In any event, Wk, l/V, k >_ O, a > O.

Following are our Markov-Bernstein inequalities for Pw.
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THEOREM 1.2. Let w E
(i) For n >_ l and P E

(1.14) I]P’w[]Loo[_l,1]
_

CnT(a2n)l/2[[pw[[Loo[_l,1].

(ii) For n >_ 1, P P,, and Ix[ < an,

Cn
(1.15) IP’wl(x) <- v/1 -Ixl/a: IlPWllL[-l’l]

We remark that under mild additional conditions, which are satisfied for Wk, for
all k _> 0, c > 0,

(1.16) nT(a)1/ Q’(a), n --,

(see Lemma 3.2(ii) below), so one may reformulate (1.14) as

(1.17) IlP’WllLo[_l,ll <_ cQ’(a2,)llPWllLo[_l,l].

One may combine (1.14) and (1.15) as follows:
CorollarY 1.3. Let w c= W. For n >_ 1, P "P, and x

_
[-1, 1],

Cn
(1.18) IP’wl(x) <

l1 -Ixl/al/2 + T()-1/ IlPWllL[-1,11.

The above is the analogue of the classical consequence of (1.1) and (1.2):

Cn
IP’(x)l _<

i1_ ixlll/2 + n- IIPllL[_I,ll, P e :p, x e (-1,1).

As examples of Theorem 1.2, we present the following.
COROLLARY 1.4. (i) Let a > 0 and Wo, be given by (1.4). Then for n >_ 1 and

P P,,

(1.19) IIP’Wo,allLo[_l,ll .
.(ii) Let k >_ 1, a > O, and Wk, be given by (1.5). Then for n >_ 1 and P e 2)n,

(1.20) IlP’Wk,llLo[-1,11 < Cn log n (logk
=1

(iii) Let c > 0 and w(x) := (1 x2)c’. Then for n >_ 1 and P

(1.21) IlP’WllLo[_l,ll <_ cn21lpwllL[_l,l].
We remark that under mild additional conditions involving Qm, which hold for

Wk,a, k >_ 0, c > O, we can show that (1.14) is sharp with respect to the dependence
on n. The proof is lengthy, and involves analysis of L extremal polynomials for w.
For the proof in a closely related situation, we refer the reader to [7, pp. 71-78]. Note
that (1.21) is a classical inequality for ultraspherical weights [11.

Next, we turn to inequalities for (Pw). These are different from those for Pw,
since for x close to an, I(Pw)’l(x) admits a far better estimate than IP’wl(x). A
similar situation occurs for ErdSs weights on tt (el. [6]).
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THEOREM 1.5. Let w E 142. Then
(a) For n > 1, P e Pn and Ix[ < an,

Cn<
(i -I1/.)/ + T(a2n)-l/2 IIPwlls=i- .,,l;

(b) For n > 1, P Pn and I:1 <

I(Pw)’(z)l <CnT(a2n){(1- .1 1)
In particular,

+ (nT(a2n))-113 } IIPwlls_,t-,l.

(1.24) I(Pw)’(a,)l < C(nT(a,))lSllPwlls_,+i_,].
Note that for suitable A, and _> 1 AT(a2n) -1, (1.23) provides a better

estimate than (1.22), while for [xl/an < 1- AT(a2n) -1, (1.22) provides a better
estimate.

Next, we turn to estimates of Christoffel functions. Recall that the nth Christoffel
function for w2 is

(1.25) A,(w2 x) "= inf
p2

(pw)2(t)dt, x e (-1, 1).

It turns out that a particularly simple way to find upper bounds for A; involves the
Markov-Bernstein inequality for w. This idea has been used elsewhere [7].

THEOREM 1.6. Let w 14;. Then for n > 1,

(1.26) sup
xe[-1,1]

A;l(w2, x)w2(x) <_ CnT(a2n)112.

We note that this result is sharp under mild additional conditions on Q; see [9]
for the proof in a similar situation. As a corollary of the above estimate, we obtain
Nikolskii inequalities.

COROLLARY 1.7. Let w }/Y and 0 < p < q < oc. Then for n > 1 and P

(1.27) iIPWIILq[_I,1] <_ C(nT(a2n)l/2)l/p-1/qllPWllL[_l,1].
This paper is organized as follows. In 2, we present the basic ingredients of

the proof--contour integral estimates, and integral equations with logarithmic ker-
nel. In 3, we prove some technical lemmas. In 4, we present estimates for the
measure #n(x), and in 5, we estimate the majorisation function Un(x + iy). In 6,
we prove the Markov-Bernstein inequalities, and in 7, we prove Theorems 1.6 and
Corollary 1.7.

2. The two basic ingredients. The first ingredient is potential theory and an
integral equation used in majorisation of weighted polynomials.

LEMMA 2.1. Let w "= e-Q /. For n >_ 1, let an an(Q) be the root of (1.8).
For x e (-1, 1)\{0}, let

2 fl v/1 x2 ansQ’(ans) anxQ’(anx)
(2.1) #,(x) := - Jo v1 s n(s2 x2

ds.
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Furthermore, let

2 fo(2.2) Xn := dt + n log 2,
r v/1 t

and for z e C such that I1 < 1/, tt

(a) Then for almost every x E (-1, 1),

o < () < ,

(.5) #n(x)dx 1,

and

(2.6) #(x) dx
Q’(an)

ll-X n

(b) Furthermore,

(2.7) U(x) O, x e [-1, 1],

and

(2.8) (xUn (x) )’ < O, U,(x)<0, U(x)<0, x (1, 1)
(c) For n >_ 1, P 7 and z C such that zl < 1,

((z))(e.9) Ip(z)(ll)l _< IIPlli-oo,ol exp v

Furthermore,

(2.10) IlPwllzoo[-1,1] IIPwlILo[-.,a.I,

and if P is not identically zero,

(2.11) IPwl(x) < IlPwllz_[-a.,..], Ixl > an.
Proof. See [11, Lemmas 5.1, 5.2, pp. 28-34]. One sets f(x) :- Q(anx), x e

[-11 in [11].
(a) The constant B in [11, eqn. (5.4), p. 28] is zero in view of (1.8), and the

function #n above is the function g(f; t) or L[f’](t) of [11]. Then (2.5) and (2.6) are,
respectively, (5.6) and (5.23)in [11].

(b) The identity (2.7) follows from [11, eqn. (5.1), p. 28]. Furthermore, (5.25) and
(5.26) in [11, p. 23] ensure that Un(an) Un(an) 0 and the first relation in (2.8),
which is (5.27) in [11, p. 32], then implies the other two.

(c) See [13, pp. 74-75], or see [11, p. 51]. [:]



534 D.S. LUBINSKY AND E. B. SAFF

Next, we turn to estimates for derivatives of weighted polynomials, derived via
Cauchy’s integral formula. This method has been used elsewhere [4], [6].

LEMMA 2.2. Let w E Y?. Let x (-1, 1), e (0, 1 -Ixl), and P :Pn for some
n > 1. Then

(2.12) ,(Pw)’(x),<e.-ler,,Pw,,Lo[_l,1] max exp(nUn( t---))It-xl=e an

where

{ ’(3e)2e, if [x[ _< 2e,
(2.13) T

Proof. Fix x (-1, 1) and define the entire function

(t) := exp(-Q(x) Q’(x)(t x)), tEC,

so that (J)(x) w(J)(x), j 0, 1. Then

I(Pw)’(x)l I(P)’(x)l

(2.14)

1 .f. (Pv)(t) dt
-,--1: (t )2

1<- max IP@l(t)

1<- max I(t)/w(Itl)l. max IP(t)w(ltl)l
e It-zl= It-zl=
1

max exp(nU,(t/a,)),< max I(t)/w(Itl)l.
e It-xl= It-xl=e

by (2.9). It remains to estimate I(t)/w(ltl)l. Suppose first that Ixl < 2. Then for

(2.15)
Iv(t)/w(Itl)l exp(-Q(x) Q’(x)(Re t x) + Q(Itl))

_< exp(-Q(lxl) + Q’(2) + Q(Ix] + )),

where we have used the monotonicity of Q and Q’. Finally,

Q(lxl + e)- Q(Ixl) < Q’(Ixl + e)e < Q’(3e)e,

and (2.13) follows for Ixl _< 2e.
Next, suppose x > 2e. Then

-Q(x) Q’(x)(Ret x) + Q(Itl) Q(Itl) Q(Re t)
(2.16) + Q(Re t) Q(x) Q’(x)(Re t x)

t!Q’()(It Ret) + 5Q ()(Re t- x)2,

where lies between Re t and Itl, and r lies between Re t and x. Here , 7 e [x-e, x-l-e].
Furthermore, by the elementary inequality (a2 + b2) 1/2 <_ a + b2/a, for a, b > 0,

e2 2e2
Itl- Re t < (Imt)U < <

Ret -.x-- x
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so

(2.17) Q’()(It]- Ret) _< 2Q’(x + e)e2"
x

Furthermore, uQ"(u) Q’(u)(T(u) 1) is increasing in (0,1), so

TQ"() _< (x + elQ"(x + e),

and hence

Q"(7) -< x + e
Q,,(x + e) _< 3Q"(x + e).

X--

Then

1Q"()(Ret x)2 < e2Q"(x + e).(2.18)

Combining (2.14) to (2.18) yields (2.13) for x _> 2e, and the case x

_
-2 is

similar. [:l

3. Technical lemmas. In this section, we present some elementary consequences
of the hypothesis w E

LEMMA 3.1. Let w e-Q

(i) We have for O < x

_
Lx < l,

(3.1) .LT(x) < LxQ’(Lx) < LT(Lx)"
xQ’(x)

(ii) Q’(x) and xQ"(x) are increasing in (0,1).
(iii)

(3.2) xQ"(x) T(x) in (0, 1].

(iv)

(3.3)
Q’(x) <_ (T(0+)- 1)-lQ"(x) in (0,1],
x

and

(3.4) Q’(O) =0.

(v)

Proof. (i) Now

1/2
dx < oc

Q’(x)
x

LxQ’(Lx) L d
log[tQ’(t)]dt exp

T(t) dt
xQ’(x)

exp - t

Here the monotonicity of T ensures that

L T(t)T(x) log L < --dt < T(Lx) log L.

Then (3.1) follows.
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(ii) Since

(3.6) xQ"(x) (T(x) 1)Q’ (x),

the monotonicity of T and Q yields the monotonicity of xQ" (x).
(iii) By (3.6), for x e (0, 1),

xQ’(x) T(x)Q’(x) 1
T(x) > T(x)Q’(x) 1 T(0+)

(iv) Firstly, (3.6), the monotonicity of T and the fact that T(0+) > 1 yield (3.3).
Next, the evenness of Q and continuity of Q’ force (3.4).

(v) If 0 < 5 < 1/2, inequality (3.3) yields

/2 Q,(S).ds <_ (T(0/)- 1)- [Q’(1/2)- Q’(5)].
8

Now let 5 0 +. [3

LEMMA 3.2. Let w e-Q E )/ and an a(Q), n >_ 1.
(i) For j 1, 2 and n large enough,

(3.7) Q(i)(a) O(nT(an)J-1/2).

(ii) If also

Q’(x)(3.8) T(x), x near 1,

then for j 0, 1, 2, and n large enough,

(3.9) Q(J) (an) nT(an)j-1/2

(iii) We have

Q’(a,) O(n2);

(3.11) T(a=) O(n2).

(iv) For t

(3.12)
1 >a > 1

tT(O+) at tT(at)"

(v) For u (0, oc) and r >_ 1,

(3.13)
log ravu > 1 +au T(aru)

Proof.

(i)
n 2_ fl atQ’(at) 1

aQ’(an) aQ’(a) v/1 t2Jo --dt
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(3.14)

> tT(a) .dr (by (3.1))
r v/1 t2

2( 1 )T(an)ll lt2dt>- 1
T(an) -liT(an) v/1-

1 )
T(0+)

>_ C 1
T(0+) T(an)-l/2

Then (3.7) follows for j 1, and (3.2) implies it for j 2.
(ii) From (3.14),

n 2 fl-i/T(a) Q’(ant) 1
a,Q’(a,)

< Jo Q’7r (an) V/1 t2

Q’(a=t)- CiT(an)/2
Q’(an)

dt + CT(an)-1/2

CIT(an)i/2 Q(a=) Q(O)
a=Q’(a=) +CT(an)-/2

<_ C2T(an)/2 Q(an)
Q’() + CiT(an)-/2 <_ C3T(an)-/2

n large enough, by (3.8) and monotonicity of Q. Hence

anQ’(an) ,’nT(an) 1/2.

Then (3.2) yields (3.9) for j 2, and (3.8) yields it for j 0.
(iii) From (3.7)and (1.13),

Q’(an) O(nT(an) 1/2) O(nQ’(an)/2),

whence (3.10) follows. Then (1.13)yields (3.11).
(iv) Differentiating (1.8) with respect to u yields

Since

1
2 j0 d

-u(a=tQ’(a=t))
dt

x/’l t2

2/ol T(at)Q (aut)autx/1 t2

a= T(aut)a=tQ’(a=t)
au 7r

dt

v/1 t2

T(0+) _< T(aut) <_ T(au), t e (0, 11,

we obtain (3.12)from (1.8).
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(v)

exp --dr
at

_> exp
tT(at)

logr) logr_> exp
T(aru)

>_ 1 + T(aru)"

LEMMA 3.3. Let w E 14;.

(i) For 0 < a < A, we have

(3.15)
a AhnQ (ahn) >_ > 1, n>l.

(ii) For n >_ 1 and x [- 1, 1],

(3.16) anxQ’(anx)(1 -Ixl)/ <_ Cn.

Furthermore, for n >_ 1 and s [-an, an],

(3.17) sQ’(s) (1-an
Proof.

(i)

ahnQ’(ahn)
anQ’(an)

exp
n

[log(atQ t))]dt

=exp T(at)--adt _>exp =--,
n at n o

by (3.12).
(ii) Now uniformly for [x e [0, 1),

(3.18)
ds

(1- Ixl)/
V/1--S2

Hence for Ixl e [0, 1),

anxQ’(anx)(1- Ix[) 1/2 alxlQ’(alxl)(1- Ixl) 1/2

< Can[xlQ,(an[xl)2 f ds

" Jlxl v/l-s2

< C2 f ansQ’(ans) ds < Cn.
rjll v/1- s2

For Ixl- 1, (3.16) is trivial. Setting x s/an yields (3.17).
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4. Estimates for the measure n. In this section, we present some estimates
for the measure #n(x) that are of independent interest. The methods we use are
similar to those in [4], [6], [91.

THEOREM 4.1. Let w E )/Y. Then for n >_ 1,

(4.1) (a) max #n(x)V/1- x2 _< C;
xe[-1,1l

(4.2) (b) max #n(x)/V/ x2 <_ CT(an).

As a corollary, we shall deduce the following.
COROLLARY 4.2. For n >_ 1,

(4.3) max #n(x) <_ CT(an)1/2
xE[-1,1]

Under mild additional conditions, we can show the following.
THEOREM 4.3. In addition to w )/V, let us assume (3.8). Fix fl (0, 1). Then

we have

(4.4) V/1-X2#n(X)>_C, Ixl <_ an, n >_ l.
an

We note that under mild additional conditions, we can show that (4.2) and (4.3)
are sharp. See, respectively, [5] and [8] for the sharpness of (4.2) and (4.3) in the
related situation of ErdSs weights. We turn now to the proofs of the above results.

Proof of Theorem 4.1(a). Since #n is even, we may consider x (0, 1). For n >_ 1,
and s, x (0, 1), set

(4.5) A,(s, .=

Then

ansQ’(ans) anxQ’(anx)
an8 anX

(4.6) An (s, x) dsVi X2n(X 2an (1 X21us---- s x v/1 s2

Note that since (uQ’(u))’ Q’(u)T(u) is increasing in (0,1), uQ’ (u) is convex in (0,1).
Hence for each fixed x, An(s,x) is an increasing function of s (0, 1).

Case I. x [0, 1/4]. Now suppose that x [0, 1/4]. Then s (2x, 1] implies

An(s x) <
ansQ’(ans) 2Q’(ans).
asS ass

Furthermore, s e (0, 2x] implies

< x) <
an2xQ’(an2x)
an2X anX

2Q’(an2x).

Hence for 0 <_ x <_ Z,

[i
2 Q’(an2x) 2 2Q’(ans)v/ X2#n(X) < C--L(1 -Ixl) ds +

n s+x x s

d8

[ //2Q’(ans) fl
1 ansQ’(a,s) ]< C2(1 -Ixl) 2Q’(1/2) + ds + ds

n j. s /2 v/1-s
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by Lemma 3.1(v) and the definition of an.
Case II. x e [1/4, 1). Next, suppose 1/4 _< x < 1. Let

Z-x
6(x)’=

4

From (4.6) and as x + 46(x) 1, we have

V/1 x2#n(x) < C(1 x) An(s’x) ds
n v/1 s2

4-C-C (I + 12 +/3).
n

fx+6(x) xl ] An(8X) d8
Jx-(x) +() x/’l s2

Firstly,

h < anxQ(anx) ds

o anX an8 v/1 s2

fx-() (as 1 s > x- s > O)
ds

(4.8) <_ C1(x)xQ (anX)
dO (x 8)3/2

by (3.16). Next, if s e Ix 5(x), x + 5(x)], there exists between s and x such that

’aA(s,x) -u(UQ’(u)) u:a,( T(a,()Q

<_ T(a,[x + 6(x)])Q’(a,[x + 6(x)])

-1 fx+25(x) T(a,s)Q’(a,s)ds<_ (x)
+()

+2() d
--(an((X)) -1 --(ansQ’(as))ds

j+() ds

<_ (anS(x))-lan[x + 25(x)]Q’(an[x + 25(x)])

ds<_ C45(x)-3/2an[x T 25(x)]Q’(a,[x + 25(x)])
+2a(x) v/1 s2

(observe 1 -[x + 26(x)] 26(x))

< C(x)_3/2 ansQ’(ans)
ds

+28() /i s_
C55(x)-3/2n.
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Then

I < () c()-/n
Jx-()

d8

x/1 82

< C5(x)_l/2n ds < C6n,
_() v/1- s2

as 1 (x- 5(x)) 55(x). Finally,

(4.10) I3 < 5(x)r]1 ansQ ans
Jx+(a:) artS(x)

d8 < Cn,
x/’l s2

by the definition of a,. Combining (4.7) to (4.10) yields

V/1- X2#n(X) _< C, x e [1/4, 1).

Proof oI Theorem 4.1(b). With the notation (4.5), and by (4.6), we have for
1 > Ixl _> ,

.()/v/1 : < z fo a(,x)e
n v/l- s

(4.11)

< _C fl A,(s, 1)ds
n Jo x/1-s2

since An(s,x) is increasing in x for fixed s (as in the proof of Theorem 4.1(a)). Now
let

/0 /01A(s, 1) ds anQ’(a,) ansQ’(ans)An := an
x/1 s2 (1 s)3/2(1 + s)1/2

ds

anQ’(an) asQ’(as)<- (1 8)3/2
ds.

Integrating by parts, we have

2
An _<

(1 s)1/2 (aQ’(an) ansQ’(ans))
s----1

s----0

1 2 d

(1 8) 1/2 d- (anQ’(an) -a,sQ’(ans))ds

a fOO1T(ans)Q’(anS)-2a,Q (n) + 2an (1 8) 1/2
ds

Q< 4T(a) (a,s)
ds

/2 x/1 8
(by the monotonicity of Q’ and (1 s) -1/2)

ansQ’(ans)< CT(a,)a- ds < C1T(an)n.
/2 x[l s2
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Then from (4.11), we obtain for 1/2 _< Ixl _< 1,

#n(x)/v/1- x2 _< C2 a---An <_ C3T(a).
n

Since (4.1)implies that for Ix <

() < c4 < CT(),

we have our result. [-I

Proof of Corollary 4.2. For x2 _< 1 1/T(a), (4.1) implies

C < C1T(an)l/2#n(x) <_
x/l_x2

For 1 _> x2 _> 1- 1/T(a,), inequality (4.2) implies

#(x) <_ CT(a,)V/1- x2 <_ CT(a,) 1/2. D

Finally, we turn to the following.
Proof of Theorem 4.3. Let 0 < < A < 1. Now from (2.1), and the positivity of

Q’(a) -aQ’(a)
arts anX

we see that for Ix[ _< af/an,

v/1 ,n(X) > ---- fa 1 aQ’() aQ’(a)
d.

nr2 a/a s2 x2 V/1 s2

Now for s e [aAn/an, 1], and Ix[ _< a//a,

a,sQ’(as) -anxQ’(anx)
a,Q’(a,) a,Q’(a,)

1-
asQ’(ans)

> sT(a,) [1 ,,,Q,(,,,)_
8T(a’) [1-- -]

by (3.15). Furthermore, as s2 > x2 for s e [ah,/a,, 1],

1 x2 > s2 x2 > 0.

V1 X2#n(X > 2
1- nQ (an) sT(a’)a

nTr2 /a,

Hence

CAn C
<1

an T(an)

(by (3.1))

Now by (3.13), for n _> 1,

d8

v/1 s2
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Hence if 5 is small enough,

V/1 x2#,(x) >
2

1- nQ (an) 8T(a’)
nr2 1-/T(a)

d8

vll s2

(()T(an)/11 ds>_ CT(a,)1 1
T(a,) -IT(:) Vil s

> Ci,

by (3.9). [3

We remark that we used (3.8) only in the last two lines of the above proof, in
estimating a,Q’(a,) from below.

5. Estimates for the majorisation function U. In this section, we estimate
the quantity

max exp (nU (-))
which appears in Lemma 2.2. Recall that the majorisation function is defined by
(..a/.

THEOREM 15.1. Let w "= e- W. Let 0 < < 1, nd for fied > 0, let

(S.1) n := (r(gn)l/2)-1, 1.

ren

(5.2) max exp ,nUn,--=-,, _<C,
\ \anJJ

uniformly for n >_ 1 and for real x satisfying

(5.3) I1-< a.

Proof. Let It xl <_ n. Then we can write t/an a + ib, where

I1 + a, + 71[nT(a)1]I<1-< _<
an an

< a,(1 + C7/T(a,))
an

where in the last inequality we used the fact that n- <_ CT(an)-/2, which
follows from (3.11). Now, if y is small enough, we get from (3.13) that

an(1 + Cri/T(an))/an < 1, and so

(5.4) I1 + , < an.

Also,

(5.5) Ibl _< e _< e.
an al
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Then since [a < 1, Un(a) 0 (see (2.7)); so we have from (2.3),

v(/.) v( +) v.()

log
a +__ib- t

a
#n(t)dt

Q(an[a2 / b211/2)
n

/
n

log 1 +
a- t

1/_log[l_t_( ,b, )2]lal- t
n(t)dt (as #n is even)

log 1+
lal_ t #n(t)dt

(by Corollary 4.2)

fl,I/l,l [ 1]log 1+- dsc1r(an)/2lbl
J(l,l-l)llbl

(substituting lal- t lbl)

log 1 + ds (by (5.5))

by the choice (5.1) of en. Hence exp(nUn(t/an))
Note that in the above result, we used the bound in Corollary 4.2 for #. Next,

we use the bound of Theorem 4.1(a).
THEOREM 5.2. Let w E )A). Let n

_
1, and for real x satisfying

(4)(5.7) ,Ixl

_
a,

let

(.s) () := ---n an

Then

max(5.9)
I-1_<() exp(nUn( t--))an

Proof. Let x satisfy (5.7), and for It x

_
en(x), write t/an a + ib. Then
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la
_

Ix[
an

(5.10)

=1
an an

< 1 + e(x) -ne(x) + (by (.8))

since (5.7) and (5.8) ensure that en(x) >_ 2/(n2a1). Furthermore,

(5.11) Ibl < ()
al

Since (2.7) shows that Un(a) O, we obtain from (5.6),

Un -n Un(a + ib) Un(a)

_< log 1+ ial_... #n(t)dt

[_<C log 1+
lal_t V’l-t

(by Theorem 4.1(a))

Clbl
(lal-i)/Ibl

1 ] ds
log 1 + - V/I I’1 + lbl’

by the substitution lal- t slbl. Now let

(5.12) 5 := 5(a) :=

We write

(5.13) Un -n <- Cibl f-5/Ibl f,a]/,b, 1 ds

a-2,/Ibl J-,/Ibl
=:I1 +I2.

Then

Ii Clbll/2 f-5/Ibl [ 1]log1 +
ds

-/i, v/25/Ibl +

<C,b,1/21og[1T()2] f5/.bl

JO
u-1/2du

(5.14)
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[
<_ 4C[b[-1/2,

where we have used the inequality log[1
Next,

I2 C,b, ’’/’b’ [ 1]log1
ds

(5 15) Cibi5-1//lal/Ibl [ 1
log 1 + ds

-/11

lbl-/ og 1 + ds.

So from (.la) o (.la) and (g.ll),

since (g.12) and (g.10)show that

2 4

inally, we use the bound of Theorem 4.1(b).
o g.a. etw nd let > 0 be fied. For n 1, nd I1 , let

(g.16) en() := min {(T(n))-/a, (nT(n)l-
Then if is smll enough (independentl of ),

(.17) m exp (nU(
t-()

Proof. Let I1 _< an and for It- xl _< e(x), write t/an a + ib. Here,

(5.18) ib _< en (X) <_ e’ (x)
an al

Furthermore, by (3.11),

so

and hence

nT(an) >_ CiT(an)3/2,

en(X) <_ (nT(an))-2/3 <_ C2T(an)-,

(5.19) Ixl + en(X) an 1 + T(an) ] - a2n,
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if /is small enough. In particular, then

(.0) It_[ <_ Il + ,(,) _< ,___
< .

an an an

Thus Un(t/an) is well defined for [t x[ _< en(x). We now consider the cases la[ <_ 1
and [a[ > 1 separately.

Case I. [a _< 1. Then Un(a)= 0, and by (5.6),

Un (t Un(a + ib) Un(a)

/o_< log 1+ lal"t #(t)dt

<_ CT(an) fO log 1+
laI_,, (by Theorem 4.1(b))

log 1+ (1-1al+slbl) dsCT(an)lbl
(ll-)/Ibl -(substituting lal- t slbl)

<_ CT(a)ibl log 1 + - {(1- lai) + Ibl/2} ds

(by the inequality (u + v) 1/2
_

lul 1/2 --Ivl 1/2, it -- v _ 0)

F [ 1]CT(an)lbl(1 -lal) 1/2 log 1 + -5 ds

(5.21) F [ 1]+CT(a,)lbl1 log 1+ - Isll:ds_
C1 T(an)en(X) 1- I +an an

by choice, lal > i1_ ())
T(an)en(x)312+ 1/2an

Then

nUn n
_
C2 nT(an)en(x) (1-anlX--) 1 + nT(an)en(x)312 } <_ C3,
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by the choice (5.16) of e(x).
Case II. [a[ > 1. Since Un(a) < 0 (see (2.8)), we have

U, - U,(a / ib) U, (a) + U,(a)

[b[ #n(t)dt (by (5.6))<_ log 1+
lal-t

t
#n(t)dt,

as [a]- t > 1 t, t E [0, 1]. The argument of Case I with a 1 then shows that the
above integral is bounded above by the right-hand side of (5.21) (with 1 substituted
for a there). Thus,

(__) /_o [ 1]nUn
t <_ nCT(an)lbl3/2 log 1 / -5 Isl 1/2dsan oo

<_ CInT(an)en (x)3/2 _< C2. [:]

6. Proofs of Theorems 1.2-1.5.

Proof of Theorem 1.2(i). First, let 0 </ < 1, and let, as in (5.1),

e :-- l(nT(a)i/2)-, n >_ 1.

Then Lemma 2.2 and (5.2) ensure that for P E/),, and Ixl <_ an,

I(Pw)’(x)l <_ -lev(x)llPWllLoo[_l,1]C
where, as in (2.13),

{ ’(3e,)2e, if.x.2,
() := ’(ll+) Q,,(il + Izl+):, iflzl>

Since en 0 n ,
Q’ 3e 2en C1, n 1.

Next, from (5.4), Ix] + e < a, if is small enough. So for ]x 2ca,

Q,(]l +)l]- <e Q (a)en CnT(a)/2e C3,

by (3.7) and the choice of en. rthermore, by Lemma 3.1(ii), if Ix] ,
2 an Q"(an)e < CaT(an)/2n- < C5Q"(z +) +’by (3.7), (3.11) and the choice of e. If x] Z,

Q"( +) (z + )Q"( +) Q"(1/) c,
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by Lemma 3.1(ii). Thus we have shown that

() < c, I1 <.
So for P E 7n, n _> 1,

(6.1) II(Pw)’l]L[_am,am]
_

C8nT(an)l/211pwllL[_l,1].
Choosing , and replacing n by 2n, yields for P Pn C P2,

(6.2) ].(Pw)’L[-,l Cs2nT(a2)/2pwL[-,].
Then,

we obtain

Q’(a2n) O(nT(a2n)ll2),

IlP’wllzo[-.,.] Cs2nT(a2.)/2llpwllz[-,ll.
The Mhaskar-Saff identity (1.9) then yields Theorem 1.2(i).

Proof of Theorem 1.2(ii). Suppose that n _> 1, and

(6.3) Ixl <_ an 1-
T(a2n)

where A is some fixed but large enough positive number. Note that then, by (3.11),

(6.4) IxI <_ an (1 4n-2a{-2),
if only A is large enough. Thus (5.7) is satisfied. Let

=n(X) "-’tin
-1 (1-an’XA) 1/2’

where E (0, 1) is fixed and independent of n and x, but small enough. Note then
that n(x) _< en (x), where en (x) is defined by (5.8). Then Lemma 2.2 and (5.9) ensure
that for P 7n,

I(Pw)’(x)l <_ :n(x)-le’n(x)llPwlli[_l,1]C
where

{ ’(3n(x))2(x), if ,x] _< 2(x),
-() Q’(II+.()) + Q,,(Ixl Ixl + n(x)) 2G (x)2 if Ixl > 2n(X)

Since n(x) 0 n , uniformly for the above range of x, we have

Tn(X) C, if [xI 2,(x).

Next, if 2,(x) xl E }, then for n large enough,

[Q’(Ixl + Q,,(I I +

eQ’(IxI + n()).() + (Ix + .())Q"(II + .()).(x)

Q’(1/)v (1/)Q"(1/)+ 0,
n n
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as n - o, by Lemma 3.1(ii). If ]xl > 1/4, then we estimate Tn(X) as follows: First
note that by (6.4),

Hence,

< Clrl.(1 Ixl/an) an /

1 I1 +() 1 I1 ()
an an an

an ] al

> - 1-- > (x)
an --2 n

if r/is small enough. Then as Ixl _> 1/4, Lemma 3.1(ii) shows that

Q"(Ixl + (x))(x) < Q"(t)dt
k,+() Ixl + ()

<_ 2(x)Q’(Ixl + 2(x))

<_ C2n- {1 _lxl +2() Q’(Ixl / 2(x))

(by (6.5) and the choice of =n(x))

by (3.17) of Lemma 3.3. Also then,

Q’(lxl / g(x))ixl-g(x) < 4Q’(lxl / 2g(x))g(x) < c,
as above. So

(z) < c,

uniformly for Ix[ _< an (1 A/T(a2n)), and we have

(6.6) I(Pw)’(x)l <_ :n(x)-lcl[[PW[[Loo[_l,1] <_ C2n
V/1- Ixlla.

llPwllLoo[-1,],

uniformly for II _< an(1 1/T(a2n)). On the other hand, if

then (6.2) shows that

I(Pw)’(x)l <_ CanT(ae.)I/IIPwlIL[_,ll < C3n
V/1- Ixl/a.

IIPwll,oo[-l,].
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Summarizing, we have shown that

(6.7) max I(ew)’(x)v/1- Ixl/a,, <_ OanllPwlloo[-l,l],
xCa [--an ,an

P E Pn, n _> 1. Since (3.17) implies that

Q’(x) v/1 Il/ _< c,
fo 1/4

_
I] _< 1, and this inequality is trivial for ][ _< 1/2, we have shown that

max IP’wl(x)v/1-Ixl/a, <_ CanllPwllzoo[-,],

P E Pn, n _> 1, which completes the proof of the theorem. D
Proof of Corollary 1.3. It follows directly from Theorem 1.2(i), (ii), that (1.18)

holds for Ixl < an, since

]_1 {+ T(a2n) /2 min

We can then reformulate (1.18) for I1 < . a

(6.9) {(1_

-1/2
T(a2n) 1/2 }"

2)2 }+ T(a2n) -2 [(P’w)(x)]4 < Cn:llPwll Loo[--1,1]’

I1-< an, P e Pn. Now (x):= {(1- (x/an)2)2 + T(a2n)-2}p’(x)a e Pan, and by
the Mhaskar-Saff identity applied to wa e-aQ, (for which aan(4Q) an(Q)), we
have

llCw4llLoo[_l,1]- llllLoo[_,,,,].
Hence (6.9) holds for x e [-1, 1], and so does (1.18). rl

Proof of Corollary 1.4(i). It obviously suffices to estimate T(an) for W0,a e-Q

given by (1.4). A straightforward calculation shows that

T(x) 2(1 + ax2)
1- x2 (1- Ixl) -1, x e (-1, 1).

Furthermore,

Q’(x) x(1 -Ixl)-’-1 x e (-1 1)

and

Q’(x)
T(x) Q(x)

x near 1,

so by (3.9), for large enough n, Q’(an) nT(an) 1/2, which implies

(1 an) -a-1 n(1 an) -1/2,

and hence

1 an n-1/(a+1/2).
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Then T(an) n1/(+1/2), and Theorem 1.2(i) yields Corollary 1.4(i).
Proof of Corollary 1.4(ii). Let

exPo(X x, exp,(x) :-- exp(exp_(x)), g >_ 1,

and

Fo(x) :-- 1, Ft(x) :- H expj(x), g _> 1,
j--1

and

Q(x) .= expk((1 x2)-’).

Note that

d
d- expt(x) Ft(x), >_ O,

and

d -1

j=O

A straightforward calculation shows that

Q’(x) Fk((1 x2)-’)2ax(1 x2) -c’-,

and

T(X)-
1-x2 F((1-x2)-)ax2(1-x2)-"/l+ax2

t-0

Hence for x close to 1,

Q’(x) Fk((1 x2)-)(1 x2)--1,

T(x) Fk-l((1 x2)-")(1 x2) -a-l,

and

T(x) Q’(x)

Then by (3.9), Q’(an) nT(an)/2 implies

Fk((1 a2n)-a)(1 a2n) -"-: n [Fk-l((1 a2n)-a)] 1/2 (1 a2n) -(a+1)/2.

Taking logarithms shows that for n large enough,

1
k-2

exPk_l((1 a2n) -a) logn expj ((1 a2)-)
j=o

2log(1 an) -+- O(1),
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which implies that as n --. cx),

expk- ((1 an) log n / O
log n

From this it readily follows that for 0 <_ j <_ k- 1, and n large enough,

expj ((1 a2n) -a) lOgk_j n + o(1).

Then for n large enough,

2 --c) --a--1T(an) Fk-l((1 an) (1 a2) (-[llogk_j n) (logk n)(a+l)/a
\=1

--(7logn) (logk n)(+1)/

Now Theorem 1.2(i) yields the result. [3

Proof of Corollary 1.4(iii). Here w e-Q, where Q(x) -a log(1 x2). Then

2(x

and a simple calculation shows that

2
T(x)

1 x2"

Then (1.8) yields

Q’(ant) 1
n dt

/ x/1 t2 /. v/1 t(1 ant)
dt

_/1/2 ds

ao x/-(1 an + anS)

I- ds /1/2 ds

X/(1 an) +

[ 1 ](1-an)-1 2(1-an)

Then we deduce that

1 --an n-2
and hence

T(an) n2.

Again, Theorem 1.2(i) yields the result.
Proof of Theorem 1.5(a). From (6.2) and (6.7),

](Pw)’(x)l <_ C5nmin{T(a2n)1/2, (1- Ixl/a)-/2}llPwilzoo[_l,1
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for [x[ < a, and P
_
Pn. This immediately yields (1.22). cl

Proof of Theorem 1.5(b). We remark that (1.23) is implied by (1.22), in a some-
So we may assume that Ix > 1/2. Letwhat stronger form, if Ix[ _< 5"

en(x) "= Tmin ((nT(a2n))-2/3, (nT(a2n)V/1 [x[/an)-l}
Then by Lemma 2.2 and Theorem 5.3,

I(Pw)’(x)l < en(X)-le"()llPwllz[-1,11C,
< [X[ < an wherePP, 5-

[Q’(ixl +Tn (X) Izl

Now, by (3.11),

Then by (3.13),

+ Q"(ll + .(x))] e.()
< 4[Q’(Ix[ + e.(x)) + Q"(lxl + e.(x))]e.(x).

Cen(X) <_ l(nT(a2n))-2/3 < T(a2n)"

Ixl -}- n(X)

_
an 1 + T(a2n) a2n,

if only r is small enough. Hence the monotonicity of Q’(u) and uQ"(u) yield

t! 2Tn(X) <_ C[Q’(a2,) + Q (a2n)len(X)

CnT(a2n)3/2(nT(a2n)) -4/3 (by (3.7) and the choice of en(X))

Cn-/3T(a2)/6 C2,

by (3.11). Hence for Ix] < an and P e

(Pw)’(x)] en(x)-le3]Pw]L[_l,1]

C4m{(nr(a2n))2/3 nr(a2n) (1- xl 1/2}a/
P-1,1.

Then (1.23) follows for Ix] < a and (1.24) follows by continuity.

Let

(7.1)

7. Proof of Theorem 1.6 and Corollary 1.7.

Proof of Theorem 1.6. Let P E Pn--1 and choose E [-an, an] such that

IPwl() IlPwllzi-l,].

1/2(CnT(a2n_2)l/2) -1,



MARKOV-BERNSTEIN AND NIKOLSKII INEQUALITIES 555

where C is as in (1.22). Then for t e (-i, + 5)N (-1,1), there is a
E ( i, + i) (-1, 1) such that

IPwl(t) I(Pw)() + (Pw)’()(t )1

by (1.22). So if x e (-1, 1),

(pw)2(t)dt j( 1
iipwll2Loo[_,ldt/(pw)2(x >

1 (pw)2(x) >-
-,f+)(-1,1) 4 4

Thus

inf (pw)2(t)dt/(pw)2(x) >
PCaT::n-1 4

Taking account of the definition (7.1) of 5, we obtain (1.25).
Proof of Corollary 1.7. We use a very standard argument (see, for example, [17])

but provide the details for the reader’s convenience.
Step 1. Let

p, := nT(a2n_2) 1/2, n>l.

By Theorem 1.6, in the form proved above,

(pw)2(x) <_ Cpn (pw)2(t)dt Vx e [-1, 1],

Hence

IIPwlILo[-1,1] <-- Cp/elIPwllz[-,l].
Applying this to wk e-kQ, and noting that a2k, (kQ) a2n (Q) yields for P n-1,

_1/2 pkwk(7.2) IIpkwk llLo[-1,11

and hence

IlPWllLoo[-,ll <_ cpl/(2k)llPwllz.[-1,1].
So we have (1.27) for q oc and p 2k.

Step 2. Let p > 0, and choose an integer k such that 2k > p. Then by (7.2),

lIPwll /_L[-1,1] Cpn (pw)2k(t)dt

,1- IpwI(t)dt;
1
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so if P is not identically zero,

IIPwllo[_l,1] <_ Cp, IPwlP(t)dt.

This is still trivially true if P is identically zero. Then (1.27) follows for q cx and
anyp >0.

Step 3. We let p > 0, and may assume q < oc. Then

[Ipwll q -//Lq[-1,1] IPwlq-v(t)lPzlv(t)dt

IIL[-1,1I ,1]

< (Cp,)(q-p)/qllpwllq-pLq[-1,1] IlPwl[[-1,11
by (1.27) for the case already proven; so if P is not identically zero,

IIPwllzq[_l,llp -< (Cp,)(q-P)/qllYwllPzv[_,ll. [:1
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UNIVERSAL BOUNDS FOR THE LOW EIGENVALUES
OF NEUMANN LAPLACIANS IN N DIMENSIONS*

MARK S. ASHBAUGHt AND RAFAEL D. BENGURIA$

Abstract. The authors consider bounds on the Neumann eigenvalues of the Laplacian on do-
mains in/R in the light of their recent results on Dirichlet eigenvlues, in particular, their proof
of the Payne-Pdlya-Weinberger conjecture via spherical rearrangement. They prove the bound
l/p1 + 1/12

_
A/2r for the first two nonzero Neumann eigenvalues for an arbitrary bounded do-

main f in two dimensions and also the stronger (and optimal) bound p2

_
r(j,1)2/A for domains

having a 4-fold rotational symmetry. (Here "31,1 1.84118 denotes the first positive zero of the
derivative of the Bessel function Jl(x) and A is the area of the domain f.) The authors also obtain
analogues of these results for domains in/Rn. Previous results in this vein are due to SzegS, who

)2/A and l/p1 + 1/ft2 > 2A/r(j,l)2 for simply connected domains in/R2, andproved tl

_
7r(j,

to Weinberger, who proved the general result/1

_
(Cn/[f[)2/nP2n/2,1 for arbitrary domains in/R

(here Cn rn/2/F(n/2 + 1) volume of the unit ball in/Rn, and Pu,k denotes the kth positive zero
of the derivative of xl-uju(x), where Ju(x) represents the standard Bessel function of the first kind
of order u).

Key words, eigenvalues of Neumann Laplacians, universal eigenvalue inequalities, zeros of
Bessel functions
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1. Introduction. In this paper we consider bounds on combinations of the low
eigenvalues of the Neumann problem

(1.1a) -Au #u on ,
Ou

(1. lb) 0-- 0 on0

for f a bounded domain in/Rn having a smooth boundary. It is well known that this
problem has spectrum {#i}0 diverging to infinity and satisfying

(1.2) 0 0 < 1

_
2 _’’’.

For the closely related Dirichlet problem, with eigenvalues

(1.3) 0 < AI < A2 <_ A3 <_

we now have a variety of universal bounds on eigenvalues, such as

4
(1.4) ,m+l ,,m _< --(,1 -1-"""-+- ,m),
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where n spatial dimension (i.e., for c/Rn) due to Payne, Pblya, and Weinberger
[34], [35] (and to Thompson [43] for the relatively straightforward extension from 2 to
n dimensions),

(1.5) A3

_
51 -}- 22 2

for n 2 due to Brands [11],

A3 < 7(15 + -) 3.9170(1.6)
,i 60

and

(1 7)
,2 + A3 < 15 +

A1 6
5.5957

for n 2 due to Marcellini [28], and

Jn2/2,1 2(I.8) ,_2 <
j2

n-dimensional ball

,k4 J2n/2,1(1.9) <
2 "2

.)n/2--1,1

and

n
1 _>(1.10)

)k+l
k--I

"2 + n(n 4)27n/2-1,1

due to us [3]-[7]. (Here and throughout the paper j,,k denotes the kth positive zero
of the Bessel function J,(x).) Other contributors to these developments include Hile
and Protter [20] and Chiti [14], [15]; indeed, (1.10) was developed directly from results
of Chiti in [14] and [15] while (1.8) and (1.9) were developed using ideas introduced
by Chiti in [15].

For a given dimension all the inequalities given above exhibit a universal bound
on combinations of eigenvalues in the sense that the bound holds without regard to
the particular size or shape of the domain.

In his surveys of this subject (which also discuss similar results for certain oper-
ators involving powers of the Laplacian and in particular the biharmonic operator),
Protter remarked that no bound for the Neumann eigenvalues similar to (1.4) had yet
been found [39, pp. 192-193] and [40, p. 119]. Indeed, almost simultaneously it was
shown that no such bound for Neumann eigenvalues could possibly hold. In [16] (see
also Shubin’s comments in [2]) Colin de Verdire showed that given any nondecreasing
sequence of positive numbers of length there exists a domain G having these values as
#1, #2,... #. Thus #1,..., # are completely unconstrained, aside from the obvious
0 < #1 _< #2 _< _< # for any finite . While this result might suggest that it is
pointless to pursue universal eigenvalue inequalities for the Neumann problem, this is
really only partly true. For example, if in two dimensions one adds the area A (volume
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I1 in dimension n) to the list of objects between which one seeks constraints then
some interesting inequalities may be obtained. Returning to the Dirichlet problem for
a moment, there is the celebrated Faber-Krahn inequality [17], [23], [241,

(1 11)

which says that IA takes its minimum when f is a disk and, similarly, in n dimensions
we have

where Cn volume of the unit ball in/Rn and again j,k denotes the kth positive
zero of the Bessel function J,(x). We also have

27rjo2,1
(1.13) A2 > A

in/R2 and an analogous result in/R’ (due to Peter Szego; see [38, p. 336]).
There are similar results for the Neumann problem. In two dimensions we have

the result

7rp12,1
(1.14) 1 A

of Szeg5 [42], which he proved for simply connected domains via conformal mapping
techniques ("the method of conformal transplantation"; see Bandle [10], for example).
Later, Weinberger [44], using more general methods, showed that (1.14) and its n-
dimensional analogue,

(1 15) 1< (_)2/n p2n/2,1,

hold for arbitrary domains in/R2 and/Rn, respectively. Here Pv,k denotes the kth
positive zero of the derivative of xl-vJ,(x). Also Szeg5 and Weinberger noticed that
Szegh’s proof of (1.14) for simply connected domains in IR2 extends to prove the bound

1 1 2A
(1.16) --+- >

#1 #2

for such domains. The bounds of Szeg5 and Weinberger are optimal (isoperimetric)
with equality if and only if 2 is a disk (n-dimensional ball in the case of Weinberger’s
result (1.15)). It might also be mentioned that Szegh’s work on the maximum of
A#I was motivated by an earlier conjecture and partial proof of the result (1.14) by
Kornhauser and Stakgold [22], who were interested in proving that #1 < A1 in two
dimensions and who proposed the route #1 (’)

_
1(D) < ,1 (D) _< ,1 (’), where

D denotes the disk of the same area as . Pdlya [37] then proved #1 < A1 by other
means, which actually showed that #1 _< 4r/A and hence that #1/A1 _< 4/j,1 .6917.
With Szegh’s proof of (1.14) the constant here is reduced to its optimum value, i.e.,
#1/1 <_ P,I/J,I .5862 with equality if and only if is a disk, at least for the
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case of simply connected domains (in/R2). Weinberger’s subsequent generalization
(1.15) then widened the class of domains to which this optimal inequality applies as
well as making possible the extension to n dimensions, #1/A1 < p2n/2, j2 Ofn/2--1,1
course, all of these results make use of the Faber-Krahn inequality, (1.11) or (1.12).
Further results along the lines of the inequality #1 < A1 suggested by Kornhauser
and Stakgold are due to Payne [32], who proved #k+l < Ak (k 1,2,... for a
convex domain in ]2 with a C2 boundary, and to Levine and Weinberger [26] (see
also [25]), who proved various elegant generalizations of this result to ]n, including
the result #+n-1 < A (k 1, 2,... for a bounded convex domain in ]R’ (n

_
2)

with a suciently smooth boundary. At about the same time Aviles [9] showed that
/ < A (k 1, 2,... for a bounded domain in ]Rn (n

_
2) with smooth boundary if

the mean curvature of the boundary is nonnegative at each of its points. Aviles’ result
also follows from the general approach of Levine and Weinberger. Of course, the result
of Aviles only becomes of interest when n

_
3 since in two dimensions nonnegative

mean curvature of the boundary at each point is equivalent to convexity of the domain,
and Payne’s result #k+l < A (the n 2 case of the Levine-Weinberger result stated
above) is always as strong or stronger than Aviles’ # < A. Payne has suggested that
perhaps #

_
Ak (k 1, 2,... holds for any bounded domain in ]’ (n

_
2) [25] (the

n 1 case of this holds as an equality). This conjecture of Payne was recently proved
by Fiedlander [18] under the hypothesis of a C boundary (see also the related paper
of Mazzeo [30]). It might also be noted that such a result cannot hold in general for
bounded domains on manifolds; see [12, p. 83] or [13, p. 44, Thin. 3]. Other interesting
inequalities between Dirichlet and Neumann eigenvalues have been obtained by Hersch
and others; see Hersch’s comments on Pdlya’s paper [37] which appear on pp. 509-510
of [19] for references to these.

In this paper we attempt to go beyond (1.16) in various ways.
Our results are more modest than (1.16) in that they are not optimal but on the

other hand they generalize to any dimension n and they are not restricted to simply
connected domains. What we prove is that

1 1 A
(1.17) ---+-- >-

#I #2 2

(observe that pl,1 J,l " 1.84118 < 2) for arbitrary domains in two dimensions

(this inequality is a special case of a result of Bandle [10, p. 127] which applies to
membranes of variable density, but her method of proof, which is based on SzegS’s,
requires that f be simply connected and does not generalize to the n-dimensional
case) and its generalization to n dimensions,

(1.18) n-t--- +...+ >
#1 #2 #n n+2 C,]

2/n

We also prove the optimal bound

(1.19) # _<
A

for domains in/R2 with 4-fold rotational symmetry (with equality if and only if the
domain is a disk) and a generalization of this to n dimensions. Finally, we investigate
the tightness of the bound (1.18) asymptotically as n goes to infinity. We show that
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(1.18) is relatively tight in the sense that the first term of the asymptotic expansion
of the right-hand side agrees with that of the quantity 1/#1 + 1/#2 +... + 1/#n when

2is a ball (this value is (n/p,/2,1) (Ifl/C,)2/’). Similarly, the bound

,, <
which follows from (1.18), is seen to be a relatively tight approximation to the optimal
bound (1.15) of Weinberger. These asymptotic results follow from inequalities for the
zeros p,l which were recently derived by Lorch and Szego [27]. While it seems likely
that these zeros might have been investigated previously, we were unable to find
any such information in the literature (see related comments below concerning the
Neumann eigenvalues of the unit ball in n dimensions).

Since our results are not optimal (aside from (1.19) and its n-dimensional gener-
alizations) the possibility is left open that the bound

1 1 1
(1.21)

.1
[-
[2

+"" -[
n Pn/2,1

might hold. This bound would be isoperimetric with equality if and only if f were an
n-dimensional ball (presumably) and would imply Weinberger’s bound (1.15).

There is a loose analogy between the ratio results for Dirichlet eigenvalues with
which we started our discussion and the results for Neumann eigenvalues discussed
above. In particular, if we identify #k with Ak+l- ,1 for k 1,2,3,... and then
identify Ifl-2/ with A1 (or vice versa), then our bound (1.8) for A2/A1 is identified
with Weinberger’s bound (1.15) for If12/’#1 in the sense that these upper bounds
are in each case optimal with the maximum being taken on if and only if f is an n-
dimensional ball. The methods of proof are even almost identical, the main difference
being that since in the Neumann case u0 0 and the corresponding eigenfunction
is constant, Weinberger’s proof is somewhat simpler (in particular, he is not faced
with proving properties of ratios of Bessel functions). Similarly, the bounds (1.17)
and (1.18) that we establish in this paper can be viewed as the Neumann analogues
of our extension (1.10) of certain inequalities of Chiti. Finally, we mention the further
conjecture (for f c/R2)

2j2,(1.22) A2 - A3 < 5.077

of Payne, Pdlya, and Weinberger [35] for the Dirichlet problem and its connection
to Szegh’s bound (1.16) and its possible generalization (1.21). The n-dimensional
generalization of the conjecture (1.22) would seem to be

"2

(1.23) A2 "-""" "-
A1 "2

n/2--1,1

(also only a conjecture). However, at this point the analogy appears to break down.
The Neumann analogue of (1.22)

(1.24) A(D1 + 2) __< 27rP,l
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is definitely not true. It does not even hold for all rectangles, whereas (1.22) does.
This explains why we look at the quantity (1/#1 +... + 1/#n)ll-2/n and not at
1212/n(#1 +’" + #n) in this paper. Going the other way, the Dirichlet analogue of the
conjecture (1.21) is

which would follow from the conjecture (1.23). While we do not prove (1.21) here, the
bounds (1.17) and (1.18) that we do establish are weaker versions of it in the same
way that the bound (1.10) is a slightly weaker inequality than the conjectured bound
(1.25) above. In both cases the closeness of the approximation for large n is borne out
by the asymptotics as n goes to infinity.

One last remark seems in order before we close our introduction. This concerns
the Neumann eigenvalues of the unit ball in n dimensions (n _> 2). Somewhat sur-
prisingly, these eigenvalues seem never to have been studied systematically. Since

() of the functions [x-J+(x)] forthese eigenvalues are determined by the zeros ’+l,k
u n/2- 1 and 0, 1, 2,... some of them are readily found using known results.
In particular, those for the two-dimensional case, for which u 0, are all to be found
from the roots "3t,k of the functions J(x) for g 0, 1, 2, Similarly, for the three-
dimensional case the eigenvalues may be found in terms of the roots a’ of the deriva-,k
tives of the spherical Bessel functions it(x) for 0, 1, 2, (We follow Abramowitz
and Stegun [1] for all our notation concerning Bessel, and related functions; in par-
ticular, spherical Bessel functions are defined in eqn. 101.1 on p. 437.) Beyond these
cases, only that of spherically symmetric eigenfunctions and their associated eigenval-
ues can be treated in terms of tabulated results. Since in that case 0 and since
x [x-J(x)] -J+l (x) the radial eigenvalues are easily found from the zeros jn/2,k
of Jn/2(x). However, in no other cases beyond n 3 do the Neumann eigenvalues of
the n-dimensional ball seem to be readily computable in terms of tabulated quanti-
ties. The functions r-J+t(r), where n/2- 1 and g 0, 1, 2,... (and perhaps
including an additional constant factor) might well be called "ultraspherical Bessel
functions" (as in ultraspherical polynomials) in analogy with the three-dimensional
case, since they arise naturally when solving the Helmholtz equation by separation of
variables on a ball in/Rn. The parameter indexes the eigenvalues of the angular part
of the Laplacian in spherical coordinates (these eigenvalues are given by g(g+ n 2) in
dimension n). In particular, for the n-dimensional unit ball #1 #2 #n occur

(i5(1) )2 in the notation above. However,as g 1 eigenvalues and would be denoted n/2,1
since only the g 1 case ever occurs in this paper, and since the Bessel function then
occurring in [x-J+t(x)] has order + 1 n/2, it is convenient for us to use the
notation P,/2,1, rather than I5(n12,1, to denote the relevant zeros.

2. Universal bounds for sums of reciprocals ofNeumann eigenvalues. In
this section we prove the inequalities (1.17) and (1.18). Specifically, we prove the
following.

THEOREM 2.1. Consider the Neumann problem (1.1) for a bounded domain c
/Rn (n >_ 2) having smooth boundary. Then the first n nonzero eigenvalues satisfy

1 1 1 n /ll’ I’
++...4- >
1 2 n n+2
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where L b sg= o] and Cn (n12 + 1)= the volume o] the
unit ball in 1Rn.

Proof. The proof is a relatively easy application of the variational characteri-
zation of the eigenvalues #. To be specific, we note that if we let {u}=0 be an
orthonormal set of eigenfunctions for (1.1) in correspondence with the # (so that
-Au #u for i 0, 1, 2,... and we let /denote the Sobolev space Hl(gt), then
the eigenvalues # can be characterized by

(2.2) #i min fa IVul2dx
,,en\{o} u2dx

uA_ span (uo,u ui-1)

(Here dx denotes standard Lebesgue measure in/Rn.) The key to the proof is to
choose trial functions oi for each of the eigenfunctions u and insure that these are
orthogonal to the preceding eigenfunctions u0, u,... u_l. For the n trial functions
ol,..., on we simply choose

(2.3) xj for j 1,..., n,

but before we can use these we must make certain adjustments requiring two topolog-
ical arguments. The first is to insure orthogonality of each of the j’s (j 1,... n)
to the eigenfunction u0 (which is actually just the constant function 1/[X)" This is
done by using the Brouwer fixed point theorem precisely as done by Weinberger [44]
(or see [10] or our papers [3],.[4]). Simply by translating the origin appropriately we
can guarantee oj _k u0 for j 1,..., n (for the special case of oj xj considered
here this can be viewed simply as choosing to put the origin at the center of mass of
f considered as a uniform mass distribution in/Rn). Next we argue, via the Borsuk-
Ulam theorem (see [41, p. 266], [29, p. 170], or [31, p. 361]), that a suitable rotation
of axes can be made so as to insure that

(2.4) / pudx x:udx O

for j 2,3,... ,n and i 1,... ,j- 1. To see this, recall that the Borsuk-Ulam
theorem says that a continuous mapping f from Sn- (the unit sphere in/Rn) to
/Rn-, which is antipode preserving, i.e., .f(-a) -.f(a) for all a e Sn- must
vanish somewhere (for n > 2). We apply this theorem first to the mapping fn
Sn- 1Rn-1 defined componentwise by

(2.5) fn, a /nXnudx fork=l,...,n-1,

where a denotes the direction of the xn axis (which we regard as free to vary over
Sn-1 by rotation; note that we leave the directions of the other axes ambiguous but
that this has no effect on the values of the integrals in (2.5)). Since fn is antipode
preserving the Borsuk-Ulam theorem now tells us that there is a direction a, Sn-1
for which .fn(an) O. We take this direction (its negative -an would serve equally
well) as the direction of our Xn axis. This process is then repeated with functions
fn-, fn-2,... f2 in sequence where the function f S- /R- (for
2, 3,... or n- 1) is defined componentwise by

(2.6) f,k" a --, f xukdx for k 1, 2,... ,-1,
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and a is to be regarded as a variable for the direction of the xe axis and is free to
range over all unit vectors perpendicular to the ones already fixed. That is, when
considering fe we should consider its argument a to vary over the sphere S-1 of
values perpendicular to the directions a+l,..., an of the axes x+l,... ,xn which
have been previously fixed in this inductive process. Once we choose 0"2, the direction
of the x2 axis, 0"1 is effectively fixed, and finally, we have reached the choice of axes
that yields the orthogonality conditions (2.4). Note that the rotations we performed
to get (2.4) cannot disrupt the orthogonality of each of the trial functions oj to the
eigenfunction u0 and thus, by (2.2), we arrive at

for i 1, 2,... n. By inverting and summing on i we obtain

(2.8) __1 >_ f r2dx

where r Ixl is the usual radial variable in spherical coordinates. Finally, it is easy to
see by a simple rearrangement argument (see [37] or [44] for similar arguments) that

(2.9) r2dx >-/t r2dx’

where * denotes the n-dimensional ball of volume [fl having its center at the origin
(* is called the spherical rearrangement of f). Since f* has radius r. where Ifl
C,rn. it is now easily computed that

(2.10) r2dx nCn rn+2-1dr Ifln+2

and putting this together with (2.8) and (2.9) immediately yields (2.1). [3

Remark. Our application of the Borsuk-Ulam theorem above also occurred in
our proof of (1.10) (see [5]) and in an argument in [6]. Both of these results concerned
Dirichlet eigenvalues. Also, rearrangement arguments paralleling those given above
occur in [37], [44] as already mentioned and also in work of Chiti [14], [15] and ourselves
[3], [4], [6], where these references are roughly listed in order of complication (the first
two deal with Neumann eigenvalues while the last five deal with Dirichlet eigenvalues;
[44] and [3], [4], [6] give optimal bounds and hence involve Bessel functions as trial
functions while the others use simpler trial functions). It might also be noted that in
the two-dimensional case an argument leading to (2.4) could be made directly, without
recourse to the Borsuk-Ulam theorem.

3. Asymptotics for large dimension. In this section we present the following
theorem, which shows that for a ball in n dimensions the ratio of the two sides of (2.1)
approaches 1 as n --. cx. More precisely, we have the following.

THEOREM 3.1. For an n-dimensional ball,

+...+--n =1+o
(lal/c ) + 2)]
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This theorem is a direct consequence of bounds for the zeros pu,1 of [xl-uJ(x)]
proved recently by Lorch and Szego [27]. The left-hand side of (3.1) reduces simply to

n+2(3.2) p2/2,1
nd (3.1) now follows immediately from the inequalities

4
(3.3) 2 / < p2,1<2u+2 foru>-I

of Lorch and Szego. We note that the upper bound in (3.3) for n/2 and n
1, 2, 3,... is already a consequence of our inequality (2.1).

4. Bounds for domains with rotational symmetry. We begin by consider-
ing simply connected domains in two dimensions since slightly more detailed results
can be obtained for them. We then turn back to general domains in n dimensions
and obtain results for #1 +’" / #n that are analagous to those we found earlier
for (A2 /... + An+I)/A1 (see 3 of [5]), where the Ai’s here represent the Dirichlet
eigenvalues of -/ on f. In addition, in two dimensions we shall obtain the bound
A#2 _< 7r(j,l)2 for any domain f c/R2 with 4-fold rotational symmetry and smooth
boundary.

If a simply connected domain in two dimensions has a k-fold rotational symmetry
about a point (which we take as our origin) with k _> 3, then it follows relatively
easily that #2 #1 so that Weinberger’s bound may be applied to produce various
strengthenings of the previous results in this paper.

LEMMA 4.1. If f C 1R2 is a simply connected domain with k-fold symmetry
where k >_ 3, then #2 #1.

Proof. Assume that f has k-fold rotational symmetry where k >_ 3, and let Rk
denote the operation of rotating by 2r/k radians in the counterclockwise sense. Let
Ul be a real eigenfunction for #1. Then ul (Rkx) is also an eigenfunction for #1 and
one of two conditions must hold: either (1) ul(Rkx) is a constant multiple of ul (x) or
(2) ul (Rkx) and ul (x) are linearly independent eigenfunctions for #1. We now show
that case (1) cannot occur, and hence that #1 is an eigenvalue of multiplicity at least
two. Since f is simply connected, a well-known observation of Pleijel [36] (or see,
for example, [10, p. 128], [19, p. 510], [21, p. 46], [33, p. 466]) shows that ul must
have a crossing nodal line that is non-self-intersecting and meets the boundary 0f at
exactly two points, xl and x2. This follows simply from the fact that if ul had a closed
nodal line (the only other possibility), then we would have a domain f (the nodal
domain inside the closed nodal line) strictly smaller than f but with a smaller first
Dirichlet eigenvalue (recall Phlya’s result #1 < A1), in contradiction to the well-known
monotonicity of eigenvalues property (see [10], for example). In case (1) it is clear that
the k points Rxl, for i 0, 1,..., k- 1, must all be points where the nodal line of
ul meets 0f (as must the points Rx2 for i 0, 1,..., k- 1). But this is impossible
since the points Rxl for i 0, 1,..., k- 1 are all distinct and there are k of them
with k _> 3, in contradiction to the fact that the nodal line meets the boundary only
at the two points xl and x2.

With Lemma 4.1 in hand the following inequalities are immediate (for a simply
connected domain with k-fold rotational symmetry where k _> 3 and with a smooth
boundary):

(4.1) #2 < r(J’l)-----2
A
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#2) _< 2r(j,x)2,

and

(4.3)

These are, of course, optimal results but (4.1) and (4.2), at least, could not be expected
to continue to apply in the absence of k-fold symmetry (see 5). Also, (4.3) is just a
special case of Szegh’s result (1.16).

Under the assumption that is 4-fold rotationally symmetric, but without as-
suming that is simply connected or using facts about nodal lines, we can still prove
(4.1), (4.2), and (4.3) in two dimensions. The only result above that cannot be proved
in this context is the equality #2 #1 of Lemma 4.1. We can also prove analogues of
(4.2) and (4.3) in n dimensions. We begin with these since this is the most general
part of the argument.

In n dimensions we consider domains situated with respect to Cartesian co-
ordinate axes such that with respect to rotation in each coordinate plane (i.e.,
planes) has rotational symmetry of order 4. We shall follow closely Weinberger’s
proof while incorporating our 4-fold symmetry hypotheses.

THEOREM 4.2. Let be a bounded domain in 1Rn with smooth boundary and
suppose that is invariant with respect to 90 rotations in the coordinate planes
spanned by each pair of (Cartesian) coordinate axes. Then

(4.4) Z#i < n - p2n/2,
i--1

and

Proof. One works with trial functions j g(r)zj/r for j 1,..., n as intro-
duced by Weinberger [44]. By the symmetry of , orthogonality to u0 is assured. But
now one would like to use the extended Rayleigh-Ritz inequality which, in the special
case in which we need it, asserts that

n n

j=l j=l f.
if the oj’s are pairwise orthogonal (and each is orthogonal to u0). To see that these
orthogonality conditions hold, the integrals f iojdx fa[g(r)2/r2]xixjdx for i j
are investigated. Under a change of variables by a 90 rotation in the xixj-coordinate
plane this integral is seen to change to its negative and hence it must vanish. Thus

(4.7) /aoojdx=O fori-j, 1<_i, j_<n,

and use of (4.6) is justified. Before we can proceed, though, we also need to show that
the integrals fa dx are the same for all j 1, 2,..., n. This again follows easily by
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a 90 rotational change of variables applied to the integral fn[qo2 -o]dx. Thus the
denominators in the right-hand side of (4.6) are all equal (as are the numerators by a
similar argument). Hence we can sum to arrive at

If we now make Weinberger’s choice of function g(r) (this would be G(r) in his nota-
tion) we obtain (4.4), as desired. Inequality (4.5) follows from the Cauchy-Schwarz
inequality applied as follows:

In two dimensions we can go beyond Theorem 4.2 to the following.
THEOREM 4.3. Let f C 1R2 be a bounded domain having 4-fold rotational sym-

metry. Then

71" (ji,1) 2
(4.9) #J <- A for j 1, 2,

and hence also A(#I + #2)

_
27l" (j,l) 2.

Proof. We develop separate inequalities for #1 and #2. To do this we use the
variational characterizations of #1 and/z2. By the 4-fold symmetry of 2 we can insist
that Ul be either even or odd under rotation by 180. We use this together with
rotational freedom to argue that we can make a choice of axes so that f qO2Ul dx O.
If Ul were even, then by employing a 180-rotational change of variables in the integral

f qO2Ul dx we find that it equals its own negative and is hence zero. If Ul were odd,
then a 180 rotation of the coordinate system reverses the sign of fa qO2Ul dx, implying
that for some choice of rotated coordinates f q2Ul dx vanishes. We then obtain

(4.10) #j < fn I,Vqoj, 2 dx
for j 1, 2,2 dx

which in turn yields

(4.11) /zj _< ff [g’(r)2 h- (n- 1)g(r)2/r2] dx

ff g(r)2 dx

2 dx nor ff IVqj]2since as before neither f qoj dx varies with j. Weinberger’s choice of
function g(r) then yields the inequalities (4.9) of the theorem. [3

If Ul happens to be even, then our proof above actually yields more.
THEOREM 4.4. With hypotheses as in Theorem 4.3 suppose, in addition, that u

is even, i.e., that Ul(-X) Ul (X) for all x E f. Then

(4.12) #j < 71""1"2(i’ for j 2,3,A
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and hence also A(#2 + #3) _< 2r(j,i)2.
For the proof we simply use the argument above which led to (4.9) but noting that

fa 9iul dx 0 for i 1, 2 is automatic (since ul is even) so that we can, by making
a suitable rotation, view 91 and 92 as trial functions for u2 and u3, respectively.

Theorem 4.4 has potential relevance for nonsimply connected domains. One can
imagine a domain in the shape of a gasket having 4 holes and which is 4-fold rotation-
ally invariant. If the holes are elongated and come close to disconnecting the domain
into a disk and an annulus (of appropriate radii), then it seems reasonable to expect
that ul will be 4-fold rotationally invariant with its nodal set consisting of 4 short
curves connecting the holes.

5. Examples in two dimensions. For rectangles (always assuming an a b
rectangle with a _> b > 0) we obtain

(5.1)
7r2

2 l<b<l,V if-a-
#2 4r2 b 1-- if0<- <-.

a-2

Thus

7r2b
a

2a
if

1 < b
<1,

A#2 b 2 a
b 14’2b

if 0 < <
a a-2’

#2) a

5r2b/a

ifl<b<_l,_
2-a

b 1
if0<- <-a-2’

if1< b_<l,
b 1

ifO<-<-

and

a2 l<b<l
#2 -5 if

a
b 1I 4 if0< <
a-2"

From these it follows that among rectangles A#2 and A(#I -+- 2) take their maxima
for the 2:1 rectangle. Also (1/#l + 1/#2)/A takes its minimum among rectangles at
the square.
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Note that the 2:1 rectangle shows that the disk does not maximize A(#I +#2) (for
the disk A(ul + #2) 21.2996). Of course, Weinberger’s result guarantees that A#I is
maximized at the disk. It seems likely, too, that the disk minimizes (1/#1 + 1/#2)/A.
We also hazard the guess that #2/#1 _< 4 for all convex domains. Finally, we note that
our inequality (1.17) provides the lower bound 1/2r .15915 to (1/#1 + 1/#2)/A,
which would be only about 15 percent low if the optimal bound were its value at the
disk( .18780).
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AN EXISTENCE THEOREM FOR A FREE BOUNDARY PROBLEM
OF HYPERSONIC FLOW THEORY*

VINCENT GIOVANGIGLI

Abstract. The author considers a free boundary problem arising in hypersonic flow theory.
The model describes an axisymmetric thin viscous shock layer in the vicinity of the stagnation point
of a blunt body. The governing equations on the symmetry line reduce to a two-point boundary
value problem with four unknowns and a free boundary. The free boundary problem is reduced to
a nonlinear eigenvalue problem through a change of variable. Existence of a solution is achieved by
deriving a priori estimates and by using the Leray-Schauder topological degree theory.

Key words, free boundary, viscous shock layer, existence

AMS subject classifications. 65L10, 76N99

1. Introduction. An interesting free boundary problem arising in hypersonic
flow theory is that of thin viscous shock layers. In these models, the governing equa-
tions are of compressible boundary layer type with a normal pressure gradient and
are solved between the body surface and the shock. Usual boundary conditions are
imposed at the body wall, whereas the Rankine-Hugoniot relations are written at the
shock which is the free boundary. These models have been found successful is predict-
ing hypersonic flows past blunt bodies; for more details we refer to Blottner [2], Bush
[3], Davis [5], Ho and Probstein [7], Laboudigue, Giovangigli, and Candel [8], and to
the references therein.

In this paper, we investigate an axisymmetric thin viscous shock layer for a per-
fect gas in the vicinity of the stagnation point of a blunt body. Only the governing
equations on the symmetry line are considered. The corresponding solutions provide
the initial conditions for a finite difference method proceeding in the downstream di-
rection [2], [5], [8] as it has been shown rigorously by Oleinik [10] in the incompressible
fiat boundary layer case. Another point of view is that these solutions are similar ap-
proximated solutions that are valid in the neighborhood of the stagnation streamline
as are the solutions of the Falkner-Skan equations for incompressible boundary layers.

The thin viscous shock layer governing equations along the symmetry line reduce
to a two-point boundary value problem with four unknowns and with a free bound-
ary. The four reduced solution components are the normal and tangential velocities,
the pressure, and the temperature. The tangential velocity and the temperature are
governed by second-order equations and are specified at the boundaries. On the other
hand, the normal velocity and the pressure are governed by first-order equations, but
there are two boundary conditions for the normal velocity and one for the pressure.
The extra boundary condition for the normal velocity is thus used to determine the free
boundary. By introducing a reduced normal coordinate, the free boundary problem is
first transformed into a nonlinear eigenvalue problem. Existence of a solution is then
achieved by deriving a priori estimates and by using the Leray-Schauder topological
degree theory. The main difficulty consists in deriving a priori estimates of the solu-
tion components. In particular, obtaining strictly positive upper and lower bounds for

*Received by the editors November 13, 1991; accepted for publication (in revised form) August
13, 1992.

Centre de Mathmatiques Appliques and Centre National de la Recherche Scientifique, Ecole
Polytechnique 91128 Palaiseau cedex, France.
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the free boundary is essential and rely on the presence of a negative pressure gradient
term in the tangential momentum equation. The method of proof is similar to the one
used by Berestycki, Nicolaenko, and Scheurer for flame problems [1], [6]. This proof
differs from those of Weyl [11] and McLeod and Serrin [9] in the case of similar flat
boundary layers which were based on shooting techniques. It is not known whether
such a solution is unique as in the compressible boundary layer case [9] at variance
with the incompressible boundary layer case [4]. Finally, to the author’s knowledge,
the results that are presented in this paper are new.

The thin viscous shock layer equations are presented in 2 for self-completeness.
A priori estimates and existence of a solution are obtained in 3.

2. Setting of the problem. In this section, for self-completeness, we derive
the first-order axisymmetric thin viscous shock layer equations on the symmetry line.
For more details on the derivation of the model, we refer to Blottner [2], Bush [3],
Davis [5], Ho and Probstein [7], Laboudigue, Giovangigli, and Candel [8], and to the
references therein.

2.1. Viscous shock layers. The axisymmetric viscous shock layer equations
can be derived by writing the Navier-Stokes equations in a local coordinate system
(s, n), where s is measured along the body surface and n normal to the body surface.
The shock Reynolds number Re,, is assumed to be large Re,, pVd/#‘, >> 1,
where po denotes the density in front of the shock, Vo the uniform velocity in front
of the shock, d the radius of curvature at the nose of the blunt body, and #‘, the
viscosity behind the shock, and the order of magnitude of the terms in the equations
is determined with respect to the inverse square root of Re,,. Only first-order terms are
kept from both a viscous and an inviscid view point, so that the governing equations are
uniformly valid between the shock and the body surface. The total mass conservation
equation then takes the form

0 0
o- (r pv) +  ( npv) o,

where p is the density, /- 1 + an a curvature term, a the positive curvature of the
body surface, 7 the radius from the axis of symmetry, (U, V) the mass averaged flow
velocity components in the local coordinate system, and the tangential momentum
conservation equation is

(2.2)
pUOU OU pUV 10P 1 0

:HT#_n 0,- 0- + pVn - Os TC On
where P is the pressure and # the viscosity. The normal momentum conservation can
also be written

(2.3)
pU OV OV paU2 OP

=0,

and the energy conservation equation is

(2.4) + p ,V -,

where T is the temperature, the constant pressure specific heat--sumed to be a
constant--and k the thermal conductivity. rthermore, the state law reads

P- l cpT’
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where -y denotes the ratio of specific heats -y c/c.
The boundary conditions at the shock are provided by the Rankine-Hugoniot

relations in the high Mach number limit Mo V/(/P) >> 1, where Po denotes
the uniform pressure in front of the shock. Denoting by n a(s) the shock location,
we have

(2.6) V (s, a(s)) Vo cos( + 8) sin 8 eVo sin( + 8) cos 0,

(2.7) U(s,a(s)) Vo cos( + ) cos0 + eVo sin( + ) sin0,

where e (’y- 1)/(-y+ 1) and where po denotes the density of air in front of the shock.
Remark also that from (2.5) and (2.8) we have p(s, a(s)) po/e. In these relations
denotes the angle between the axis of symmetry and the tangent to the body surface
and 0 the angle between the tangent to the body surface and the tangent to the shock,
i.e., tan0 (da/ds)/(1 + e;a). The radius n is also given by 7 r + ncos, where r
denotes the distance from the axis of symmetry to the body surface and the positive
curvature s, the radius r and the angle are given function of s such that -e; d/ds
and sin dr/ds. Futherm0re, with s 0 corresponding to the symmetry axis, i.e.,
the stagnation streamline, we have e;(s) lid+ O(s2), (s) r/2 s/d+ O(s3), and
r(s) s + O(s3), where d l/s(0) is the radius of curvature at the nose of the blunt
body. On the other hand, at the body surface, we have

(2.9) V(s, O) O, U(s, O) O, T(s, O) Tw,

where Tw denotes the body wall temperature.

2.2. Thin viscous shock layers. The thin shock layer approximation is now
used in order to simplify the system (2.1)-(2.9). In the thin layer limit, we have
e (-y- 1)/(y + 1) << 1, which yields the following orders of magnitude s/d O(1),
n/d O(e), p/po O(1/e), V/Vo O(1), V/Vo O(e), P/(poV) O(1), and
cpT/V O(1). Note that in the thin layer approximation we still have eRe >> 1
and eM2 >> 1, although e << 1 [3], [7]. Under the thin layer approximation, we thus
have 7-l(s,n) 1 + (s)n 1 + O(e) and T(s,n) r(s)+ ncos(s). r(s)(1 +
O(e)) so that up to first-order we may replace 7 by 1 and :R by r in (2.1)-(2.9).
An examination of the normal momentum equation also indicates that the terms
pU(OV/Os) and pV(OV/On) are of lower order and can thus be neglected. Similarly,
the terms U(OP/Os) and V(OP/On) can be eliminated from the energy conservation
equation. The first-order axisymmetric thin viscous shock layer equations are thus
found to be

O( pU)
0,

r Os On

OU OU OP
(2.11) pU-s + pV-n + spUV + Os

0 OU
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OP
-pU + O,

(2.13) g - =o.

Note that the curvature term spUV is usually neglected in the tangential momentum
equation, but is kept here for consistency with the curvature term ,pU2 in the normal
momentum equation. The boundary conditions (2.6)-(2.8) can also be simplified since
we now have aid O(e) so that cos 1 + O(e2) and sin da/ds + O(e2) O(e),
which yields

(2.14) V(s, a(s)) U(s, a(s))-s (S -eVoo sin (s), u(,(,)) vco(),

2poov 2v(2.15) P(s, a(s)) (7 + 1)
sin2 (s), T(s, a(s)) (7 + 1)2%

sin2 (s),

and the values of p, V, U, P, T at the shock will be denoted by pa, Va, Ua, Pa, and
T, respectively, in the following. On the other hand, the boundary conditions (2.9)
at the body surface are unchanged. Finally note that Va- Ua(da/ds), Ta, Pa, and
Tw are even functions of s as are expected to be V, T, P, and a, whereas Ua, r, and
r/2- are odd functions of s as is expected to be U.

2.3. Transformed equations. We now recast the governing equations into a
simpler form, and we simultaneously transform the free boundary problem into a
nonlinear eigenvalue problem. Assuming a positive shock location a, we may introduce
the new independent variables (, C)--similar to the Howarth-Dorodnitsyn variables
[2]efined by

s()(2.16) IS(s)l IS(s)ll/4’ C

where S and are given by

1 Ua(s)r(s) fo"T v/2S(s)- p(s, u) du,

/o
s

/o(2.17) S pa(t)#a(t)Ua(t)r2(t)dt l= Ua(s)r(s)
v/2S(s

p(s, u) du,

so that is the new unknown associated with the shock location a. We also introduce
the new dependent variables

Os 0 0 10s
U+Vu+v(2.18) v

2u

P P(0, a(0)) 0
T

(2.19) P paU2a -a
and after lengthy calculations, the transformed governing equations are shown to be

(2.20) OU ( 0_) lOv- O-- + U 1+ + -[ 0-- 0,
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(2.21) u Ou 1Cuv v Ou 2appa Pa Op
p p lO(Ou) =0,

lop
(2.22)

/Cu2
0,

(2.23) u 00
l 0

A 0,

where c,/3, e, and K: are functions of { coefficients given by

a
2U 0

/3
2Ta 0

e cvT, K:

and where the reduced transport coefficients r/and A are given by

p# pk
p,#, p,,p,"

In particular, keeping in mind that ds + O(s3) with 8 > 0, in the neighborhood of
0, we have c c(0) + O(2),/3 O(2), e O(2), and/C K:(0) + O(2), with

c(0) > 0 and K:(0) > 0. The corresponding boundary conditions for 1 are now
(2.24)

v({, 1) v({), u({, 1) u({), p({, 1) p({), 0({, 1) 0({),

where va (Va U(da/ds))x/-/(Upar), u 1, pa -2(7 1)/(7 + 1)2, and
0, 1 are known functions of , and at the body surface 0 we have

(2.25) v(, 0) 0, u(, 0) 0, O({, 0) Ow(,),

where 0,0 T,/T,, denotes the reduced body wall temperature. Remark that the
coefficients a, /3, e, K:, va, ua, pa, 0a, and 0 are now even functions of as are
expected to be the new unknowns v, u, p, 0, and 1.

2.4. Equations along the symmetry axis and locally similar solutions. In
this paper, we only investigate the solutions along the symmetry line 0. These
solutions provide the initial conditions for a finite difference method proceeding in
the downstream direction [2], [5], [8] as it has been shown rigorously by Oleinik in
the incompressible fiat boundary layer case [10]. These solutions on the stagnation
streamline 0 are also locally similar approximated solutions that are valid in the
neighborhood of the symmetry line as are the solutions of the Falkner-Skan equations
for incompressible boundary layers. More specifically, replacing all the coefficients by
their constant quadratic approximations in (2.20)-(2.25) yields that 0 and e 0
and that a, K:, v, u, pa, 0a, and v are constants. But then the resulting system of
partial differential equations posseses similar solutions functions of alone, i.e., such
that / 0, and these similar solutions are governed by the same equations as
the one that are strictly valid along the stagnation streamline 0 since only the
grouping (/) appears in the governing equations (2.20)-(2.25).

Since now we only consider the solutions along the stagnation streamline 0,
we formally drop the dependence in order to avoid notational complexity. Therefore,
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v, u, p, , and now stand, respectively, for v(0, .), u(0, .), p(0, .), (0, .), and/(0) and
a, va, ua, pc, a, and w stand, respectively, for a(0), v(0), u(0), p(0), (0), and
w(0). Denoting by the derivation with respect to , the equations on the symmetry
line 0 are then

V
+ 0,

(2.27) au2 + cuvO + -- + 2apO
12

0,

p!
(2.2s) + T o,

(2.29) o,

where we have introduced the notation c ]C(O)/p and we have c > 0 and c > 0.
Note that we have used the relation pa/p 0, which is valid for 0, since U 0
on the symmetry line implies that P P from (2.12) and (2.15). The boundary
conditions are also given by (2.24) and (2.25) specialized to 0,

(2.30) v(1) v,, u(1) u,, p(1) p,,, 0(1) 0,,,

(2.31) v(O) O, u(O) O, 0(0) Ow,

where v < 0, u 1, p < 0, 0a 1, and 0 > 0. An explicit calculation also
yields that v -(eRe/2)l/2, p -2e/(7 + 1) and 0 Tw/T so that we may
assume for convenience that va < -1, -1 < pa and 0w < 1, since in the thin layer
approximation we have eRe >> 1 and e << 1 and since the body wall temperature is
always lower than the shock temperature. Still note that these later assumptions are
not strictly needed in the proof but simplify the analytic expression of various lower
and upper bound introduced in the proof. The reduced transport coefficients and A
are also functions of the reduced temperature 0 only since p/p 0, and we assume
that these functions 0 --, r](0) and 0 - A(0) are smooth and such that 0 < inf ,
liwilo=( ) < 0 < infl A, and IlAilc2(l) < +oo.

Finally, we remark now that there are two boundary conditions for the reduced
tangential velocity u and the reduced temperature 0 which are governed by second-
order equations, but that there are two boundary conditions for the reduced normal
velocity v and one boundary condition for the reduced pressure p which are governed
by first-order equations. The extra boundary condition for the reduced normal velocity
v will thus be used to determine the eigenvalue associated with the free boundary a.

3. Existence of a solution. In this section, we prove the existence of a solution
for the two point boundary value problem (2.26)-(2.31). The fundamental unknowns
are v, u, p, , which are defined on [0, 1], and I. The method of proof is based on a
priori estimates and on the Leray-Schauder topological degree theory. This method
of proof is similar to the one used in [1] and [6] and differs from the one used by Weyl



FREE BOUNDARY PROBLEM 577

[11] and McLeod and Serrin [9] for fiat boundary layers which were based on shooting
techniques.

3.1. A fixed point formulation. We introduce the Banach space X C1 [0,1]
C2[0,1] C1[0,1] x C2[0,1] P equipped with the norm

II e, z)II max(ll,,llc, Ilpllc, Ilellc=[o, ], IZl),

and the open set (9 { x (v, u,p, e, l) e X; > 0 }, and we consider, for r e [0, 1],
the mapping Kr from O to X defined by

(3.1) K(v, n, p, O, l) (12, /A, V, T, V(1)+ m-),
where V, b/, 7, and 7" are solutions of

(3.2) (1 r)u + rig + -f O,

vu’ 2ap0) 1 1
(3.3) (1- r)(a(u+)= + cu+vO + + +r(/g (r/,(O)/g’) O,

(3.4) -(1 r)cu + -- 0,

(3.5) (1 T) (A.,.(O)T’)’= O,

with the boundary conditions

(3.6) (a) V(O) O, (b) H(O) O, (c) H(1)= 1,

(3.7) (a) (c) T(1)=1,

where u+ max(0, u) and where

v- (1 r)v r, p, (1 T)p , Or (1 r)O + r,

A. (1- r)A+r.
Note that solutions of (2.26)-(2.31) such that u >_ 0 are fixed points of Ko, and the
converse will be shown to be true in the following.

PROPOSITION 3.1. The operator Kr is well defined from 0 to X and for any
closed bounded set B C O, the mapping (r, v, u, p, O, l) --. Kr(v, u, p, O, l) from [0, 1] x B
to X is compact.

The proof of Proposition 3.1 relies of the following lemma.
LEMMA 3.2. Let X C1[0, 1] and q C[0, 1] be such that X > 0 and q >_ O.

Then ]or any a, b R and any h C[0, 1], the boundary value problem

-(X’)’ + q h, (0) a, (1) b,
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the constant C only depends on [IX[[c,[o,1], 1/inf[o,ll X and []qllco[o,1]. Moreover, if
X 6 C2[0, 1], q 6 CX[0,1], and if h satisfies a Lipschitz condition, i.e., h 6 Lip[0, 1],
then " 6 Lip[0, 1] and []"l]Lip[O,] <-- F(llhll=,p[o,x] + lal + Ibl) where the constant
F only depends on ]lX]lc2[o,z], 1/inf[o,1] X and Ilqllc,[o,z] and where we have defined
Ilhl]Lip[O,Xl ]]hli(o[o,1 + sup{ ](h(x) h(y)l/ix Yi, x, y e [0,1], x # y }.

Sketch of the proof. Replacing and h by - o and h + (X)’- qo, where
o() a + (b- a), it is easy to check that only the case a b 0 needs to be
considered. In this situation, the weak formulation

v e HI(0, X(t)’(t)’(t)dt + q(t)(t)(t)dt h(t)(t)dt,

has a unique solution E H from Poincarc?s inequality and the Lax-Milgram The-
orem. Using Poincar’s inequality 2 f dp2(t)dt < f ’2(t)dt also yields the estimate

(inf[o,x] X/2)l]dPl]H](O,) < []h]lL2[O,i Moreover, we have (X’)’ q- h in the distri-

bution sense so that X’ e Hi(0, 1) and thus ’ E H(0, 1). This implies now that

X" -X’’ + q- h and, therefore, that ]l][Ho(0,1 <_ C][h[]L.[o,1 The two norm

inequalities of the lemma are then easily obtained from these estimates and the rela-
tion X" -X’’ + q- h, making use of the inequalities II)]]CO(0,1) <_ C]])IIHI[0,1
and ]])llL(O,1) <_ Cl])]lco[o,x].

Proof of Proposition 3.1. For a given (v, u, p, 0, l) E O, we deduce from Lemma 3.2
that there exists a unique/d e C2[0,1] such that (3.3), (3.6(b)), and (3.6(c)) hold and a
unique T e C2[0,1] such that (3.5), (3.7(b)), and (3.7(c)) hold. The functions Y and R
can then be obtained by a simple integration and trivially (l),H, 7, T,/-])(1) +vr) e
X. Moreover, for any closed bounded set B C O, it is easy to check by using Lemma
3.2 and (3.2)-(3.7) that l)’, H", :P’, and T" are equi-Lipschitzian so that compactness
is straightforward by using Ascoli’s theorem.

Now we introduce the open bounded set of X defined by

IIt llc=[o,il < R, o < A < < B},
where R, A, and B are positive constants, and the following proposition shows that
the degree d(I- K,, 0) can be defined for suitable R, A, and B.

PROPOSITION 3.3. There exist constants R, A, and B such that

(3.9) w e [0, g,)(0n) 0.

Proposition 3.3 relies on Lemmas 3.4 and 3.5 in which we derive strong estimates
for fixed points of Kr.

3.2. A priori estimates.
LEMMA 3.4. There exist positive constants m, A, and B such that .for any T

[0, 1] and any fixed point (v, u,p, , l) e (9 ofK we have

(3.10) -m g v < 0, 0 < u < m, -m < p < 0,

(3.11) 0 <_ 0 _< m, A < < B.
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Proof. Let (v, u,p, O,l) e 0 be a fixed point of K for some " e [0, 1], i.e., be
such that v ]), u =/, p P, T, and ])(1) yr. By applying the maximum
principle to the energy equations (3.5), we first deduce that Ow _< 0r _< 0 _< 1. Hence
0 is uniformly bounded by positive constants. From the normal momentum equation
(3.4) we also deduce that p is nondecreasing so that p(() _< p _< pa < 0, and thus p
is negative on [0, 1].

Assume now that the minimum of u over [0, 1] is negative. Then there exists a
point 0 e (0, 1) such that u((o) < 0, u’((o) 0 and u"(o) >_ 0 since u(0) 0 and
u(1) 1. Then using the tangential momentum conservation equation (3.3) we obtain
that

T+
which implies that u"((0) < 0, a contradiction. Therefore, u _> 0 over [0, 1] and u+
can be replaced by u in (3.3). From (3.2) we now deduce that v is nonincreasing on
[0, 1], and thus that v _< v g v _< 0. We now want to estimate the maximum of u
over [0, 1]. Let us denote M as this maximum and assume that M > 1 since otherwise
u g M 1. Then there exists (x E (0, 1) such that u((l) M, u’((1) 0 and
u"(() _< 0. Using the tangential momentum conservation equation (3.3) we obtain
that

(1 7")aM2 + TM _< (1 T)(-cMv((1)O((1) 2ap((1)0((1)) - -,
\

and since M _> 1, 0w _< _< 1 and 0 _< -v _< -va we deduce that

M2

_
()(-v,,)M-2p().

However, by integrating the normal momentum equations (3.4), we obtain that

fl ]01-p(l) -p + (1 T)cl u2(t)dt <_ 1 + Mcl u(t)dt,

since -1 <_ Pr < 0 and 0 <_ u <_ M, and this implies that

-p((1) _( 1 + Mc(-v,,),

since by integrating the mass conservation equation (3.2) and by using v(0) 0 and
v(1) vr we obtain that

(3.13) lj01 u(t)dt---vr <_-va.

Therefore, M2 _< (2 / 1/o)c(-v,,)M / 2 and thus M2 _< (2 / l/a)(1 / c)(-v,)M
since i >_ 1 and -v >_ 1 so that M <_ (2 + l/a) (1 + c)(-v). We then deduce
that p is bounded from (3.12), and letting m > (2 + 1/c)(1 + c)2(-v)2 yields that
-m _< v _< 0, 0 _< u _< m, -m _< p_< 0, and 0 _< 0 _< m.

We now estimate the eigenvalue 1. From the relation (3.13) and since u <_ m we
first deduce that 1 <_ -v. <_ lm so that >_ l/m, and we may choose A < 1/m. In
order to obtain an upper bound for l, we then start with the tangential momentum
equation (3.3) that we multiply by 12 and that we write in the form

12 (-(1--T)2apO-+- T) (1- T)((1 +a)12u2+cl2uvO+l(vu)’) TTl2u (r (O)U’)’----0,
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making use of (3.2). Noting that the left-hand side coefficient -(1- r)2(p0 + T/2
is always larger than the positive constant min(-2a0,pa, 1/2) and that cl2uvO is
nonpositive, we get that

126 <_ (1 r)((1 + a)12u2 + l(vu)’) + ’12u

Integrating this inequality between r and s, where 0 <_ r _< s _< 1, and using the
preceding a priori estimates then yields

12(s-r) <_ (1--r)((l+a)/ u(t)dt-lv(r)u(r))+rl u(t)dt- ,,(O)u’)’(t)dt,

so that by using (3.13) we obtain

t( r) < ,(3 + )(-) + n (0())=’() n (0())’().

Dividing this inequality by rl(O(r))yr(O(s)) we deduce that

u’(r)t( ) < .(3 + )(-.) +v: ,2 0(0()) 0(0())’

where y min(1,infv/), and max(1,supy), and integrating this inequality
successively over [0, s], with respect to r, and over [0, 1], with respect to s, and noting
that

1 u’(r) u’(s) dr ds ds < ,
.(0(1) .(0(r)) .(0()) ,_

we obtain that 12i <_ /3m(3 + a)(-vo)w2 + 12row2, where w /_ and thus that
g 5m(3+a)(-va)w2/8. We may, therefore, choose B > 5m(3+a)(-va)w2/8, and the

proof is now complete. Note that the upper bound for the eigenvalue has been obtained
because of the negative pressure term 2cp0 in the tangential momentum conservation
equation. Remark also that the bounds A and B are such that A < 2 < B, which will
be needed in the following.

From Lemma 3.4 and the relations (3.2)-(3.7) we now deduce the following result.
LEMMA 3.5. There exist positive constants R, A, and B such that for any T E

[0, 1] and any fixed point (v, u, p, O, l) e 0 ofK we have

IJuJ]c.[0, < R, Ilpllcl[0,1] < R,

I111c.[o,1] < R, A < < B.

Proof. Keeping the notation of Lemma 3.4 we deduce from the relations (3.2) and
(3.4) that Iv’l <_ Bm and IP’[ -< Bcm2. From (3.3) and (3.2) we can also write that

(3.14) ((),)’ ( )(,), + x.

where X =/2(1 T)((1 - C)/,2 -- CU--2G) "12T(I, ). From Lemma 3.4 we know
that X is bounded independently of (% v, u,p, ,l), say IXI -< K. Integrating (3.14)
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between r and s, where 0 < r < s g 1, and using the inequalities ][ _( K and (3.10),
(3.11), we then obtain that

-(K + Bm2) g lr(O(s))u’(s) lr(e(r))u’(r) < K + Bm2,

which is, therefore, valid for any r,s e [0, 1]. Dividing this inequality by y(0(r)),
integrating with respect to r, between zero and 1, and dividing by fo1 (l#/r (0)) (r) dr,
we obtain that

-(K + Bm2) <_ y-(O(s))u’(s) <_ K +Bm2 + ,
where max(l, sup /), and dividing by /r (8(s)) we get that I’1 _< (K+Bm2+I)w,
where w /r/and

_
min(1,inft r/). The same argument can now be applied to

I’1, and, therefore, lu"l and 10"1 are also bounded independently of (% v, u, p, 0, l) from
(3.3) and (3.5) and the proof is complete.

3.3. Calculation of d(I Kr, 12, 0).
PROPOSITION 3.6. Under the same hypotheses as Proposition 3.3 we have

Vr e [0,1] d(I-K,fl, O)=-1.

Proof. From the homotopy invariance of the degree we know that d(I-Kr, , O)
d(I- K1, fl, 0). But K1 is a mapping depending only on which reads

K(v, u, p, O, l) (’I)I,/I,’I,’T1,/- "V(1) 1).
Introducing now the homotopy

Hr(v, u,p, O, l) (T)l,’rb[1, 7"91, TTl, ’P’I(1)- 1),
we may easily check that the map (’r, v, u,p, t9, l) - H.(v, u,p, O,l) from [0, 1] x to
X is compact. Moreover, if (v, u, p,/9, l) is a fixed point of Hr, then we have v
u rL/1, p 7"[::)1, 9 7"T1 and ))1(1) -1. Thus ())I,L/1, Pl, T1, l) is a fixed
point of K1, and we deduce from Proposition 3.3 that I[Vll]cl[o,1] < R, ]]L/1]]c2[0,1] <
R, IlPll]C,[0,1] < R, ]ITalic2[0,1] < R, and 0 < A < < B. Hence Ilvllcl[0,1]
TII’IIIICI[0,1 < R, II"ttllC2[0,1] "--TJltlllC2[0,1 < R, Ilpllcl[o,1 TIJ’jDIIICI[o,1 < R and
I]Ollc[0,1] T]ITIlIC-[0,1] < R. We have thus shown that

VT e [0, 1] (I- H,)(Ofl) O,

so that d(I- H,, fl, 0) is well defined and d(I- HI, l), O) d(I- H0,12, 0). Now since
H1 gl we deduce that d(I Ko, fl, O) d(I H0, , 0), and since H0 is a mapping
which reads

Ho(v, u, p, O, 1) (0,0,0,0,/- 1)1(1) 1),
we deduce from the multiplicative property of the degree that

d(I- K, f, O) d(x(l) + 1, (A, B), 0),
where we have defined X(1)= ];1(1). However, a straightforward calculation leads to

1 (1 ch(/)) + 1 + ch(/)
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which implies by integration that

sh(/)
2

1 + ch(/)

and that 21(1) =-1/2 so that finally

(this simple result is the origin for choosing the constant 1/2 as the limit of-2apO in
the homotopy path (3.3)) so that d(I-K1, fl, 0) -1 since we have seen in the proof
of Lemma 3.4 that A < 2 < B.

We can now state the main result of this section.
THEOREM 3.7. There exists a solution (v,u,p,O,l) E (9 of the thin viscous shock

layer problem (2.26)-(2.31).
Remark. Due to the lack of knowledge on the linearized system deduced from

(2.26)-(2.31), it is not known if such a solution is unique. A similar problem also
arises for extending Oleinik’s method of proof [10] to the system (2.20)-(2.25). More
specifically, wellposedness and a priori estimates for linearized systems deduced from
(2.20)-(2.25), with (0/0) replaced by finite differences, would be needed in order to
estimate the derivatives of the solution components.
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Abstract. The authors consider the linear space-inhomogeneous Boltzmann equation in the full space
R with external electromagnetic force. First, existence and uniqueness results about mild L-solutions are
presented for soft and hard interactions, together with global boundedness in time for higher moments in
the hard interaction case. Then, in the case of spatially homogeneous forces, mild LTM N LP;q-solutions,

=< p, q -<, are constructed by an iteration procedure using an a priori estimate given by the corresponding
homogeneous solution. Furthermore, some results about Lp-solutions are presented for space-inhomogeneous
forces.

Key words, linear Boltzmann equation, external forces, electromagnetic force, mild solution, LP-solution,
LTM f’l LP;q-solutions, higher moments, collision operator estimates
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Introduction. Consider a gas mixture consisting of two components, one formed
by charged, the other by neutral, particles. Suppose that external electric and magnetic
fields are imposed upon the mixture. We shall be concerned with the evolution of the
distribution function f(v, x, t) for the charged particles (v R3, x fl3, and fl+ denot-
ing the velocity, space, and time variables, respectively), in case the initial distribution
q(v, x) of the charged particles is given and the distribution function F(v, x, t) for the
neutral particles is known. Let each of the charged particles have mass m and charge
q, and let the ratio of the mass of a charged particle to the mass of a neutral particle
be K. Denote by [’(x, t) and [/(x, t) the (q/m)-multiples of the external electric and
magnetic fields, respectively. Under some physically motivated hypotheses (cf. ICe])
f is a solution of the following Cauchy problem for the linear Boltzmann kinetic
equation"

(0.1a) 0__f+v. 0f+ (I, +v x fl) of 3 R3
at ax = Q[f’ F] on x x+,

(0.1b) f(’,., 0) o on 3 x R3.
The differential operator on the left-hand side of (0.1a) is the streaming operator, and
Q[f, F] is the Bolztmann collision term. Recall that

Q[f, F](v, x, t) J- (f’F’. fF.)B( O, w) dr. dO de, v, x a3, +,

where

f’ f(v’, x, t), F’, F(v, x, t), f f(v, x, t), F, F(v,, x, t),
W V

v’- v (w" e)e,

2K
v, v, + (w. e)e,

1+

e (sin 0 cos e, sin 0 sin e, cos 0);
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Department of Mathematics, Chalmers University of Technology, University of G6teborg, Sweden.
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B:[0, ,r/2)x (0, oo)-> R+ is closely related to the differential cross section; the range
of integration is R3x [0, 7r/2)x [0, 2r). In accordance with the physical meaning F is
measurable and nonnegative on R3 x 3 x +.

Throughout this paper we use the convention v [vl, etc.
Supposing the collisions are governed by an inverse power-law interaction potential

U(p)-const. p-(k-1)(k> 2) depending on the distance p of two colliding particles,
the function B factorizes as follows ICe]:

(0.2) B( O, w) w/ b( O), 0-< 0<, w>0,

where y= (k-5)/(k-1) and b is a specified continuous nonnegative function on
[0, r/2) satisfying b(O)= (0) when 0 0/, and b(0 )= ((r/2-O) -(k+l)/(k-1)) when
0 7r/2_. Following [Gr], the interaction potential is called soft or hard acccordingly
as 2 < k -< 5 or k > 5, respectively. In the hard-sphere model of interaction the function
B satisfies (0.2) with y 1 and b(0) sin 0 cos 0. In the following we speak of soft or
hard interactions for -3 < 3’ -< 0 or 0-< y _-< 1, respectively.

From the mathematical point ofview it is considerably more convenient to redefine
the function b in a left neighbourhood of r/2, so that for some a >-1

when 0 -->--
2

a so-called angular cut-off. Physically it means ignoring part of the grazing collisions.
For a detailed discussion of the cut-off technique, the reader is referred to [Ce], [TM],
or [Ar].

Throughout this paper we consider B of the form (0.2), where -3 < y _-< 1 and b
is any nonnegative measurable function on (0, 7r/2) satisfying

(0.3)
r/2

0< b(O) dO < oo.
dO

Particularly, (0.3) holds if b satisfies

(0.4) 0 _--< b (0) _-< bo sin 0 (cos 0), 0 _-< 0 <, bo const > 0, o > 1.

As a consequence of (0.3) the collision term Q can be split as follows:

Q[f, F] Kf v. f,

where K is the gain collision operator, defined by

Kf(v, x, t) f f’F’,B( O, w) dr, dO de, , X E 3, E $+,

and v is the collision frequency,

(0.5) v(v,x, t)=27r f F.B(O, w) dv. dO, V,X3, t6R+

(the ranges of integration for the former and the latter integrals are 3x [0, 7r/2)x
[0, 2r) and 3 x [0, 7r/2), respectively).
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This leads to an alternative form of problem (0.1):

Of Of+ f Kf onR R3(0.6a) Of+ v. --+ (F + v x 1). v. x x g+,
O ax ov

(0.6b) f(.,., 0) 0 on 3 x 3.
The aim of this paper is to present criteria for existence and uniqueness of a

solutionf of the problem (0.6), and to study boundedness of its moments, i.e., functions
(ofthe time variable) [If,(", ", t)[[, wheref(v, x, t) (1 + v2)/2f(v, x, t), tr _-> 0 the norm
[1. being taken in a convenient Lebesgue space.

The present paper, which is a shorter version of a preprint, below called [CGP],
is based on earlier results by three authors [Ch], [Gull, [P1], [P2]. The paper [Ch]
studies properties of some operators related to the Boltzmann collision term. In [Gull
LP-estimates are given for solutions to the nonlinear, space-homogeneous Boltzmann
equation. The papers [P1] and [P2] study solutions to the linear space-inhomogeneous
Boltzmann equation in the periodic boundary case without external forces.

Section 1 of this paper presents the ordinary differential equations related to the
external electromagnetic field. It also considers solutions to the linear Boltzmann
equation in mild form in the case of external forces. In 2 mild Ll-solutions are
constructed by an iteration procedure both for hard and soft interactions. The main
results in this section concern existence, uniqueness, and global boundedness in time
for higher moments in the hard interaction case. Section 3 deals with mild L1; fq

LP;q-solutions, 1 _-<p, q_-<c, constructed by an iteration procedure similar to that of
2, when the external forces and the neutral particle distribution are spatially

homogeneous. A necessary a priori estimate is obtained by introducing a new device,
a spatially homogeneous solution, which is an upper bound for the L-norm with
respect to the space variable of the solution from 2. Section 4 gives some results on
existence and uniqueness of LP-solutions in the soft interaction case with spatially
inhomogeneous external forces using boundedness of the gain term in the collision
operator.

Remark 1. In the case of stationary external forces the results in 2-4 concerning
moments I1(1 + V2)cr/2f(v, X, t)[[ can be generalized to moments corresponding to total
energies, [[(4(x)+vZ)/2f(v,x, t)[[. Here b b(x)is a potential for I’, F=-1/2grad b
with inf,,n b(x)= 1. For details on such results and their proofs, see 5 in [CGP].

Remark 2. Notice that the linear Boltzmann equation, studied in this paper, is
different from the linearized one, which is derived from the nonlinear equation. One
essential difference with respect to methods is that the monotonicity property (e.g.,
f,+l =>f,), central to our approach, does not hold for the linearized equation.

1. Preliminaries. In connection with transforming problem (0.6) into a purely
integral form, we shall be concerned with solution v=v(t)=v(u,y, t), x=x(t)=
x(u, y, t) to the characteristic problem of the streaming operator:

dv
(1.1a) dt- F(x, t) +v x l(x, t), v(0) ,

dx
(1.1b)

dt
-v, x(O) y.

In the rest of this paper we assume the following hypothesis.
Hypothesis 1.1.
(i) There exists a unique, locally absolutely continuous function on R/, satisfying

(1.1) for almost every R+.



586 F. CHVA,LA, T. GUSTAFSSON, AND R. PETTERSSON

(ii) The Jacobian of the transformation

(u, y)->(v(u, y, t), x(u, y, t)), u, y 3,
is equal to 1 for every +.

PROPOSITION 1.2. Hypothesis 1.1 is satisfied, if U and l’I satisfy the following
conditions of Carath.odory type"

(i) For every x 3 the functions l-’(x, ), It(x,. are measurable on +;
(ii) For every + thefunctions F(., t), It(., t) and all theirfirst-order derivatives

are continuous on 3;
(iii) There exists a function poe Loc(+) such that

It(x, t)l < po(t), X 3,
la(x, t)l < po(t), x 3,

IF(Xl, t) F(x2, t)l--< po(t)" IXl x2l,

II(x, t) l(x, t)l--< po(t)" Ix- xl,

+,
t+,

Xl X2 3,
X, X2 ( I3,

Proof. For an extensive discussion, see [CGP]; cf. also [Ku]. U
Remark. Cf. also Chapter XI, 2, [GMP] about assumptions on the exterior

Lorentz force a I’(x, t) + v x It(x, t) to guarantee unique solvability of problem (1.1).
Notation. We employ a convention introduced in [KS]. For a function h defined

on 3x3x +, the symbol h denotes the function specified on the same domain by

h(u,y, t) h(v( t), x( t), t) u,y(l3, t+,

where v(t), x(t) is the solution to (1.1).
In connection with the problem (0.6) we shall also consider the following related

problem:

__v.--+(r+v). .(1.2a)
0 0x 0v

(1.2b) f(.,., 0) 0,

where g is a given function defined on 3x3+.
Notation. The Lebesgue measure in " is denoted by mes.
DEFINITION. Let Hypothesis 1.1 be satisfied, and let

(1.3) u*(u, y, ") Loc(+), g*(u, y, ") Lo(+), u, y63.
A real-valued function f is called a mild solution of the problem (1.2) if there exists
M c33, mes M 0, such thatf is defined on (R33\M + and satisfies the
relation

f(u, y, t) q(u, y)+ g(u, y, s) ds- u(u,y,s)f(u,y,s) ds,

(1.4)
(u, y) 3 3\M, t+.

Another formulation of (1.2) is the exponentialform

f*(,y, t)=,(,y)exp *(,y,s) ds

(1.5) + g*(,,r) exp *(,,s) ds

(u, y) 3 3\M +.
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By straightforward calculations we obtain the following lemma on the connection
between (1.4) and (1.5).

LEMMA 1.3. Let (1.3) be satisfied. Then f is a mild solution ofproblem (1.2) if and
only if the exponentialform (1.5) holds.

Remark. For an extensive discussion see [PL] (cf. also [P1]).
DEFINITION. The notion of a mild solution of the problem (0.6) is defined in a

similar manner, viz. as a function f such that (Kf)*(u,y,’)Loc(R+), (u,y)
R3x 3\M, and satisfying (1.4) with g replaced by Kfi

Remark. In our paper mild solutions play a central role. They are mathematically
easy to use, and also physically natural. (For instance the iterate fn+l, constructed for
generating a solution, represents the distribution of particles undergone at most n
collisions.) In dealing with the (different) nonlinear and linearized Boltzmann
equations, other solution concepts are often used, e.g., the renormalized solutions; cf.
[PL]. In the present situation, however, such devices seem to introduce unnecessarily
technical complications without adding new insights.

2. L-solutions. In this section a mild Ll-solution ofthe problem (0.6) is construc-
ted as a limit of a monotone sequence of suitably defined iterates. The construction
was used in [P1], [P2] to treat a (periodic) boundary value problem for the linear
Boltzmann equation without external forces; now it is applied to the Cauchy problem
for the full linear Boltzmann equation. Under general conditions we prove existence
of a solution together with mass conservation, and uniqueness. We also prove that
higher moments of the solution exist (if they do so initially) for both soft and hard
interactions, and that they are globally bounded in the hard interaction case.

Notation. Let 1-<_ p _-< 00. The positive cone of the space Lp is denoted by LP+. The
weighted LP-space with the weight function (1 + v2)/2, tr >- 0 is denoted by L and
the corresponding norm by II’llp,. Set I1"111, -I1"111+ I1"11, and I1"11,,-I1"11,+ I1" II,,-

Note that the collision frequency is well defined; cf. (0.2), (0.3), and (0.5), whenever

(2.1a) F(., x, t) Llv(3), xE 3, 6+ if0<_-- y <_-- 1,

(2.1b) F(.,x,t)LI(R3)I"IL(3), x3, t+ if-3<y<0;

indeed, in the latter case there holds for every v, x 3, R+:

Ia wVF(v*’x’ t) dv*<-ess’sp F(v*’x’ t) I dv, + F(v,,x, t) dv,.
v,l v,_vl<

The following relation is valid whenever one of the integrals exists ICe]:

(2.2) ./Rf3 (Kf)(v, x, t)dv= .IRf3 v(v, x, t)f(v, x, t)dv, x3, t+.

LEMMA 2.1. Let F satisfy (2.1), and let {fn}n__o be a sequence offunctions defined
on 3 x3 x+ recursively by

f(u,y, t)=O, u,y3, t+,

/,,*+(,y,t)=q(,y)exp- ,*(,,s) ds + (Kf)*(,,r)

exp e*(,,s) ds dr, ,eN, teN+, n=O, 1,

Then {f,},__o is a nondecreasing sequence if q is a nonnegative measurable function on
3 X 3.
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Proof. By induction, cf. [P1]. l-!

LEMMA 2.2. If the hypothesis of Lemma 2.1 is satisfied and tp LI+( 3), then

for every n O, 1,...,

IIf(’, ", t)ll,--< I111,, t+.
Proof. By (2.3) and Lemma 1.3 the following mild form holds:

(2.4) f2(.,.t)+ ,*(.,.,s)f2(.,.s) ds=o+ (Kf_)*(.,.,s) ds, teN+,

where (by induction) all terms belong to
By integrating (2.4) we get, in view of relation (2.2), Hypothesis 1.1(ii), and

Lemma 2.1,

THEOREM 2.3. Let (2.1) hoM and L(3 X 3); then there exists a miM solution

f of the problem (0.6) such that f(.,., t) L(3 x 3),t +, and

(2.5) IIf(’, ", t)ll I111, +.
Proo Set f(v, x, t) lim,,f (v, x, t), (v, x) 3 x 3, +, where {f} is the

nondecreasing sequence defined in Lemma 2.1. Then by Levi’s monotone convergence
theorem f is measurable, and, using also Lemma 2.2, we have

f( ", ", t)ll lim f ", ", t)ll I1, +.

Moreover, letting n in (2.4), we see that there exists M c 3 x3 such that mes M
0, and

f*(, , ) (, )+ (f)*(, , s) s- (,, s)f*(, , s) s,

Remark. For -3 < y 0 it follows by (2.1), (2.2), and the proof of Theorem 2.3
that equality holds in relation (2.5). For 0 < y < 1, see Theorem 2.5 below.

Notation. Given 0, R > 1, we define a function h, :+ + as follows:

h,(u) (1 + u)/ for 0 u R 1,
(2.6)

h,(u) constant for R

and dh,/du is continuous on+ and decreasing on (R 1, R). Denote for measurable
functions g" 3 ,

IIgll ,,: h,g II-
Notation.

[’(t) ess-sup IF(x, t)l, +,
xl

’o ess-sup IF(x, t)].
xR3,tR+

If v(t), x(t) is the solution of (1.1), then there holds

(2.7)

and

d
d-- (1 + v2(t))/= o’(1 + v2(t))/2-v(t) r(x(t), t),

d
--dh,(v(t)) <=trF(t)(l+v2(t))’/2-v(t), teN+.
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These elementary relations are derived noticing that dr(t)/dt
I’(x(t), t) + v( t) x l’l(x( t), t) and v. (vx [1) =0.

The following proposition gives local boundedness in time for moments of our
mild solution.

THEOREM 2.4. Let [’SLoc(R+),-3<T<l, ro=>2. When -1<-_% let (2.1) hold
together with ess-supxa,,a+ IIF(’, x, t)ll,o/ <; otherwise, let ess-

3
SUpx,,t,+ IIF(’, x, t)ll,o- <. If L,+(R xR3)forsomegsuch that 0<g go,
then the mild solution f (given in eorem 2.3) satisfies

IIf(.,.,t)lll,llll,exp((t)), t+,

where @( t)= (to (s) ds + ct) and c is a positive constant.

oofl Let {f,},o be the sequence of iterates (defined in Lemma 2.1) with limit

f Using (2.4) we have, for +,

(f)=(Kf._)*-(vf.) (Kf.)*-(vf.)*=Q[f. F]

By multiplying with h and integrating we get,R

Oh,
h,f < h,+ "f2 ds + h*, [f,]as.

Os

Fuher integration gives (after a change of variables)

Here

f,F,B dO de dv, dx dv ds.

h,R(V’)-- h,R(v) <- o’C cos Ow(1 + v2)-2)/2(1 +/),)max(1,o-!)
for some positive constant C1 (see [P2] if v’> v). Thus (with a constant C2)

If Ioh,Rf, dx dv<= IIolll,/r (s)llf( ", ". S)lll,max(O,-l)ds

<-- I1,111, / r (P(s) / C=)ll/.( ", ",s)lll,-ds,

where =+y-1 if y-l, =-2 if-3< y<-l, and the last member of these
inequalities is independent of R and valid for some > 0.

To obtain the first inequality in the case -3 < y <-1 we split the integral with
respect to v. into two pas, one corresponding to Iv- v.I 1 and the other to Iv- v.I 1,
and thus

f(l+ v)-l)/=F(v,, x, s)w1+ dv, C. ess-sup liE(’, x, t)lll,o-.
x3,t+
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Next let R->oo. Then h,R(V) (1 +v2)’/2, and

II/(’,’,t)lll,--<ll[[,/ ((s)/C)llf(.,.,$)[ll.r-ds.

Using Gronwall’s lemma, we obtain

where ,(t) tr(’o [(s) ds + C2t), +. Letting n -> oo, and noticingf. /* f, the theorem
follows.

Now, employing Theorem 2.4 we find the following theorem about mass conserva-
tion and uniqueness for the mild solution from Theorem 2.3.

THEOREM 2.5. Let [" Llo(g+), -3 < /< 1, and let (2.1) hold together with ess-
SUpxa3,ta+ [[F(’, x, t) [[1,2+max(_l,3, < (30. Iftp LI+(R3 x R3), then there exists a nonnega-
tire mild solution f to the problem (0.6), such that

(2.8) Ilf(’, ", t)lll IIll, t+.

Moreover, the solution f is unique in the following sense" iff =f(.,., t) L(R3 x 13),
g+, is a mild solution of (0.6) such that ", t)ll--< I111, then f(., ., t)--

f(.,., t) almost everywhere in 3 3, g+.
Proof. Consider the case 0_-< 3’ < 1. Let pR p. X, where X(v, x) 1 if [vl--< R

and zero otherwise. Let f and fg be the solutions obtained in Theorem 2.3 with initial
3data p and q, respectively. Since pR L,+( x R3), R+, for all r => 0, it follows

3by Theorem 2.4 that fg(.,., t) L,+(R xR3), tR+, for 0_-< or-<2. Choose especially
cr ,. Thus both the right-hand side and the left-hand side of (2.2) with f replaced
byf exist and are equal. Now integrate the appropriate modification of (2.4), and let
n-> oo. We conclude that

(2.9) I3Ifg(v,x,t) dvdx=IIp(v,x)dvdx tg+.

Next, let {f} and {f,R} be the sequences from Theorem 2.3 with limits f and fg,
respectively. Then, by induction, f =<f., and hence ff So by Theorem 2.3 and
(2.9) we have

[[f(’,’,t)-f(’,’,t)ll=fu3 fu3f(v,x,t)dvdx-fa3 fn3fR(v,x,t)dvdx

II(’,’)- (’," )Ill, +.
Now let R. We conclude that f(.,., t)f(.,., t) in L(RxR3) when R,

R+. Hence (2.8) follows.
For the case -3 < 7 < 0, see the remark after eorem 2.3.
It remains to prove uniqueness. Let f be any mild nonnegative solution of (0.6).

en by Lemma 1.3 f satisfies also the exponential form (1.5) with g Kf Hence

ivf(., ", t)-f,(., ", t)= K(f-f,)( ", ", r) exp v(.,., s) ds dr,
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and, by induction we find that f, _-<f, n=0, 1, So f(.,., t)-f(.,., t)<=O, tR+.
But by (2.8),

IIf(’, ", t)ll I111 IIf(’, ", t)ll, tR+.

Thus, f(-,., t) f( ",’, t) almost everywhere in g3 x 3, +. ["]

We have arrived at the main result of this section, global boundedness in time for
moments of the mild solution in the hard interaction case.

THEOREM 2.6. Let ’o < o, 0 <= y < 1, and let ess-sup,,a3,tu+ F(., x, t)II ,o/ <
3for some tro_->2, and ess-inf,,a3,,a+ IIF(.,x, t)ll>0. If ot,+( 3) for some r

such that 0 <-_ tr <= tro, then there exists a unique nonnegative mild solutionfofthe problem
(0.6) such that

Ilf(’, ", t)ll I[’Pl}, 1+,

Ilf(’, ", t)ll, C/I,p II1,, t+,

where C is a constant not depending on o.
Proof. Let qR andfR be as in the proof ofTheorem 2.5. Then the solutionfR satisfies

0f(u, y, t)
=Q[fR, F](u,y,t),(u,y)3x3M, t+M.y,

Ot

with mes M =mes Mu,y= 0. By multiplying by (1 + v(t)2) 0-/2 and integrating, we get
(after some changes of variables)

ff(l+v2)’/2f(v,x,t)dvdx
(2.10) =fa3Ya3(l+v2)’/2q(v,x)dvdx

+ tr l + v=)(o--2)/2(v F(x, s))fR(v, x, s) dv dx ds + I( t), +.

(cf. Theorem 2.4)Using fR Lo+v

I(t)= [(1 + (v’)2)/2- (1

fR(v,x,s)F(v.,x,s)B(O, w) dOdedv, dv dx ds.

Differentiating (2.10) with respect to we obtain

(2.11) - (l+v:)o-/f(v’x’t)dvdx

=0" l +v2)o-/2-1(v F(x’ t))f(v’x’ t) dv dx+- I( t)"

To estimate the last term dI(t)/dt, use the following fundamental inequality (Proposi-
tion 2.1 in [P2]):

(1 + (v’)2)0-/2 (1 + v2)’/2
(2.12)

KI" w cos 0(1 +/),)max(l’o--1)(1 +/32)(o--2)/2-- K2 W COS
2 0(1 +02) (--1)/2,
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with positive constants K1 and K2 (depending only on tr and to). Then, as derived in
the proof to Theorem 3.1 in [P2], there exist constants Co, cl, c2 > 0 such that

d
(2.13) I(t)<= c, llf,(’, ", t)ll,,+-, + c=llf(’, ", t)ll,,-,-Collf(’, ", t)ll,,+.

As a consequence of (2.11) and (2.13) we obtain

d
< tro[’ollfR( t)lll,o--1 q- c, llf("

dt
IIf(" ", t)ll,-

/ c=llf,( ", ", t)111,,-1-collf,(’, ",

Hence,
d

(2.14) d-- IIf(’, ", t)lll, < cliff(’," t)ll,,-- collf(, ",

where c > 0 is a constant and satisfies 0 < < min (o’, 1 y) and k r for some
nonnegative integer k. It follows from (2.14) that

IIf(o, )11, I1o111, + c exp [-co(t-s)]. IIf,( o, ., )11,_d const"

if II/,( , , 11,- is globally bounded.
By proceeding step by step, starting with the value II/(’, ,,s)lll,O, we obtain

consecutively that IIf(’, ", t)ll,, n- 0, ,..., , are globally bounded on N+, and
that IIf "," t)II, const , .o Finally, let f be the unique mild solution, with
initial data q, of Theorem 2.5. Then by the proof of Theorem 2.5, f(.,-, t)-f(.,., t)
in L,(N x N3) as R , , R+. This completes the proof.

3. Ll;q f)LP;%solutions. This section treats existence and global boundedness of
solutions to the problem (0.6) in the Banach spaces Lq([3X3) t;q([3R3),
1 _-< p, q _-< , tr ->_ 0, where

L;q( x 3) {f: f measurable on R3 x 3, Ilfll,,;. < },
and

Ilf(’," )ll.; If(v, x)(1 + v2) /2[ q dx dv

P;q P;q. fThe corresponding positive cones are L,/ {f L 0 almost everywhere}. For
tr=0 we shorten the notation, Lp’q= Lg’q with I1"11;- I1"11,o. We will assume that
the distribution function F of the neutral panicles, the electric field F, and the magnetic
field are spatially homogeneous.

The first pa of the section considers (0.6) in L1;q(3 X3), with lq, for a
function B(O, w) given by (0.2) and (0.3). We prove that a unique solution exists and
that its L1;q-norm is nonincreasing with respect to time; see Theorems 3.1 and 3.4.
Moreover, for higher velocity moments global estimates are obtained for hard interac-
tions; see Theorem 3.3.

The second pa gives an L-estimate of the gain operator K, when the function
B(0, w) satisfies (0.2) and (0.4) (with a y). Together with the results of the first paa,
this implies global estimates of the solution to (0.6) in Lq(3X3) O LP;q(3X3),
where 1 p, q ; see Theorems 3.8 and 3.10.

Since F F(t), (t), the solution of (1.1) is given by

(3.1) v(t) =v(u, t),x(t)=y+ v(s) ds,
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For fixed RE3, it follows by (3.1) that the Jacobian of the transformation y-x(t)
equals one for every E+. Furthermore, by Hypothesis 1.1, the Jacobian of the
transformation uv(t) is also equal to one for every +. In the proofs below those
transformations will be used without comments.

With F spatially homogeneous, condition (2.1) corresponds to F being measurable
on 3 x +, and

(3.2a) F(., t) L1(3), + if0 <= 3’ =< 1,

(3.2b) F(., t) LI(3) 1") L(N3), E N+ if-3 < y < 0.

Notation. For measurable functions g N3 x N3_> N such that g(u, e Lq(N3),
almost every u e N3, set

g(u)- IIg(u," )11.
For measurable functions g :3 x3 / such.that g(u,., t) L(3), almost every
U 3, E +, set

and

gq(u, t)= IIg(u, ",

go*(u, t)= gq(v(u, t), t).

Consider the Lq-norm, with respect to y, of the gain term (Kg)*. By the Minkowski
inequality,

II fo Io IIII(Kg) (u,., t)llo g(v( t)’, x(t), t)F(v, t)b(O)lv(t) -v,I dO de dv,
dO q

--< IIg(v(t)’, x(t), t)llf(vg, t)b(O)lv(t) -v,I dO de dv,.

After the transformation x(t)--y we find that Ilg(v( t)’, x( t), t)llq--gq(V(t)’, t). Hence
the right-hand side of the inequality above equals (Kgq)(V(t), t)=(Kgq)*(u, t). We
conclude that

(3.3) II(Kg)*(u,.,t)llq<-(Kgq)*(u,t) a.e.u3, t+.

In the proofs to follow, (3.3) is essential.
In Theorem 3.1 below we prove that the L;q-norm of the mild solution f of

problem (0.6) is nonincreasing with time. The main idea of the proof is to take the
Lq-norm with respect to y of the mild equation in the exponential form (1.5). By use
of (3.3) it follows that the right-hand side of (1.5) is bounded by the corresponding
spatially homogeneous version of (1.5). We then prove that there is a unique spatially
homogeneous solution, which is an upper bound for (u, t)= Ilf(u," t)ll.

1;qTHEOREM 3.1. Let -3 < y <-- 1, 1 <= q <= oo, and sippose (3.2) holds. Ifo L/ then
there exists a mild solution f ofproblem (0.6), with initial data o, such that f(.,., t)
L"q, +. Moreover,

t+.

Proof. Consider the sequence of iterates given by (2.3). If, in the initial function,
q is replaced by qn, where o,(u, y)= o(u, y) if lul <--n, and ,(u, y)= 0 otherwise, we
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still obtain a nonnegative and nondecreasing sequence {fn}. By (3.3) and the
Minkowski inequality it follows that the sequence satisfies the inequality

(I0f+,q(, )<-O,q() exp (, z) dr

(3.4)

+ (Kf,q)* (, s) exp *(, ) d ds, e N, e N+;

here and below ,q ()q, and f,o (f)q. Now, since N 0, we obtain by induction
that

(3.5) fnq(’, t) e L(N3) for all g e 0, e

Next, consider the spatially homogeneous sequence {g.,}=o (depending on q) defined
by

g.,o(U, t) u=f.,o(,t),

(3.6) g,+(, t) ,q() exp *(, ) d

+ (Kg,)*(, s) exp *(, r) dr d,

Notice that (3.4) implies that {g,} is nondecreasing, and (3.5) implies that
g,(., t) e L(N3), 0, e N+. We now conclude by the proof of Theorem 2.3 that
g, converges when mm to a nonnegative mild solution g of the spatially
homogeneous version of (0.6) with initial data ,q moreover, g(., t)
and

(3.7) IIg(’, t)ll I1, I1 I111, +.
By the construction of g. we have f.,q g.,o <= g.. Hence

liT.(’, ", t)llo IIf.,(’, t)ll IIg.(’, t){{ qll I111;, +.
Finally, set f(v, x, t)= lim.f.(v, x, t), (V,X)3X3, t+. en f is measurable
and by monotone convergence

IIf(’, ", t)ll;q lim IIf(’, ", t)ll;q

Moreover, letting n oo in (2.4), we establish that f is a mild solution of problem
(0.6). D

Remark. (i) For later reference let g(v, t)= lim._.oo g,,(v, t), vR3, tR+. Then g
is a mild solution to (0.6) with initial data Cq, and if ess-sup,R+ liE(’, t)lll,2+max-l,v) <
00,--3 < 3’ < 1, then by Theorem 2.5 IIg(’, t)ll- I111, t+. Moreover, bythe unique-
ness part of Theorem 2.5, it follows that, with go 0 instead of g.,o =fn,q and Cq instead
of Cn,q in (3.6), we obtain a sequence {g.} which converges to the same solution g.

(ii) In the theorems that follow the mild solution of (0.6) is the (solution that
here was constructed as the) pointwise limit of the iterate functions {f,,} defined by
(2.3) (with q replaced by q).

Next, the solution of Theorem 3.1 is studied for higher velocity moments. Local
boundedness in the case -3 < 3’ < 1 and global boundedness in the case 0 -<_ 3’ _-< 1 follow
immediately from Theorems 2.4 and 2.6, respectively.
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THEOREM 3.2. Let -3< y<l, o’0>--2. When -1<-% let (3.2) hold together with
ess-sup,+ IIF(’, t)lll, o+ < otherwise, let ess-supta+ IIF(’, t)l[l,o-1

1;qL,,+ with 1 < q < a3, and 0 < o" < o’o. Then the mild solution f given in Theorem 3.1
1;qsatisfies f t) L R+, and

IIf(., ., t)lll.;a<- IIlll.;a. exp (q,(t)), +,
where q,(t)= o’o(o [’(s) ds + ct) and c is a positive constant.

THEOREM 3.3. In addition to the assumptions ofTheorem 3.2 suppose that 0 <- y < 1,
o< oo, and that ess-inf,a+ IIF(’, t)ll, > 0. Then the mild solution f satisfies

IIf(’, ", t)lll.;q <- C"

where c is a positive constant independent of
Proofs of Theorems 3.2 and 3.3. Let f be the mild solution given in Theorem 3.1.

Let g be the space homogeneous mild solution with initial data Cq. Then by the proof
of Theorem 3.1,

(3.8) IIf(v, ", t)llq -f(v, t) <- g(v, t) a.e. v

Finally, (3.8), together with Theorems 2.4 and 2.6, implies Theorems 3.2 and 3.3,
respectively.

The solution f in Theorems 3.1-3.3 is unique in the following sense.
THEOREM 3.4. Suppose that -3 < T < 1, (3.2) holds, ess-supta+ IIF(’, t)ll,,=+ <

l"qwhen 0< T< 1, and that p L/,iax(o.,/),+. Iff is the mild solution of (0.6) obtained in
Theorem 3.1 and if f is any. mild solution to (0.6) such that f(.,., t) LI+;q and
v(., t)fq(., t) L1, then

f(u, y, t) =f(u, y, t) for a.e. (u, y)

Proof. By differentiating the L1;q-norm (with respect to time) of the difference
between f and f we obtain (cf. [Gu2, Lemma 1.4])

d-- Ilf(t)-f(t)l[1;-- (((f-)#)q(ll, t)) 1-q

Ia sgn (f-f) (u, y, t)

d(If-fl(u, y, t))q-l-(f-f)(u,y, t) dy du.

We have

d
)d---(f-f (u,y, t)=(K(f-f))*(u,y, t)- v(u, t)(f-f)*(u,y, t),

for a.e. (u, y) e 3 x 3, e +.
Hence
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(Observe here and also below that by the transformation yx(t) we get
((f-f))q(u, t)= (f-)(u, t).)

Now, using Hflder’s inequality on the first term on the right-hand side and
observing that the second term equals 3 v(u, t)(f-f)(u, t) du it follows that

< ll(K(f-Y))’ll(u, t) du- #(u, t)(f-f)q
dt

Ilf(t)-:(t)lll;q=

Finally, by (3) the first term on the right is less than or equal to (K(f-f),)(u, t);
so after the transformation uv(t) it follows by (2.2) that the right-hand side is not
greater than zero. Thus the theorem is proved. Note also that by Theorem 3.2 all
integrals involved exist.

For the next pa we need some L-properties of the gain operator K. Here the
dependence on x and plays no role and will, therefore, be left out.

The following transformation of Kg is used. Let E,. denote the plane in 3 through
1 + /2)v+ 1 /2) and oahogonal to v ;

E,: {u R’; (u ). (v- v) 0}.

e corresponding Lebesgue measure is dE.
LEMMA 3.5. e gain term can be represented as follows:

2
g(v’)lv-v’l-- F(v’.)b(O)(sin 0)-1(cos 0) -7 dE’. dr’.

Proof. The proof is a straightforward generalization of the proof in [Ca]. rq

Below we consider B(0, w) satisfying (0.2) and (0.4) (with cr 2"). Let h.R be as
in (2.6), and denote Ilglloo:, IIh,glloo for measurable functions g:R R.

LEMMA 3.6. Suppose -1<2,_--<1, FEL2+,I(ff3), where or1>0, gELI,+([3)("I
L(3), where 0-<_tr<_-O’l. Then, for every e >0 there is a constant c such that for
1 <R <oo,

(3.9)

In particular, ifg LI+(3) 0 L(R3), then it holds that

(3.10) gg(v)cllgll,/ellglloo, v.
The constant c may be chosen such that it depends only on e, R, or, trl, and the L-norm
ofF.

Proof. Cf. [Gul], or see [CGP].
In the next lemma we present (in the hard interaction case) a lower bound of the

collision frequency

v(v, t)= 2r b(O) dO F(v,, t)lv-v,[ v dv,.
/0

LEMMA 3.7. Suppose 2, >--O, and that (3.2) holds, ess-sup,a+ IIF(’, t)ll < o, and
inf,a+ F(., t)ll > 0. Then

(3.11) v(v, t) >- Cl v 3, +, for some positive constant Cl.

Proof. Cf. [Gu1, Lemma 3.1 ].
Our next theorem concerns existence and global estimates of a solution to (0.6)

in the Banach spaces Lq I") Lp;q, 1 <= p <= oo. The LTM 0 L;q case is obtained by exploit-
ing the L-estimate of the gain operator K given in Lemma 3.6. Combining this with
the known L1;q case in Theorem 3.1, the final result follows by linear interpolation.
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THEOREM 3.8. Let 0_<-- y _<-- 1, 1 <--_ p, q <--_ oo. Suppose (3.2) holds together with ess-
sup,+ IIF(’, t) IIo, oforsome 2, and ess-inftR/ IIF( ", t)lll > 0. Ifq Lq (q Lp;q,
then there exists a mild solution f of the problem (0.6) with initial data c, such that
f( ., t) LIq fq Lp;q, R+,

1111 tER+,I[f( ", ", t)lll;q-- ;q

and

elf(., t)llp;q- ;q

Here C is a constant not depending on

Proof We first prove the theorem in the case p . By Theorem 3.1 there exists
a mild solution f(.,., t) LI+;q, +, to (0.6a) with initial data q. Let g be the spatially
homogeneous mild solution to (0.6a) with initial data Cq. Then by construction of f
and g (cf. the remark after Theorem 3.1)

(3.12) fq(V, t) <- g(v, t) a.e. v 3, +.
Consider the sequence {gm}:=o defined by

gu, t)=0,

* (, t)= o() exp *(, r) drm+l

+ (Kg)*(, s) exp *(, r) d ds,

(, ) e x +.
Applying the upper bound (3.10) on Kg and the lower bound (3.11) of , we get

(3.13) g+l(, )o()+- clloll+ ess-sup IIg(’, )1
C1

Since go O, it follows by induction that ess-supta+ Jigs(’, t)[[ < for m 0, 1, 2,....
Now with e =Cl/2, after a rearrangement of (3.13), using gmgm+l,

The right-hand side is independent of m and g increases pointwise towards g (with
the exception of a null set) when m m. Hence

(3.14) Ilg(’, t)[[2[[q[[+ [[q[[1, t+.
Cl/

Moreover, by Theorem 2.5,

(3.15) I[g(’, t)[
Next, for any fixed +, let Tt be the linear operator such that, given L(3),
Tt is the spatially homogeneous mild solution at time of (0.6a) with initial data
Then, by (3.14) and (3.15) Tt is a bounded linear operator on L(3) and on L(3)
L(3). Using the extended interpolation theorem of esz-Thorin (cf. [BL, Thm.
3.1.2]), the observation that the K-functional (cf. [BL]) is not altered when considering
only nonnegative functions, and that the interpolation space (Ll(3), L(3)
L(3))/p,,p=LI(3)Lp(3), where lip+lip’= 1 (cf. [Gul]), we obtain that Tt is
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bounded on LI+(R3) [’) Lp(R3) for any p with 1 <_- p <_- 00. Furthermore, for some constant
c,
(3.16) T,q I1-< C(ll II1 / II II),
From here the theorem follows by (3.12), (3.15), and (3.16) with q (q. ["]

The last theorem of this section examines higher moments of the solution of
Theorem 3.8. In the proof we employ the following elementary inequality of Gronwall
type; cf. [Gu1].

LEMMA 3.9. Let hi, h2, and g be nonnegative and continuous functions on +. If
hi is positive, g is locally absolutely continuous on +, and

+ hg <- hE for a.e. +,

then

sup g(t)_-< g(O)+ sup/| h:(t)|\
,a+ ta+ \ hi(t)/"

THEOREM 3.10. Let 0<--_ 5,< 1, O<--_#<--_cr, 1 <--p, q<--oo. Suppose (3.2) holds together
with ess-suptR+ [[F(., t)ll(R),z+max(,)OO, and ess-infta+ IIF(’, t)ll>0. If

1,qL,+ O LP;q, then there exists a mild solution f of the problem (0.6) such that f( t)
1;q L;qL,+fq ,t+,

Here Co and C are constants not depending on p.

Proof. As in the proof of Theorem 3.8 we first prove the theorem in the case p c.
Let f and g be as in the proof of Theorem 3.8. Then (cf. Theorem 3.3) there holds

(3.17) [[f(’,’,t)ll,,..q<-llgi(’,t)[[,<=C q ,,;q, tl+
for some constant C not dependent on q. Moreover, since g is a spatially homogeneous
mild solution of (0.6a) with initial data qq, it follows that for almost every u a3, g (u,
is locally absolutely continuous on +. Hence, for any or: 0 =<

(3.18)

0
,R(U, t)] + ’ ,R(U,

Ot
[g(u, t)h (u, t)g(u, t)h t)

0
(Kg)*(u, t)h*,R(u, t)+ g*(u, t)- h,(u, t)

for u 3\M, R+\Mu, with mes M=mes Mu=0. Next by (2.7), (3.9), (3.11), (3.17),
and (3.18) we obtain

0

0-- [g*(u, t)h,R(U, t)]+cg*(u, t)h,R(U, t)
(3.19) --<-- c I111, / IIg(’, t)llo,, / ollg( ", t) I[oo,max<-,o).
Thus, by Theorem 3.8, the right-hand side of (3.19) with 0=< tr-<min (1, #) is finite.
Applying Lemma 3.9 we find after a rearrangement with e Cl/2 and in the limit R --> oo,

(3.20) sup [Ig(, t)ll,,=21loqlloo,+2 (< cllqlll,o + #[o sup IIg(’, t)lloo,max(r-l,0)
t[+ Cl \ t+ /

Now, (3.20) shows that the right-hand side of (3.19) is finite for 0=< r_-<min (2, ).
Hence, repeating the above it follows, by induction, that (3.20) is valid for 0_-< r-_< .
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Thus, using Theorem 3.8 and (3.17), there is a constant C not dependent on o such that

(3.21) IIg(., t)ll,o-< (11% I1,o / I1,o), t+.
Finally, by (3.17) and (3.21), the linear operator Tt defined at the end of the proof
of Theorem 3.8 is bounded on L,+(R3) and on L,,+(R ). Thus g(.,t)

3La,+( )("1LP(3), +, and there is a constant C not dependent on o such that

(3.22) IIg(’, t)llp, --< c(llll ,o/ I111,), t+.
By (3.12) and (3.22) the theorem is proved. 13

4. L’-solutions in the soft interaction case. The main result of this section is
Theorem 4.6, concerning existence and uniqueness of solutions in L"(3 x R3), 1 <-p _-<. Here Lemma 4.3 plays an important role implying that the collision operator is
bounded on Lp if the ratio of masses (K) does not equal one (see Proposition 4.4). A
similar approach was used in [Mo] to treat L and L cases under some hypotheses
more restrictive than ours.

LEMMA 4.1. Let h be a measurable function on NN and H the linear
integral operator with the kernel h (i.e., (Hg)(v)=RNh(v,u)g(u)du). If ess-
supuRNR Ih(v, u)l dv<, then H is a bounded mappingfrom LI(N) into itself If in
addition ess-sup,R h(v, u)l dv<c, then for every 1 <-p<-_w, H is a bounded
mapping from L (1) into itself.

Proof See, e.g., [Ed]. 13
It is well known that the gain collision operator K has the following form (cf. [Ce]),

(Kg)(v, x, t)= ./a/3 k(v, v’)g(v’, x, t) dr’.

If the distribution function for the neutral particles F depends also on x and/or t, so
does the kernel k; since F is nonnegative, the same holds for k. Recall that (cf. ICe])

(4.1) 3aI3 k(v’, v) dv’= u(v), v R3.

Throughout this section it is tacitly assumed that B satisfies (0.2) and (0.4) (with a 3’).
LEMMA 4.2. Suppose that 1 < y <-_ 1 and (2.1) holds. If also 1, then

I k(v, v’) dv’ <= bo
1+ 1+ I1 u

k(v’, v) dv’.

Here k is the kernel of the gain collision operator with b(0)= sin 0(cos 0)7.
Proof. According to (0.4) and Lemma 3.5

Ia k(v’ v’) dv’ <- b( l +) l+ IR Iu2 Iv- v’[-2 F(+ u) dEu dv’,
(v-v’)=0

where re= ((1 + )/2)v+ ((1- K)/2)v’. Set r =v’-v, and use r as the variable integration
instead of v’. Introduce spherical coordinates (r, ot) for r. Then, by Fubini’s theorem,

I k(v’ v’) dr’ < b(1 / ) 1+’/Is I Io ( 1- )r.F v+rot+u drdEdot,
2 .,,=o 2

where S denotes the unit sphere in 3.
Substituting I(1 )/(1 + )lr-> r, the right-hand side equals

rF v+ rot+u drdE, dot.
2 1-: s .,,=o 2

Finally, noticing that v+((1 + r)/2)r= ((1 + K)/2)v’+((1- r)/2)v, the proof is com-
pleted, l-I
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LEMMA 4.3. Suppose that -1 < 3’ <- 1. IfF L0.o(R for some tro > 2, then

1+ +v 2
k(v, v’) boll fll,o 2 o- 2 Iv v’ ]

V, V’ G 3, V V’.
Proof Cf. [Ch, Lemma 4.4].
PROPOSITION 4.4. Suppose that -1 < 0,FL with o> 3, and O<

o-3-% en K is a bounded mappingfrom L(3) into itself If moreover 1, then
K is a bounded mapping from L(3) into itselffor every p" 1

Proof To prove the latter assertion of the proposition, it is sufficient to show that
the linear integral operator K with the kernel

(,)= +v’

represents a bounded mapping from L (N3) into itself for every 1 N p N m. Denoting
r v’-v again in view of

l+v2 2+ (v’+ r)-< -<2
1 + v’2= 1 + v’2

we find, using Lemma 4.3, that

C
(4.2) /(v, v’)-< (1 + rE) 1-0./2+0./2

On the other hand,

(4.3) /(v, v’) _--< k(v, v’), v, v’ g3,

Thus, the relations (4.2) and (4.3) give

1 + v’2+ r2
<2(l+r2 v’

l+v’2 ), v, 3,

VV, <

C
(4.4) k(v, v’) -< k(v, v’)+(1 + r2) 1--"/2+"/2 , , 3, ,.

r2-,

Due to (4.1), (2.1), and Lemma 4.2 there holds

(4.5)
v’
sup/ k(v,v’)dv<,sufv k(v, v’) dv’ < o.

Finally (4.4), and (4.5) together with Lemma 4.1 show that the integral operator /
with kernel/ is bounded on LP(3) for 1 -< p -<, which was to be proved.

The first assertion of the proposition is proved in the same way. The only difference
is the following. Since the case r 1 is not excluded, Lemma 4.2 is not applicable;
hence the second relation, in (4.5) cannot be referred to. As a consequence, using
Lemma 4.1 we obtain just boundedness of/ as a mapping from LI(R3) into itself. [3

LEMMA 4.5. Let I" be bounded on gax [0, T], where T> O. Then there exists a

constant c > 1 (depending on T) such that thefollowing assertion holds: For every [0, T]
and every u, y 3,

1
(1 + u2) <_- 1 + Iv(u, y, t)[2 <- c(1 + u2).

C

Proof. Differentiate /)2 along the characteristics and use Gronwall’s lemma. [3

Notation. Let LP(RaxR3) LP;P(R3 xa3) with norms [Ig(’,’)ll, Ilg(’,’)ll,
(cf. 3).

THEOREM 4.6. Suppose that o<, -1 < 3,-<0, l_-<p-< ifr 1, p= 1 if r 1.

Furthermore, let ess-supxa,,to, liE(’, x, t)ll7o < for some tro> 3, T> 0, and let
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tp E Lg,+(R3 R3) with 0 <- cr < cro 3 y. Then there exists a unique positive mild solution

f of the problem (0.6) such that

f( ", ", t)ll,, <-- c ,,, 0, T],

Cr being a constant (depending on T).
Proof. Existence. Consider the sequence {fn } n--o of functions defined on N3 x N3 x

N+ recursively by (2.3). Clearly, by a Minkowsky inequality,

life+l(’, ", t)ll, --< I1 I1,
(4.6) + II(g/.)( ,,.,s)ll,ds, te[o, T], n=0, 1,....

In view of Lemma 4.5 it is easy to verify that for every function g defined on
3R3 [0, T] such that g(.,., s)E LP(3 3), $ G [0, T], there holds

c-/=llg( ", ", s) I1,,--< IIg( ", ", s)ll,, --< c/=llg( ", ", s) I1,,, s [0, T],
where c > 1 is the constant figuring in Lemma 4.5. Using this fact, the relation (4.6)
implies

IIf+(’, ", t)ll,, -<- c/=ll I1,,

By Proposition 4.4 the operator K’L L is bounded so that

II/,+(’, ", t)ll,,--<

+ckp, IIf.(’,’,s)ll,ds, te[0, T], n=0, 1,...,

where kp, denotes the norm of K. Using a lemma of Gronwall type, we find that

(.4.7) IIf(’,’,t)ll,<--fTIlll,, t[0, T], n=0,1,
Now set f(v, x, t)= lim,_oo f,, (v, x, t), (,X)33, tel0, T]. Then f is nonnegative
(since all the iteratesf are nonnegative), and by Levi’s monotone convergence theorem
f is measurable and, also using (4.7), we have

(f(, x, t)(1 +v2)/2)p d dx= lim / (f,(v, x, t)(1 +v2)/2)p d dx
3X[13 n->o J 13x13

<- (CT I1,,)’, [0, T].
Moreover, letting n DO in (2.4) we obtain a mild solution of the problem (0.6).

Uniqueness. Now suppose that there are two mild solutions g and h. Then the
difference g-h is a mild solution of the problem (0.6) with o 0. Hence,

and an application of Gronwall’s lemma gives g(.,., t)= h(.,., t) in LP(It3 X R3) for
every e [0, T].

Next, we show that the gain collision operator K is bounded on L f’) LP, including
the case r 1. This leads to the existence of solutions to (0.6) in Lf’)LP, see
Theorem 4.9.

DEFINITION. The norm on L
3PROPOSITION 4.7. Let 1 < 3/<--_ O, and let F L,+( tq L(3) for some cr >= O.

Then K is a bounded linear operatorfrom LI(I3) into itself The norm ofK is majorized
by a multiple of
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Proof. Using the kinetic energy conservation law and splitting the domain of
integration we find after some calculations that

I (4 ,,Flloo,o.l,fll,,+ llFll,o.llfl,,o.). !-IIKf(v)(1 + v2)/21 dr_<- const.
3 + 3’

3PROPOSITION 4.8. Suppose that -1 < y <-_ O, F L,o,+( (q LE+,ro( for some tro >
O, 0 <= tr <= tro, and that 1 <- p <- 00. Then K is a bounded operatorfrom L(3) f’l LP(3)
into itself The norm ofK is majorized by a multiple of IIFIlloO,=/o,

Proof. By Lemma 3.6, and Proposition 4.7, using linear interpolation (cf. the proof
of Theorem 3.8) we obtain the asserted result. ]

The following theorem can now be proved in the same manner as Theorem 4.6.
THEOREM 4.9. Suppose that -1 < 3’--< 0, Fo < o, 1 <- p <= , and that ess-

supxn,,tO,T liE(’, x, t)lllCOo,2+o < o for some tro> 0, T> 0. If q
3 3L,,+( x )fq LP(3x3), where O<-_tr<-_tro, then there exists a unique nonnegative

mild solution f of the problem (0.6) such that

IIf( ", ", t)ll,n,, --< CTII II,n,,, s [0, T].
Here Cr is a constant (depending on T).

Remark. A similar result can also be obtained by combining the results ofTheorem
2.4 and Theorem 4.6.
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ON THE AMPLITUDE EQUATIONS
ARISING AT THE ONSET OF THE

OSCILLATORY INSTABILITY IN PATTERN FORMATION*

JOS M. VEGA?

Abstract. A well-known system of two amplitude equations is considered that describes the
weakly nonlinear evolution of many nonequilibrium systems at the onset of the so-called oscillatory
instability. Those equations depend on a small parameter, e, that is a ratio between two distinguished
spatial scales. In the limit e -, 0, a simpler asymptotic model is obtained that consists of two complex
cubic Ginzburg-Landau equations, coupled only by spatially averaged terms.

Key words, pattern formation, oscillatory instability, amplitude equations, Ginzburg-Landau
equations

AMS subject classifications. 35K55, 35B25, 35B32, 35B35

1. Introduction and formulation. This paper deals with the following parabo-
lic problem:

(1.1) A (1 + ia)A e-lA +A (1 + i/)AIA[ + (7 + i)A[B[,
(1.2) Bt (1 -}- ia)Bxx + e-IBx / #B (1 + i)BIBI2 + (/ -}- iS)BIAI2,

(1.3) A(x + 1, t) A(x, t) exp(-ia), B(x + 1, t) B(x, t) exp(ia) if x e R, t > 0,

(1.4) A(x, O) Ao(x), B(x, O) Bo(x) if x e R.

Here A and B are appropriately smooth complex-valued functions of the spatial vari-
able x and the time t; i is the imaginary unit; the real parameters c, , 7, 5, #, and
a are such that

(1.5) # > 0, -/< 1, and 0 <_ a < 2r,

and the real parameter e > 0 is assumed to be small. The functions A0 and. B0
appearing in the initial conditions (1.4) are appropriately smooth. Then, as we shall
see in 3, the problem (1.1)-(1.4) is well posed and its solution is defined in 0
In addition, we shall consider the problem (1.1)-(1.4) under one of the following
additional conditions:

(1.6) A(x, t) -B(-x, t) if x e R, t _> 0,

(1.7) A(x, t) B(-x, t) if x e R, t _> 0.

*Received by the editors March 4, 1991; accepted for publication (in revised form) September
2, 1992. This research was partially supported by Direccidn General de Investigacidn Cientffica y
Tdcnica grant PB-90-0271.

?Escuela Tdcnica Superior de Ingenieros Aeronuticos, Universidad Politdcnica de Madrid,
28040 Madrid, Spain.
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As we shall see in 3 each of these conditions is compatible with (1.1)-(1.4) in the
following sense: if a solution of (1.1)-(1.4) satisfies that condition for t 0, then the
condition holds for all t > 0.

Equations (1.1), (1.2) appear as a normal form in a weakly nonlinear analysis of
nonequilibrium systems at the onset of the so-called oscillatory instability; see [1]-[4].
In particular, they have been used in the analysis of wave dynamics in doubly diffusive
and binary fluid convection (see [1], [5], [6]), and some of their solutions have been
seen to describe qualitatively the results of some experiments (see [7]-[11]).

Let us now explain briefly how these equations are obtained and where conditions
(1.3), (1.6), and (1.7) come from. We consider a system of PDEs of the form

(1.8) Ou( 02 )OT
G -ff u R in -cx)<X<, T>0,

where u (ul,..., UN) is a function of the space variable X, and the time variable T,
R is a control parameter, and G is a nonlinear differential operator (invariant under
space translations, X -- X+c, and reflection, X -- -X) such that G(O2/OX2, 0; R) _=

0 (the uniform state u 0 is a stationary solution of (1.8) for all R).
Let 7(w, k2, R) 0 (w growth rate, k wave number) be the complex disper-

sion relation of the linearized problem about u 0. We assume that the growth rate
of the most unstable modes are of the form

+/-i + c+/-R = cko(k- ko)- c+/-(k- ko) + o(IRI)+ o(Ik- k01),

w +/-i + c+R +/- c2ko(k + ko) c3+(k + ko)2 + o(IRI) + o(Ik + kola),
as R --. 0 and k -. +/-ko, while Rew < 0 otherwise. Here the coefficients and ko are
real, while c+, c2 and c3+ are complex, and such that cx_ +, c3- 3+ (overbars
stand for the complex conjugate) and

(1.9) >0, ko>0, Recx+>0, Rec2=0, Rec3+>0.

Notice that the corresponding neutrally stable modes at R 0 are of the form

u Uo[A exp(iT + ikoX) + B exp(iT ikoX)] + c.c.

for a certain eigenvector Uo E CN, where the complex amplitudes A and B are arbi-
trary and c.c. stands for the complex conjugate. That mode is the superposition of
two wavetrains that are travelling in opposite directions. The weakly nonlinear stabil-
ity of those pairs of waves, as R - 0, is analyzed by appropriately scaling the complex
amplitudes and allowing them to depend on the slow time and space variables t g2T.
and x X, where the small parameter > 0 is defined by e2 R. If the ansatz

(1.10) u eUo[A(x, t)exp(ifT + ikoX) + B(x, t)exp(ifT ikoX)] + c.c. + O(e2)

is inserted into (1.8) and the appropriate solvability conditions are applied at the
orders O(2) and O(3), then the following evolution equations are obtained (at the
order

(1.11) As c3+Axx
\ /

Ax + c+A + caAIAI + cAIBI,
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(ck0Bt c3+Bxx +
\ ]

Bx "+" cl+B + caBIBI2 + csBIA]2,

where the coefficients c1+, C2, and c3+ are as defined above, and c4 and cs depend on
the leading nonlinear terms of (1.8). Equations (1.11), (1.12) may be obtained quite
directly by symmetry considerations (see [1]), but the actual values of the coecients
c4 and c5 must be obtained by the process described above (which usually leads to
quite tedious calculations, even with the help of symbolic algebra). Notice that the
coefficient (c2ko/i) is real and large as --. 0 if c2 # 0 as we are assuming (the
assumption c2 0 would restrict the analysis to a codimension-two point of the pa-
rameter space of (1.8)). In addition to (1.9), the following supercriticality assumption
will be made:

(1.13) Rec4 < 0, Re(c4 + c5) < 0.

In fact, if (1.13) does not hold, then (1.11), (1.12) possess solutions that either are
unbounded as t (x) or blow up in a finite time, as is readily seen by considering
spatially uniform solutions.

Now, let us impose the following spatial periodicity condition on the solutions of
(1.8):

(1.14) u(X + L, T) =_ u(X, T),

where the period L depends on in such a way that eL --. > 0 and
2r fract (koL/2r) --. d as --. 0 (fract(z) stands for the fractionary part of the real z).
Then if condition (1.14) is imposed on (1.10), the following conditions are obtained
(to the leading order):

(1.15) A(x + l, t) =_ A(x, t) exp(-id), B(x + l, t) =_ B(x, t) exp(id).

Observe that the conditions (1.14) are appropriate to analyze the problem (1.8)
in a finite interval, 0 < X < L/2, if the boundary conditions at X 0 and L/2 are
either of the Dirichlet (u 0) or Neumann (ux 0) type. This is readily seen when
u is extended to -c < X < cx) by means of the appropriate reflexion principle:

(I.I) u(X + mL/2,T) -u(-X + mL/2,T) (Dirichlet), or

(1.17) u(X + mL/2, T) =_ u(-X + roLl2, T) (Neumann)

for each integer m. When (1.16) or (1.17) are imposed on (1.10), then (to leading
order) we obtain (1.15) and

(1.18) A(x, t) =_ -B(-x, t) (Dirichlet), or

(1.19) A(x, t) B(-x, t) (Neumann).

Now, by applying in (1.11), (1.12), (1.15) an appropriate transformation of the type
A(x, t) -. A(x, t) exp(iet), B(x, t) -, B(x, t) exp(iet) (to make real the coefficients of
A and B in (1.11) and (1.12), respectively), and rescaling the variables A, B, x, and t,
and the small parameter e, we obtain (1.1)-(1.3); conditions (1.5) readily follow from
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(1.13). By the same process, the additional condition (1.18) (respectively, (1.19)) leads
to (1.6)(respectively, (1.7)).

Therefore, the problem (1.1)-(1.4) seems to be appropriate to analyze spatially
periodic patterns of (1.8) near the instability limit. Pattern formation in finite inter-
vals, under homogeneous Dirichlet or Neumann boundary conditions, is analyzed by
imposing (1.6) or (1.7).

The main object of this paper is to obtain rigorously the following approxi-
mate model (of (1.1)-(1.4)) in the limit 0: A(x,t)

_
Y(x- t/,t), S(x,t)

_
W(x q- t/, t), where the functions (y, t) -. Y(y, t) and (z, t) -. W(z, t) satisfy, in first
approximation,

(1.20) V (1 + ia)V + #V (1 + i3)V[V[2 + (/ + i6)V([W[2),

(1.21) W (1 q- ia)Wzz q- #W (1 q- i)W[W[2 q- (’,/q- ih)W([V[2),

V(y -b 1, t) V(y, t) exp(-ia), W(z + 1, t) W(z, t) exp(ia),

(1.23) V(y, O) Ao(y), W(z, O) Bo(z),

if y, z E lt, t > 0. Here, the spatial average (.) is defined by

(1.24) (f) f(, t)d

for each function f E C(]R x [0, o[) that is periodic, of period 1, in its first argument
(as IV[ 2 and [W[2 are; see (1.22)). In addition, we shall see that if A and S satisfy
one of the additional conditions, (1.6) or (1.7), then ([WI2) (IVI2) for all t >_ 0, and
the model (1.20)-(1.23) may be further simplified to

(1.25) V (1 + ia)Vuu + #V (1 + i)V[V[2 + (/ + ib)V([V[2),

(1.26) V(y q- 1, t) V(y, t) exp(-ia), V(y, O) Ao(y) if y e R, t > O.

These two models were first obtained, independently, by Knobloch and De Luca
[12] and by Alvarez-Pereira and Vega [13]. In both cases a formal derivation was made,
by means of perturbation techniques. In fact, in [13] the problem under consideration
was not of the type (1.8), but (1.20)-(1.23) and (1.25)-(1.26) appeared in a weakly
nonlinear stability analysis, in two space dimensions, of travelling plane wave-fronts in
a reaction-diffusion system arising in combustion theory; that problem is essentially
more involved than (1.8), and the models (1.20)-(1.23) and (1.25)-(1.26) were obtained
in a particular limit.

The paper is organized as follows. For convenience, a formal derivation (by means
of a two-time scales method) of (1.20)-(1.23) is given in 2. Section 3 includes some
preliminaries concerning the model (1.1)-(1.4), a rigorous derivation of the approx-
imate models and some basic properties of these models. Finally, in 4 we describe
further properties of the approximate models, and make some conjectures.



OSCILLATORY INSTABILITY IN PATTERN FORMATION 607

2. A formal derivation of the model (1.20)-(1.23). Here we give a formal
derivation of model (1.20)-(1.23) by means of perturbation techniques (the second
asymptotic model is easily obtained from the first one, as it will be seen in 3). That
derivation will give the key idea for the rigorous analysis of next section. In addition,
it will provide some insight into the nature of the limit e --. 0, by explaining why it
is natural to expect the appearance of the spatial averaged terms in the approximate
models.

As --, 0, there are two obvious time scales in (1.1), (1.2):

(2.1) t..l and r_=t/..l.

The latter comes when balancing At with --1A in (1.1) (or Bt with -1B in (1.2)).
Then we shall seek the expansions

A(x, t) Ao(x, % t) +1(x, % t) +..., B(x, t) [o(x, % t) + [1 (x, , t) +....

When these expansions are inserted into (1.1)-(1.3), and the coefficients ofo and
are set to zero, the following problems are obtained:

Ao,- + Ao: O, Bo,- Bo, O,

(2.3) /1 +/1 --ot + (1 + ia)/o + o [# (1 + i/)l/ol2 + (7 + i5)]/ol2],

(.4) -o, + ( +i)o +& [, (, + iZ)l&l + (7 +

(2.5) Aj(x + 1, % t) Aj(x, % t) exp(-ia), [j(x + 1, % t) =_ Bj(x, % t) exp(ia),

o(x, O, O) =- Ao(x), o(x, O, O) =- Bo(x), A1 (x, O, O) =_ 1(x) 0

for j 0 and 1. The wave equations (2.2) readily yield Ao(x, %t) l/b(x- 7",t),
Bo(x, T, t) =_ Wo(x+% t), for some functions (y, t) --* l/b(y, t) and (z, t) --. Wo(z, t) that
satisfy (1.22), (1.23) (see (2.5), (2.6)) and are otherwise arbitrary (at the moment).
Then the solution of (2.3), (2.4) may be found in close-form

B1 (x, T, t) Wl (x + % t) + 7" [-Wot + (1 + ia)Woz + Wo (# (1 + if)lWol:)]

(2.8) + (7,+i’) fo-’2 Wo IVo(y, t)lZdy

for some functions V1 and W1 (to be determined at later stages).
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Now, by eliminating secular terms in the fast time scale, i.e., by requiring the
right-hand side of (2.7) to be bounded as -- oo (t constant in this time scale) we
readily obtain

-y0 + + + v0 [u +

+ (7 + i)l lim (2)- Wo(z, t)2dz O.
v J0

Notice that for eh ed lue of y - , the first three terms in the le-
hd side of this equation e constt (recall that t constant at this time stage),
while the lt one is of the form (7 + i)V0lim.(2)-f+ JWo(z,)ldz, and
since ]Wo(z + 1,t)]2 ]Wo(z,t)2 (see (1.22)), we have (2)-z f+ IWo(z,t)2dz
(]W0]2) +O(T-) , where the spatial average (.) w defined in (1.24). Then
d W0 satis (1.20). Equation (1.21) is obtained in a completely simil way, by

eliminating secul terms in (2.8), d the derition of (1.20)-(1.23) is complete.
Observe that, to the leing order, in the ft time scale ( 1), the amplitudes

A d B satis the wave equations (2.2), whose solution represents two waves that
e travelling in opposite directions. If one moves in a reference flame atthed to
the wave sociated with A (i.e., if x- T constant), then the wave sociated with
B is seen to travel at a speed 2 in the ft time scale, or at a speed 2/e (
e 0) in the slow time scale. Therefore, if t 1, then the spatial structure of B is
not appreciated from the reference ame moving with A; only the spatial mean value
of ]B]2 over a period is seen. This explains the appeance of the spatial averages in
the ymptotic equations, and suggests the main ment in the proof of Theorem
3.4 below.

3. Main results concerning the models (1.1)-(1.4), (1.20)-(1.23), d
(1.25)-(1.26). Here we first consider some preliminy properties of the model (1.1)-
(1.4). Then, the approximate models (1.20)-(1.23) and (1.25)-(1.27) are rigorously
derived. Finally, some bic properties of the approximate models are given.

3.1. The model (1.1)-(1.4). In order to prove that the model (1.1)-(1.4) is
well posed we could modi appropriately an abstract result by Ghidaglia [14] that
w used be Temam [15] to prove the well-posedness of the standard complex cubic
Ginzburg-Landau equation in finite domains with standard boundary conditions.
Nevertheless, for the sake of brevity, we shall follow a more direct approach, bed on
a clsical result by Henry [16].

THEOREM 3.1. I] < 1 and i] the functions Ao and Bo belong to (the complexified
space of) C2+a([0, 1]), for some a e ]0, 1[, and satisfy (1.3), then (1.1)-(1.4) possess a

t) t), t)), A, e
x [0, T]) ]or all T > O. In addition, A, B e C2k,k([O, 1Ix ITs, T2]) whenever 0 < Ti < T2
and k > O.

Proof. We first state (1.1)-(1.4) in an appropriate abstract setting (aer decom-
plexificatio and restriction to the bounded interval 0 x 1, with the appropriate
boundary conditions at x 0, 1, obtained from (1.3))

d + Lu f(u) if t > 0, u(0) uo e D(L),

where the linear operator L" D(L) X n2(]0, 1[)4 is defined in such a way that
f X X is a substitution perator, and

D(L) {u e H2(]0, .1[)a" u satisfies the boundary conditions at x 0, 1}.
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Then the operator L is sectorial in X, and f is locally Lipschitzian and maps bounded
sets into bounded sets. Then, by applying [17, p. 55, Thm. 3.3.4], it follows that (3.1)
possesses a unique mild solution, u E C([0, T[, X), in a maximal interval of existence,
0 _< t < T, and one of the following alternatives holds: either (i) T o, or (ii) T
and there is a sequence, {tin} C JR, such that tm - T- and Ilu(tm)llx --, 0. But
since " < 1, according to the result in Lemma 3.3 below (that may be seen as an
priori estimate on (3.1)) the alternative (ii) cannot hold. Then T cx3, and we obtain
global existence and uniqueness of mild solutions. Further regularity of u is obtained
as usual, by means of parabolic estimates [17, VII-10] (those estimates are readily
extended to apply for boundary conditions such as (1.3)) and imbedding theorems
[17, II-3].

Now we prove ha he additional conditions (1.6) and (1.7) are compatible wih
he model (1.1)-(1.4).

LEMMA 3.2. If a classical solution of(1.1)-(1.4) satisfies (1.6) (respectively, (1.7))
at t O, then (1.6)(respectively, (1.7)) holds for all t> O.

Proof. Let (A, B) be a classical solution of (1.1)-(1.4) satisfying (1.6) (if it satisfies
(1.7) the argument is similar) at t 0, and let the pair of functions A1 and B1 be
defined by A(x, t) =_ -B(-x, t) and B(x, t) =- -A(-x, t). The pair (A, S) satisfies
(1.1)-(1.3), and since (1.6) holds at t 0, A(x, O) A(x, O) and B(x, O) B(x, O) for
all x e JR. Then, by uniqueness of (1.1)-(1.4), A(x,t) A(x,t) and B(x,t) B(x,t)
for all x IR and all t > 0, i.e., condition (1.6) holds for all t > 0, as stated.

3.2. A rigorous derivation of the approximate models. As suggested by
the formal derivation in 2, the approximate models will be obtained, in Theorem 3.4,
by means of an averaging method. To apply that method we need some estimates
on (1.1)-(1.4) that hold uniformly as --, 0 (see Lemma 3.5 below). Two basic
inequalities that will be used systematically in the proof of Lemma 3.3 are first given.

/f u e C ([0, 1] IR) is such that f u(x)dx O, then

(3.2) I[ullL.(lO,lD -< kq,-Ilu IlUlIL(lo,xD,
whenever q > r >_ 1, where a 1/r- l/q, and the constant kqr depends only on q and
r (it is independent of u). If v e C1([0, 1], C) and q > 1, then

(3.3) _< Ilvl 2 l.+l/q ]ll--1/qIL.(]o,xD 4- 2kqlllVllL(lO,lD Ilv,,L.(lO,lD,
where the constant kql is defined as in (3.2).

The inequality (3.2) is given in, e.g., [17, pp. 62-63], while (3.3) is obtained
by applying (3.2) (and HSlder’s inequality) to the function x -+ u(x) =_ Iv(x)]2

L2(]0,1D"
We now give some uniform estimates on the solutions of (1.1)-(1.4). For the

sake of brevity, we shall not try to obtain the best possible values of the bounding
constants K0, T, and Co. Notice that these constants are independent of e, that Co is
also independent of the particular solution of (1.1)-(1.4), and that K0 and T depend
on it only through Cj(0).

LEMMA 3.3. If 7 < 1, .for each classical solution of (1.1)-(1.4) and for j
O, 1, and 2, let the functions t ---, qbj(t) be defined by

/o [lo  l(3.4) Cj(t) + dx.
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Then, for j O, 1, and 2, Cj satisfies

(3.5) Cj(t) <_ Ko .for all t >_ O, and Cj(t) <_ Co for all t >_ T,

where the constants Ko and T (respectively, Co) depend only on/, %. 6, #, Ca (0),
(0), and (0)(respectively, on/, 7, 6, and

Proof. The estimates (3.5) will be obtained successively for 0, x, and 2. For
the sake of clarity we shall simplify the notation as follows. Every constant appearing
below that depends only on , 7, 6, #, (0), 2(0), and 3(0) (respectively, on/,
6, and #) will be denoted always as K (respectively, as C).

Step 1. The estimates (3.5) for 0. Let us multiply (1.1) by A, (1.2) by B, add
the resulting equations, take the real part, integrate on 0 < x < 1, integrate by parts,
use (1.3), and apply Hhlder’s inequality twice to obtain

d___o -21 + 2/zo 2 [IAIa + IBIa 2/IAIZlB]z] dxdt
(3.6)

< -2x + 2o 2C [IAIa + IBIa] dx < -21 + 2#0 C ift >0,

where C rain{1,1 -y} > 0. Since 1 (t) > 0 for all t > 0, the estimates (3.5) readily
follow (with, e.g., Ko max{Co(0), 2#/C}, Co 4#/C and T (2#)-1log[max{I, 2-
4#/Co(0)}] if u > 0, while Ko o(0), Co 1, and T max{0, (o(0)- 1)/Co(0)}
if# _<0).

Step 2. The estimates (3.5) for 1. Now, we multiply (1.1) by -Ax, (1.2) by
-Bx, add the resulting equations, take the real part, integrate on 0 < x < 1, integrate
by parts and use (1.3). Then, the following equation follows:

(3.7)
d--- 22 + 2#1

2[AI21AI2 + 21BI21BI2 + [(IAI2)]2 + [(IBI2)]2 dx + Fx + F2

for all t > 0, where

or, by using (3.3) (with q 3), F1 + F2 <_ Co(t)[o(t) + 1(t)]l/22(t)l/2 if t > 0,
where the constant C is as defined above (in fact, C depends only on/, % and ).
Then, (3.7) yields dl/dt < -22 + 2#1 + Co(o + 1)1/21/2 if t > 0, and since
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the function z --. f(z) =_ -z + CZ1/2 (C,

_
0 being a constant) satisfies f(z) _< c2/4 for

all z _> 0, we have

c2 (0 + 1(3.8) dl < -2 + 2#1 + if t > 0.
dt 4

Then, if the constant K > 0 is such that 2# + C20(t)2/4 _< K for all t > 0, we
multiply (3.6) by g and add the resulting equation to (3.8) to obtain d(l+g0)/dt <_
-K(1 + g0) + g(g + 2#)0 + C/4 if t > 0, and the first estimate (3.5) readily
follows for 1. The second estimate (3.5) is obtained in a similar way, when taking
into account that it holds for 0, and using an appropriate linear combination of the
inequalities (3.6) and (3.8).

Step 3. The estimates (3.5) .for 2. Again, we shall use the following equation,
which is obtained by differentiating (1.1) and (1.2) with respect to x, multiplying the
resulting equations by -Axxx and -Bx, respectively, adding, taking the real part,
integrating on 0 < x < 1, integrating by parts, and using (1.3)"

(3.9) d2 -23 + 2#2 + F3 + F4 if t > 0,
dE

where 3 is defined as in (3.4) and (recall that c.c. stands for the complex conjugate)

F3 (1 + i/3) [xx (AIAI) + (BIB]2)] dx + c.c.

F4 -(’y + i6) [ftx** (A[BIU). + (B[A[U)] dx + c.c.

<_ 21 + i6l [(2IAIIB[ + IBtIAI)IBtIAxI

But, according to the mean value theorem, if t > 0, then ]A(x, t)l 2 20(t) + (t),
and ]B(x,t)[ 2 20(t)+ 1(t). Then, by applying Hblder’s inequality we readily
obtain F3 + Fa C[o(t) + (t)](t)/23(t)/2 for all t > 0, where the constant C
is defined at the beginning of the proof (in fact, it depends only on , , and 6).

//Then, (3.9) yields d2/dt -23 + 22 + C(0 + 1) 3 if t > 0, and by the
argument leading to (3.8) above,

(3.10) d2 < 22 + C2( +)2 if t > 0.
dt 4

Now, if (3.8) is multiplied by A 1 + 2]] > 0, the resulting equation is added to
(3.10) and the first estimate (3.5) for 0 and is used, then the following inequality
is obtained: d(2 + Al)/dt -(2 + A) + g if t > 0, where the constant g is

defined at the beginning of the proof. By using this inequality, the first estimate
(3.5) readily follows for 2. Again, the second estimate (3.5) is obtained similarly,
when taking into account that it holds for 0 and Cx, and using the appropriate linear
combination of (3.8) and (3.10). Thus, the proof is complete.

Now, we show that if e is sufficiently small, then the solutions of (1.1)-(1.4) satis
approximately (1.20)-(1.23), in an appropriate uniform sense.
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THEOREM 3.4. If / < 1 and 0 < e < 1, let (A,B) be a classical solution
(1.1)-(1.3) in -oo < x < o, t >_ O, and let the functions V and W be defined by

V(y, t) =_ e-al5 / A (y + v/e, r)
Jt

W(z, t) =- -a/5 / B (z r/e, r) dr.
Jt

Then, .for all y, z E lR, and t >_ O, V and W satisfy

14 (1 + i)Vuu +V (1 / i)VlVl2 + ( + i)V(lWl2) + (y,t),

(3.12) Wt (1 + ia)Wzz + #W (1 + i)W[W[2 + (/ + i6)W(]V[2) + 2(z, t),

(3.13) V(y + 1, t) V(y, t) exp(-ia), W(z + 1, t) W(z, t)exp(ia),

(3.14) V(y, t) A(y + t/e, t) + (y, t), W(z, t) B(z t/e, t) + 2(z, t),

where the spatial average (.) is defined by (1.24) and the functions j and satisfy,
for j 1 and 2,

(3.15) <- iI * >_ O,

I1 (.,0110 < Coe > T

for some corstants Ko, T, and Co such that Ko and T (respectively, Co) depend only
on IIA(., 0)IIH.(]o,ID, IIB(.,0)IIH2(]o,ID, /3, /, 5, and it (respectively, on , /, , and
it). Here H2(]0, 1[) is the usual (complexified) Sobolev space and I1" Iloo is the sup
norm (if g e C2(R), then [[fllH2(]0,1[) [f01 (If()l2 + If’()l2 + If"()l2) d]l/2 and
I1 11oo sup e a}).

Proof. We shall only obtain the estimate (3.15) (the proof below extends straight-
forwardly to obtain (3.16), when using the second estimate (3.5) of Lemma 3.3).
As in the proof of Lemma 3.3, every constant depending only on I[A(., 0)IIH2(]0,1D,
lIB(., 0)I[H2(]0,1[), , ’, (, and it will be denoted always as g.

Let the functions v and w be defined by

v(y, t) =_ A(y + t/e, t), w(z, t) =_ B(z t/e, t),

which are readily seen to satisfy, for all y, z ]R and all t >_ 0,

(3.18) vt (1 + ia)%u + itv (1 + i)vlvl + ( + iS)vlw(y 2t/e, t)l,
(3.19) wt (1 + ia)wz + itw (1 + i)wlwl + ( + iS)wlv(z + 2t/s, t)lu,

(3.20) v(y + 1, t) v(y, t) exp(-ia), w(z + 1, t) w(z, t) exp(ia).

Also, according to Lemma 3.5 (see also (3.17) and (3.20)),

(112 + ]%l2 + I%yl2) dy + (Iwl2 -I-Iwl2 + IwJ2) dz <_ K ift >_0,
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(3.21) IIv(’, t)llo / IIw(’, t)llo <_ K if t > 0

for some constant K, where the second inequality follows the first one. Then (3.18),
(3.19) implies that f Ivtl=dy +f Iwtldz < K for all t > 0, for some constant K, and
(see also (3.20)) for all yo, zo e l, and all to >_ 0,

(Ivl 2 / Ivl / Ivl / Ivtl) dy dt < K,
Jto La Yo

(1’//3[ 2 --IW12 + Iw,zl2 + IWt[2) dz e K
L go

for some constant K. Finally, by imbedding theorems (the Sobolev spe
H, (], [x]to, 0 + [) cot,o, bddd to thHdp/,/ ([, ]
X[to, t0 + 1]); see, e.g., [11, II-3]) we hve

(.) I(,) (,)1 + I(, t) (,)1 K( )/

if , z , 0 t t2 t + 1, nd this estimate nd (3.21) e sucient to obtain
the required result.

To see that, first notice that since

+/ r+/

J

(3.20) readily pnes that (3.3) hods. Aso, f 0 < < , then by usn (3.22) e
obtain, for all R nd 11 t 0,

d

+/
K-/ (- )/ (4K/3)/,

Jt

nd the estimate (3.15) holds for 1 ($imilT]y i i8 seen that this estimate holds for
2). Finally, to obtain the estimate (3.15) for (it is obtained for 2 similar wy)
observe that 1 is ive by

obtained when (3.18) is interbred in ]t,t + /5[, d the resulting equation is
multiplied by -/5, where

+/
(,)1(,)ld /(,t)l(, t)l,

+/5
F2 I IV(y, t) v(y, r)] Iw(y 2/, r)ldr,

Jt

t+ea/
F V(u, t)/ [l(u- /,)1 -I(u- /, *)1] d,

Jt
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Then, to end up the proof, we only need to show that

(3.26) IFl _< Ks if t >_ 0 for j 1,...,4.

But the first three estimates (3.26) are readily obtained, by the argument leading to
(3.24), when using (3.21) and (3.22), while the fourth one comes from the following
expression, which is obtained by means of (3.20)"

I Iw(y 2r/e, t)[=dr
,It

y--2t/e--2e-/

(e/2)Int(2e-1/5)(IW(.,t)[2
,to

where Int and Fract stand for the integral and fractionary parts, respectively. When
(3.26) is substituted into (3.25), the estimate (3.15) is obained for go1. Thus, the proof
is complete.

Finally, if e is sufficiently small, then the solutions of (1.1)-(1.4) that satisfy one
of the additional conditions, (1.6) or (1.7), are approximate solutions of (1.25)-(1.27),
in an appropriate uniform sense.

THEOREM 3.5. Under the assumptions of Theorem 3.4, let us assume that (A, B)
satisfy one of the additional assumptions, (1.6) or (1.7). Then the function Y is such
that, for all y E and all t > O,

(3.7) v, ( + i)y + ,y ( + iZ)ylyl + ( + i)y(Iyl) + (, t),

(3.28) v( + , t) v(, t) xp(-ia),

(3.29) V(y, t) A(y / t/e, t) + (y, t),

where the functions go and satisfy

(3.30) Ilqo( ", t)lloo, I1(’, t)lloo <- Koel/5 if t >_ O,

(3.31) IIo(.,t)lloo, II(.,t)lloo _< Coel/ if t >_ T

for some constants Ko, T, and Co such that Ko and T (respectively, Co) depend only
on IIA(., 0)IIH2(]0,1D , %. 6, and # (respectively, on , % , and #). Here the average
(.), the norm I1" I!oo and the space H2(]0, 1D a as defined in Theom 3.4.

Proof. The result is obtned kom that in Theorem 3.4 when ting into count
that if (A, B) satis one of the ditional sumptions, (1.6) or (1.7), then (IV]2)
(IWIa) for all t 0.

Remark 3.6. According to Theorem 3.4 (respectively, Theorem 3.5), eh solution
of (1.1)-(1.3) (respectively, of (1.1)-(1.3), (1.6) or (1.1)-(1.3), (1.7)) satisfies approx-
imately, in the uniform sense of the estimates (3.15) (respectively, (3.30)), the model
(1.20)-(1.23) (respectively, (1.25)-(1.26)). The estimates (3.16)(respectively, (3.3))
e independent of the pticul solution of (1.1)-(1.3) (respectively, of (1.1)-(1.3),
(1.6) or (1.1)-(1.3), (1.7)) that is considered, but they apply only for sciently lge
time.
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3.3. Some basic properties of the approximate models. Here we give two
basic properties of the approximate models, namely, that they are well posed and
possess a globally attracting set.

THEOREM 3.7. If" < 1 and the functions Ao and Bo (respectively, Ao) belong to
the complexified space of C2+a([0, 1]), for some a e ]0, 1[, and satisfy (1.22) (respec-
tights, probt , 
unique solution, A,B E (respectively, A )C2+,1+/2([0,1] x [0, T]) for all T > O.
In addition there is a constant C, depending only on a, , 7, , and #, such that, for
each solution of (1.20)-(1.23) (respectively, (1.25)-(1.26)) there is a constant T that
satisfies, for k 0 and 1,

I[A(’,t)c([0,11) + IIB(’, )llc <io, l) c ( spec iveey, IIallc (Io, l) c)

.for all t >_ T.
Proof. The proof of the first statement is completely similar to that of Theorem

3.1, and the second statement is proven by the ideas in the proof of Lemma 3.3.
Remark 3.8. If, in addition to the assumptions in Theorem 3.7, # _< 0, then the

constant C may be taken arbitrarily small; this means that the trivial solutions of
(1.20)-(1.23) and (1.25)-(1.26), A _= B _= 0 and A _= 0, are globally, asymptotically
stable in this case. Therefore, if p <_ 0, then the dynamics of the approximate models
are trivial. If 7 1 (respectively, 7 < 1), then both approximate models possess
solutions that are unbounded as t - c (respectively, that blow up in a finite time),
as is seen by considering spatially uniform solutions of both models.

4. Concluding remarks. We have considered the models (1.1)-(1.3), (1.1)-
(1.3), (1.6), and (1.1)-(1.3), (1.7) that, as it was explained in 1, are normal forms
that apply at the onset of the so-called oscillatory instability in a large variety of
physical problems. In the limit --. 0, we obtained (formally in 2, and rigorously
in 3) two simpler approximate models, (1.20)-(1.23) and (1.25)-(1.26). In addition,
we have seen that both models are well posed, and possess a globally attracting set.
Some remarks concerning these models are in order.

(A) Both aproximate models possess an inertial manifold of finite dimension. This
result may be seemingly proved by extending the analysis in [18], on the standard cubic
complex Ginzburg-Landau equation.

(B) The approximate model (1.20)-(1.23) possesses a two-parameter family of
travelling waves of the form V Rexp(iwt + iky + id), W O, or V 0, W
Rexp(iwt / iky + id) for appropriate values of the real constants R, w, k, and d, and
a four-parameter family of quasi-periodic waves of the form V R1 exp(iwlt + ikly +
idl), W R2 exp(iw2t + ik2y + id2), for appropriate values of the real constants R1,
R2, Wl, w2, kl, k2, dl, and d2 (see [19]). These wave-like solutions may lose their
stability either under uniform or under nonuniform perturbations; in the second case,
the solutions are said to be modulationally unstable. At the onset of the modulational
instability, the model (1.20)-(1.23) may be reduced to the Kuramoto-Sivashinsky
equation (see [19]) that, as is well known, exhibits chaotic behavior. Therefore, we
may expect chaotic solutions of (1.20)-(1.23) for appropriate values of the parameters.
The same conjecture can be made in connection with the approximate model (1.25),
(1.26).

(C) The particular wave-like solutions of (1.20)-(1.23)and (1.25), (1.26) men-
tioned in (B) are such that the moduli of V and W are spatially uniform. More
general solutions, with spatially nonuniform modulus, are of great physical interest;
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in particular, they provide a description of the so-called blinking states of the original
model (1.8), which have been detected in experiments (see [10], [11]). Both mod-
els are expected to possess such solutions. In particular, if (x f i 0, then
it may be seen that every stationary solution of (1.25), (1.26) is such that either
(i) =constant or (ii) R t 0 for all y E [0, 1], where R and 0 are the modulus
and the argument of V. The stationary solutions of type (i) may be obviously ob-
tained in closed form, in terms of elliptic functions. The solutions of type (ii) are
readily seen to be such that dO/dx c/R2 for some constant c 0; then R satis-

fies R + #R R3 c2/R3 + Rf R2dy 0, and this equation is again solved in
terms of elliptic functions. In addition, the evolution problem (1.25), (1.26) is
gradient-like (admits the Lyapunov function o" U2(]0, 1[) --. R defined by o(U)
f01 (IV(y)l2 -/zlV(y)l2) + f01 (IV(y)la/2)dy "[f IV(y)12dy]2), and the stability of
these solutions is readily analyzed. We do not include a complete study of these solu-
tions and of their stability because it has been announced in [12]. Sufficient conditions
for the existence of stable solutions of (1.25), (1.26) in the general (nonreal coefficients)
case would be of great interest.
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Abstract. The authors consider an n-dimensional semilinear equation of parabolic type with a discon-
tinuous source term arising from combustion theory. The authors prove a local existence for a classical
solution having a "regular" free boundary. In this regard, the free boundary is a surface through which the
discontinuous source term exhibits a switch-like behaviour. The authors specify conditions under which
this solution and its free boundary are global in time. The authors also prove uniqueness and continuous
dependence theorems.
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Introduction. In this paper we will study a free boundary problem arising from
combustion theory. The equation ruling this phenomenon is parabolic with a discon-
tinuous source term:

(0.1) u,-Au=lHl(u-1) in Qx[0, T],

where H is the Heaviside function and Q is an open subdomain of.
These kinds of problems were investigated by Norbury and Stuart in 1], where

the equation was derived from a combustion problem in a porous medium. In further
papers Norbury and Stuart have studied some mathematical aspects of such problems
but only for the one-dimensional ease. (See [2], [3], [4].)

In this problem the free boundary is the level set {u 1} that divides Q into two
subdomains 01 and Q: in which u > 1 and u < 1, respectively. We will investigate the
regularity of the free boundary, its global in time existence, and the possibility of
describing it as a surface of the form x =f(x,..., xi-1, x+,..., x, t).

In [5] the authors prove analogous results in the one-dimensional ease.
For the sake of simplicity, in this paper we will work in two dimensions with

Q= {(x, y)/O<x < 1; 0< y < 1), but the techniques we use can be applied to a general
domain in which we can assume to have its boundary S in the class O- in the
sense specified in p. 9 of [6].

Moreover, we will consider the simple equation (0.1), while in [5] a quite general
quasilinear equation was considered. These assumptions are made only to make the
proofs simpler and are not going to restrict in any way the validity of the theorems.
For example, instead of (0.1) we can consider the equation

ut-V (K(u)Vu) f(u)l(u- 1),

where, as far as the global results are concerned, K(u) is a constant and f(u) is
assumed to be a positive nondecreasing function belonging to CI(R).

More precisely in this paper we will prove a local in time existence theorem for
a solution of (0.1) having a "regular" free boundary, then we will find particular
boundary conditions and initial data which assure "global" existence of such a solution.

* Received by the editors July 24, 1992; accepted for publication (in revised form) October 5, 1992.
t Dipartimento di Matematica "Ulisse Dini," Universit degli Studi di Firenze, Viale Morgagni 67/A,

50134 Firenze, Italy.
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Moreover, we will investigate uniqueness and continuous dependence results for
problem (0.1).

In the following we will denote with a, c (0, 1), any suitable H61der exponent
not specified further.

Where not differently specified, we will use the notation of [6].

1. Local existence. Let us now consider the following two-dimensional parabol’ic
problem"

(1.1) ut=Au+H(u-1),

(1.2) u(x,y,O)=h(x,y),

(1.3a) u(0, y, t)= KI(y, t),

(1.3b) u(1, y, t) KE(y, t),

(1.3c) u(x, O, t)= K3(x, t),

(1.3d) u(x, 1, t)= K4(x, t),

where (x, y) Q (0, 1) x (0, 1), (0, T). Let Qa Q x (0, T), OpQT- the parabolic
boundary of Qr, and Sr the lateral boundary of Qr.

In (1.1), H(r/) is the Heaviside function so defined: H(r/)= 1 if r/>0 and H(r/)-0
if r/_-< 0. Let us list the assumptions we will use

K, H/3’/3/2([0, 1] x [0, T]), 1,..., 4,

(1.4)
K,y(y, t) H’/2([0, 1] x [0, T]), 1, 2,
K,,,(x, t) H/3’t3/2([0, 1]x[0, T]), i=3, 4, fl>,
Kit(x;y,t)L([O, 1]x[O, T]), i=1,...,4,

(1.5) h(x, y) H1+ ((),/3 > ,
(1.6) IAhI<-M,

Ao {(x, y)" h(x, y) 1} admits the representation y=fo(x), O<-_x <- 1,
fo(x) H1+3 ([0, 1 ]),

(1.7)
/h > 1 in {(x,y) 0:_ y>fo(x)},
[.h < 1 in {(x, y) Q" y <fo(x)},

(1.8) hy(x, y)_-> y > 0 in a neighbourhood relative to Q of the curve y =fo(x),
zero order compatibility conditions are satisfied on OpQT,

(1.9) this means that the boundary and initial data

are a continuous function on tgpQT.

Remark 1.1. As far as we are only concerned with a local existence theorem, we
can relax the assumptions (1.4)-(1.6). In fact, we can just assume that Ka(x, t), K4(x, t)
are H61der continuous with exponent a (0, 1) and KI(y, t), K_(y, t) satisfy (1.4) only
in a neighbourhood of (0,fo(0), 0) and (1,fo(1), 0) in the plane {x=0} and {x= 1},
respectively, while h(x, y) satisfies (1.5), (1.6) only in a neighbourhood of the curve
y -fo(x) which is still assumed to belong to Hl+a ([0, 1]). This means that the assump-
tions on the regularity of the boundary and initial data are made only "near" the curve
y =fo(x) while the regularity required for the boundary conditions away from this
curve will be the weakest needed to have the existence of a weak solution of the
problem, for example, in WI’(QT) c C()T).
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THEOREM 1.1. Under the assumptions (1.4)-(1.9), a function u(x, y, t) exists such
that

(1.10) u H’/2(-Q-), Vu H’/2(’)
with Q’= (0, 1) x (e’, 1 e’),

(1.11) U,,x, Uyy, U,,y, utLE(Q’) re’>0

satisfying (1.2)-(1.3d) and (1.1) almost everywhere. Moreover, for a sufficiently small
T1 we have

(1.12) lutl<-_ M in QT1,

and denoting with ATI the level set

AT-:{(x,y,t)l(x,y)t,t(O, T1),u(x,y,t)=l},

we have that AT- is the graph of a function of the form y=f(x, t) with f,(x, t)
H’/2([0, 1] x [0, T1]), If(x, t) <- M in [0, 1] x [0, T1].

The proof of Theorem 1.1 will follow as a consequence of Propositions 1.1, 1.2,
and 1.3 below. Let us consider a sequence of approximating problems:

(1.13)

(1.14)

(1.15a)

(1.15b)

(1.15c)

(1.15d)

u,,, Au,, + H,(u, 1),

u,(x,y,O)=h,(x,y),

u,(O,y,t)=K,(O,y,t),

u.(1, y, t)= K2.(1, y, t),

u.(x, O, t)= K3.(x, O, t),

u.(x, l, t)= K4,,(x, l, t),

where:

h, C(Q), K,n C([0, 1] x [0, T])
and they converge, respectively, to h and Ki(1.16)
in the Cl-norm,
i=1,...,4,

Vh, has norm in H(() bounded independently of n

(1.17a) and Ah, is bounded independently
ofnin Q,

Ki,y(y, t), 1, 2 and K,x(X, t), 3, 4 have the norms in H’/2 bounded
(1.17b) independently of n with fl as in (1.4)-(1.7),

K,t(x, t), 1,..., 4, have their norm in Loo bounded independently of n,

Hn are monotonically increasing functions of their argument,

H c(),
(1.18)

lim, IIH.-HII , =0 in R\(-e, e) ’e >0,
lim, IIH -HII=,- 0.

Moreover, we can assume that the boundary data (1.14)-(1.15d)
(1.19)

satisfy the zero-order compatibility conditions.
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From (1.16), (1.17a), it follows that, for sufficiently large n, the level set Aon
{(x, y)" hn(x, y) 1} can be described as the graph of a function of the form y =fo(X),
0=<x<-l, and fo,(x)Hl+([O, 1]), fo bounded independently of n in H1+. Here
and in the following M will denote any constant independent of n. Let Q’=
(0, 1)x (e’, 1- e’), for all e’>0.

PROPOSITION 1.1. Under the assumptions (1.16)-(1.19), problem (1.13)-(1.15d)
admits a unique classical solution u, (x, y, t) such that

(1.20) u,(x, y, t) H2+’I+/2(QT),

(1.21) max lu, <- M,
QT

(1.22) lu.l<< M,QT

(1.23) lu.l(’+< M(’)O/

(1.24) llu.xx, u.,, u.=. .,II=.o+ (’)

with M and M(e’) independent of n.

Proof By means of Theorem 6.4, p. 460 and Theorem 12.1, p. 223 of [6] we obtain
(1.20). The estimate (1.21) follows from Theorem 2.1 of [6, p. 425].

Theorem 1.1 of [6, p. 419] gives the uniform H61der continuity with exponent
of the function u,(x, y, t) and hence estimate (1.22). Estimates (1.23) and (1.24) follow
from inequality (10.12) p. 355 and the corollary at the end of Theorem 9.1, p. 341 of [6].

Remark 1.2. Because of the uniform HIder continuity of {U,y} it is obvious that,
in the (x, y)-plane, a neighbourhood Q of the cue y=fo(x) can be chosen such
that, in QITo Q1 x (0, To) (with To sufficiently small); we have

(1.25) U,y(X, y, t) > 0 Vn > N, with N sufficiently large,

with % QI, To independent of n.
PROPOSITION 1.2. Under the assumptions (I.16)-(I.19), we have

(1.26) I.,I v,
in QT, with T suitably small; here M does not depend on n.

Proo Let us define Q,={(x,y)/xe(O,);fo(x)-<y<fo(x)+} and
Q1 x (0, T), with T so small that u, < 1 e* on {(x, y, t)/x (0, I); y =fo(x)-
0<t<T} and u,>l+e* on {(x, y, t)/x (O, l); y=fo(x)+ e; O< < T1} for all n
sufficiently large and a suitable e*. (This is possible because of (1.22).) Moreover, we
can assume QT, QTo (see Remark 1.2).

In QIT,, v,(x, y, t)= u,(x, y, t) satisfies the following system of equations"

v.,-av. =(u.- l)v. in
(.27)

o,(x, y, )= ,(, y) on

D, is a function bounded independently of n; this result can be obtained using
assumptions (1.16), (I.17a), (1.17b) and applying Theorem I0.I of [6, p. 204] to the
problem satisfied by v,

This implies that, regarding (u, l)v, as a known source term, we can represent
the solution v, of (1.27) as the sum of two functions Vl, and v2,, where v, is the
solution of the homogeneous heat equation with the same initial and boundary data

and the following estimates hold"
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of problem (1.27) and L2n is the solution of equation (1.27) in Q, -, with zero Dirichlet
boundary data.

It is quite simple to prove that Io ol--< M in
Using the Green function G, we can express v2. in the following form:

(1.28) v2. G(x, y, 1, 2, t, ’T)-tn(Un 1)v. dl d2 dT.

Hence we have

(.9) v v, + G(x, , ,, , , )(u )vd dr,

where v is regarded as a bounded known term.
Let us define

a(t) max Iv,(x, y, t)l, N(t) max
O1 x(O,) OlX[0, t]

Then we have

a(t) N N(t)+ a(,) C(t-,)- exp
O t-r

H’.(u. 1) dl d2 d’r

Now, using (1.25), we can multiply and divide H’.(u.-1) by U,,y, thus obtaining

O( t) <= N( t) + C 1(’) (t-r)-’ exp
O, t- "r

d 1
yy (H,(u, 1)) ds, ds2 dr

Uny

Integrating in 2, we get

a(t) N N(t) +-- a(r) ,)-1 exp d d,
T t--

Now we multiply and divide the argument of the above integral by Ix-l//(t-z)/,
and, keeping in mind that the quantity

t--r (t--z) 1/4

is bounded, we obtain (choosing if necessary a new constant C)

a(t)N()+- a(r)
(t-
_

111/2 dl d.

Now if we set

we have

Co max Ix- l1-1/2 dl
x(0,1)

CCofl(t) <_-- N(t) + (z)( 7") -3/4 dz.



PARABOLIC EQUATION WITH A DISCONTINUOUS SOURCE TERM 623

Then, multiplying by CCo/(t- 7.)3/4y both sides of the inequality and integrating in t,
we get

(t)- N(t) <= N(7")(t-7.)-3/4 dr

+ T2 (t-7.)-3/4 [’(0)(7.--0) -3/4 dOd7.

N(7.)( 7") -3/4 dT"

,)12 ’(0)
0

(t--7")--3/4(7"--0) -3/4 aT"dO.

Integrating this last term by means of the substitution 7" 0 + (t- O)z, we obtain

(t)-N(t) <- cc’CCoy N(7")(t-7")-3/4 dT"+ y2 M(t-O)-l/2(O) dO,

where M 10 2-3/4(1 Z) -3/4 dz.
Iterating this procedure as in [7, Chap. 3, 15], we finally obtain for O(t) an

integral inequality of the following kind:

1)(t) --< F(t) + K 7")f/(7") dT",

with K(t- 7") bounded independently of n and F(t) depending on N(t) but not on n.
Applying Gronwall’s lemma, we get ll(t)<-M in (0, T1) with M independent

of n.
Since un, is bounded uniformly on n in Q1 r,, is straightforward to prove, by means

of standard theorems (see [6, Thm. 5.1, p. 444]), that the same result holds true in Qr,.
PROPOSITION 1.3. Under the assumptions (1.16)-(1.19), in QT, Q x (0, T1) with

T suitable small, the level set Ar,={(x, y, t)/(x, y)e Q; t(O, T1)/u,(x, y, t)= 1} is
represented by a regular surface y =f, (x, t) with

(1.30) If xl( > M in [0, 1] x [0, T1],

(1.31) If ,l M in (0, 1) x (0, T1).

Proof. Clearly we have that A {(x,.y) Q/h,(x, y) 1} is a "regular" curve on
the plane 0, and if we choose n sufficiently large this set has a distance greater
than e/2 from the curves y =f0(x)- e, y =fo(x) + e; then for a sufficiently large n and
small T1, A, lies in Qr,. (Remember in this regard that u, are uniformly H61der
continuous.) Then, using (1.25), Propositions 1.1 and 1.2, we can apply the inverse
function theorem to the function u, to get that A- is representable in the form
y=fn(x, t) and estimates (1.30), (1.31) hold.

Let us now turn to the proof of Theorem 1.1.
Proof of Theorem 1.1. We now consider the sequences {u,}, {f,} of solutions of

the approximating problems (1.13)-(1.15d). Using (1.21)-(1.24), (1.26), (1.30)-(1.31),
we see that it is possible to extract from {u,} and from {f,} two subsequences Unk and



624 ROBERTO GIANNI AND PAOLA MANNUCCI

fnk that converge, respectively, to the functions u and f, in the following sense"

(1.32)

C H,,,/2(u ,u 0) VT,

co H,,,/2VU,k Vu 0’) VT, Ve >0, with

Qr (0, 1) x (e’, 1 e’) x (0, T),

w-L

Unkxx Unkyy Unkxy Unk Uxx Uyy, Uxy U

_
L2(Qr)

("W- L2" weak convergence in L2)

ut <= M in Q.,,

C
f,k (X, t) f(x, t) with f(x, t) Lipschitz continuous in x and in

[0, 1 x [0, T1],

C HO,O/2(fk(X, t) f(x, t) [0, 1 X [0, T1] ).

Here T] is the constant determined in Propositions 1.2 and 1.3.
To prove that u(x, y, t) is a solution of problem (1.1)-(1.3d) we have to show that

w-L
H,,(u,, 1) H(u-1).

w-L
We can easily obtain that H.(u.- 1) b(x, y, t), and then

(1.33) ut-Au ok(x, y, t) in QT,

with ckCx, y,t)Lc(QT), ck(x,y,t)=o if u(x,y,t)<l; b(x,y,t)=l if uCx, y,t)>l;
O<-_ck(x,y,t)<-_l in l={(x,y,t)Q" u(x,y,t)=l}.

However, it can be proved that either meas/ 0 or b(x, y, t) 0 almost everywhere
in A.

In fact, using Lemma A.4 of [8, p. 53], since Vu(x, y, t) and ut(x, y, t) are in L2,
we get ut u,, Uy =-0 almost everywhere in/. Still applying Lemma A.4 of [8, p. 53]
to the functions Ux (x, y, t-) and Uy (x, y, ) (remember that because of Fubini’s lemma,
u,,,(x, y, t-) and Uyy(X, y, ) are in L2((0, 1) x (0, 1)), for almost all ), we get u,,,(x, y, t-) =-
Uyy(X, y, ) =- 0 almost everywhere in A c { ?}, for almost all ?. Hence Uxx(X, y, t)
Uyy(X, y, t)=-0 almost everywhere in/.

Hence, because of (1.33), we have that b(x, y, t) -0 almost everywhere in/, then
b(x, y, t)--l(u- 1) almost everywhere, that is, u(x, y, t) is a solution of (1.1)-(1.3d).
To be sure that y-f(x, t) is the representation of the level set {u 1} it only remains
to prove the inequalities u > 1 in Q,- {(x, y, t) QT,; y >f(x, t)}, and u < 1 in Q2,_
{Q\t2}. They can be easily obtained by means of the strong maximum principle, so
we will not go into the details of the proof.

PROPOSITION 1.4a. Let u(x, y, t) be the solution of (1.1)-(1.3d). Under assumptions
(1.4)-(1.9) and the assumption Kit H"/2([0, 1] x [0, T]), 1,..., 4, then ut
H’/2(2 x[-, T1]), y (0, a], for all a- (0, T1), with T1 suitably small, where is any
closed domain contained in Q and not containing the corners of the square.

Proof Clearly it suffices to work in Q1T, instead of Q- because in QT\Q1T, the
result follows from standard theorems on heat equation. Let us consider the solution
u, of the approximating problem (1.13)-(1.15d) under assumptions (1.16)-(1.18) and



PARABOLIC EQUATION WITH A DISCONTINUOUS SOURCE TERM 625

KintE H’’’/2, [Kint[(a) M, for all n. It is important to notice that, using inequality
(10.12), p. 155, and the corollary of [6, p. 342], it is easy to prove:

(A.1) lU,,xx, u,,yy, U,,xy, u,,,lq<-M, q= 1/(1-/3);

(m.2) [Vu,,(x, y, t)] (1-4(1-/3))-< M

(here /3 is the same of assumptions (1.4)-(1.9), (1.16)-(1.18)) in x[0, T]. At this
point setting v, u,,, we have that (1.27) can be written in the alternative form"

v,,t Av,,+
"’(u" 1) []-l]n(Un--1)Unyy O(H,,(u,,-1)v,,)l)nY )2 )n

gtny (Uny tiny

where [H,,(u,-1)]/U,y, [H,(u,,-1)U,yy]/(U,,y)2, [Hn(Un--1)ln]/Uny, are regarded as
known coefficients belonging respectively to L, Lq, L (remember for this purpose
that from Proposition 1.3, v, is uniformly bounded in QT,). At this point, using Theorem
10.1 of [6, p. 204] we get that

(A.3) Iv,,l7)_-<M(r,) ’’nonx[r, T] ’tirE(0, T1), T(0, a].

Finally, using a diagonal technique, we get Proposition 1.4a.
Remark 1.4b. It is easy to observe that y and M(r, ) in (A.3) depend on r,

and on the boundary data. This implies that if we consider boundary data whose norms
are bounded in their respective spaces by a certain fixed constant K > 0, then u,,, u,
are uniformly H/51der continuous with the same H/lder exponent y. This will turn out
to be very useful in the continuous dependence theorem.

In the following theorem we want to prove an important generalization ofTheorem
1.1. Namely, we will relax the assumptions (1.5) and (1.6), which guarantee the
boundedness of u, up to the boundary.

THEOREM 1.2. Under the assumptions (1.4), (1.7)-(1.9),/f we substitute (1.5) with

(1.5bis) h(x, y) HI+T(0), "E (0, 1)

and ifwe drop (1.6), we canprove that afunction u(x, y, t) exists, such that u H’"/2(Qr).
For a suitable a E (O, 1), ut, u,,, Uyy, Uy L2(Q’x[’, T]), Vu HV’(tr), T’ (0,),],for
all 7">0, for all e’>0, where Q’= (0, 1)x (e’, 1-e’), in Q[, T13 for all

" > 0 and T1 suitably small, u satisfies (1.2)-(1.3d) and (1.1) almost everywhere, and
has a level set {u 1} which is representable by a function y =f(x, t) which is Lipschitz
continuous with respect to x and in any subdomain of the form [0, 1] x [% T1] and
continuous in [0, 1 x [0, T1]. (Equation (1.5bis) is different from (1.5), where fl had to
be greater than .)

Proof. Proceeding as we did in Theorem 1.1 we can show that a solution u(x, y, t)
of problem (1.1)-(1.3d) exists, having u H’"/2(Or). As far as the H/Slder continuity
of Vu is concerned, it can be easily obtained representing u. (u is, as usual, the
solution of a suitable approximating problem) as the sum of two functions u., u2.;

the first solves the homogeneous heat equation with the boundary data of u. and the
second solves the heat equation with H.(u.- 1) as a source term and zero boundary
data. At this point the uniform H61der continuity of Vu. in Qr is obtained in the
following way" we split Ul. in two functions /ln and 1.. The first one satisfies the
heat equation with the same lateral boundary conditions of Ul. and "regular" initial
data and the second one satisfies the heat equation with zero lateral boundary conditions
and suitable initial data. At this point the desired result follows by applying inequality
(10.12) of [6, p. 355] and the corollary at the end of Theorem 9.1 of [6, p. 341] to the
boundary value problems satisfied by u2., tl.; moreover, since tl. can be seen as the
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restriction to the domain Qr of a function z(x, y, t) solving a Cauchy problem for the
heat equation in the half plane {t->0} (z, is obtained from t, by reflection), the
estimates on Vt, follow from Theorem 11.1 of [6, p. 211]. As far as the L2-estimates
of u,, ux,,, uyy, Uxy are concerned, they can be easily obtained by applying inequality
(10.12) of [6, p. 355] to the problem solved by u,. The estimate of Theorem 1.2 on the
Lipschitz continuity off(x, t) follows from an estimate on u, analogous to (1.26); this
can be obtained as done in Proposition 1.2. In fact, in 01T1 we have that u, can be
written as the sum of two functions u, and u2,, solutions of the following systems of
equations"

(1.34)

(1.35)

(1.36)

(1.37)

u,,t AUl, 0,

lln U on 0pQ T1

UEn,-AUEn=Hn(un-1),

U2n 0 on OpQI TI.

Splitting Ul, in two functions, 1, and 1,, as done before and using the Green’s
function to represent tl,, the first estimate of Theorem 16.3 of[6, p. 413] together with
assumptions (1.17b) and (1.Sbis) yields the following inequality:

()

with Ml(e) and M2(e) independent of n (again we use the fact that /ln can be seen
as the restriction to the domain QT of a function z, (x, y, t) solving a Cauchy problem
for the heat equation in the half plane { t-> 0}).

With regard to u2,, differentiating (1.36) with respect to t, we obtain for u2,t v2,,

V2nt-AV2n--Htn(Un-1)Vn,

v2, 0 on oQ1 x [0, T],

V2n(X,y,O)=Hn(h.-1),

where v. Unt.
Let v, u,,. Then we have

I) 1)ln + l)2n Vln "1- G(X, y, t, es, 2, z)H’.(Un 1)Vn dl dse2 dz
(1.38)

I. G(x, y, t, 1, , O)H,(h, 1) d6 d:.+
.Q

Using again estimates of Theorem 16.3 of [6], we easily get that

c()
G(x, y, t, , , O)H,(h 1) dl d tl/+, with e (0, ).

Hence we have

M4(e)Iv.l <-_ M3( e + tll>+ + G(x, y, t, 1, 2, "l’)Htn(Un 1)lv.l d, d d,

with M3(e) and M4(e) independent of n.
Let ,(x, y, t) be the solution of the following integral equation"

M4(e) + G(x, y, t, 1, 2, a’)H(u, 1)t3. asr, dsr2 dz.
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We have that

Moreover, following the procedure of [7, Chap. 3, 15], we obtain

C(e)If)hi n CI(E)--t(1/2)+-----"
Now it is straightforward to prove, by means ofstandard results on parabolic equations,
that the same estimate holds in the whole of the domain Qr.

The last inequality allows us to get an analogous estimate for f,,t and hence for ft.
The continuity of the function f(x, t) up to { 0} is an easy consequence of the

assumptions and the H61der continuity of u(x, y, t). This concludes the proof.
In general it seems possible to extend the proof when Vh C(().
Remark 1.3. It is important to stress that assumptions (1.7) can be relaxed. In

fact, we can only require that A0-{(x, y) Q/h(x, y)- 1} is represented by a regular
parametric curve

(1.7bis) {x= x(s),
y-y(s), O<-s <-1,

with x(s), y(s) HI+([0, 1]), x’2(s)+y’E(s) 0 for all s s [0, 1] and such that Vh does
not vanish at any point of the curve. As a result, in this case we will get that the
interface can be represented by a Lipschitz continuous parametric regular surface of
the form

x =f(r, t), y= g(r, t) (t as usual represents the time variable)

so that a solution of problem (1.1)-(1.3d) will be now represented by the triplet of
functions (u, f, g).

The proof is similar to the one above, except Proposition 1.2. In fact, in this case,
we have to divide the domain Q1T, in a finite number of subdomains (Q1T)i, i=
1,..., N, such that in each ((lr,)i, at least one between ux and uy is always different
from zero. This is always possible because of the assumptions and of the H61der
continuity of V u. At this point an estimate of the integral (1.29) can be done as in
Proposition 1.2.

Remark 1.4. It is important to stress that, as far as we are concerned, with a local
existence theorem, the domain Q can be chosen with a different shape as long as it is
sufficiently smooth; for example, with its boundary in C2. In fact, proceeding as we
did in Proposition 1.1, we can still prove that V u, is uniformly continuous; then if
V h, 0 on Ao for all n > N, it remains different from zero in U x [0, ] with U a
suitable neighbourhood of Ao and sufficiently small. At this point the proof goes
on as before.

With regard to the global existence theorems which we will prove in the following
section, it is easy to realize that the domain Q, which will be chosen to be a square,
can be generalized, and we can consider a more general domain of the form Q
{(x, y): 0<x < 1; F(x) < y < Fz(x), with F(x) < F2(x)}. Global existence of the inter-
face will be proved until it touches one between the surfaces y F(x), 1, 2.

2. Some eases of global existence. From the previous section we see that, for
proving the existence of a "regular" free boundary in Qr, under the assumptions of
Theorem 1.1, the crucial point is to find an estimate which bounds away from zero,
uniformly in n, U,y(X, y, t) in Qr (u, is, as usual, the solution of the approximating
problem (1.13)-(1.15d)). (In general, as we have seen in Remark 1.3, it is sufficient to
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have one between u,x or U,y bounded away from zero in QT.) Following the sketch
of the proof of Theorem 1.1 it is easy to prove that, if we have an estimate of the type
U,y > 0 on the parabolic boundary dpQT, a "regular" free boundary exists in all Qr.
In fact, if we write down an approximating problem as in Theorem 1.1 and we set
U,y v,, we have that v, solves the parabolic equation

and v. > 0 on opQ. This implies that v. =>0 in QT-. Regarding H’.(u. 1)v. as a positive
source term and applying the maximum principle, we ,get v. u.r => $ > 0 in Qr, with
$ independent of n. At this point the global existence theorem we are looking for can
be proved by means of the same techniques of Theorem 1.1.

We give below some simple examples. More general results can be proved essen-
tially in the same way. Naturally, it is possible that, in this regard, stronger assumptions
on the boundary data have to be done.

(a) Dirichlet Problem.

(2.1)
(2.2)
(2.3a)
(2.3b)
(2.4a)
(2.4b)
with

(2.5)

u, =Au+(u-1),
u(x,y,O)=h(x,y),

u(O,y,t)=Kl(y,t),

u(1, y, t)= K2(y, t),

u(x, 0, t)= K3(x, t),

u(x, l, t)= K4(x, t),

hy(x,y)>= y>0 in Q
K3(x t) < 1, K4(x, t) > 1, Kly(y, t) >_ y > O,
K2y(y, t) >= /> 0 in (0, 1) x (0, T).

If (2.5) and all the assumptions of Theorem 1.1 are satisfied, and if K and K4 satisfy
the following conditions

(2.6) K3t K3x <= 0, K4t Kaxx >= 1,

since the approximating boundary data can be chosen such that they still satisfy (2.5),
(2.6), an estimate on the sign of U,y on the boundary follows immediately from the
maximum principle and Hopf’s theorem, and hence a global result can be proved as
in the previous section.

Remark 2.1. Let us observe that the first assumption of (2.5) can be relaxed,
requiring hy to be nonnegative in Q and strictly positive on the curve y-fo(x).

(b) Mixed Problem. A special problem with mixed boundary conditions can be
studied in a simple way. In fact, if we consider

(2.1) ut=Au+(U--1),
(2.2) u(x,y,O)=h(x,y),

(2.3a) u(0, y, t)= KI(y, t),

(2.3b) u(1, y, t)= K2(y, t),
(2.7a) Uy(X, O, t)= K3(x, t),

(2.7b) uy(x, 1, t)= K4(x, t),
under the assumptions (2.5) for h(x, y), KI(y, t), K)_(y, t), K3(x, t) -> 0, and K4(x, t) => 0,
the proof follows analogously to the one sketched in the previous case (a).
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(c) Neumann Problem.

(2.1)

(2.2)

(2.8a)

(2.8b)

(2.9a)

(2.9b)

with

(2.10)

Ut AU +](U--1),

u(x,y,O)=h(x,y),

ux(0, y, t)= K(y, t),

ux(1, y, t)= K2(y, t),

Uy(X, O, t)= K3(x, t),

Uy(X, l, t)= K4(x, t),

hy(x, y) >= / > O,

Kly(y, t) < O,

g2y (y, t) > O,

K3(x, t) >- 0,

K4(x, t) >= O.

Even in this case the regularity follows directly from an estimate on the sign of Uny.
Again, this estimate is an immediate consequence of the maximum principle.

3. Uniqueness. In this section we prove an uniqueness result. Let us remark that
the right-hand side of (0.1), H(.) is not Lipschitz continuous and moreover it has the
"wrong" sign. Thus the usual techniques cannot be applied (see [9]) and uniqueness
turns out not to be a trivial problem.

To make the calculations simpler and to give a more geometrical idea of the
techniques applied we will prove uniqueness in a one-dimensional case. (Regularity
of the free boundary for the one-dimensional problem follows from [5].)

We assign Dirichlet conditions on the lateral boundary. We stress the fact that
this assumption is not essential for our approach.

For the sake of simplicity we introduce the new unknown u 1, that we call u again.
Let us consider:

(3.1) u,-U,x=H(u) in QT-=(0, 1)x(0, T),

(3.2) u(x, O)= h(x) in [0, 1],

(3.3) u(0, t)--b(t) in [0, T],

(3.4) u(1, t) ,(t) in [0, T].

h(x), ok(t), d/( t), are continuous and h(x) > 0 if x > b, h(x) < 0

if x < b, /,(t) > 0, th(t) < 0. Let u(x, t) and u2(x, t) be

two continuous "weak" solutions in Qr of system (3.1)-(3.4),

(3.5) (that is, u, C(Or), u,x,, u,, L2(Q’), Q’ [0, 1 ], u, C(Q),

1, 2, and satisfying in a classical sense (3.2)-(3.4) and (3.1) almost
everywhere).

Let Sl(t) and s2(t) represent their level sets {Ul =0}, {u2=0}, respectively.

Moreover, let Sl(t) and s2(t) be continuous on [0, T].



630 ROBERTO GIANNI AND PAOLA MANNUCCI

THEOREM 3.1. Let (Ul, Sl) and (u2, s2) be two solutions of system (3.1)-(3.4) in
Q., satisfying the assumptions (3.5), and such that either Ul,l >- y > 0 in a neighbourhood
U of Sl or lU2xl >-_ y > 0 in a neighbourhood U of s.. Then Ul u2 and s =- s in QT.

Proof. Let us put v := u-u. The function v solves the following problem:

(3.6)
vt-vxx=H(u2)-I(u,) in QT,

v(x, O)= v(O, t)= v(1, t)= O.

If (Ul, Sl)# (U2, S2), we can assume, without loss of generality, that a bifurcation
between the two curves x Sl(t), x s2(t) occurs at =0.

Now v(x, t) can be expressed by means of the Green function G(x; t; , 7"), and
we have

(3.7) v(x, t)= d G(x; t; ; r)f(, 7") d,

wheref(x, t) ](u2) -H(u), and then If(x, t)] Xo,,2 (Xo,.2 is the characteristic function
of Q,2 {(x, t) Qr" si(t) -< x =< sj(t); i, j 1, 2; sj(t) > si(t); 0 =< =< T}). Because of the
assumptions we have made, we can also assume that lu -> 3’ > 0 in Q._.

Then we have

lUl(S=(t), t)-u2(s2(t), t)[=lu,(s2(t), t)l=]u(s2(t), t)-Ul(S,(t), t)

>-- /Is_(t)- s,(t)l.
This last inequality is a consequence of the Lagrange mean value theorem and of the
assumptions we have made. Hence

Iv(x, t)l <--_ C (-C(Ix- :1=))exp
(t r) XO,,: ds dT"

t]sl (7") S2( 7’)1
dT"=< C /t-z

_-< c, fo I,(s(), 1-u,_((-), ’11 d’r

I u, u oo d.C1 Jo T x/t- 7"

Then

which for a sufficiently small T gives an absurdum, implying (Ul, Sl) (U2, S2).
Using the same techniques, an equivalent uniqueness theorem can be obtained in

the multidimensional case. Let Ul and u2 be two "weak" solutions of (1.1)-(1.3d),
continuous on Qr and such that their level sets {u 1} and {u2 1} have a parametric
representation (according to Remark 1.3) x=f(r, t), y= gi(r, t), i= 1,2.

(Let S be one between the graphs represented by the parametric surfaces (x =f;
Y gi, 1, 2), for example, x -fl, Y gl .)

For such solutions the following theorem holds.
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THEOREM 3.2. Let (ul,fl,gl) and (uE,fE,g2) be two solutions of system (1.1)-
(1.3d) in QT-, with ua and u2 continuous on Q--, VUl, Vu2 C((r), (with Q’ as in
Theorem 1.1), f/ and fli Lipschitz continuous for i= 1, 2; let, moreover, satisfy this
condition" for all P S at least one of the two assertions holds:

a There exists an open set Vsuch that P V; lulxl >- ), > 0 in Vand is represented
in V by a function of the form x F1 (y, t);

(b) There exists an open set Vsuch that P V; lulyl >- "y > 0 in Vand is represented
in V by a function of the form y G1 (x, t); then U =-fiE in QT.

(An analogous statement holds if we assume S to be the graph represented by
x =f2, y g2.)

We want to stress that this uniqueness theorem implies that the whole sequence
of approximating solutions (u,,f,) found in 1 converges, so that the technique
displayed in Theorem 1.1 is constructive.

4. Continuous dependence on the data. To fix the basic ideas of the proof, we prove
a local continuous dependence theorem for a Dirichlet problem. This means that any
solution u(x, y, t), as in Theorem 1.1, depends continuously from the initial and
boundary data in a domain QT1 with T1 suitably small (naturally T1 is independent of
the particular solution u(x, y, t) chosen). Moreover, we can observe that, in general,
if the boundary data satisfy conditions which guarantee the existence of solutions of
problem (1.1)-(1.3d) having Lipschitz continuous interfaces in Qr, represented as
functions of the (x, t) variables and such that in their neighbourhood Uy _-> 6 > 0, then
our local existence theorem become global (that is, it holds in all Q). Other initial
boundary value problems can be treated similarly.

THEOREM 4.1. Let lU and 2u be two functions satisfying (1.1)-(1.3d) in the sense
specified in Theorem 1.1, in Q., for a suitable Ta > O, with the same regularity as in
Theorem 1.1. Let y if(x, t) and y 2 f(x, t) be the functions that represent the level
sets {lU 1} and {2u 1}, respectively. We assume that (1.4)-(1.9) hold and that if, 2f
have the same regularity as in Theorem 1.1.

Then for each : > O, e’> 0 a 6 > 0 exists such that if

IK, 2Ki I’) < 6, i= 1 4,I([0,1]x[0,T])

[1Kiy -2Kiy 13) < 6, 1 2, fl >([0,1]x[0,Tt])

i=1,..,4, q>4,

(4.1)

(4.2)

(4.3)

(4.4)

then

(4.5)

(4.6) [lu u]l+)0/,) -< ,
(4.6bis)

(4.7) IIu-zull <z) < :,q,D

(4.7bis)

(4.8)

(4.9)

with Q’=(0,1)(e’,l-e’) and y=min(fl, l-4/q),

II u
where D is a domain strictly contained in Qr Wq > 2,

if-=fll c<to,ato,,a) ,
 fxl <

([0,1]x[0,T])

oo Let us consider the system of equations satisfied by w u-u. We have
that w(x, y, t) can be expressed as the sum of two functions w, w such that Wl satisfies
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the homogeneous heat equation with the same boundary and initial data of w and 14)2

satisfies the equation

(4.10) WEt- AW2- ](lU- 1)- H(EU- 1)

with zero boundary and initial data.
As far as Wl is concerned, we can easily get (by means of a standard maximum

principle) that

(4.11) IlWllIcOQT,) <-_ 6.

We now find an estimate for w2, solution of (4.10). Using the Green function we get that

(4.12) ]w2(x, y, t)l <-- d IG(x, y, t, SOl, :2, ’)IXQ,.2 d:, d2,

where Xo. is the characteristic function of Q,2 {(x, y, t) Qr" (x, t) y f(x, t);
i,j= 1,2; f(x, t)> (x, t); 0xl; 0t T1}. Since we are proving a local con-
tinuous dependence, there is no loss of generality in assuming that for a suitable T
and sufficiently small , both the graphs of f(x, t) and 2f(x, t) lie in a region where

We have

]lU(X, 2f(x, t), t)-2u(x, 2f(x, t), t)l
lug(x, 2f(x, t), t)- Ul(X, if(x, t), t)l
Tllf(x, t)-2f(x, t)l.

This last inequality is a consequence of the Lagrange mean value theorem.
Hence we get

(4.13)

This implies that, using (4.12),

Hence

Now, using (4.11), we easily get (4.5), and then, because of (4.13), we also get (4.8).
At this point it is easy to realize that (4.6) holds true, in fact from (4.8) we get

that w satisfies a parabolic equation whose source term is bounded and different from
zero only between if and 2f, that is, in a region whose measure can be made as small
as we want choosing a sufficiently small 6. At this point, using inequality (10.12) p. 355
of [6], and the corollary at the end of Theorem 9.1, p. 341 of [6], (4.6) and (4.7) follow
immediately, and hence (4.9).

As far as (4.7bis) is concerned, it can be easily obtained using (4.6bis), Proposition
1.4a and Remark 1.4b, since it is simple to prove that two functions which are uniformly
H/Sider continuous and are "near" in the LE-norm are also "near" in the C-norm.

Using (4.7bis) and (4.8) and setting W=-lU(X,y, )-2u(x,y, ), we have that
W(x,y) satisfies an elliptic equation of the kind AW= fir in Q, where ][IIq,Q", q>=2,
can be made as small as we want for all > 0 and Q"c c Q taking 6 sufficiently small.
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Then, using inequality (10.11) of Theorem 10.1 of [11, p. 173], we have that for
all ?s (0, T1][] .

Naturally in this regard will depend on f and on d--dist(Q", oQ).
We have proved a local continuous dependence theorem under the assumptions

of Theorem 1.1. Actually, following step by step the sketch of the proof, we get
continuous dependence theorems in the other cases we have treated in this paper, and
in particular we have a global continuous dependence theorem in all the cases in which
we have proved a global existence theorem (at least until one of the interfaces of the
two solutions touches one of the boundary planes {y 0}; {y 1}).

In particular, using the same techniques, we get a local continuous dependence
theorem in the case of Remark 1.3.

We want to stress again that the local existence theorem as well as the uniqueness
and continuous dependence theorems that we have proved for the two-dimensional
case can be obtained in the same way in the general N-dimensional case. Naturally,
additional technical complications and some extra assumptions are required to prove
global existence theorems in the N-dimensional case.
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THIN PLATES AND COMPRESSIVE MEMBRANE SOLUTIONS II:
A NONEXISTENCE RESULT*

M. E. BREWSTER?

Abstract. It is proved that there is no sequence of solutions of the radially-symmetric von
Krmn thin plate equations with non-self-equilibrating pressure load and clamped boundary con-
ditions that has compressive FSppl membrane asymptotics.

Key words, thin plates, compressive membranes, singular perturbations, nonexistence
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1. Introduction. The deflection of a thin plate can be described by a singular
perturbation problem that reduces to the membrane problem for infinitesimal thick-
ness. In [2] formal asymptotic expansions of the plate deflection based on compressive
membrane solutions were derived when the edge of the plate is elastically supported
against rotation. Also, it was observed that asymptotics based on compressive FSppl
membrane theory failed for the clamped plate. In this paper, we present a rigorous
proof to support the conjecture that clamped plate solutions do not have compressive
FSppl membrane asymptotics.

FIG. 1

We consider a thin circular plate subject to a vertical deflection w(x) for x E [0, 1],
where x is radial position (see Fig. 1). The constant h is proportional to the thickness-
to-radius ratio. A transverse pressure load p(x) and a radial compressive stress A at
the edge (x 1) are imposed. We consider radially-symmetric solutions where the
radial stress v(x) is compressive (positive).
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The equations of the von Krmn theory (cf. [10]), a nonlinear model that neglects
shear stress, are

(la) h2
d2u 3 du)\dx

-}- -x + uv g(x),

d2v 3 dv
(lb) dx2 x dx u2’

where

U
1 dw
x dx’

x1
sp(s)ds.

We assume that the pressure load is non-self-equilibrating; that is, g(1) 0. The
variables may be rescaled according to the magnitude of g; thus, without loss of
generality, we assume

(2) g(1)- 1.

The boundary conditions at x 0 ensure smoothness at the origin:

dv du
(3) (o) o, (o) o.

At the edge of the plate, we specify the radial stress and also impose the clamped-edge
condition:

(4a) v(1) ,
(4b) u(1) 0.

The FSppl membrane equations are obtained by setting h 0 in (la), (lb). From
(la) we get

(5a) uovo

and by eliminating u between (5a) and (lb),

(5b) d2VOdx2 3 dvo g2(x)
x dx v

where the zero subscript denotes a membrane solution. We cannot satisfy all of the
boundary conditions of the plate problem--we choose

dvo(6)
dx (0) O, vo(1) ,ho.

Some background on these problems is given in [1]. The result we will make use of is
the existence of compressive (A > 0) membrane solutions (see [3]).
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2. Review of attempts at formal asymptotics. We briefly recall from [2]
the attempts to derive formal asymptotic expansions for the clamped plate with com-
pressive radial stress. Let (u0, vo) be a compressive solution of the FSppl membrane
equations (5). We consider an expansion based on (u0, v0):

u(x; h) uo(x) + x-3/2w(x; h),
v(x; h) vo(x) + vl (x; h),

where we assume w << uo, Vl (( V0, and vo > 0. (The w in (7) should not be confused
with the vertical deflection.) Then the plate equations (la), (lb) become

(9)

(10)

4- vow -(w 4- x3/2uo)vl 4- h2 -x2w x-3/2-x x3

d2v 3 dv 2X-3/2WUO 4- X-3W2.
dx x dx

Assuming the right-hand side of (9) is negligible, then the WKBJ approximation is

C
(11) w

v/4 cos( + ), c << 1,

where

(12) 5: - "o (s)ds.

But the assumption that c (< 1 implies the clamped boundary condition (4b) cannot
be satisfied, since

(13) uo(1)
g(1) 1

vo(1) A-- 0.

We may attempt a WKBJ-like construction for the clamped plate if we drop the
assumption that the leading-order term is the FSppl membrane solution. We suppose

v(x) vo(x) + O(h2)

with v0 > 0 and v0 O(1) as h --. 0, x > 0. Then

(14) u(x)
g

4-
vo x3/2v/4 c08(5: 4-

where & is defined in (12).
To satisfy the clamped boundary condition (4b), we must have

g(1) a+ cos O 0,

where 5: + evaluated at x 1. Thus,

g(1)
3/4 COS 0"
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Assuming g(1) - 0, then a - 0. Observe that the oscillatory term in (14) is O(1).
Upon substitution of (14), (lb) becomes

(15)
d2v 3 dv g2
dx2 x dx v

2 2g,

2x3v/2 (cos(2& / 2) / 1) x3/2Vo/a cos(& / ).

The expansion

v(x) vo(x) h2
i,2

8x3v/2) cos(2 + 2) h2
2ga

cos(+)x3/2v/4
satisfies (15) to leading order provided

(16) d2vo 3 dvo g2 2
dx

-t- +x dx vg 2x3v/2
It is shown in [2] that (16) has no solutions that are bounded at the origin, and,
furthermore, solutions of (16) satisfy

Such a function cannot provide a valid asymptotic expansion for solutions of (1), (3),
as the formula

x3v’(x) 83u2(8)d8

demonstrates that v(x) > 0 for all x > 0.

3. Statement of nonexistence result. Standard usage of the term "asymp-
totic" is well understood and precise when used in a positive sense; an asymptotic
formula is stated, which may be verified according to, for example, the definition of
[4]. Our result, however, is a negative result and it is not so clear what is meant by the
nonexistence of an asymptotic expansion based on a given family of outer (membrane)
solutions. It is not possible to list or construct all candidates for an expansion; in ad-
dition to the classical boundary layer [6], there exist the possibilities of internal layers
[8], global breakdown [2], combinations of the above, or perhaps something entirely
new. Because of these difficulties, we formulate a definition of "compressive membrane
asymptotics" based on the principles of membrane theory.

The stresses employed in membrane theory--the radial stress, v, and the hoop-
stress (xv)’--will be assumed to be bounded (as h --. 0). In von Krmn plate theory,
the bending stress, h(u’ / (1 / )u) is included. For membrane theory, the thickness h
is zero; thus, the bending stress must be negligible as h - 0. The balance of forces to
produce equilibrium, given in the membrane theory by (ha), will be assumed to hold
to leading order. To ensure that we are considering compressive membrane states, the
radial stress v is assumed positive and bounded away from zero. These conditions are
assumed to hold in the least restrictive sense possible--at a point. For purposes of
simplifying the proof we will assume that, while the point at which these hypotheses
hold is not necessarily fixed, the set of such points must be bounded away from the
center of the plate (x 0). At the end of this section, we discuss the relaxation of the
last hypothesis.

The conditions described above are incorporated in the following.
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DEFINITION. We say that a sequence {ua, va, ha} of solutions of the plate equa-
tions (la), (lb) has compressive membrane asymptotics if

(i) As n --. x),

(17) ha - 0;

(ii) For some m, C > 0, x0 and points

(18a)
(18b)
(18c)
(18d)

0 < x0 < Xa _< 1,
> m > O,

+ < C 1,

Here is the nonexistence theorem, to be proved in the following sections.
THEOREM 1. Let g(x) be twice continuously differentiable on [0, 1] and g(1) be

nonzero. Then there does not exist a sequence of solutions of the clamped plate problem
(1), (3), (4) that has compressive membrane asymptotics.

For technical reasons, the case xa --. 0 was excluded in (18a). We consider here
a formal argument to support the conjecture that Theorem 1 would still hold if (18a)
were relaxed. The asymptotic formula for solutions of (la), (lb) derived in [2] is

(19) u(x; h) uo(x) + Xa/2V/4(X

(20) v(x, h) vo(x),

where & is defined in (12). This formula is valid for all x [0, 1], provided c hi2.
Then for & O(1),

(21) uv-gl+lhu’lO J1

Supposing (18d) to hold with (ha)-lxa O(1), then we must have c << hl/2, at most.
Thus (19) gives

(22) u(x)-uo(x)<<h/2 forx-O(1), x>0,

which is a strongerresult than we get in the proof of Theorem I as stated. In particular,
if u0(1) 0, then the clamped edge condition cannot be satisfied.

In the following two sections, we develop some transformations and lemmas that
are needed in the proof of Theorem 1, which is carried out in 6. In 4, we transform
the von Krmn plate equations (la), (lb) into a first-order "fast-slow" system. That
is, the variables depending essentially on the "slow" scale (x) are separated from the
variables depending on the "fast" scale (x/h). These transformations are motivated
by the formal asymptotic expansion for the case of elastically-supported boundary
conditions presented in [2]. Lemmas 1 and 2, which are stated and proved in 5,
provide a justification of the formal asymptotics (11) when the hypotheses (17), (18)
are satisfied. When the clamped edge boundary condition is also assumed to hold, as
in Theorem 1, then (13) provides a contradiction.
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4. Transformations. We consider the deviation of the plate solutions from a
given compressive membrane solution (u0, v0) satisfying the Fbppl membrane equa-
tions (5) on (o, 1] with 0 _> 0 and vo positive on (0, 1]. Following the formal
asymptotics above, and motivated by transformations in [7], we define

(23) Vl (;) V/4X3/2(V VO),

where

(24) t v/2(s)ds

with o < 1 _< 1. The interval (0, 1] maps onto (To, T1] under the change of variables
(24), where To >_ -cx and 0 <_ T < +cx. Upon substitution into (la), (lb), we have

d2ul(25a) h2
dt2

(25b) d2v
dt2 2u + av /u,

+ ul +v -Tuv + h2q h2au,

for t e (To, T1], where a(t), q(t), and 7(t) E C(To, T], and

g(x) e C. (To, T].(26) (t) v)(x)

Formulas for , q, and f are given in Appendix A.
We now convert these two second-order equations into a first-order "fast-slow"

system by the substitution of

(27) zi d Zll d
hu -vl + 2h2 u

into (26a), (26b) to give

(2Sa)

(28b)

d
h-zI B (zi + Q(t, zi, z/)) + hFl(t, z, zH; h),
d
d-ZlI AzlI -I- FII(t, ZI, ZH; h),

where A(t) is continuous on (To, T],

0 1 / and(29) B-
-1 0 fdyQ(t, x, y) h

k- + Zy2

The O(h) linear terms in (28a), (28b) are Bzi and Azli, respectively; thus the "fast"
system (28a) and the "slow" system (28b) decouple at this level. Quadratic terms are
contained in Q and FH. Also, terms that are o(h) appear in FI, FH, and Q. The
formulas for these terms are given in Appendix A.
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5. Properties of the fast-slow system. In this section, we derive some results
concerning the asymptotic behavior of solutions of a class of fast-slow systems that
contains (28) as a special case. Consider the system

(30b)

d

htzi B (zi + Vx(t, zi, Zli; h)) + hF(t, zi, Zli; h),
d
zn A(t)zn + FH(t, z, zn; h),

where V represents the gradient with respect to the "fast" components, ZI. The
vectors zi, Zli are of arbitrary finite dimension, and the matrix B is assumed to be
antisymmetric, which implies the eigenvalues are pure imaginary. To ensure the exis-
tence of solutions of (30), the right-hand side of (30) is assumed to depend continuously
on t E [TO, T1] and zi,Zli whenever I,II Jr-IZlI[ < Co for some Co > 0. The notation

represents the Euclidean vector norm. Further, suppose that for J I, H,

(31) Fj(t, zI, ZII, h) O ((IZlI + IZliI)2) + o(h) as h, III, I,III - 0;

that is, there exist positive constants C1, C2 such that

IFj(t.z.z..h)l < Cx ((1.1 + Iz.I)) + (h)
whenever t e [TO, T1] and h + I.iI + IiiI < c2, where

(h)0 ash--,O.

Also, suppose that

(32)

o ((1".,I + I’.-I)) + o(h),
o o ((1II / IIII)3) / o(h)0t
vj o ((1iI / Iz-I)2) / o(h)

as h, IzlI, IZliI o, J I, H.
We begin with a formal asymptotic study of (30) assuming h --. 0 and that the

solution is also small. Thus we neglect nonlinear terms and terms that are o(ho) to
obtain

d
(33a) h-zi Bzi,

d
(33b) d-Z//= A(t)Zli.

Given functions z,zn on [TO, T], we define a scalar function

(3) A(0 (l.(t)l 2 + IX-l(O..(OI2)1/2

where X is a fundamental matrix solution of (33b) with X(Tt) I. Because A is
continuous on [,0, T], then X is invertible on this interval and ,4 is well defined. If
(zI, ,II) is a solution of (30), then

(35)
1 d 1T
2

A2 zz Szz + zIX-1T ((X-1)tZll + X-1AzlI).
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Because B is antisymmetric, zTBzz 0. Also, from

X’ AX,

we obtain

Hence,

that is, 4 is a constant.

(X-)’ -X-A.

Next, we consider the full system (30). Let (zi, zli) be a solution of (30) and
define Jt by (34) as before. Then

1 d
(36)

2 d
d--A2 Z’ZlI -t- (X-lzlI)TX-1FII.

Now
d d d

and substitution from (30a) gives

where we have used the assumption that B is antisymmetric to eliminate the O(h-1)
term. Thus,

1 d
(3)

2 d
--,A2 b’T(ZI -1- I( I)T

d
ZZ -" (X-lzli)TX-lFii

Integrating from - to t gives

(38) Jt2(t) jt2(r) -2((t, zi(t), zH(t); h) (% z(), Zli(); h)) + 2 f(s)ds,

where

(39)

f(t) =F (t, z(t), zi(t); h) (zz(t) + V(t, zi(t), zH(t); h))

+-c9 (t, zi(t) z. (t); h)

+ V**(t, z,(t), ..(t); h) (A(t)z.(t) + F**(t, z,(t), zH(t); h))
+ (X-l(t)z.(t))T X-(t)F**(t,z,(t),z.(t); h).

We now derive from the integral equation (38) an integral inequality for A(t).
First, note that since X-l(t) is bounded on [’0,T1], then the definition of Jr, (34),
implies

(40) %,(t) O(4(t)) and .r(t) 0(4(t))
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for t e [To, T1]. From (40), hypotheses (31), (32) and the integral equation (38), there
exist positive constants C1, C2, independent of h, such that

(41) ,A2(t) ,fl2(T)

_
C1 (,A3(t) -- ,A3(T)) -- C1 43(s)ds + (h)

whenever

(42) h + A(s) <_ C2
for all s E [r, t] with r0 _< T _< t _< T1, where

(h)$0 ash--.0.

We now present Lemma 1, which will be used in the proof of our second lemma
on the validity of the formal asymptotic expansion (7), (8). The proof of Lemma 1 is
given in Appendix B.

LEMMA 1. Let z(s) >_ 0 be a continuous .function defined on s [0, 1], satisfying

(43) z2(s) z2(O) __< 2:3(8) @ z3(O) -+- z3(r)dr + e,

where e >_ O. Then there exist 50 > 0 and ko > 0 such that z(s) <_ 45 .for s [0, 1]
whenever 0 <_ z(O) <_ 5 <_ 50 and e <_ ko52.

We will now apply Lemma 1 to obtain estimates for ,4. Consider h 6 (0, C2/2)
and suppose 4(r) _< C2/8 for some T e [TO, Tt]. Because ,4 is continuous, there is a
largest value T2 in (,Tt] such that (42) is satisfied on IT, T2]. Thus, (41) holds on
[, T2]. Let

m max{l, T T0},
(44)

() .c4(),
Then, from (41),

() (0) .c(() ())

e m2C(h)._
m2C31(flt3(t) + 43(T)) + m2C31 flt3(p)dp - m2C21(h)

<_ -(() + a(0)) - r " a()a +

_<( +(0 + (le +

for s [0, 1]. From Lemma 1, if for some > O, we have

e m2C(h)
_

k052,
(45)
(a)
then

(aT) z(s) reCtA(t) <_ 45 for t e IT, T2].
If jr(T) <_ 5o/mC, then we may choose 5 such that (45) is satisfied and

5

_
?me1.

Thus, (47) implies Jr(T2) _< C2/2. If T2 < T, then there exists T > T2 such that
(42) holds on [T, T], contradicting the assumption that T2 is the largest such value.
Hence T2 T1, and (47) holds for t e IT, T1]. We now have the following.
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LEMMA 2. Suppose that (31), (32) are satisfied by the fast-slow system (30)
defined on [to, T]. There exist a constant 1 > 0 and a positive function hl () such
that if

(48) O < 8 < Sx and O < h < h(8),

(.z, zn) is a solution, in a neighborhood of " [7"0, T], of (30) for this value of h,
A(t) is defined as in (34) and

(a9) A(r) <

then (zI, zn) can be extended to the interval [’r, T], and on this interval

,4(t) <_

Proof. Let

( )(51) 0<6<min
C2 ,50

and 0<hl(6)<min ----,8 ’mcx

where (h) <_ k082, h > 0. Such an h exists, since (h) --. 0 as h --, 0. Then, as in
the discussion above, (48), (49) imply that (50) holds on the interval of existence (to
the right) of the solution. Therefore, the solution values are finite at the right-hand
endpoint of the interval of existence, which must be the entire interval [r, T] (cf. [4],
p. 15). rn

The proof of this result was motivated to some extent by [9]. There are some
important differences in the result of [9] and our Lemma 2. We do not require the
initial condition jl(7-) to be O(h), and he bounds given in Lemma 2 apply only for
0(1) intervals. The form of the system (30), particularly with respect to nonlinear
terms, is more restrictive than the systems considered in [9].

6. Proof of Theorem 1. We now present the proof of the nonexistence result
(Theorem 1), which was stated in 2. The proof is by contradiction; thus, suppose
there exists a sequence {un, vn, hn}, n 1, 2,... satisfying the clamped plate problem
(1), (3), (4) for some sequence of edge loads, {An vn(1)}, and further suppose that
this sequence has compressive membrane asymptotics; that is, (17), (18) are satisfied.
We may extract a subsequence such that for some constants voo,v and for some

fl e [x0, 1],

(52) xn - , vn (xn) - voo and vn(xn)’ -- v
as k --* oc. To simplify notation, we drop the repeated subscript. Hypothesis (18)
implies voo _> m > 0. Also, one integration of (lb) gives

dv fo
x

dx
(x) x-3 s3uZ(s)ds > 0;

hence v _> 0.
Let (u0, v0) be the solution of the Fhppl membrane equations (ha), (hb) satisfying

(53) v0() voo, v() v.



644 M.E. BaEWSTEa

It is shown in Appendix C that vo exists and is positive on an interval (o, 1] with

xo <o < .
There exists an integer N _> 1 such that

o<xn forn_>N.

Because vo e C1(o, 1] and from (52), we have

(4a) (.) o(x) - 0, ’() ()
Further, uo E C1 (o, 1] from the assumption that g is continuously differentiable. Thus,
(u(xn)} is a bounded sequence, and hypotheses (17), (18b), (18d) imply

(54b) un(xn) uo(xn) --* 0 and h(u’n(xn) U’o(X)) --* 0 as n

We now apply the transformations (23)-(27) to each solution (un(x), vn(x)) with
corresponding thickness hn to obtain a sequence zin (t), zion (t) of solutions of the fast-
slow system (28). According to the definition (24) of t, x o, 1 and 1 correspond
to t To, 0, and T1, respectively. Let the sequence {tn} e (To, T1], n _> g correspond
to (xn} as in definition (24). Then by (52), tn --. 0 as n --. oo. From (23), (27), (54),
we have

.(),.()
Let To infn>g tn. The fundamental matrix solution X(t) of (33b) is independent of
n and its inverse is bounded uniformly for t e [vo, T]. Hence, from (34),

(55) A(t) - o
We now apply Lemma 2. It is easy to show that the hypotheses (31), (32) are

satisfied on [r0,T] for the system (28), where the elements of (28) are defined in
Appendix A. By (17), (55), and Lemma 2,

(56) A,,(T) 0 as n

We defined X(T) as the identity matrix, so from (35) and (56) we have

I.,(T,)I + I.,,(T,)I

From (27), we have

I,(T,) + Z(T)( 0)1 +
Hence, An -- Ao and Uln(1) - 0 as n --+ cx). But, by (23),

1/4+,(T,) o (1) o(1)).

The clamped edge assumption gives u(1) 0, so

,(T) _a(1)

by the assumption of non-self-equilibrating load, i.e., g(1) 0. We have arrived at
a contradiction, and thus the assumption that a sequence of clamped plate solutions
exist that asymptotically approach the family of compressive membrane solutions must
be false.
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7. Conclusion. The definition of compressive membrane asymptotics appears to
be rather weak, but, as shown in Lemma 2, guarantees strong (uniform) convergence of
a subsequence to some membrane solution. This convergence provides a contradiction
to the clamped boundary condition, which is not satisfied by the membrane solution.

Referring to our earlier discussion of the formal asymptotics in 2, one could
conjecture that clamped plate solutions also do not converge weakly to compressive
membrane solutions. This conjecture has not been addressed in Theorem 1, as the
definition of asymptotic approach is too restrictive to allow weak convergence. The
extension of the proof of Theorem 1 to the case of weak convergence is under investi-
gation.

The clamped circular plate problem provides a striking example of a singular per-
turbation problem where some solutions of the "outer" problem have no counterpart
in the original problem. We have presented here a rigorous justification of an aspect
of this phenomenon.

Appendix A. Some formulas from the transformations discussed in 3 are given
below. Let

d2 3 d=x2+-xdx-"
Then

X3/2 (X-312 VI(X)),/4.() 0/,()
()() ()’ () _//4(),

A(t)= ( 0 1)-a- 2 0

F(t, x, y; h)l -2h/2x2,
Fi(t, x, y; h)2 -haxl + ha/yl + hq,

Fi(t, x, y; h) -2hx2,
d/Fi_(t, x, y; h)2 -2h2a/x + 2h x2 + 2h2q

+ (x 3/y)(xl -/y) + 2h2a/2y.

X3/2

For the system in form (31), we have

This gives

d(t, x, y)- -/ (x 2/y)xlyl -b h-x2y - hx2y2.

V= Q.

Appendix B.
Proof o:f Lemma 1. Suppose

0<i_<io and 0_<e<_koi2,

where io 1/14 and ko 37/14. We first show that there exists a continuous function
2(s) that satisfies the integral equation

() () (+e + e(r)ar + ,
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for s e [0, 1], f e [, 46]. At s 0, (57) becomes

(58) (0) (0) + 8 + + e 0.

Let P() 3 2 + 82 + 83 + e. Clearly, P(8) > 0. Also,

(59) P(28) 53 32 -- 2(5o 3 -- ko) 0.

Thus, P has a zero in (, 2], say 2o. Let 2(s) be the solution of the initial-value
problem

(60) (- ze)e, , e(0) o.
Then is also a solution of (57). Solving (60) gives implicitly as

2(()- 0) ()(61) s
o(s)

3 log
Z0

For E [, 4] we have

ds 2 3.
(62) d- 2 > 0.

Hence, the inverse function theorem guarantees the existence of 2(s) on some interval
[0, s(46)]. To estimate the size of this interval, (61) gives

1
(63) s(46) _> 0 3 log 4 _> 1.

Thus (61) can be inverted to give a single-valued function (s) for s E [0, 1], [6, 46]
satisfying (57).

We now show that (s) is an upper bound for any positive, continuous solution
of

() () (o) _< () + (o) + a(r)a,- +

for e [0,11 wigh (0) _< < (0). Suppose this is not rue. Then by confinuigy of
and , ghere is a smallesg value, * > O, such ha (*) (*). Thus,

(65) () > (s) > o fo o <_ < ,.
The integral (in)equalities (57), (64) give

22(s*) 23(s*) -{- 62 + 63 -{- ./, 23(r)dr + e

> (.’) + (o) + (o)a + ()a,- _> (’),

contr:liefing ghat (*) (*). I-Ienee,

z(s) < (s) <_ 48 forO_<s_<l,

as required for the proof of Lemma 1.
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Appendix C. The following existence-uniqueness result is required for the proof
of Theorem 1.

LEMMA 3. Let g be continuous on [0, 1]. Then the solution of the Fhppl membrane
equation

g2
(66) v"+ 3v’= x e [0, i]

X V2

with initial conditions

(67) v(l) vo > 0, v’(l) v _> 0

has a unique solution that exists for x E (0, 1], where o < 1 < 1.

Proof. By the standard results [4], there exists a unique solution of (66), (67) on
an interval J (0, 2), with "1 e J. Integrating (66) once gives

X3V (X) 31V!(1) -- 83 ds.

Thus v’(x) >_ 0 for x e J. Further,

v(x) > vo > 0 for x > .
The right-hand side of (66) is bounded and satisfies a Lipschitz condition with respect
to v for v _> vo. Thus by the Picard-Lindelhf theorem [5], the solution exists and is
unique on (0, 1].

Acknowledgment. The author wishes to thank H. B. Keller for suggesting this
problem.
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SOME GENERAL EXISTENCE PRINCIPLES AND RESULTS
FOR (k(y’))=qf(t,y,y’),O< t< l*

DONAL O’REGAN"

Abstract. Existence principles and results are reported for the second-order differential equation
(b(y’))’= qf(t, y, y’), 0< < with y satisfying Dirichlet or mixed boundary data. In particular the case
qb(v)=lvl"-2v, n> is included.

Key words, p-Laplacian, boundary value problems, existence principles
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1. Introduction. In this article existence results are presented for the second-order
differential equation

(1.1) ([u’l"-=u’)’=q(t)f(t,u,u’), 0<t<l and nR, n>l

with u satisfying either the Dirichlet boundary condition
(i) u(0) a, u(1) b

or the mixed boundary condition
(ii) u’(0) a, u(1) b.
Equations of the above form occur in the study of the n-Laplace equation [9],

non-Newtonian fluid theory [8], and the turbulent flow of a gas in a porous medium
1 ], [6]. The existence results obtained in this paper will improve, extend, and compli-
ment the existing theory found in [1], [4], [9]. In fact even new results are obtained
for the case n 2.

We summarize briefly known results for the Dirichlet boundary value problem
when n- 2. In [5], [7] it was shown that if f satisfies the monotonicity condition

uf(t,u,O)>O forlul>M and t[0,1],

together with the growth condition (Bernstein-Nagumo)

If(t, u,p)l-<_ O(Ipl) for (t, u) [0, 13 I-M, M],

where O: [0, c)- (0, ) is a continuous function and

then

2M<Io xdx
g,(x)’

y"=f(t,y,y’), O<t<l,

y(0) =y(1) 0

has a C2[0, 1] solution. The technique (which uses arguments based on the supremum
norm) is referred to as the Bernstein-Nagumo theory in the literature.

On theother hand, suppose f(t, u, p) =fl(t, u, p) +fE(t, u, p) and the monotonicity
condition above is replaced by

urn(t, u,p)>=alul for (t, u,p)[O, 1]xa2,

* Received by the editors November 20,1991; accepted for publication (in revised form) August 31, 1992.
f Department of Mathematics, University College Galway, Galway, Ireland.
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together with

IA(t,u,p)l<=K{lul+lpl+l) for 0=< c, fl < 1.

The results in [12], [13] imply that if fl satisfies a growth condition of the form

Ifl(t, u, P)I -< AP2+ B with A, B constants,

then (.) has a solution provided a >-Tr2. The technique uses arguments based on the
L2 norm.

The paper will be divided into three main parts. General existence principles will
be obtained in 2. These will reduce our analysis to obtaining a priori bounds for a
certain class of problems. In 3 the L2 theory will be extended to discuss the general
boundary value problem (1.1). We use the L" norm to obtain a priori bounds as
described in 2. In 4 the Bernstein-Nagumo theory will be extended for problems
of the above form.

To conclude this introduction we will use the following two theorems, which
appear in the literature. Our first is a fixed point result, called the nonlinear alternative
of Leray-Schauder [5], [7], [11]. By a map being compact we mean it is continuous
with relatively compact range. A map is completely continuous if it is continuous and
the image of every bounded set in the domain is contained in a compact subset of the
range.

THEOREM 1.1. Assume U is a relatively open subset of a convex set K in a Banach
space E. Let G" U- K be a compac_t map, p U, and N(u)= N(u, A)" U x [0, 1]- K
a family of compact maps (i.e., N( U x [0, 1]) is contained in a compact subset ofK and
N: U x [0, 1] - K is continuous) with N1 G and No p, the constant map to p. Then
either

G has a fixed point in U; or
(ii) There is a point u 0 U and A (0, 1) such that u Nu.
The next theorem involves results in integral inequalities [2], [3].
THEOREM 1.2. (a) Suppose y CI[0, 1] with y(0)--0. Then for any p> 1,

where

lyl dx -- lY’I dx,

/2,p (p 1)
1 p

\P P
=(p-l) (l_sP)l/p

(b) Suppose y C1[0, 1 with y(O) O. Then for any p > 0,

lyl ly’l" dx -- ly’l "+’ dx,

where

2p In (p)
qp 1 +

pE_ 1 ifp 1, whereas 71 2.

(c) Suppose y clio, 1] with y(O)=y(1)=O. Then for any p> 1,

lyl dx -- ly’l dx,
o



650 DONAL O’REGAN

where

trp=2P(P -1) (l_sp)l/p

(d) Suppose y C[0, 1 with y(O) y(1) O. Then for any p > O,

j-, l/orlyl ly’l" dx <--- ly’Ip+I dx,
o top

where

2p In (p) ] ifp 1 whereas .71top=2 1+p2--1
Remarks. (i) When p 2, tr2 7/-2 and we have Wirtinger’s inequality.
(ii) Note trp is the first eigenvalue [4] of

(qbp(y’))’+Aqbp(y)=O, 0<t<l, qbp(U)=lulP-2u,
y(0)- y(1) 0.

(iii) When p 1, ’71- 2 and we have Opial’s inequality.
Proof. (a) and (b). These follow from [2, pp. 376-377].
(c) and (d). Since y(0) 0, a slight modification ofthe arguments in [2, pp. 376-379]

yields for p > 0, q _-> 0 constants,

(1.2)

where

and

fl/2 (1/2lylly’l dx <- K (p, q, p + q) ly’l p+q dx,

K(p,q,p/q)=
p(p/2) p

(p+q-1)(p+q)
(I(p,q,p+q))-p

I(p,q,p+q)= 1+
(p+ q)(q- 1)t) -I-p/pP

[1 /(q- 1)titl/p-I dt.

In addition, since y(1)= 0, a quick calculation yields

(1.3) lylPly’[ dx<- g(p, q, p+ q) lY’l’+ dx.
1/2 1/2

Now (1.2) and (1.3) yield

lyl ly’l dx g (p, q, p + q) ly’l+ dx.

Notice that

2P(p- 1)(p/2)P( ( p-1
K(p, 0,p)=(p 1)

B
p

ifq#l212n (q) -1

--1

which yields (c). Also notice that

K(1, q, q+l)= 1+

whereas K (1,1, 2) , which yields (d). lq

I__sP)I/p
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2. Existeace lriacilles. This section establishes existence principles for the general
boundary value problem

(b(y’))’ q(t)f(t, y, y’), O< 1,
(2.1)

y(0) a, y(1) b or y’(0) a, y(1) b,

Where q C(0, 1), f: [0, 1] x R2- R and b:R- R are continuous. The conditions on b
will be motivated by the physically reasonable situation 1],

tn(U) luIn-Eu, l<n_--<2.

We begin by obtaining an existence principle for the problem

(2.2)
(b(y’))’ q(t)f(t, y, y’), 0< < 1,

y’(0) a, y(1) b.

THEOREM 2.1. Let f: [0, 1] x R2- R be continuous, and suppose

(2.3) qC(0,1) with q > O on (0,1)

b is a continuous and strictly increasing map from(2.4)
(-o, ) onto (-, o),

(2.5) q(s) as < o,

and

(2.6) - is continuously differentiable on (-, o)

are satisfied. In addition, assume there is a constant K*, independent of A, such that

lyll max (sup lY( t)l, sup ly’(t)ll --max {lylo, ly’lo} <- K*
[0,1] [0,1]

for any solution y to

(2.7)x
(b(y’))’ Aq(t)f(t, y, y’), 0< < 1,

y’(0) a, y(1)= b

foreachA (0, 1). Then (2.2) has at least one solution y CI[0, 1] with (b(y’))’ C(0, 1).
Remark. When (U)=qbn(U)=lUln-Eu, then assumption (2.6) will be true if

1<n_-<2.

Proof. Solving (2.7)a is equivalent to finding a y C1[0, 1] that satisfies

((2.8) y(t) b- 6 -1 6(a)+A q(u)f(u, y(u), y’(u)) du ds.

Define the operator Nx" C[0, 1] C[0, 1] by

((Nxy)(t) b- 6-1 6(a)+ A q(u)f(u, y(u), y’(u)) du ds.

Here C][0, 1 {u C1[0, 1 ]" u’(0) a, u(1) b}. Of course (2.7) is equivalent to the
fixed point problem y NAy. Certainly Nx is continuous since b- is and completely
continuous by the Arzela-Ascoli theorem. To see this let f

_
C[0, 1] be bounded,
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i.e., lUll M for all u f; here M > 0 is a constant. Firstly Nxf is bounded. This
follows from the inequalities

Nu(t)l<-lbl/ G(s) ds

where

(2.9)
G(s) max {

and I(Nu)’(t)l G(1),

--1 _16(a)l_M1 q(u) du

b-1 16(a)l+ M q(u) du

and M1 sup If(t, Wl, W2)I, where the supremum is computed over [0, 1] x I-M, M] x
I-M, M]. We next show the equicontinuity of Naf on [0, 1 ]. For u f and t, s [0, 1

]Nu(t)- Nu(s)]-- 6 -1 th(a)+A q(z)f(z, u(z), u’(z)) dz dv

(2.10)
<= G(v) dv

where G is described in (2.9). In addition, the Mean Value theorem yields

](Nu)’(t) Nu)’(s)l

d- d(a)+A q()f(z, u(z), u’()) dz

(2.11) -- (a)+ q(g(, u(z), u’(z)) dz

sup I(-l)’(x) q(g(a u(), u’()) d

NM sup I(-)’(x) q() d

where the supremum is computed over [-l(l-M,I;q(, I()1+
M11o q(2) d2], and M sup f(t, , w)] with the supremum computed over [0, 1]x
[-M, M]x[-M, M]. The equicontinuity of Na on [0, 1] now follows from (2.10),
(2.11), and assumptions (2.5) and (2.6). Thus the Arzela-Ascoli theorem implies that
N, is completely continuous. Set

= e c[0, ]: 1 <*+ t, cg[0, ],

E C[0, 1], Noy(t)=at+(b-a).

Remark. Note that N( U x [0, 1]) is contained in a compact subset of K. To see
this let N(u,) be any sequence in N(Ux[0, 1]). Then as above N(u,) is
uniformly bounded (since G is (2.9) does not depend on the I chosen) and equicon-
tinuous on [0, 1]; so the ela-Ascoli theorem again yields the result.

Apply Theorem 1.1 to deduce that N has a fixed point, i.e., (2.2) has a solution
y e C[0, 1]. The fact that ((y’))’e C(0, 1) follows from (2.8) with I 1.

we have
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It is possible to improve the results of Theorem 2.1 iff is independent of its third
variable, ie., consider the boundary value problem

(2.12)
((y’))’ q(t)f(t, y), 0< < 1,

y’(0) a, y(1) b.

THEOREM 2.2. Suppose f: [0, 1]xR-->R is continuous and (2.3), (2.4), and (2.5)
are satisfied. In addition, assume there is a constant K*, independent of A, such that
lylo -< K* for any solution y to

((y’))’= Aq(t)f(t, y), 0< < 1,
(2.13) 

y’(0) a, y(1)=b

for each A (0, 1). Then (2.12) has at least one solution y CI[0, 1] with ((y’))’
c(0, 1).

Remark. When (u)= ,(u)- lul"-:u, then since assumption (2.6) need not be
satisfied in this situation, it is sufficient that n > 1.

Proof. Solving (2.13)a is equivalent to finding a y C[0, 1] that satisfies

I1 ( Io(2.14) y(t)=b- 6-1 6(a)+A q(u)f(u,y(u)) du ds.

Define the operator Na" Ca[0, 1]--> Ca[0, 1]. Here Ca[0, 1] {u C[0, 1]: u(1)= b}, by

(N,y)(t) b- - (a)+ q(u)f(u, y(u)) du ds.

Note Na is continuous and completely continuous (see (2.10)). Set

E-C[0,1],

Noy( t) at + (b a).

Now N(U x [0, 1]) is contained in a compact subset of K; so apply Theorem 1.1 to
deduce that N1 has a fixed point y. The fact that y CI[0, 1] with y’(0)=a and
((y’))’ C(0, 1) follows from (2.14) with A= 1. lq

We next obtain an existence principle for the problem

(2.15)
((y’))’ q( t)f( t, y, y’),
y(0) a, y(1) b.

O<t<l,

THEOREM 2.3. Supposef’[O, 1]xR2-->R is continuous and (2.3), (2.4), (2.5), and
(2.6) are satisfied. In addition, assume there is a constant K*, independent of A, such
that ]Yll <- K* for any solution y to

((y’))’= Aq(t)f(t, y, y’), 0< < 1,
(2.16)a

y(0) a, y(1)= b

for each A(0, 1). Then (2.15) has at least one solution y CI[0, 1] with ((y’))’
c(0,1).

Proof. Solving (2.16) is equivalent to finding a y e C[O, 1] which satisfies

(2.17) y(t)=a+ - A-X q()f(,y(),y’()) d ds,

where A satisfies

(2.18) b a -1 A- A q(z)f(z, y(z), y’(z)) dz ds.
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We first show that A exists and is unique. Let y C I[o, 1] be fixed with

H(x) 4-(x II(s)) ds, where I(s)= q()f(, y(), y’()) d.

Certainly H is continuous since t -1 is continuous (in particular, t -1 is uniformly
continuous on compact sets). Also there exists Xo, Xl [0, 1] with I(xo)<-I(s)<= I(Xl)
for all s [0, 1 ]. Consequently, we have

b-l(x hi(x,)) =< H(x) <= b-l(x hI(xo)).

From this inequality it follows that H is a continuous function from (-00, 00) onto
(-00, 00). Thus the Intermediate Value theorem implies there exists A (-0% 0) with
H(A) b-a. In addition, if A1 < A2, then since b-1 is strictly increasing we have
H(A1) < H(A2). Thus A is unique.

Define the operator N" C][0, 1] C][0, 1]. Here C][0, 1]
{u C1[0, 1] u(0)= a, u(1) b}, by

(Nxy)(t)=a+ ck- A-A q(z)f(z,y(z),y’(z)) dz ds,

where A satisfies (2.18). We claim that Nx’C[O, 1]C][0, 1] is continuous. Let
u, u, u’, u’ uniformly on [0, 1]. We need to show that Nxu, Nxu, (Nxu,)’ (Nxu)’
uniformly on [0, 1]. Associate A, with u, and A with u in (2.18). Then

Nxun(t) Nau(t) -’ An h q(z)f(z, Un(Z), u(z)) dz

(2.19)

and

(2.20)

where

-qb-’ A-h q(z)f(z, u(z), u’(z)) dz ds

((Nau,)’(t)-(Nau)’(t)=- A,-A q(z)f(z, u,(z), u’,(z)) dz

-4- A-, q()f(, u(), u’()) &

0----- --1 A,-A q(z)f(z, u,(z), u’,(z)) dz

(2.21)

-4- A-, q()f(, u(), u’()) d ds.

If we show lim,_.A, A, then (2.19), (2.20), together with the fact that - is
continuous, implies N,’C[O, 1] C[0, 1] is continuous.

To see that lim. A, A, notice that (2.21), together with the Mean Value theorem
for integrals, implies that there exists e [0, 1 with

-- A- q()f(a u(), u’()) &
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Thus

An- A q(z)f(z, Un(Z), U’n(Z)) dz= A-A q(z)f(z, u(z), u’(z)) dz,

and since un -> u, u’ --> u’ uniformly on [0, 1 we have lim,_, An A.
We next claim that Nx is completely continuous. To see this let [ C][0, 1] be

bounded, i.e., lul,--< M, for all u II. Here M> 0 is a constant. We first show that there
exists a constant N* with

IA.I_-< N* for all u II.

Remark. Here Au is given in (2.18), i.e., A Au and y= u.
Since

b-a A,-A q(z)f(z, u(z), u’(z)) dz ds,

then the Mean Value theorem for integrals implies that there exists : [0, 1 with

4- .4,,- x q()f(, u(), u’()) & b-a.

Consequently,

which implies

Au=h 1
1

q(z)f(z, u(z), u’(z)) dz + b(b- a),

IA.I<M, q(z)+c(b-a)=- N*,

where M1 sup If(t, Wl, Wa)l and the supremum is computed over [0, 1 I-M, M] x
I-M, M].

Next we show that Nxfl is bounded. This follows from the following inequalities:

[Nu(t)l<-_la[/ J(s) ds and [(Nxu)’(t)l<=J(O),

where

J(s) max b-1 N* MI q u du ( N* + M1 q u du

We next show the equicontinuity of NxIl on [0, 1]. For u s l’l and t, s [0, 1 we have
(following the ideas of Theorem 2.1)

]Nu(t)-Nu(s)]
’t

J(v) dv

and

I(Nu)’(t)-(Nu)’(s)l<=M, sup I(-l)’(x)l q(z) dz
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where the supremum is computed over [-N*- M1 10 q(z) dz, N* + M, So q(z) dz].
Thus the Arzela-Ascoli theorem implies that Nx is completely continuous. Set

U={u C[0, 1]’lull<K*+ 1}, K C[0, 1], E CI[0, 1], Noy(t)= a+(b-a)t

and apply Theorem 1.1 to deduce the result.
Again the result of Theorem 2.3 can be improved if we are interested in solutions

to

(b(y’))’= q(t)f(t, y), 0< < 1,
(2.22)

y(O) a, y(1) b.

THEOREM 2.4. Suppose f:[O, 1]xR-R is continuous and (2.3), (2.4), and (2.5)
are satisfied. In addition, assume there is a constant K*, independent of A, such that
lylo <-_ K* for any solution y to

(2.23)a
(b(y’))’= Aq(t)f(t, y), 0< < 1,
y(0) a, y(1)= b

for each A(0, 1). Then (2.22) has at least one solution y CI[0, 1] with (b(y’))’
C(0, 1).

Proof. In this case the operator Nx:CB[0, 1] + CB[0, 1], here Cn[0, 1]
{u C[0, 1]: u(0) a, u(1)= b}, is defined by

(Nxy)(t)=a+ b- A-A q(u)f(u, y(u)) du ds,

where

b- a t -1 A- a q(u)f(u, y(u)) du ds.

3. A priori bounds using the Ln-norm. The existence principles of the previous
section are now used to examine (1.1) with Dirichlet or mixed boundary data. The
cases where q is nonsingular or singular are discussed separately. We remark here that
the results for the case n 2 extend and complement those in [12], [13]. The results
reported in this section are for homogeneous boundary data; however, the non-
homogeneous case could be considered by a change of variables [13].

3.1. Mixed boundary data. In this subsection we discuss the boundary value
problems

(3.1)
(gp,(y’))’=q(t)f(t,y,y’), O<t<l, l<n--<2,
y’(0) y(1) 0,

and

(3.2)
(bn(y’))’=q(t)f(t,y), 0<t<l, n>l,
y’(0) y(1) 0,

where tb,, (u) u "-2u.
THEOREM 3.1 (nonsingular case). Suppose f: [0, 1] x R2

C[0, 1 satisfies q > 0 on (0, 1). In addition, assumef has the decomposition f( t, u, v)=
g t, u, v) + h t, u, v) with g, h [0, 1 x R2 - R continuous. Now suppose

(3.3) Ih(t,u,v)l<=g{lul"+lv[+l} forconstants K,a, fl with O<=a, fl<n-1,
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for a, bR, ug(t, u, o)a[ul/blul[vl- for (t, u, v) [0, :lxR= and

(3.4) Ig(t, u, v)l<_-A(t, u)lvl" + B(t, u), where A(t, u) and B(t, u)

are bounded on bounded sets.

Then (3.1) has a solution y C[0, 1] with (4,,(y’))’ C[0, 1] in each of the following
cases:

(i) a->0, b=>0;
(ii) a < O, b >= 0 and [a[No < I,, where No supto,11 q(t);
(iii) a -> 0, b < 0 and IblNo
(iv) a < 0, b < 0 and la[Noq,_l + IblNo

where qn-1 and Ixn are as described in Theorem 1.2.
Proof. To prove existence of a solution we apply Theorem 2.1. Let y be a solution

to

(b,(y’))’ Aq(t)f(t, y, y’),
y’(0) y(1) 0.

0<t<l, l<n_-<2, 0<A<I,

Now (b, (y’))’ Aqg(t, y, y’)+ Aqh(t, y, y’), together with 1o (b (y’))’ y dx -1o ly’l" dx,
implies

(3.6) ly’l at <- -A qyg(t, y, y’) at + qly[ Ih(t, y, y’)l dt.

For notational purposes let

In addition, (3.3) yields

(3.7) Io qlyl Ih(t, y, y’)l at <-_ K qlyl+ at + K qlYl lY’I’ dt + K qlYl at.

Now H51der’s inequality yields

(3.8) sup ly(t)l sup
[0,1] [0,1]

and so

Y’(s) ds

qlyl ly’l’ dt <--_ Ily’ll. qly’l dt

--< Ily’ll [q(t)] "/("-t) dt Ily’ll -- g=llY’ll ff +’,

whereK2 {1o [q(t)] "/<"-) dt}"-)/. Putting (3.9) and (3.10) into (3.7) and then (3.6)
yields

(3.11) ’)Ily’ll -A qyg(t, y, y at + ggllY’ll// gg=llY’[l// KKIlY’II.

(3.10)

where K1 q(s) ds. Also H/51der’s inequality implies

(3.9) qly[+ dt<= glly’ll:+1 and qlyl dt<= glllY’ll,
o o
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Case (i). a>_-0, b_->0.

Then yg(t, y, y’)>-_ 0, and so (3.11) implies

Thus there exists a constant Mo independent of A with

(3.12)

for each solution y to (3.5)a.
Case (ii). a<0, b_->0.

Then with No supco,11 q(t),

(3.13) -A qyg(t, y, y’) dt<-(-a) qlyl" dt<= lly’llT,
o

by Theorem 1.2. Putting (3.13) into (3.11) yields

l+aNlly’ll,
<- ggllly’ll/ + KK211y’ll+l +

/

and we again have (3.12) since la]No < ,,.
Case (iii). a _-> 0, b < 0.
Then

(3.14) -A qyg(t, y, y’) dt<-(-b)No lylly’l-1
0 Tn --1

by Theorem 1.2. Putting (3.14) into (3.11) yields

( 1 +
n--1/

and we again have (3.12).
Case (iv). a < 0, b < 0.
Combining Cases (ii) and (iii) will again yield (3.12) in this case.
Now (3.8) and (3.12) yield

(3.15) sup [y(t)[ _-< Ily’ll, --< Mo
[0,]

for any solution y to (3.5). This bound, together with (3.3) and (3.4), implies that
there exist constants A and B independent of ; with

]( &-(Y’))’I----< Aqly’l" + Bq.

Consequently,

(3.16) [(4, (Y’)) dt<-ANollY’II"+BKI<--ANoM+BKI=-M2
o

where No supco,ll q(t) and K1 1o q(s) ds.
In addition, since

ly’(t)l"-y’(t)= (ly’(s)l"-2y’(s)) ds- I(.(y’(s)))’l ds,
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we have for [0, 1],

Ily’(t)l-y’(t)l < I((y’(s))) ds<M_

by (3.16). Consequently, lY’(t)l <- M1/(n-1)=- M1, and so

(3.17) sup ly’(t)l_-< M1
[o,1]

for each solution y to (3.5)a.
Thus (3.15), (3.17), together with Theorem 2.1, yield the result. [3

We also immediately have the following.
THEOREM 3.2. Supposef [O, 1]xR- R is continuous and q C[0, 1] satisfies q >0

on (0, 1). In addition, assume f has the decomposition f( t, u) g( t, u) + h t, u) with
g, h [0, 1 x R R continuous. Now suppose

(3.18)

(3.19)

Ih(t,u)l<=K{lul+l} for constants K,a with 0_-<a<n-1,

for aR, ug(t, u)>-alul for (t, u)[0, 1]xR.

Then (3.2) has a solution y C1[0, 1] with (bn(y’))’ C(0, 1) in each of the following
cases:

(i) a -> 0;
(ii) a < 0 and lalNo <, where No supto,11 q( t) and tz, is as described in Theorem

1.2.

2.2.
Proof. This follows from the ideas of Theorem 3.1 except we now use Theorem

THEOREM 3.3 (singular case). Supposef: [0, 1] x R2 R is continuous with assump-
tions (2.3) and (2.5) being satisfied. In addition assumefhas the decompositionf t, u, v)
g(t, u, v)+ h(t, u, v) with g, h :[0, 1]xR2 R continuous. Now suppose (3.3) holds and

(3.20)

for a, b R, ug(t, u, v) >-_ alul" + blul Ivl"- for (t, u, v) [0, 1] x R2 and

there exists % 0=<’y< n with Ig( t, u, v)l <- A( t, u)lol + B( t,

where A( t, u) and B( t, u) are bounded on bounded sets

(3.21) q(s) ds < where 0 max
n-3, n-fl

Then (3.1) has a solution y cl[0, 1] with (b,(y’))’ C(0, 1) in each of the following
cases"

(i) a->0, b=>0;
(ii) a < O, b >= 0 and lalQo < 1, where Qo 1o q( t) dt;
(iii) a -> 0, b < 0, Q1 < and IblQ < 1, where Q (1o q"(s) ds)I/";
(iv) a < 0, b < 0, Q < and lalQo+ IblQ < 1.

Proof. Exactly the same reasoning as in Theorem 3.1 yields

(3.22) IlY’II -X qyg(t,y,y’) dt+KKIlY’II:++KK=IlY’II+I+KKIlY’II.

for any solution y to (3.5)a.
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Case (i). a_>0, b_->0.

Then

]IY’ n<n= KK1]]Y’]]’+I + KK2]lY’[]+I KKll]y’ [I,
So there exists a constant Mo independent of h with

(3.23) Ily’[[ --< Mo.
Case (ii). a G 0, b -> 0.
Then

(3.24) -h qyg(t, y, y dt<-(-a)llY’[[, q(t) dt-(-a)QollY’[[,

using (3.8). Putting (3.24) into (3.22) yields

(1 + aQo)lly’llZ <= KKIlY’II/ + KKIlY’I]/ + KKIly’]]

so again (3.23) is satisfied.
Case (iii). a _-> 0, b G 0.
Then H61der’s inequality yields

(3.25)-A qyg(t, y, y) dt<-- (-b)ily’ll, q[y[’- dt<-- (-b)lly’ll; q’(s) ds

Puttin (3.25) into (3.22) yields

(1 q- bQ1)[lY’l[2 <- KK, llY’I["+’ + KK:llY’[]+’ + KK, lly’II

so again (3.23) is satisfied.
Case (iv). a G0, b G0. Combining Cases (ii) and (iii) will again yield (3.23) in

this case.
Thus

(3.26) sup [y(t)[ _-< [ly’ll -<- Mo
[o,1]

for any solution y to (3.5). In addition, there exist constants A and B independent
of h with

I( (Y’))’[--< Aqly’l + Bq,

where z max {fl, 7}. Now H61der’s inequality yields

[(4),(y’))’l dt<-Ally’[[; [q(t)] "/(-’) dt +B q(t) dt
o

<-_AM [q()]"/("-’ dt + B q(t) dr=- M

and the result now follows as in Theorem 3.1. VI
TORN 3.4. Suppose f: [0, 1] x R- R is continuous with assumptions (2.3) and

(2.5) being satisfied. In addition, assumefhas che decomposiionf( , u) g( t, u) + h( t, u)
with g, h :[0, 1]xR- R continuous. Now assume (3.18) and (3.19) are saisfied. Then
(3.2) has a solution ye C[0, 1] with (4(y’))’e C(0, 1) in each of the following cases:

(i) a _-> 0;
(ii) a < 0 and lalQo < 1, where Qo Io q( t) dr.
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3.2. Dirichlet boundary data. In this subsection we discuss the boundary value
problems

(dpn(y’))’= q(t)f(t, y, y’),
(3.27)

y(0) y(1) 0,

and

0< < 1, 1 < n_-<2,

(b,(y’))’= q(t)f(t, y),
(3.28)

y(O) y(1) O.
0<t<l, n>l,

Essentially the same reasoning as in 3.1 immediately yields the following.
THEOREM 3.5. Supposef: [0, 1] x RE -> R is continuous and q C[0, 1] satisfies q > 0

on (0, 1). In addition, assume f has the decomposition f( t, u, v) g( t, u, v)+ h (t, u, v)
with g, h:[0, 1] x RE-> R continuous. Now suppose (3.3) and (3.4) hold. Then (3.27) has
a solution y CI[0, 1] with (b(y’))’ C[0, 1] in each of the following cases:

(i) a->0, b_->0;
(ii) a < O, b >- 0 and [a[No < try, where No supco,11 q(t);
(iii) a _--> 0, b < 0 and Ib[No <
(iv) a < 0, b < 0 and lalNoo-i + IbINo  < oo-1, where tOn_l and rn are as

described in Theorem 1.2.
THEOREM 3.6. Suppose f: [0, 1] x R2-> R is continuous with assumptions (2.3) and

(2.5) being satisfied. In addition assume f has the decomposition f(t, u, v)=
g(t, u, v)+ h(t, u, v) with g, h :[0, 1] x R2-> R continuous. Now suppose (3.3), (3.20), and
(3.21) are satisfied. Then (3.27) has a solution y CI[0, 1] with (b(y’))’ C(0, 1) in
each of the following cases:

(i) a_>0, b_->0;
(ii) a < O, b >- O, and [a[Qo < 1, where Qo 1o q( t) dt;
(iii) a>-O, b<O, Ql <O, and [blQ <, where Ql-(lo q(s) ds)l/;
(iv) a<0, b<0, QI<, and lalQo+lb[Q<l.
Remark. We also have obvious analogues ofTheorems 3.2 and 3.4 for the Dirichlet

boundary value problem (3.28).
Remark. If n 2 we can replace ug(t, u, v)>= alul+ bl ll l in assumption (3.4)

and (3.20) by ug(t, u, v)>-alul+ bill I l+, and the results of Theorems 3.5 and 3.6
are again true.

It is possible to improve the results of this section if Theorem 1.2 is replaced by
inequalities of the form

[yl’q(x) dx c1, p ly’l" dx
o

and lyl ly’l’-q(x) dx < C2,p ly’l" dx,

where Cl,p and C2,p are the best possible constants (see Theorem 3.8). Here q CI(0, 1)
is measurable and positive almost everywhere on [0, 1]. For completeness we state the
extensions for the mixed boundary data. It should, however, be remarked that CI,p
and C2,p are extremely difficult to compute exactly in many situations; so the following
results are more theoretical than practical.

THEOREM 3.7. Suppose f: [0, 1 x RE-> R is continuous andfhas the decomposition
f( t, u, v) g t, u, v) + h t, u, v) with g, h [0, 1 x R2 -> R continuous. Also suppose one of
the following holds:

(a) q C[0, 1]c CI(0, 1) with q>0 on (0, 1) and assumptions (3.3) and (3.4) are

satisfied;
(b) q CI(0, 1) with assumptions (2.3), (2.5), (3.3), (3.20), and (3.21) are satisfied.
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Then (3.1) has a solution in each of the following cases:
(i) a->0, b_->0;
(ii) a < O, b >- 0 and Ilc,,o < 1;
(iii) a ->_ 0, b < 0, 1o q (s) ds < oo and blC=,. < 1;
(iv) a < 0, b < 0, 1o qn(s) ds < oo and laIc,,o / IblC_,. < .
Proof. The only changes are that (3.10), (3.24), and (3.25) become

(3.10)* lylly,lq(x) dx 62,/3+1 ly’l+1 dx C=,+lllY’ll+1

(3.24)* (-a) q(x)lyl"dx<=(-a)Cl.,,lly’ll, a<0,

and

(3.25)* (-b)

Remark. There is an obvious result also for the boundary value problem (3.2).
The following theorem guarantees the existence of C,. and C2,..
THEOREM 3.8. Suppose q CI(0, 1) with assumptions (2.3) and (2.5) holding.
(a) Then for p > 1,

A((U’) P-l)’ + q(X)Up-1 O,

(3.29) lim u(x) =0, lim [u’(x)] v- -0,
x-0 x-l

Ilu’ll 1

has solutions (u, A) with u C2(0, 1) and u(x) > 0, u’(x) > 0 on (0, 1). In addition, there
is a largest value ofA such that (3.29) has a solution, and if CI,p denotes this value, then
for any y CI[0, 1],

lylq(x) dx<- C1,p ly’l dx.
o

(b) Assume o qP(x) dx < oo. Then for p > 1,

(Ap(u’) p-1 -(p 1)u(u’)P-2q(x))’ + q(x)(u’) p-1 O,

(3.30) lim u(x)= 0, lim (Ap(u’)P--(p 1)u(u’)P-2q(x))=0,
x0 x-l

u’ll-- 1

has solutions u, A) with u C2(0, 1) and u(x) > O, u’(x) > 0 on (0, 1). In addition, there
is a largest value ofA such that (3.30) has a solution, and if C2,p denotes this value then
for any y C1[0, 1],

lyl ly’l -lq(x) dx <- C2.p ly’l dx.

Proof. (a) This follows from [2, Thm. 1 once we show that T:Lp --> Lp defined by

r(x)=[q(x)]1/p

is compact.
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(b) This follows from [2, Thm. 1] once we show that G" Lp Lp defined by

Gu(x) q(x) u( t) dt

is compact.
We will show that T is compact. A similar argument works for G. Recall [10]

that if (Tn) is a sequence of compact linear operators from a normed space X into a
Banach space Y and if T- TII- 0 as n-, then the limit operator T is compact.

Let Tn be defined by

Tnu(x)=[wn(x)] 1/p u(t) dt,

where

q(x) ifq(x)<-n,
Wn(X)

n ifq(x)>n.

We first show that Tn" Lp - C[0, 1] c_ Lp is compact. To do this we apply the Arzela-
Ascoli theorem. Fix n {1, 2,... }. Let f

_
Lp be bounded, i.e., there exist M> 0 with

[lU[[p<-M for all u f. Certainly T,f is bounded and the equicontinuity on [0, 1]
follows since for t, s [0, 1] and u f, we have

I(T.u)(t)-(T.u)(s)l= [Wn(t)] lIp U(Z) dz-[wn(s)] lIp u(z) dz

[w(t)]/ u() d + u() d I[w()]/-[w(s)]l/

N[(t)]/MIt-s(’-1/ +
by H61der’s inequality. The equicontinuity of T now follows from the continuity of
w. Consequently, T is compact.

Remark If q is continuous on [0, 1], then T"LL is compact by the above
argument with q replacing w.

We now show that T, rl] 0 as n . Notice that

llr(u-r(ull= l([(x]/-[q(x]/ u(s asl ax

Ilull. I[w,(x)lllp-[q(x)]’lplp dx

and so by taking the supremum over all u of norm 1 yields

T, TII, --< I[w.fx)] ’/" -[q(x)]’/’l" dx

It remains to show c, 0 as n c. If this is so, then T is compact. We first show that
lim,_ooJlolw,(x)-q(x)ldx=O. To do this notice that w, is continuous on [0,1] for
each n and limn_. w,(x)= q(x) almost everywhere on [0, 1]. Now since w,(x)<= q(x)
almost everywhere on [0, 1], we may apply the Lebesgue dominated convergence
theorem to deduce

lim Iw:(x)- q(x)l dx O.
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Finally, to show lim,_ cn lim,_. Ilwl/p- ql/pl[ p--0 we use the following result [14,
p. 76]: supposef LP, f, Lp with f, -->falmost everywhere on [0, 1] and lim,_. IIf
ilf . en lim,. IIf -f 0,

With f, w/p, f ql/p we see that

lim wL/ lim w. x dx q(x) dx q l/p ,

and so the result follows. Consequently, T" Lp -> Lp is compact. A similar argument
shows that G is compact. [3

4. Bernstein-Nagumo theory. This section extends the Bernstein-Nagumo theory
[7] to boundary value problems of the form (1.1) with Dirichlet or mixed boundary
data. We begin by examining

(4.1)
(b(y’))’= q(t)f(t, y), 0< < 1,
y(0)=a, y(1)=b,

and

(4.2)
(b(y’))’= q(t)f(t, y), 0< < 1,
y’(0) a, y(1) b.

TI-IEOREM 4.1. (a) Supposef:[O, 1] xR-->R and suppose (2.3), (2.4), and (2.5) are

satisfied. In addition, assume

there is a constant M > 0 such that yf( t, y) > 0
(4.3)

for lyl> M and for all t [0, 1].

Then (4.1) has at least one solution y C1[0, 1] with (b(y’))’ C(0, 1).
(b) Supposef: [0, 1Ix R--> R, and suppose (2.3), (2.4), (2.5), and (4.3) are satisfied.

In addition, assume b(a)=0. Then (4.2) has at least one soultion y C1[0, 1] with
(qS(y’))’ C(0, 1).

Proof. (a) Suppose y is any solution to

(4.4)
(dp(y’))’=Aq(t)f(t,y), 0<t<l, 0<A<I,
y(0) a, y(1) b.

We claim supto,1 ly(t)l-<max {M, lal, Ibl}--M. Once this is shown the result follows
from Theorem 2.4. Iflyl achieves its maximum at zero or 1, then, trivially supto, lY(t)l--<
M1. Suppose now that lyl achieves a positive maximum at toe (0, 1) with ly(to)l> M.
Then y’(to)= 0. Now the differential equation yields

y(to)(b (y’))’(to) Aq( to)y( to)f( to, y(to)) > O.

Without loss of generality assume y(to)> 0. Then there exists a ‘5 > 0 with

(th(y’))’(t)>0 for t(to-‘5, to+‘5)(O, 1).

Consequently,

(4.5)
whereas

(4.6)

b(y’(t)) < b(0) for (to- ,5, to),

b(y’(t)) > b(0) for (to, to+‘5).

Now if b(0)_>-0, then (4.6) implies b(y’(t))>0 for t(to, to+‘5), and since b- is
increasing we have y’(t)>0 for S(to, to+‘5). This contradicts the maximality of
]y(to)l y(to). On the other hand, if b(0) < 0, then (4.5) implies b(y’(t)) < 0 for

(to- ‘5, to), and so y’(t) < 0 for (to- ‘5, to), a contradiction.
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A similar contradiction is established if y(to)< 0. Thus [y(to)l M, and our claim
is established.

(b) Suppose y is any solution to

(dp(y’))’:hq(t)f(t,y), O<t<l, O<h<l,
(4.7)

y’(O) a, y(1) b.

We claim sup[o,1] ly(t)[ =< max {M, Ibl}-= If lyl achieves its maximum at 1, then
trivially sup[o,1] [y(t)l -< M. On the other hand, if lyl achieves a nonzero maximum at
toe (0, 1), then as in part (a), we have ly(to)l<-M. Finally, suppose lyl achieves a
nonzero maximum at zero with ly(0)l > M. Then y(0)f(0, y(0)) > 0, and so this together
with the differential equations yields

y( t)( b(y’))’( t) > O

for > 0 and close to zero. Assume without loss of generality that y(0) > 0. Then there
exists an interval (0, 3) with (b(y’))’> 0 for (0, t). Integration from zero to t(t < 3)
with the fact that b(a) =0 yields r(y’(t)) > 0 for (0, 3). Thus y’(t) > 0 for (0, ),
which contradicts the maximality of [y(0) y(0). A similar contradiction is established
if y(0)< 0. Thus ly(0)l _<-M, and our claim is established. The result now follows from
Theorem 2.2. [i]

Finally, in this paper we consider the more general problems

(4.8)
(b(y’))’= q(t)f(t, y, y’),
y(0)=a, y(1)=b,

O<t<l,

and

(4.9)
(b(y’))’=q(t)f(t,y,y’), 0<t<l,
y’(0) 0, y(1) b.

THEOREM 4.2. Supposef:[O, 1]xR2R is continuous and (2.3), (2.4), (2.5), and
(2.6) are satisfied. In addition, suppose

(4.1 O)
there is a constant M >- 0 such that yf( t, y, O) > 0

for lyl > M and for all t [0, 1],

(4.11) 4,(-u)=-6(u) for uO,
and

(4.12)

there is a continuous function :[0, )-> (0, o) such that

If(t, u, v)l__<  (Ivl) for (t, u) [0, 1] x [-M3, M3].

Here M3 max {M, [a [, [b [} if we are examining (4.8),

whereas M3 max {M, b l} if we are interested in (4.9).

Also assume one of the following holds:

(4.13)
q is continuous on [0, 1 and

2M3 sup q(t) <
--I(u)

[0,1] ,c) (t--i(u)) du

or

(4.14)
du

q( t) dt < 1(() g,(6- u))
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Or

there exists p > 1 with [q(t)]
p/(p-)

dt < o and

(4.15)

(fo’ )(P-’)/P f4, (b-l(u))l/pdu"(2M3) ’/v [q(t)] p/(p-1) at <
,) ff(b-’(u))

Here c b- a if we are examining (4.8), whereas c 0 if we are interested in (4.9).
Then (4.8) and (4.9) have at least one solution y CI[0, 1] with ((y’))’ C(0, 1).

Proof. Essentially the same reasoning as in Theorem 4.1 yields

(4.16) sup ly(t)l--< M3
[0,1]

for any solution y to

(4.17)x
((y’))’ Aq(t)f(t, y, y’),
y(0)=a, y(1)=b,

0<t<l, 0<A<I,

or

((y’))’=Aq(t)f(t,y,y’), 0<t<l, 0<A<I,
(4.18)x

y’(0) 0, y(1) b.

Now each point e [0, 1] for which lY’(t)l> c belongs to an interval [, v] such that
y’ maintains a fixed sign on I/x, v] and ly’(tx)l and/or ly’(v)l is c.

Case (i). Suppose (4.13) holds.
To be definite assume y’>0 on (, ) and y’(/z) c. Then ((y’))’<-q(t)d/(y’) for

e (/z, v). Multiply by y’ and integrate from/ to to obtain

f -l((y,))((y,)), j.t y,((y,)), ;i(b_l(b(y,)))
ds= ds_-<sup q(t) y’ ds.

(Y’) tO.l]

Thus

6Y’’))

du<2M3 sup q(t),
-l(u)

n((y’(t))) -1
c) (6 (u)) to,

and so since H’[0, )--> [0, ) is increasing we have

[0,1]

The other possibilities are treated similarly, and the same bound on ]y’(t)] is obtained.
Thus

(4.19) sup ly’(t)l --< max {M4, Icl>,
[0,1]

Now (4.16), (4.19), together with Theorems 2.1 or 2.3, yield the result.
Case (ii). Suppose (4.14) holds.
To be definite assume y’ < 0 on (/x, v) and y’(/x) -c. Then ((y’))’ <- q(t)$(-y’)

for e (/z, v), and integrate from/z to to obtain

((Y’))’
ff(-l((_y,)))

ds <= q(s) ds.
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Now using (4.11) we obtain

J(b(-y’(t)))=

and so

/(_I(u) q($)ds,

[y’(t)[ -y’(t) <-- b -1 J- q(s) ds =- Ms.

The other possibilities are treated similarly, and the same bound on ly’(t)l is obtained.
Thus

(4.20) sup ]y’(t)] =< max (Ms,
[0,1]

Now (4.16) and (4.20) yield the result.
Case (iii). Suppose (4.15) holds.
To be definite assume y’>0 on (/., ,) and y’(/)= c. Then (b(y’))’-< q(t),(y’) for

(/, v). Multiply by (y’)/P, and integrate from to to obtain

f [-l((y,))]l/p((y,)),
ds q(s)(y’(s))’/Pds.

Thus H61der’s inequality yields

((y’(t))[--l(u)]l/p (I01 )(p--1)/pG((y’(t)))= [q(t)] dt
,c (6_(u)

du < (2M)/ /-1

Consequently,

ly’(t)l=y’(t)<= -1 G-1 (2M3) 1/p [q(t)] p/<p-1) dt =- M6.

The other possibilities are treated similarly, and the same bound on [y’(t)] is obtained.
Thus

sup lY’(t)[-< max {M6, Icl}. D
[0,1]
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NEGATIVE EIGENVALUES FOR A NONLINEAR DIFFERENTIAL
EQUATION ON *

W. ROTHER

Abstract. This paper considers a nonlinear eigenvalue problem involving a second-order ordinary
differential equation on R with variable coefficients. One of the coefficients may be negative on some subsets
of R and both may be unbounded. In case that the coefficients are positive constants this problem has been
studied by H. Berestycki and P.-L. Lions [Arch. Rational Mech. Anal., 82 (1983), pp. 313-345]. The paper
shows that the problem has a negative eigenvalue and a positive classical solution decaying exponentially
at infinity. Moreover, in some special cases the existence of bifurcation is proved. The main tools are direct
methods from the calculus of variations, some comparison techniques, and Lebesgue’s theorem on monotone
functions.

Key words, nonlinear ordinary differential equation, negative eigenvalue, variational methods,
bifurcation

AMS subject classification. 34B15

1. Introduction. In the present paper we study the nonlinear Dirichlet problem

-u"- q( t)lul,u + r( t)lulu Xu for [,

(1.1) lim u(t)= lim u(t) =0,
t’-

where 0-1 and 0"2 are positive constants, A is negative, and q(. and r(. are real-valued
functions.

In case that r-=0 and N >_-2 (replace u" by Au), this problem has been considered
by many authors. See, for instance, [4], [5], [7]-[10], [13], [16]-[18], [20]-[23] and
the literature quoted therein. In case N 1 and r--0, existence of nontrivial solutions
and bifurcation in LP() has been proved in [19] and [20]. In [20] (respectively, [19]),
the author assumes that the function q satisfies

O<A<=q(t)(l +ltl) <=B <

for some constant a [0, 2) (respectively, a 0).
Moreover, Zhu and Zhou [23] proved that bifurcation occurs in HI(B) if r--0,

0"1<4, and q is a continuous function on satisfying q(t)->qo>O as [tl--> and
q(t)>-q for t.

Similar results for the Dirichlet problem on (0, oo) were obtained in [11], [15],
and 17, Thm. 7.4].

In all cases quoted above the only bifurcation point is A -0, i.e., the infimum of
the essential spectrum of the linearization -u" (respectively, -Au).

In case q and r are positive constants and N 1 or N => 3, existence results for
(1.1) have been proved in [3] (see also [14, Thm. 2; Remark p. 160-161]).

Suppose, for instance, that 0"1 < 0"2. Then, Berestycki and Lions (see [3, Ex. 2,
Thms. 1 and 5]) have shown that (1.1) has a positive classical solution, decaying

* Received by the editors February 3, 1992; accepted for publication (in revised form) September 3, 1992.
f Department of Mathematics, University of Bayreuth, P.O.B. 101251, W-8580 Bayreuth, Germany.
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exponentially at infinity if and only if q > q*, where

q* r’/2tr2(2 + o’1)( tr2- o’1)(l-2)/’2tr-’/2(2 + tr2) -’/2.

Hence it seems to be an interesting question if (1.1) possesses a positive classical
solution when the function q is negative on some subsets of RN and r(. is unbounded.

In 12] we presented some existence results for this problem when N => 3, 0 < tr <
4/(N 2), and tr2 => 4/(N 2). We supposed that q and r satisfy some growth conditions
on a certain subset of RN, and outside of we required the functions r and
q_ min (q, 0) to be locally integrable. To prove that the solutions decay exponentially
at infinity we had to assume that the corresponding eigenvalues h are negative (see
Corollaries 1.1 and 1.2 in [12]), and had to show that some h are negative. We had
to impose rather restrictive conditions on the functions q and r (see 12, Thms. 1.3-1.5]).
By the way, in case r 0, the eigenvalues are always negative, and the proof of this
fact is evident (see, for instance, [7, p. 571] and Lemma 3.11).

In the following, we present some results for the case N 1. It turns out that we
need no additional assumptions in this case to show that h < 0 holds for some
eigenvalues h (see Lemmas 3.12 and 4.3). Moreover, if tr <2(2-a) (the constant a
may be chosen as in condition (i.c)) we can show that there exists a sequence of
solution pairs (un, An), with An < 0, bifurcating from h 0 (see Thm. 1.2). Using some
standard techniques (see Lemma 3.10) and assuming that q is bounded above near
infinity, we prove that the corresponding solutions u (respectively, un) decay exponen-
tially at infinity. The main tool in the proof of Theorem 1.2 is Lebesgue’s theorem on
monotone functions. We use this theorem to show that the monotone decreasing energy
I(.) is almost everywhere ditterentiable. Even in the case where r= 0 the results of
Theorems 1.1 and 1.2 seem to be new since q may change sign and may be unbounded
below.

To present our results, we start with the formulation of some conditions for try, tr2,

and the functions q and r. For the constants trl and tr2, we consider the cases
(i) 0 < O" < 4 and 0 < 0"2 and
(ii) 4_-< trl and trl < tr2.
In case (i), we assume
(i.a) That the functions q, r:-> are measurable, that r is nonnegative and that

r and q_ min (q, 0) are locally integrable;
(i.b) That the function q+ =max (q, 0) can be written as q+ ql + q2, where q

satisfies 0_-< ql E L so that ql(t)-> 0 as It[ oo, and the function q2 satisfies 0--<q2 E Lp

for some constant Pl 1, oo) f’) (2/(4- trl), oo);
(i.c) That there exist constants to_-> 1, a > 0, and if/’> 0, and a measurable function

f: to, oo) -> [0, oo), satisfying f(t) -> oo as -> oo, such that

(1) q(t)>-_f(t)t and r(t)<-Xtb hold for all t_-> to or
(2) q(t)>-f(-t)(-t) and r(t)<-_{(-t) b hold for all t<--to.
Here, the constant b is defined by b=(2-a)(trE/trl)-2.
If (ii) is satisfied, we assume
(ii.a) That condition (i.a) holds true and that there exists a positive constant ro

so that r(t)_-> ro holds almost everywhere in R;
(ii.b) that condition (i.b) is satisfied with the exception that the function q2 satisfies

O<-qELp for some p2 ((2+trE)/(tr2-try), oo);
(ii.c) and that condition (i.c) holds true.
Remark 1.1. (a) The only assumption which the functions q_ and r have to fulfill

on (-oo, to) (respectively, (-to, oo)) is to be locally integrable. So q_ and r may have
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singularities on (-, to) (respectively, (-to, )), q_ may decrease very fast to - as
--> -c (respectively, --> ) and r may increase very fast to +c as --> -o (respectively,

(b) In case (ii) it is assumed that r(t)>=ro>O holds for almost all t. Hence
condition (ii.c) only can be fulfilled if b=>0, i.e., if a =<2(1-(tri/tr2)).

(c) If v is a solution of the equation

-v"-q(-t)lvlv+r(-t)ivlv=xv in,

then u(t)= v(-t) is a solution of (1.1). Hence, we may assume without restriction that
part (1) of condition (i.c), respectively (ii.c), is satisfied.

Then we will prove the following results.
THEOREM 1.1. (a) Suppose that (i) or (ii) holds true and that oh >-_ 2(2-a). Then,

there exists a positive function u c lf"1 H and a negative constant A such that (1.1)
holds in the sense of distributions. In case trl 2(2-a), we have Ilull= 1.

(b) If q and r are continuous, then u is twice continuously differentiable and (1.1)
holds in the classical sense. Moreover, in case there exist positive constants tl and C such
that

q( t) <- C holds for almost all Itl tl,

the function u decays exponentially as tl- .
THEOREM 1.2. (a) Suppose that (i) and (ii) hold true and that O" < 2(2-a). Then,

there exist a sequence un) ofpairwise distinct functions un cl f’I H and a sequence
negative constants (An) such that u, is positive and (un, A,,) solves (1.1) in the sense
distributions. Letting n - oo, it follows that

and An- O. In particular, we see that A 0 is a bifurcation point for (1.1) in H and in
L2 U L.

(b) The assertions of Theorem 1.1(b) hold true if we replace u by u,.

2. Some preliminaries. By Lp LP() and L’oc= L{’oc() (1-<p-<-o), we denote
the usual Lebesgue spaces, and [[’llp is the norm on Lp. If 1 <p < o, the dual index p’
is defined by p’=p/(p- 1). Moreover, H denotes the Sobolev space HI() WI’2(R),
and the norm II.ll,, is defined by Ilull, ,-(llu’ll /llull ) Finally, Cl= CI()is the
space of the continuously differentiable functions, and C C(R) denotes the set of
all functions that have compact support and derivatives of any order.

LEMMA 2.1. Eachfunction u H can be identified with a H61der continuousfunction
on , still denoted by u, such that limltl_ u(t)= 0,

lu(q)- u(t=)l < Ilu’ll=lq- t2l 1/2 holds for all tl, t2,

and u I1= s u’ll /-II 1/_.

Proof For tp s C we have

IO(tl)- O(tu)l

and



672 w. ROTHER

3. Proof of Theorem 1.1. We start with the following lemma.
LEMMA 3.1. Suppose that (i) and (i.a)-(i.c) hold true. Then there exist positive

constants a and ill, and for each e > 0 a constant C1, >-_ O, such that

(2q-O’l) -1 f q+lul+’ dt<=ellu’ll2/C,,(llull+./llull/’)

holds for all u H1.
Proof. From Lemma 2.1 and H/51der’s inequality we conclude that

f qlul/ dt <- 2/llqllllu’ll/llull/<,/.

The constant Pl may be chosen as in condition (i.b). Then, in case Pl 1 we see that

q=lul/ dt <= 2+<,/=)llq211llu’ll/<,/=)llull+<,/).

Further, if Pl > 1, we obtain

Since trl < 4, Pl > 2/(4- rl), and o"1 <2 if Pl 1, the assertion follows from Young’s
inequality.

LEMMA 3.2. Suppose that (ii) and (ii.a)-(ii.c) hold true. Then there exist positive
constants a2 and f12, and for each e > 0 a constant C2, >- O, such that

d

holds for all u H1.
Proof For )’l=O’l/tr2, we see that 2+tr1=)’l(2+tr2)+(1-)’1)2. Hence, by

H/51der’s inequality, it follows that

I (I tqllul2+ dt Ilqll lul2+ dt lul2 dt

The constant P2 may be chosen as in condition (ii.b). Then it follows that (2 + trl)p_ <
2+tr2. Thus, there exists a constant )’2s(0, 1) such that (2+trl)p=
)’2(2 + tr2) + (1 )’2)2. Now, H/blder’s inequality implies

f q2[ul 2+rt dt<-IIqll,(f lul=+ dt)2/P(f lul= dt)
Since )’1, )’2/P2 (0, 1), the assertion follows by Young’s inequality. [:]

In the following, we always assume that either (i) and (i.a)-(i.c) (part (1)) or (ii)
and (ii.a)-(ii.c) (part (1)) are fulfilled. The functional : may be defined by

:(u)= lu dt-(2+r)- q dt+(2+r)- r(t)lul+dt.

Moreover, for/z _-> 0, we define the set S, by

S={ueH1; f lq_[lu,2+’dt<, f r(t)lul2+’dt<oand ]IU[[2 ]-1,}.



NONLINEAR DIFFERENTIAL EQUATION 673

Since r(t)_-> to> 0 holds in case (ii), we conclude from Lemmas 3.1 and 3.2 that (.
is bounded below on S. Hence

I()= inf :(u)
uS

is a well-defined real number.
LEMMA 3.3. Let k a 2)/o’1. Then there exists a function h" [ 1, o) -> R such that

h s -> -o as s -> , and

I(sk+(1/2)) <- s2k-lh(s) holds for all s [1, o).

Proofi The function q Cmay be chosen such that supp q c (to, o) and {Iq [12 1.
Moreover, for s _-> 1 we define the function qs by qs(t) skq(s-lt). Since q [[2 sk+1/2),
we see that

I(sk+(l/2>)(gOs)----S2k-1 IgO’l 2 dt--s2+tk(2+crl)-1 q(st)lp(t)l2+ dt
to

(3.1)

+ s/(2+- r(sll(ll/
o

Now, from (i.c), respectively, (ii.c), we conclude that the right-hand side of (3.1) is
less than or equal to sk-lh(s), where

1
,i 2 t_, 2+o.h(s)= lop dt- inf f(x)(Z+Crl)-’ Iq(t)l dt

>= st to

/ ’(2 / r)-1 Chino (t)l+

Since inf__>f(x) c as s oo, we obtain the assertion.
LEMMA 3.4. In case
(i) crl > 2(2 a), there exists a constant tz > 0 such that I(/x) < 0;
(ii) crl=2(2-a), it follows that I(1)<0;
(iii) o’1 <2(2-a), there exists a constant/z0>0 such that I(/z)<0 holds for all

(0, o].
Proof. The constant k may be chosen as in Lemma 3.3. Then, in case (i) we have

that k+1/2>0, in case (ii) k+1/2=0, and in case (iii) k+1/2<0. Hence, the assertions
follow from Lemma 3.3. El

LEMMA 3.5. Suppose that there exists a I > 0 such that I(tz) < O. Moreover, the
constants a and (i= 1, 2) may be chosen as in Lemma 3.1, respectively, Lemma 3.2.
Then, there exists a nonnegative function u S such that u II > 0 and (u) I(I).
Furthermore, there exists a constant C, independent of Ix, so that

Ilu’,,+ f lq-llulz+=’ dt+ f rlu[2+= dt <- C(/t/,2+a, --/l.

holds in case and

Ilu’ll+ Iq-Ilul/’ at+ f rlul/ dr<= C(.+)

holds in case ii).
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Proof We start with ease (i). Let (u,)c S, be a sequence such that :(u,) I(/x).
Then, we may assume without restriction that sC(u,)_<-0 and u, =>0. Hence, we obtain
from Lemma 3.1 that

(3.2)
X Ilu’llz=+(2+r)-’ Iq_llu.I=+, dt+(2+o’2)-1 rlu.I=+ dt

< C1,1/4(/L62+al -.
holds for all n.

In particular, we see that (u.) is bounded in H1. Then, using Lemma 2.1, the
reflexivity ofH1, the Arzela-Ascoli theorem, and a standard diagonal process, it follows
that there exists a subsequence of (u.), still denoted by (u.), and a u H such that
un - wU in H and supltld lu(t) u.(t)]-._.oo0 holds for all d _-> 0. Moreover, by (3.2),
Fatou’s lemma and the uniform boundedness principle it follows that u S. Using
the fact that q L and that ql(t) 0 as [tl we verify that

f ql]u,]2+o.’dtfql.u,2+’dt.
Since Ilul+,-lunl=+,[ clu--unI(luIX+’+IUnl+) holds for all n and a constant c, we
obtain by H61der’s inequality and Lemma 3.1"

f q=llul=+,-lul=+,l dt

<- c q2lu u.I 2+’ dt

I ) (1+o’1)/(2+0.1)
q=(lull+,+lu,,l+l)+,/+, dt

I ) 1/(2+’1)
<= c’ qzlu u.I 2+0.’ dt

The constant p may be chosen as in condition (i.b).
If Pl 1, we define p (2 + trl)p z, then we obtain for each constant R > 0"

qlu- u.I =+=’ dt

Since Ilqzll,,.t;,)0 as R, we see that

q2lu u,,I 2+’’ dt 0

and

q21u.lz+, dt f qzlul+’ at.

The above results show that

I(tz)<=(u)<-liminf(u,) I(/) < 0.

Moreover, (3.2) holds true if we replace u, by u.
Since sO(u) < 0, it follows that u I1= > 0. Finally, the fact that u, converges pointwise

to u shows that u is nonnegative.
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Now, we assume that (ii) and (ii.a)-(ii.c) are fulfilled. The sequence (u,)c S,
may be chosen as above. Then, according to Lemma 3.2, we obtain

llu’,ll+(2+trl)-1 Iq-Ilu, dt+(2(2+tr2))-1 rlUnl2+zdt<--C2,(tz2+l2)

for e ro/(2(2+tr2) and all n. Here, the constant to>0 is chosen as in (ii.a). Then,
proceeding as above, we obtain the assertion.

LEMMA 3.6. Suppose that there exists a constant tz > 0 such that I() < O. Further,
we assume that thefunction u is chosen according to Lemma 3.5. Then (1.1) holds in the
sense of distributions if

A= [lull  (llu’ll -fq]u] dr+ f dr).
Proof Since u L, we see that qlul,u and rlul2u are locally integrable. Using

this fact, it is not difficult to show that for each q C the function

 (ll u II ll u / /

is differentiable at e =0. But ddp(e)/de I__o=0 then implies the assertion. [

LEMMA 3.7. The constants I and A and the function u may be chosen as in Lemma
3.6. Then u is positive and continuously differentiable. Moreover, ifq and r are continuous,
then u is twice continuously differentiable and (1.1) holds in the classical sense.

Proof The function F may be defined by

F( t) -q( t)ul+’( t) + r( t)u l+(t) Au(t).

Since u is bounded, we see that F is locally integrable. Then, for a fixed x, we define

U(t) F(y) dy as.

Hence, U is continuously ditterentiable.
For e>0, we define F F*p, where p is a mollifier (cf. [1, p. 29]), and

US(t) F(y) dy as.

Then, it is not difficult to verify that

(3.3) F-->F and U-->U in Lo as e --> O.

Since (U) F, we conclude from (3.3) that U" F holds in the sense of distributions.
Thus, we see that

(3.4) u(t)= U(t)+Clt+C2

holds for all and some constants cl and c2 (cf. [1, Cor. 3.27]). But (3.4) shows that
u is continuously differentiable.

Now, suppose that u(x) 0 holds for some x. Since u => 0, it follows that u’(x) O.
The function U may be defined as above. Then, we also have U(x)= 0 and U’(x)= O.
Thus, the constants Cl and c2 in (3.4) are zero, and u(t)= U(t) holds for all t.

The function F can be written as F Gu, where G again is locally integrable.
Then, for R > 0 and all IR (X):= (X- R, x + R), we obtain

u(t)<= IG(y)lu(y)dyds<-_RllGll,<,<x)) sup u(y).
yII(x)
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Hence, we see that

(3.5) sup u(y)<=RIlll’,x" sup u(y).
YIR(X) yIR(x)

But (3.5) shows that there is an R > 0 such that SUpyxR(x) u(y) 0. Since u is continuous,
the above argument shows that if u(x)=0 holds for some x, then u(x)=0 holds for
all x. However, u =0 contradicts Ilull=> 0.

Finally, we assume that the functions q and r are continuous. Then, we conclude
from Lemma 2.1 that F also is continuous and that U is twice continuously differenti-
able. Thus, (3.4) shows that u is twice continuously ditterentiable.

LEMMA 3.8. The constant A in Lemma 3.6 always satisfies A <--_ O.
Proof. For all t(0, 1] we have (u)<-_(tu). Hence

t=l

<-0. [3

LEMMA 3.9. Suppose that the constant A in Lemma 3.6 is negative. Then we have

Proof. If Ilull _ < , then it follows that

(tu)
A Ilull=

t=l

LEMMA 3.10. Suppose that it is negative and that there exist positive constants
and C such that

q(t) <-_ C holds for almost all Itl >- t.

Then, for each a (0, ]it]l/2), there exists a constant Ca such that

u(t) <- Ca exp (-altl) holds for all t.

Proof. From Lemma 3.6 we conclude that

I u’o’dt<-JA’fuqdt+Cful+lodt
holds for all nonnegative functions q C({t; Itl tl}).

Now let e (0, lit[- a2) Then, since u vanishes at infinity, there exists
such that u’,(t)-<_ e/C holds for all It[ -> t2. Hence, we obtain

(3.6) I u’v’dt<=-lAl l uvat+e l uvdt

for all nonnegative functions v H({t; It[ => t2}).
Since u is bounded, we can find a constant Ca > 0 such that

(3.7) u(t) <- Ca exp (-cltl)=: ,(t) holds for all Itl_-< t2+ 1.

Because d/(t)=aEp(t)(t#O), it follows from (3.6) that

(3.8) I (u’-O’)v’ dt<=-a2 f (u-,)vdt.

From (3.7), we conclude that (u-,)+H({t;[tl>=t2}). Inserting v=(u-)+ in
(3.8) finishes the proof. Iq

Lemmas 3.9 and 3.10 motivate the question if the constant it is negative. The first
result in this direction is the following.
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LEMMA 3.11. The constants I and A and thefunction u may be chosen as in Lemma
3.6. Moreover, we assume that cr2 <-_ O" Ol" r O. Then it follows that A < O.

Proof. Suppose that or2 _-< Crl. Then se(u) < 0 implies that

In case that r--0, we may assume without restriction that or2_-< or1.
LEMMA 3.12. If Cr _--> 2(2- a), then A is negative.
Proof. In the following, we take up an idea that we found in [2] (see Lemma 13).

Assume that , _-> 0. Then, we obtain

(3.9) f u’o’ dt+,f f tbul+2odt-O

for all nonnegative functions 0 C((to, oo)), where to is defined as in condition (i.c),
respectively, (ii.c).

Moreover, via regularization it follows that (3.9) holds for all nonnegative functions
tO H((to, oo)) with compact support.

For _-> to, we define @(t) Ct-1/, where the constant C (0, (3/4’f) 1/2] is chosen
such that

(3.10) @(t) <- u(t) holds on [to, to+ 1].

Then, it follows that

-"(t) + ftbf+cr2(t) C{fCCrEtb-1/E-cr2/E-t-5/2}.
From the definition of the constant b and the fact that O" _->2(2-a) we obtain that
b -1/2- cr2/2 _-< -. Hence,

(3..11) --/"(t)+tbd/l+2(t)<--O holds for all t_-> to.

Since ’, ol+2e LE((to, oo)), we conclude from (3.11) that

(3.12)

holds for all nonnegative functions H(( to, oo)) with compact support. The function

’ C may be chosen such that 0_-<’_< 1, ’-- 1 on the unit ball and ’(t) 0 holds for
Itl_->2. Moreover, for nN, we define ,(t)=(n-lt). Then, according to (3.10), we
see that the support of the function (- u)+’, is a compact subset of (to, oo) and that
(- u)+,, H((to, oo)). Moreover, since

((@-u)’+)2,dt (@-u)’(((@-u)+,)’-(b-u)+’,) dx,

we obtain from (3.9) and (3.12) that

((,- u)_)’’, at + yc t(,’+- u’+=)(g, u)+’, at

(3.13) <- ( u)’(- u)+’, dt
to

<--II Iloo11(’-u)’11,2,o,oo)) O(t) dt
n
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Since t2o ,2(t)dt=C2(log2n-log to), it follows that the right-hand side of (3.13)
converges to zero as n-> o. Hence, we see that

(3.14) @(t) _-< u(t) holds for all t_-> to.

But (3.14) contradicts u L2.
Proof of Theorem 1.1. The assertions of Theorem 1.1 now follow from Lemmas

3.4-3.7, 3.9, 3.10, and 3.12.

4. The case where tr < 2(2-a). From Lemma 3.4 it follows that there is a/Zo 0
such that I(/z) 0 holds for all/x (0,/Zo]. Thus, Lemmas 3.5-3.7 show that for each
/z (0,/Xo] there exist a positive function u, S and a constant h, such that :(u)=
I(/x) and (u,, h,) solves (1.1).

Since I(. is a monotone decreasing function on [0,/Zo], we can find a measurable
subset M of (0,/Zo) such that (0,/Zo)\// has measure zero and I(. is ditterentiable
on M (see [6, Thm. 17.12]).

LEMMA 4.1. For each tz e[/l we have I’(/x)=
Proof. Let/x M and q(t)- :(tu,). Then p is a continuously differentiable func-

tion on (0, oo) satisfying p(1)=I(/x) and For we can find a
5 > 0 such that

(4.1) holds for t[1-8,1+8].

From (4.1), we conclude that

(4.2) ’(t)--<’(1)+ellull holds for all te(1,1+i$].

Hence

(t)- (1)+ ’(s) dsI()+(t-1)(A,,+e)llu,ll2.

Since I(t/z) <_- o (t), we see that

(4.3)
I(ttz)-I(tz)

But (4.3)implies
Next, we conclude from (4.1) that

(4:4) q’(t) >_- Ilu ll 
Hence, we obtain

I( tlz) <--_ tC( t) tp(1) I
holds for all 1 8, 1).

,’(s) dsI()/(t-1)(A,-e)llu,ll

and

for t [1-, 1).(4.5) (I(t)-I())/(t-)-(A-)llull==
Now, (4.5)implies I’() -llullA.

LEMMA 4.2. There exists a constant C such that

II(1) I(/x2) <_-- CI/zl -/z2l holds for all/z,,/2 [0,/Zo].

Proof. Without restriction we may assume that/zl </2. Then, since I(/z2)=< I(/zl)
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and I(/)_--< ((/1//2)U/z2), it follows that

’1([1’ I( L/2" 1(/1’ 1(/2) ((/-))u
’ -1 1.21mat

+ (1- (;)+)(2+ 1)-1 qll+e d,

1 (2 + 2)- r]-u21’2+: dt

Moreover,

implies that

(2 + 171) l+r’ dt <= (2 + 171) 1
/1

1/2

Since 171 (4, we conclude from Lemmas 3.1 and 3.5 that

q+l- + m+a*)uI’+ dx <- c(/22+

holds for some constant c, and consequently that

1I(/1) I(/)1 <= cl/-/1( l+a.o ’+ +’). t

LEMMA 4.3. There exists a sequence (/,) ofpairwise distinct constants Ix, (0,/o)
such that lim,_.oo/, 0 and A,. < 0 holds for all n.

Proof. Suppose that A, => 0 holds for all / (0,/o). Then, according to Lemma
3.8, h,, 0 holds for all/ (0,

Now, Lemma 4.1 implies I’(/)=0 for all / /. Moreover, Lemma 4.2 shows
that I(.) is absolutely continuous on [0,

Hence, from Theorem 18.15 in [6], we conclude that I(. is constant. But I(/)
I(/o) < 0 for all/ [0,/o] contradicts I(0) 0. Thus, there exists a constant/1
such that A,, < 0. Next, repeating this procedure, we can find a/2 (0, min (/1,1/2)) so
that A,: < 0. Moreover, by induction we can show that for each n there is a constant
/, (0, min (/,_1, l/n)) so that A,. <0. r!

LEMMA 4.4. The sequence (ix,) may be chosen as in Lemma 4.3. Then, we have
lim,_. A,. 0.

Proof Since A,. <0, it follows that Ilu.oll== . (see Lemma 3.9) and that
tz.- q+lu.ol)+’ dt (see Lemma 3.6). Now, the asseion follows from Lemmas 3.1 and
3.5 and the fact that , 0 as n .

Proof of eorem 1.2. Let u, u,. and A, A,.. Then, from Lemmas 3.1 and 3.5,
we obtain that

(4.6) ]]u, 11+ f lqllu.] 2+, dt+ f rlu.]2+ dtO
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as n-->. Moreover, Lemma 2.1 and (4.6) imply that Ilu ll,- 0 if p[2,]. The
remaining assertions follow from the above results.
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SOME ERGODIC THEOREMS FOR SOLUTIONS OF HOMOGENEOUS
DIFFERENTIAL EQUATIONS*

KRZYSZTOF WYSOCKI"

Abstract. Consider x’ =f(x), where f is defined on a cone K with nonempty interior in a Banach space
X. This paper studies the conditions on f that ensure that the directions of the solutions, x(t)/]lx(t)]],
converge to the same point u K no matter what initial conditions are. Problems of this type often arise
in some models from population biology. The results are obtained for maps that are homogeneous of degree
1. In the proofs Hilbert’s projective metric is used.

Key words, cones, eigenvectors, Hilbert’s projective metric, irreducible operators, order-preserving flows,
homogeneous differential equations
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Introduction. In this paper we investigate the asymptotic behavior of directions
of solutions of homogeneous differential equations.

More precisely, ifK is a cone with nonempty interior in a Banach space X, f" K --> X
is positively homogeneous of degree 1 and x(t, :) denotes a solution of x’ =f(x), x(O)
r, we ask when

x(t, :)
->uK
IIx(t,

for all s in the interior of K.
This question arises in many places. It appears in some problems in mathematical

economics and in some models from population biology; see [9], 14]. In the population
biology literature results concerning this type of the behavior of the solutions are called
"ergodic theorems." Here the term "ergodic" refers to the behavior of solutions which
is independent of the initial conditions.

We will study this question under an additional assumption that the flow generated
by x’ =f(x) is order-preserving. In recent years several authors have analyzed conver-
gence of bounded trajectories of certain types of differential equations by exploiting
order-preserving properties of their flows; see, e.g., Hirsch [4]. In this article we use
a simple fact that order-preserving flows which are also homogeneous of degree 1 are
nonexpansive with respect to so-called Hilbert’s projective metric d.

Our problem is also related to the question about eigenvectors of cone maps which
are homogeneous of degree 1. If f:K-->X is homogeneous of degree 1 and
x(t, )/llx(t, )11- u for all sint K, then u is necessarily an eigenvector off, and if
u int K, then f has a unique eigenvector u of norm 1 in int K. Observe that if X is
finite-dimensional andf is homogeneous of degree 1 withf(K

_
K, then an application

of Brouwer’s fixed point theorem implies that f has a normalized eigenvector in K.
We will consider two possibilities: convergence of directions to an eigenvector in int K
and to an eigenvector in 0K.

In 1 we recall a few facts about cones and linear cone maps. In particular, we
define Hilbert’s projective metric d and list some of their properties.

The fact that d is a metric on So- {x s int K, [Ix]l- 1} and that topologies of So
induced by d and ]l" are identical makes Hilbert’s projective metric a useful tool in
our considerations.

* Received by the editors December 26, 1990; accepted for publication (in revised form) August 31, 1992.

f School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332.
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In 2 we give proofs of main results. Convergence of directions to an eigenvector
in int K is considered in Theorem 2.1. The following is a special ease of this theorem:
Suppose that f:K-R" is homogeneous of degree 1 and the flow of x’=f(x) is
order-preserving. Assume thatf has an eigenvector u of norm 1 in int K and that f’(u)
exists, and f’(u)+ aI is a nonnegative irreducible matrix for some a > 0. Then for any
xint K, x(t, Xo) is defined in int K for all t->_0 and x(t, Xo)/I]x(t, xo)ll- u.

The second possibility, convergence to an eigenvector in OK, is considered in
Theorem 2.1. This case presents some difficulties. A complication here is that f is
defined only on K and may not have a Fr6chet derivative at any point of OK. Fr6chet
differentiability of f at an eigenvector u is replaced by the existence of a Gateaux
derivative at u. In fact, many maps of interest have a Gateaux derivative at points of
OK.

In 3 we illustrate an application of these results to particular classes of maps
which were introduced and analyzed by Nussbaum in [7] and [8]. Finally, let us
mention some related problems which are not considered here. We can consider the
time-dependent differential equation x’=f(t, x), where f:R+ x K X. In this situation
there are no obvious candidates for asymptotic behavior of solutions, but we can ask
for a condition on f which guarantees that any two solutions behave in a similar way.
For instance, when

x(t, Xo) x(t, x)
Ilx(t, Xo)ll IIx(t, Xl)ll

for all Xo, xl int K

or when any two solutions are asymptotically proportional, i.e.,

x,(t, Xo)
Xi( t Xl)

where ci is a constant independent of initial condition and xi(t, is the ith component
of x(t,. if X R"? These questions were studied by Birkhoff and Kotlin in [1] for
systems of linear differential equations and asymptotic proportionality by Thieme in
[13] for sublinear difference and differential equations.

In [ 11], Schanbacher obtained results about behavior

T(t)f
IIT(t)fll

as t--) O,

where { T(t)} is a strongly continuous semigroup of positive linear operators on a
Banach lattice E and f an element of a positive cone in E.

1. Preliminaries. In this section we state some results on cones in Banach spaces
and so-called Hilbert projective metric.

Let X be a real Banach space. A subset K of X is a cone if K is a closed, convex
set such that AK_ K, for all A >=0, and K ffl (-K)= {0}. A cone K induces a partial
ordering on X by x y if and only if y-x K. We shall write x < y if x y but x y,
while x << y indicates that y-x int K. Two elements x, y K are comparable if there
exist positive numbers a,/3 such that

ax <-_ y <-_ fix.
A cone K

_
X is called normal if there is a constant M > 0 such that for any x, y s K

if x _-< y then IIx --< M Y II.
By K* we will denote dual cone, i.e.,

K* {q, X*; q,(x) >= 0 for all x K}.
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It is easy to see that if x int K, then 0(x)> 0 for all K* and that x OK if and
only if O(x)= 0 for some 0 K*.

Throughout this paper we will always assume that the interior of K, int K, is
nonempty and that K is normal.

If x and y are comparable, following notation in [2], we define numbers m(y/x)
and M(y/x) by

m() =sup {a >0; ox<-y},

M() inf {fl > 0; y_-< fix}.

DEFINITION 1.1. If X and y are comparable elements of K and a m(y/x) and
M(y/x), the Hilbert projective metric d(x, y) is defined by

d(x, y) := log fl--.
If x and y are nonzero elements of K which are noncomparable, we set d(x, y)= .

It is not difficult to show, see, e.g., [2], that for all x, y, z in K\{0} we have that

d(x, z)<-d(x, y)+ d(y, z),

d(x,y)=d(y,x),

d(x,y)=O<=y=ax for some a > 0, and

d (ax, fly) d (x, y) for all a,/3 > 0.

It follows that d is a pseudometric on int K and a metric when restricted to So :=
{vint K; Ilvll 1). Moreover, there is a constant M>0 such that

IIx-yll-<- M[exp d(x, y)- 1]

for all x, y So, and if u int K and Br(u) int K, then

d(x, u)<- log(r+ llx- ull) for all x e Br(u).
r-IIx-ull

The above inequalities imply that II, and d induce the same topology on So. In [14],
Thompson has introduced an interesting variant of Hilbert’s projective metric. If
x, y K\{0} are comparable, Thomson defines d(x, y) by

d (x, y) -max log M log M

and if x, y K\0 are not comparable, d(x, y)- o.
The restriction of to int K is a metric and I1" and give the same topology

on int K. For more information about Hilbert’s projective metric and its applications
we send the interested reader to Bushell [2], [3] and Nussbaum [7], [8].

We will also need few results concerning linear cone maps.
If L’X X is a bounded linear map, L has a natural extension L to the com-

plexificatio " of X, i.e.,

X {x + iy; x, y X},

IIx/ iYl[ :-- sup IIx cos 0/y sin 01l, and
0[0,2r]

L(x + iy) Lx + iLy.
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We will assume that whenever statements about spectra of L are made they refer to
/ defined on ’.

By r(L) we will denote the spectral radius of L and by re(L) the essential spectral
radius of L. The essential spectral radius of L, re(L), can be defined (see [6]) by

re(L)= lim (q(Ln)) l/n,

where

q(L) inf {IlL + K II; K is a compact linear map}.

It is proved in [6] that if L L(X) and L(K)_ K, and re(L)< r(L), then L has an
eigenvector u K with an eigenvalue r r(L) and L* has an eigenvector u* K* with
the same eigenvalue r r(L).

If L is compact this result is the Krein-Rutman theorem.
Moreover, if )t tr(L) and ])tl> re(L), then Z is an eigenvalue of finite algebraic

multiplicity and A is an isolated point of tr(L).
DEFINITION 1.2. Let LL(X) be such that L(K)_ K. The map L is called

irreducible if (AI L)-l(x) int K for any x K\{0} and any )t > r(L).
Remark 1.1. One can define an irreducible map even if int K is empty (see [10]).

The definition in [10] agrees with the one above when int K is nonempty.
If K is the standard cone in Rn, i.e., K-{x; xi_->0 for 1_-< i_<- n} and L is a

nonnegative matrix the above definition is equivalent to the following one: L is
irreducible if for each pair (i, j) with 1-< i,j <-n there is an integer p such that the
entry in row and column j of Lp is positive.

The next result provides information about uniqueness of positive eigenvectors
of L and L*. In the special case, X R, it is a classical result of Perron and Frobenius.

THEOREM 1.1 [10]. Let LL(X) be irreducible, and r=r(L)>O is a pole of
(zI-L) -.

Then we have
(1) r is a pole of order 1; and
(2) L and L* have eigenvectors u int K and u* int K*, respectively, with eigen-

value r;
(3) dim ker (rI- L) 1.

2. Some ergodic theorems. Let us consider the differential equation

(1)
x’(t) =f(x),
x(0) Xo int K.

We are interested in the conditions on f which will guarantee that x(t, Xo)/llx(t, xo)ll
converges to the same point of int K, no matter what Xo is. We start by proving a
simple lemma which provides the candidate for a limit of x(t, Xo)/llx(t,

LEMMA 2.1. Assume that f’int K-X is a locally Lipschitz map which can be
continuously extended to K. Assume that f is positively homogeneous of degree 1, i.e.,
f(tx) tf(x) for all > 0 and x K, and that any solution of is defined for all >-_ 0
and stays in int K. If

x( t, Xo)
iix(t, Xo)llu, t- for allxointK,

then u is an eigenvector off
Proof Observe that by homogeneity off and uniqueness of solutions, we have

(2) x(t, AXo)= Ax(t, Xo)
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for any xoint K and A>0. Take $ K*\{0} so that O(u)= 1. Then it follows that

X(t, Xo)
(3)

O(x(t, Xo))
u.

From continuous dependence of solutions on initial conditions and (2) and (3) we get

x(s, xo)
X(t, U) IX(t,

X t,
(X(S, Xo))]

x( + s, Xo)
=lim =u for any >- O.

s-oo O(x( + s, Xo))

Hence x(t, u) O(x(t, u))u for any ->_ 0.
After differentiating the above equality we obtain

f(x( t, u)) X’( t, u) O(x’( t, u))u

O(f(x(t, u)))u.

Now our claim follows by taking the limit as 0+. U
The following definition will be useful in our considerations.
DEFINITION 2.1. Let X be a Banach space with ordering induced by a cone K

and f" K X be locally Lipschitz. We say that the flow generated by (1) is order-
preserving if x(t, Xo) -<- x(t, xl) for all >- 0, whenever Xo -< Xl.

Remark 2.1. In practice it can be difficult to check that the flow is order-preserving.
When f" K X satisfy: whenever x =< y with y x OK there is K*\{0} for

which b(y-x) =0 and d/(f(x))<-(f(y)) then, as it is shown in [5], the flow of (1)
is order-preserving.

If K is the standard cone in R and f" K - Rn, then the above condition implies
that the flow of (1) preserves ordering if whenever x, y are in K with xj-< yj for all
1 _-<j <- n and xi yi for some 1 _-< _-< n, then f(x) -<_f (y), where f denotes the ith
component of f.

Our interest of order-preserving flows stems from the following simple lemma.
LEMMA 2.2. Suppose that f’intKX is locally Lipschitz and positively

homogeneous of degree 1. If the flow generated by (1) is order-preserving, then

d(x(t, Xo),X(t, xl))<=d(xo, xl) and d(x(t, Xo),X(t, Xl))<=d(xo, xl)

for all Xo, x int K and >- O.
Proof. Let Xo, x int K and a m(x/xo) and fl M(x/xo). Then, by definition

of Hilbert’s projective metric, we have that

aXo<-X<-_Xo and d(xo, x)=log

Since the flow is order-preserving and f is homogeneous of degree 1,

ax( t, Xo) x(t, Xl) X( XO)o

This implies that

x(t, Xl,) M(X(t x1)
a -< m X(t, Xo)] x(t, Xo)/--< fl’
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and so

d(x( t, Xo), x( t, x,)) <- d(xo, x).

The proof for d is similar. 13
Using this lemma we prove the following.
LEMMA 2.3. Let f" K X be continuous and lint 1( locally Lipschitz. Assume thatf

is positively homogeneous ofdegree 1 and that theflow of (1) is order-preserving. Define
s- {v K; 1} and So {v int K; 1}. Suppose that there is u S and > 0
such that

x( t, Xo)
ina IIx(

for all xo 6 W {v 6 So
Then it follows that

limt_,oo x(t, xo)

for all Xo So.
Proof. Let

,oo IIx(t, xo)ll
Because U and So is connected it suffices to show that U is open and closed in
the norm topology of So. To see that U is open we take y U and to> 0 such that
X(to, Y)/llx(to, y)[[ W. Let e>0 be such that {z So; d(x(to, y),z)<e}c W. Define
V {z So; d (y, z) < e}. Since the topologies induced by I1" and d on So are identical,
V is an open neighborhood of y in So. It suffices to show that V U. Take Yl V.
Then d(x(t,y),x(t, yl))<=d(y, yl)<e and, by definition of e>0, it follows that a=
X(to, yl)/llX(to, y)ll w. Hence

lim 11 x(*’a)I[IIx(s, a)ll-u -0

and, since

x(s, a) x(s + to, Yl)
IIx(s, a)ll IIx(s+ to, yl)ll

we get that

]ina IIx(t, Y)II-u --0.

This proves V
_

U.
To see that U is closed, let {xn} U be such that limn_. IIx- xoll 0 for some

Xo So. Then lim,_. d(x,, Xo)= 0. We know that there is a constant M> 0 such that

IIx-yll M[ed’y)- 11 for all x, y e So.
Take e > 0 and no N so that

Eed(X’X"o 1 <-
2M"
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Since Xno U, there is to> 0 so that

IIx(t,x"ox(t, Xo)II
Then

II-u < forallt_-->to.

x(t, Xo)
<

x(t, Xo) x(t, x.0) +-IIx(t, Xo)
u

IIx(t, xo) IIx(t, Xo)II 2

<--_ M[ed("("")’(""o)) 1]+
<_ M[ed(o,X.o) l +- <= e.

Hence Xo U and U is closed. !’!
Note that if Eo={vint K; q,(v)= 1} and So= {v int K; I111-1}, then the map

So v --> tov Eo, where to is a unique > 0 so that tov Eo, defines an isometry betwe6n
(Eo, d) and (So, d). This implies that topologies induced by II. and d on Eo are the
same.
Now, ifE={vK; q,(v) 1} and if uE and 3>0 are such that

limX(t’x) IIt-.oo O(x(t, Xo))
u 0 forallxoW={vo, llv-ull<},

then a minor modification of the proof of Lemma 2.3 shows that

--, O(x(t, xo))-u =0 forallxoeEo.

Now we state our result.
THEOREM 2.1. Let f’int K X be continuous and flt:locally Lipschit and posi-

tively homogeneous ofdegree 1. Assume that theflo of (1) is order-preserving and that
f(u) u for some u e int K ith u 1 and e . Assume thatf is differentiable at u
and that there is a constant o such that A (I +f’(u)) sends K into itself, r(A) < r(A),
and A is irreducible. Finally, suppose that suposo II/(v)ll < oo.

Then for any xo e int K, x( t, xo) is defined for all >- 0 and x( t, xo) e int K, and

X( t, Xo)
--> U as t--> .

IIx(t, Xo)II
In the proof of this theorem it will be more convenient to use x(t, Xo)/q,(x(t, Xo)),

where q, K*\{0} is such that q,(u)= 1. Observe that, by remarks following the proof
of Lemma 2.3, in order to prove Theorem 2.1 it suffices to find > 0 such that
x(t, Xo)/q,(x(t, Xo)) --> u for all Xo Eo with Ilxo- nil < .

For the proof we shall need a few more lemmas.
LEMMA 2.4. Let L L(X) be such that L(K) c_c_ K and Lu -<- ru for some u int K

and r > O. Then the spectral radius of L, r( L), is less than or equal to r.

Proof. Define X. {x X; -au <= x <= au for some a} and Ilxll
inf {a => 0;-au <= x <= au}. Then X, is a normed space with the norm I1" 11,, and since
K is normal and u int K, we have that X, X and the norms I1" II, II" I1 are equivalent.
It follows that

r(L) lim L" lu/n.
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By definition of I1" I1,, we have

-IIx II.u x IIx II.u for all x c X.

Since L(K)_ K and Lu-< ru, iteration of the above inequalities gives

-Ilxllru L"x <= Ilxll,r"u for all n c N.

Hence L" II. r" and the assertion follows.
For the proof of the next lemma see [7].
LEMMA 2.5. Let L L(X) be a bounded linear operator such that L(K) K and

r(L) <- r. Assume that Lu <- ru for some u K{0}. Let q, K* be so that q,(u) 1 and
Ax Lx- (Lx)u. Then r(A) <- r.

Recall that if L L(X), then the modulus of stability of L is defined by

s(L) sup {Re A; A c r(L)}.

LEMMA 2.6. Let Lc L(X) be such that L(K)_ K and Lu <- ru with u c int K and
r>O. Assume that re(L)<r(L) and that L is irreducible. If Ax=Lx-d/(Lx)u,xX,
where d/ K* is such that O(u)- 1, then

s(A) < r.

Proof Lemmas 2.4 and 2.5 show that r(A)-< r. Hence it suffices to show that
r(A) < r. The proof proceeds by contradiction, so we assume that r(A) r.

Since x O(Lx)u is a compact linear map, it follows that re(A)= re(L) and

re(A)<r(A)=r.

Thus r is an eigenvalue of A. Denote by v a corresponding eigenvector. There are two
cases to consider, namely:

(1) Lu <= ru but Lu ru; and
(2) Lu ru.
Case (1). We will show that if Lu <= ru but Lu ru, then r(L) < r. It is not difficult

to see that if Lw txw for some w c K\{0} and/z > 0, and Lu <= ru, then/z-< r. Now,
take A > r(L) and define x ru Lu K\{0} and y (AI- L)-lu.

Because L is irreducible, y int K and

(AI L)-lx r(AI L) -1 u L(AI L) -1 u ry gy c int K.

Hence there is e > 0 such that

Ly<-_(r-e)y.

Because re(L)< r(L), L has an eigenvector in K with an eigenvalue r(L), which, in
view of the remark above, satisfies r(L)<= r-e.

On the other hand,

Lv- tp(Lv)u rv,

and, since r(L)< r, we have v=-tp(Lv)(rI-L)-l(u).
Let z (rI- L)-lu. Then O(z) > 0 and 0= 0(v) -tp(Lv)O(z). This implies that

Lv rv and r(L)= r, a contradiction.
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Case (2). We know that L* has an eigenvector w* corresponding to r and
w*(u)=l.

Let

Define A :X X by

Y:= {x e X; O(x)=0}

Y := {x e x; w*(x) 0}.

and

A1 :-- Lx- w*(Lx)u.
Since X is a direct sum of { tu; R} and of Y and both of these subspaces are invariant
under A, we have that

o-(a) o-(a Y) w {0}.

Let B: Y Y and C: Y Y be given by

B(y) y- w*(y)u and

C(z)=z(z)u.

Then CB IiY BC IiY and CLB A. It follows that

(4) r(AI Y)=r(LI Y,).

As the algebraic multiplicity of r is equal to 1 and u Y1, we find by (4) that

r(A] Y)= {A; A 6 r(L), A # r}.

Hence r o’(A) and again we have a contradiction. [3

After these preliminary lemmas we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Observe that without loss of generality we can assume that
f(u) 0, i.e., h 0. In fact, if g(x) -hx +f(x) and y(t, Xo) e-X’x(t, Xo), then g(u)
0, g has the same properties as f and y’(t, Xo) g(y(t, Xo)).

Homogeneity off implies that

(5) x(t, aXo) ax(t, Xo) for any a > 0 and Xo int K.

Take Xo int K and let/3 > 0 be such that u <= flXo. Because the flow of (1) is order-
preserving and f has linear growth, we have that

u <- flx( t, Xo) fort_->0

and so x(t, Xo) int K for _-> 0.
Let ,K*\{0} be so that O(u)=l and Y,o={vintK;d/(v)=l}. It is more

convenient to work with

(6)

x(t, Xo) x(t, Xo)
y(t, Xo) than

(x( t, Xo)) IIx( t, Xo) II
Then y( t, Xo) satisfies

y’( t, Xo) f(y( t, Xo))qt(f(y( t, Xo)))y( t, Xo)

y(O, Xo) Xo
,(Xo)

Moreover, y(t, Xo) int K for all -> 0.
We claim that y(t, Xo)-> u as t-> o for all Xo int K.
Let Y= {z X; O(z) 0}. Note that if x X, then it can be written as

x x- q,(x)u + q,(x)u,
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where x-$(x)u Y. Hence X=XoY, where Xo=span(u). Write y(t, Xo)
z(t)+a(t)U, with z(t) Y and a(t)R.

Since ,(y(t, Xo))= 1, we see that a(t)= 1, and so

Of course, z(t) satisfies

y(t, Xo)=Z(t)+u, t>-O.

z’(t)=h(z(t)),
(7)

z(0)- Xo
,(Xo)

u,

where h(z)=f(u+z)-(u+z)$(f(u+z)). Thus it is enough to show that z(t)-->O,
t--> c. The equation (7) can be written as

z’(t) Bz(t)+ g(z(t)),
(8)

X0z(0) Zo- g,(Xo)
u,

with g" Y--> Y satisfying

and

g(z)ll _ o as z - 0

Bz h’(O) f’(u)z- $(f’(u)z) := Lz- $(Lz)u.

By the variation of constants formula solutions of (8) take the form

(9) z(t) entzo + en(t-S)g(z(s)) ds.

Let Ax Ax(Ax)u with A aI + L. Note that, since f(u) =0 and f is homogeneous
of degree 1, we have that

Lu =f(u)=0.

Since Au au, u int K, Lemma 2.2 implies that r(A) <= a and since re(A) < r(A),
Lemma 2.4 shows that s(A)<a. Because Az=(aI+ B)z for any z Y we see that
r(AI Y)=r(B)+a. This shows that s(B)=/z<0. Hence Ile’ll<=Meo’ for some M
and/z </Zo < 0.

From this, by Gronwall’s inequality applied to (9), we obtain

z( t, Zo)II -< M1 e’’,
where M1 > 0 and/Xl < 0 for Zo close to zero.

Hence z(t, Zo)--> 0 for Ilzoll < o, where go is small. This implies that

x(t, Xo)
-->u foranyxo{VXo; Ilv-ull<},(x(t, Xo))

with small. Application of Lemma 2.3 finishes the proof.
In R", Theorem 2.1 takes the following simple form.
COROLLARY 2.1. Let K be the standard cone in R" and f:int K--> R be a locally

Lipschitz map. Assume that the flow generated byf is order-preserving, thatf is positively
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homogeneous of degree 1 and f(u) Au for some u int K with u 1 and A R.
Finally, assume thatf is differentiable at u and if

L:=f’(u)=
kOx

then A := I+ L is an irreducible matrix for some a > 0.

X( t, Xo)
i X t, xo)

u

for all Xo int K.
oof Compactness and the Perron-Frobenius theorem imply that re(A)= 0 and

r(A) > 0. e other assumptions of Theorem 2.1 are trivially satisfied.
Remark 2.2. Obsee that Theorem 2.1 and Corollary 2.1, and Lemma 2.3 remain

true if we replace the assumption that the flow of (1) is order-preseing by a weaker,
namely that the flow is nonexpansive with respect to Hilbe’s projective metric d.

If in Theorem 2.1, f(u) 0, i.e., A 0, then any point of {u; 0} is equilibrium
and we can ask about convergence of x(t, Xo) for any Xo int K.

PROPOSITION 2.1. Assume that fsatisfies all assumptions of eorem 2.1. and that

en there is a continuous function y" int K R+ such that for any Xo int K

I[x(t, Xo) (Xo)Ull o as .
Moreover, is order-preserving and homogeneous of degree 1.

oof Recall that the topologies induced by II" and Thompson’s metric on
int K are identical. Therefore, it suffices to prove the result for the metric d. Let {t}
be any increasing sequence converging to infinity.

It follows from Theorem 2.1 that

x(t, Xo)
(10) lim (x( t, Xo))

u

for any Xo K, where K*{0} is such that (u)= 1.
Since x(t, u)= u and x(t,. is order-preseing and homogeneous of degree 1, a

sequence {d(x(t, Xo), u)} must be decreasing.
Let limd(x(t,Xo),U)=a. If a=0, then x(t, Xo)(Xo)U with (Xo)=l.

Hence we can assume that a > 0.
Then

-( x(t,o) .(11) d x(t,Xo), (x(,Xo))]a.
Since d(y, ay)= ]log al, the above implies that

(x(t,Xo)){e-, e} asn.

Without loss of generality we may assume that (x(t, Xo)) e for some subsequence
{t}. As x(t, eu)= eu and the flow is order-preseing, Lemma 2.2 implies

d(x(t, Xo),eu)d(x(t,Xo),eu) for t.
This implies that

x Xo -> e u as t-->oo,

and that ’(Xo) e%
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If Xo, Yo s int K are such that Xo--< Yo, then

y(Xo) u lim x(t, Xo) <-- lim x(t, Yo) y(yo)u,

which proves that 3’ is order-preserving. Homogeneity of y follows from the
homogeneity of x(t,. ).

To verify that 3" int K R+ is a continuous function, take Xo int K and e > 0.
Let p > 0 be such that ply(xo)l < e. Define B {x int K; -pxo < x- Xo < pXo}. Then B
is open in int K and, since 3’ is order-preserving and homogeneous of degree 1,

for all x B.
Then we have

(1 -p)T(Xo)--< y(x) _-< (1 + p) T(Xo)

 (xo)l  l (xo)l <
for all x B, which shows that y is continuous.

Until now we have assumed that f has an eigenvector in the interior of K. But
there are examples of maps which have eigenvectors in OK and not in int K. One of
the difficulties in this case is that as f is only defined on K it may no longer be Fr6chet
differentiable at any point of the boundary of K. The Fr6chet differentiability of f at
u will be replaced by the existence of a GSteaux derivative at u. In fact, many maps
of interest possess Gteaux derivative at points of 0K. We restrict our attention to the
case: X R" and K the standard cone in R".

It will be convenient to introduce some notation.
If x (Xl,..., x,) R", then we define the support of x by

supp (x)={i{1,..., n}; x, # 0}__. {1,..., n}.

If J is a subset of {1,..., n} let

R {x e R"" supp (x) J}

Kj {x K; supp (x) c_ J},

Cj ={x6R"; xi->0 for all it:J},

P orthogonal projection onto R,

Let f" K R" be a continuous map, u OK and J supp (u). We say that b" Cj - R"
is a GSteaux derivative off at u if

f(u + tx) f(u)
(12) lim" b(x) for all x C.

t0

Note that in general b is not linear.
The following properties of b can be deduced from properties of f.
LEMMA 2.7 [8]. Let f K- R" be a continuous map and u OK with J= supp (u).

Let qb Cj R be a Gteaux derivative off at u. Iff is Lipschitz on Br(u) c K with a
constant k, then b is Lipschitz with the same constant k and the limit in (12) is uniform
in x Cr such that IIx -<- 1,

If g is a positively homogeneous map of degree 1 such that g(K)_ K, define

rtc (g) sup {h => 0; g(v)=Av forsome vK\{0}},

and rK(g)=0 if g has no eigenvector in K.
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Now we can state the next theorem.
THEOREM 2.2. Assume that f: K-R is continuous and jint is locally Lipschitz.

Assume that fgenerates order-preserving flow, f is homogeneous of degree 1 and that

f(u)=Au forsomeuOK\{O} with Ilull=l and

andf has no eigenvectors in int K.
Let J supp (u). Suppose that there is an open neighborhood U ofu such thatft:

is Lipschitz.
Let h aI +ffor some a >- O, be such that h(K) K and that the Gteaux derivative

d of h at u satisfies

dp(x) dp(Px) + dp( Qx)

for any x Cj. Finally, assume that A:= blR is linear and irreducible and that
rK (QjqbQ) < A. Then for any Xo int K, x(t, Xo) s int K for all >- 0 and

x( t, Xo)
irn x(t, x)ll -’-U.

Proof. As in the proof of Theorem 2.1, we may assume that a =0 and h =f.
Because f(0) 0 and f(K) c__ K, it follows that x(t, Xo) --> 0. Hence x(t, Xo) => Xo int K,
and since f has a linear growth, x(t, Xo) int K for all t-> 0 and Xo int K.

Let K*\{0} be such that tp(u)= 1. Clearly, it is enough to show that

x(t, Xo)
lim, ,(x(t, Xo))

Furthermore, application of Lemma 2.3 shows that it suffices to prove the result for
XoEo={vintK; if(v)= 1} such that Ilxo-nil is sufficiently small. If we write

x(t, Xo)
y(t)= =z(t)+u,

J(x( t, Xo))

then the problem reduces to showing that z(t)-> 0 for XoEo so that ]]Xo-u[] is small.
A simple calculation shows that z(t) satisfies

(13)
z’(t)=f(z(t)+u)q(f(z(t)+u))(z(t)+u):= h(z(t)),

z(O)=xo-U, Xo2.

We have that

lim
1
[h(sz) h(0)] 6(z)(d(z))uAu

sO S

for any z C, and the above limit is uniform in z C, z 1.
Hence

h(z) qb(z)- @(6(z))u Az + R(z),

where

IIR(z)ll

To simplify the notation we write P Pj, Q Qj, zl Pz, and z2 Qz.
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Using the assumptions about we get that

h(z) Az +Q(z) + PC(z) d/(Az + (z)) u Az R(z)

[(A- A)z- ,((A- A)z,)u] + [PC (z2) b((z) Az)u]
(14)

+ Q(z) ;tzd + R(z)

LZl +g(z2)+[Q(z2)-Az2]+ R(z),

where L" R--> R7 and g" Kj,-. R", (J’= {1,..., n}\J) are defined by

Lz [(A-/)z qt((A- X)z,)u],

g(Z2) [PC (z2)- ((z2)- Xz2) u].

Because f is Lipschitz map, g is also Lipschitz and there is a constant M1 > 0 such that

Ilg(z2)ll -< M, IIz211 for any z2e Kj,.

The map L has only eigenvalues with real part less than zero, and so there are constants

M2 > 0 and/x > 0 such that

eLt <- M= e-"t for any -> 0.

Consider Q restricted to Kj,.
Since Q(Kj,) Kj, and r:(QeQ)< A, we see that QeK,, does not have eigen-

vectors in Kj, with eigenvalues _-->h.

Let r/> 0 and B" R,-> RT, be a positive linear map. Let T, := QeK,,+ r/B. Then
T, (Kj,) c_ int Kj,; applying Brouwer’s fixed point theorem, we find w, e Kj, with w,
1 and A, > 0 such that

T,w, A,w,

A standard compactness argument shows that for a sufficiently small r/ we have that

An<A.
Fix r/ so that A < A and let w := w, A:= A. Define

(R,) {x e Rj,, -aw =< x _-< aw for some a > 0},

and IIxllw -inf {a > 0; -aw -< x _-< aw}. Obviously, R, (R,)w and the norms II" and

II" II are equivalent on R,.
Let x K, and/3 > Ilxllw. Then x<_-/3w and

0 -< Q(x) _-< flQ(w) flQ(w) + flrlnw flrlnw

flT,w fl,lBw flA W fl,lBw <-- flA1 w.

From this we deduce that

Q(x)ll --< A x for any x s Kz,.

Since y(t)=z(t)+u>-O and supp (u) J, we see that z(t) C for t_->0. Now, we can
write (13) as a system of two equations

(15) z(t) LZl(t)+ g(zE(t))+ gl(z(t)),

(16) z(t) Q(ZE(t)) Az2(t) + RE(Z(t)),
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where z(t) Zl(t)+ z2(t) Pz(t)+ Qz(t) and Rl(Z) PR(z), R2(z)- QR(z). Observe
that

IIR,()I______JI_ 0 as I111 - 0, i= 1, 2.

The variation of constants formula applied to solutions of (15) and (16) gives

(17) l(t) ezl(O) + e(-g((s)) ds+ e(-Rl((s)) ds

and

(18) z2(t) eatz2(O)+ e’X(t-)Q(z(s)) ds+ e’(t-)R2(z(s)) ds.

These formulas together with IIg() -< Mllz211 and Ilell-< Me-’ giw

IIz(t)ll <-- M=e’’llz,(O)ll / M1M2 e"(’-)llz=(s)ll as
(19)

+ M2 e"’-)llR(z(s))ll as

and

Ilz=(t)llwe’lz=(O)l/;t e-(’-S)llz=(s)llwds/ e(’-llR=(z(s))ll
.0

(20)
<- e"’lz(o)l/ 11 e"(’-)llz=(s)llwds/-- e"( IIR=(z(s))ll ds,

mo
where mo is a constant so that

mollxllw--< Ilxll < mlllxll.
Let /xl=h-hl, /z2=min{/xl,/z}, a=ml/mo and M3=max{M1M2a, a+M2}. Take
e > 0 so that e < min {/9M3, 1/M3}. Then there is 8 > 0 such that

R, (z)ll -< z if z -< , 1, 2.

Put

81
M3 x/M3e + 1

We claim that if IIz(O)ll--Ilxo-ulll, then IIz(t)ll for t_->0. Define to :=
inf {t -> 0; IIz(t)ll- } > o and assume that to <.

For any [0, to], we have

(21)

and

(22)

IlZl(t)llMue’’llZl(O)ll+M1M= e<’-)llz=(s)ll ds

+ eM2 e’’-)llz(s)llds

IIz=(t)lle’lz=(O)l+, e-(’-Sllz_(s)llds

+-- e"(’-s)llz(s)ll ds.
mo
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Taking u(t):= e’llz2(t)llw, the second inequality is equivalent to

(23) u(t)<=tt(0)+A1 u(s) ds eSllz(s)ll as.
mo

If w(t)= .o u(s) ds, the above inequality implies

d
(ew(s))<=e,u(O)+ea, e’llz(,)ll

ds mo
which after integration on [0, t] gives

E e(X_x)s<u(0) ’)ee’ ellz(s)l ds+ IIz(s)llds.eX’tw(t)= (1-ex
moA moA1

Multiplying the last inequality by A1ex and substituting in (22) we obtain

(24)
mo

Since moll IIz=ll mlz=l, we get

(25) IIz=(t)llae"’llz=(O)ll+b e"(’-llz(s)ll as,

where a m/mo and b ea.
Now, using (25) we can estimate the second term in (21):

e"(’->llz=(s)ll dsallz=(O)ll e’(’-)e"s ds

+b e"(’- e"(’llz(,)ll d, ds

=allz=(O)lle"’t+b (t-s)e-"(’-)llz(s)ll ds.

Thus

[[Zl(t)ll (M= + M1Mzat)e2’l[za(O)l]
(26)

+MIM2b e"(’-)(t-s)llz(s)ll ds+eM2 e"(’-)llz(s)ll ds.

Adding (25) and (26) we get that

[Iz(t)ll--< M3llz(O)lle"=’(1 / t)+ M3e e"(’-)llz(s)[[ ds

(27)
+ M3e e2(’-s)(t- s)llz(s)ll ds.

Let a(t) := Mllz(0)ll( / t),/(t) :- e-’llz(t)ll and c:= M3e.
Define N: C[0, to]-> C[0, to] by

(Nv)(t)= (t-s)v(s) ds.

Because (Nv)(t)>= 0 if v(t)>= 0, repeated application of N to both sides of (27) gives

(28) fl(t) <-- ck(Nk’)(t) + E ck+(Nkw)(t)+c"+l(N"+l[3)(t)
k=O k=0

for any n e N and w(t) to fl(s) ds.
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and

It is easy to see that

Nkt )( t)
(2k-- 1)[

(t--s)2k-lt(S) ds

1 Io 2kfl(Nkw)(t)=(2k) (t-s) (s) ds.

As cn+l(Nn+lfl)(t)->O uniformly on [0, to], by taking a limit in (28), we deduce that

ck(t--s)2k-’
fl(t) <-- a(t)+ a(s) ds

k=l (2k- 1)[

IO IO’ Ck+l(t-$)2k
+c (s) ds+ (s) ds

k: (2k)[
(29)

()+ e(’-(s) s+ c (s) s

+ e(’-(s) s

(t)+ e(’-(s)s+ e(’-(s) s.

If (t) e’(t) + Io e’(s) ds, then integration by pas implies

() e’(t) e-’(s) ds

(3o (o+ e’(s

(o +

It follows from (29) and (30) that

e’() N (0) 1+ +2 e(s) ds,

and by Gronwall’s inequality,

etfl(t) N a(O) 1 + t.

Hence

and

/3(t) < a(0) 14-

(31) IIz(t)ll < Mllz(0)ll 14- e3’,

where 1. 3x/-d 1,1,2 < 0.
Because

1 ,/7
IIz(O)ll := ,,,

M3 x/-+ 1
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the above inequality implies

z< t)[I <= 8e3’ for any 0 =< _<-- to,

which contradicts the definition of to. Hence Ilz(t)l _-< 8 for all t_>-0. Now, the same
arguments show that IIz(t)ll<-_e"’ for all t->0 and this completes the proof. q

3. Applications. In this section we will illustrate applications of the results of 2.
One of the problems in applying these results is an a priori existence of an

eigenvector u off satisfying u int K or u 0K and rr (QbQ) < )t. Even for a simple-
looking map these questions can be difficult. We will define classes of maps M, /_, M+
which were rigorously analyzed by Nussbaum in [7] and [8]. To keep this section
self-contained we will quote some of his results.

Suppose that K is the standard cone in Rn. If r R, and tr (trl,..., trn) is a
probability vector, i.e., tri > 0, 1, n and tri 1 define for x int Ki=1

M(x) o’x" ifrO
i=l

and

Mo(X) I] x lim Mrr(x for x int K.
j=l rO

Each of the maps Mrr is obviously C on int K and extends continuously to K. For
each i, let Fi be a finite collection of ordered pairs (r, tr), r R and tra probability vector.

For each pair (r, tr) Fi assume that cr is a positive number. Let

(32) f/(x)= cirMr(X)
(r,o’)r

and f(x) (f(x),... ,f,(x)). Of course, f’int K --> int K and f can be continuously
extended to K.

If f:int K -> int K is a map such that each of its components can be written as in
(32), we say thatf M.

Iff M and each ofthe componentsf has the form (32) with r-> 0 for all (r, tr) F
we write f M/ and if each component f can be written as in (32) with r < 0 for all
(r, tr) F, thenf M_.

Note that the sets F are not uniquely determined by f, for example.(xr) l/r= x.
By (t+, _) we denote the smallest sets of maps f’int K--> int K such that M G
(M+

_
+, M_ _) and (/, t_) is closed under addition offunctions, compo-

sition of functions and multiplication by positive numbers. It is known (see [8]) that
if ft(/, t_), then flintK is C and extends continuously to K and is order-
preserving. Hence, by Remark 2.1, the flow of (1) with f in one of these classes is
automatically order-preserving.

DEFINITION 3.1. If g" int K --> K is continuous, order-preserving and
homogeneous of degree 1 map, then the nonnegative n x n matrix A (a0) is called
an "incidence matrix for g" if whenever aij > 0, there is a positive c and a probability
vector tr such that the jth component of tr, %, is positive and

g(x) >= cx for all x int K.

For maps with incidence matrices Nussbaum proves the following.
THEOREM 3.1. Assume that g:int K--> int K is C 1, g extends continuously to K, g

is positively homogeneous of degree 1 and order-preserving. Ifg has an incidence matrix
A which is irreducible, then g has an eigenvector u int K with u II- 1.
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Many maps in St+ have irreducible incidence matrices. If g t+, then Dxg(x) A
is an incidence matrix for g and Dxg(x), Dg(y) satisfy

(33) aDg(x) <= Dg(y) <= BDg(x)
for some a,/3 > 0, depending on x, y int K.

Having this the following corollary is an immediate consequence of Theorem 2.1.
COROLLARY 3.1. Let f K--> R" be such that for some a >-0 the map g: K--> K

defined by g(x) ax +f(x) is in the class St+. Assume that there is x int K such that
Dxg(X) is irreducible.

Then g has an eigenvector u int K such that Ilull- 1, and for any Xo int K we
have that

x( t, Xo)
IIx(t, xo)ll

Proof. That g has an eigenvector u int K follows from Theorem 3.1. Then, since
Dxg(x) is irreducible and (33) holds, it follows that Dxg(U) is also irreducible. By
Theorem 2.1, if y(t),is a solution of y’(t)= g(y(t)), we have

y(t, Xo) - u for any Xo int K.
lie(t, Xo)ll

But y(t, Xo) etx(t, Xo), x’(t) =f(x(t)) and the conclusion follows. [1

The existence of eigenvectors in int K for maps in the class St_ is more subtle.
Let A be a subset of M_ such that if g A, then for any two elements (r, tr) and

(r’, tr’) of Fi, 1 _-< -< n, we have that tr and tr’ are comparable.
We denote by M the smallest set of functions g:int K--> int K which is closed

under composition and contains A. It is known that if g M, then g:int K--> int K, g
is C 1, order-preserving, and homogeneous of degree 1. Moreover, if Dxg(X) is irreduc-
ible for some x int K, then g has an eigenvector u in int K.

COROLLARY 3.2. Letf int K - R be such that g aI +fbelongs to . Iffor some
x int K, Dg(x) is irreducible, then

x( t, Xo)
limt_o IIx(t, xo)ll

=u foreachxoint g,

where u is an eigenvector ofg in int K.
Proof By the previous remarks the proof is similar to the proof of Corollary

3.1.
Now we will give a result concerning convergence to a boundary point of dK for

maps in St_. We have the following.
PROPOSITION 3.1. Let g St_. Then g is Lipschitz on K. If u OK -{0}, then for

all x s C,
lim t-l[g(u+ tx)-g(u)]= 4(x)
t-

exists and qb t_.

Moreover, the above limit is uniform for u Cj such that u II--< 1. For all u Cj

ck u ck Pau + b Qju

and Ckli?, is linear. IfDxg(X) is irreducible at x int K and g(u) Aufor some u OK\{O}
with supp u J and

rr QjqbQj <- A

then g has no eigenvector in int K.
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Using the above proposition and Theorem 2.2 we obtain the following.
COROLLARY 3.3. Assume thatf: K --> R and g is defined by g(x) ax +f(x), a >= O.

Assume that Dxg(x) is irreducible for some x int K and that g(u)= Au for some
u 0K\{0} with supp (u) J and Ilull 1. Moreover, assume that

r,, Q6Q < x
Then for any o int K,

(34)

x(t, o)
ina IIx(t, o)11

u.

Proof. The proof follows from Theorem 2.2 and the previous proposition.
We will close this section by considering a very special example. Let f: K -> R4 by

f,(x) a,x, + lO(X1, x2) - ’lO(X1, x4) -" tl O(x2, X3)

f2(x) a2x2 + fl20(Xl, x2) + 3’20(x,, x4) -- 20(X2, X3),

A(X) O3X -- 30(X3, X4) "- 30(Xl X4) -[" 30(X2,

A(X) t4X4-- 40(X3, X4) -- ’/40(Xl, X4) -- 40(X2, X3).

Here 0 stands for the harmonic mean:

[ ]_1st 1 1 1
O(s,t)--s/t 2 s-l+2-t-

The coefficients/3i, yi, i$i satisfy
(H.1) fli, y, t are nonnegative for 1 _-<i -< 4;
(H.2) 1, ’)/2, "}/3, 4 are strictly greater than zero;
(H.3) O < O2 / 2, O2 < O1 / 1, O3 < t4/ 4, O4 < t3 / 3"
It is easy to see that if a > lal for 1 _-< i-< 4, then g aI +f is in the class
This four-dimensional map has been introduced by Schoen in his studies of a

model from the population biology.
The following is known about f; for the proof see [8].
Let a, aER, and b, ci_->0 for i- 1,2, and assume that at least one of bl, Cl, bE,

or c2 is positive. Consider the equation

a + bt(1 + t)-lct a2+ bE(1 + t) - + 2t-1.

If this equation has a positive solution, then it is unique, say ’. Define

tr(al, bl, Cl, a2, b2, c2) al + b’(1 + r)- + Clr.

If Cl 0 and c2> 0 and a2 -> a / bl, let

tr(al, bl, Cl, a2, b2, c2)= a2.

If c > 0 and c2 0 and a _>- a2 + b2, let

tr(al, bl, Cl, a2, b2, c2)= al.

If c c2 0 and al -> a2 + b2 or a _-> al + bl, define

r(a, b, c, a2, b:, c)= max (a, a2).

If

(35) tr(al / ’)/1, 1, 1, 0"2 / 2, 2, ’2) O’(t3, f13, O, 04, f14, O)
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or

(36) or(a3 + t3, 3, 3, o4" ’Y4, 4, t4) o’(o1, 1,0, o2, 2, 0),
then f has no eigenvector in int K.

If neither inequality is satisfied, then f has a unique eigenvector in int K. Having
this we can state the following.

COROLLARY 3.4. Letf be defined by (34) and letfsatisfy (H.1), (H.2), and (H.3).
If none of the inequalities (35) and (36) are satisfied, then

X( t, Xo)
u for all Xo int K,

x t, xo)
where u is the unique normalized eigenvector off in int K.

Proof. It is easy to see that if a >Y: I ,l and g aI +f is in _, then Dg(x)
is irreducible at each x int K. Thus g has a unique eigenvector u in int K, and the
result follows from Corollary 3.2. E1

If fl and/32 are positive and (36) is satisfied with strict inequality, then f has a
unique normalized eigenvector u (ul, u2, 0, 0), ui > 0.

If/33 and 4 are positive and (35) is satisfied with strict inequality, then f has
a unique normalized eigenvector v=(0,0, v3, v4), vi>0. Hence we can state the
following.

COROLLARY 3.5. Iff is as in (34) and either (35) or (36) is satisfied with strict
inequality, then we have

x( t, o)
}ina IIx(t,  o)II

w for any o int K,

where w=(wl, w2, O, O) if fll,/32>0 and (36) holds with strict inequality, or w=
(0, 0, w3, w4) if fl3,/34> 0 and (35) holds with strict inequality.

Proof. The proof follows from Corollary 3.3. El
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correlated sequence in terms of a related multivariate stationary sequence are obtained. Algorithms for
determining this best linear predictor and this predictor error are also outlined.
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1. Introduction. A sequence X,, n Z of elements of a Hilbert space H is called
a periodically correlated sequence (PCS) if there exists an integer T> 0 such that for
any , nZ,

(X./, X.) (X./+, X./).

The smallest such T is called its period. (If T 1 the sequence is called stationary.)
For a PCS X., its correlation function

R(n,z)=(X.+,X.)
is periodic in n with period T and, therefore, has the representation [1]

T--1

(1) R(n, )= E Rk(Z) exp (2rikn/T).
k=0

For convenience we complete the definition of the functions Rk(), k =0,..., T- 1 to
all integers using Rk(z)=

There is a very close tie between the class of PCS’s and that of multivariate
stationary sequences (SS). For example it is well known and easy to check that" A
sequence X. is periodically correlated if and only if the T-variate sequence _Y.
(Xnr XnT+I, Xnr+r_l)r constructed from consecutive blocks of length Tfrom the
process X, is stationary. Another such close tie is the subject of the following result
proved in 1].

THEOREM 1.1 (Gladyshev). Function (1) is the correlation function of some PCS
if and only if the matrix-valued function

_R (7") (Rkk,(7")) T-k,k’=0

with

(2) Rkk’(r) Rk’-k(r) exp (2rikr/ T),
is the matrical correlation function of some T-variate SS _Z.

Using this theorem and the well-known spectral representation of multivariate
SS’s we can show [9], [10]

(3) Rk(r) exp (--irA) dFk (h),

* Received by the editors December 2, 1991; accepted for publication (in revised form) August 6, 1992.
This research was supported by U.S. Army Research Office grant DAAL 03-91-G-0238 and Office of Naval
Research grant N00014-89-J-1824.

" Department of Mathematics, Hampton University, Hampton, Virginia 23668.
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where dFk’S are complex-valued measures defined on [0, 2r). Identifying [0, 2r) with
the unit circle in the standard way we can extend the definition of the measures dFk
beyond the interval [0, 2r).

We note from formulas (1) and (2) that the periodically correlated sequence X,
must be harmonizable, i.e.,

X, ei"a dZ(A),

where dZ()t) is an H-valued measure satisfying
T--1

(Z(A’), Z(A))u E Fk(A’ c (A- 2rk/T)),
k=-T+l

(A-a stands for the set of all points A- a, with A A). In other words the spectrum
of the PCS X, is concentrated on 2T-1 straight line segments A-/z 2rk/T, k
-T/ 1,..., T-1 contained in the square [0, 2r)x[0, 2r). For more information on
PCS’s, see [1], [3], [4], [7].

It turns out that this second associated multivariate SS _Z, is more useful for
prediction purposes than the first one. This is because of the fact that it captures more
prediction properties of the original PCS X, (see next section). However, so far no
explicit representation of this _Z process in terms of the original PCS X (in time
domain) is available in the literature, and this is needed for our prediction purposes
here. In 3 we will obtain explicit expressions of the original PCS X, and its associated
multivariate SS _Z, (of Theorem 1.1) in terms of each other. These explicit expressions
play an important role in finding our formulas for the best linear predictor and
prediction error in 4. These expressions seem to be equally important in studying
other prediction problems concerning the PCS’s.

2. Preliminaries. Let H be a Hilbert Space whose inner product is denoted by
(,), and let T be a positive integer. The direct sum H0),..., q)H of T copies of H
is defined to be the Cartesian product of T copies of H. However, the elements of
H,...,H are denoted by Xo,..., XT-1 rather than by (Xo, Xl,...,XT_l)
which is saved for the space Hr to be defined shortly. It is well known that H,..., q
H with the usual addition and scalar multiplication becomes a Hilbert space when
equipped with the Euclidean inner product

T--1

(X, Y)= Y (X, Y)
j=0

ofX XoO),. 03 Xr-1 and Y Yoq), 03 Yr-1. Throughout this paper the direct
sum H0),..., 03H will be denoted by K.

Following [6], Hr denotes the Cartesian product of H with itself T times, i.e.,
the set of all column vectors _X (X,..., Xr-1) r with X H for all =0,..., T- 1.
We endow the space Hr with a Gramian structure: For _X and _Y in Hr their Gramian
denoted by ((_X, _Y)) is given by

((X_, Y)) [(X’, i,j =0"

We can easily verify that

((_x, _x))_->_0; (_x, _x) =_0 _x =_0;

))_A_X, _, E _A((_x, ))_*
=1 1=1 k=l 1=1
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for any _X, _Xk, HT and any T x T matrices, _Ak, 01- We say that _._X is orthogonal
to _Y in HT if ((_X, _Y)) 0_. A closed subset M_ ofHr is called a subspace if _A_X + _B_Y _M
whenever _X, _Y _M and _A, _B are T x T matrices. It is interesting and easy to see that
_M is a subspace of H if there exists a subspace M of H such that _M M [9],
[10]. Let’s denote the orthogonalprojection ofX e H on a subspace M ofH by (XIM).
Given a vector X_--(X,...,xT-1)EHT, its projection on a subspace _M= Mr,
denoted by (_XI _M), is the vector whose ith component is (XiIM) for each i-
0,..., T-1. It is easy to see that (_._X] _M) is the unique vector in _M such that
_._X (_X _M)_L _Y for all _Y _M. For any set of vectors {_Xj- j J} in H r, the span closure
s- {_Xj" j J} is the smallest closed subspace of Hr containing all the linear combina-
tions of _X’s formed with T x T matrices as coefficients.

A sequence _X, in HT is called a stationary sequence if the Gramian ((_X,,, _Xn))
depends only on m- n.

For a sequence Xn in H, we define its past-present subspace at time n by

H(X; n) sp {Xk k <-_ n}
and its remote past subspace by

H(X;-oo) H(X; n).

The past-present subspace _H(_X; n) and the remote past _/-/(_X, -oo) of a sequence
in Hr are similarly defined to be the subspaces

_/-/(_X; n) sp {_Xk" k -<_ n},
_H(_X;-oo)= fl_H(_X; n)

of HT.
For a sequence _X. in Hr we can also define the subspace H(_X; n) of H by

H(_X; n)=sp {X" k<-n,O<-j<-T-1}.

A sequence X(_X.) in H(H) is called nondeterministic it" X. (_X.) does not belong
to H(__X; n-1)(_H(_X; n-l)) /’or every n, and it is called purely nondeterminstic it"
H(X; -oo) 0 (_H(_X; -oo) _0).

For a nondeterministic sequence X.(_X.) in H(H) the best linear predictor
X.,(_X.,) of a future value X.+(_X.+), given its past-present H(X; n)(_/-/(_X; n)) is
its projection

x.,=(x.+li-i(x; n))(_x., (_x.+l _H(_X; n)))
on H(X; n)(_H(_X; n)).

3. Explicit expression of PCS X. and its associate multivariate SS _Z. in terms of
each other. In this section we will give some explicit expressions between a PCS X
in H and its associated SS _Zn (mentioned in 1) in K r. Note that Gladyshev’s Theorem
1.1 gives only the relation between the correlation functions of X. and _Z.. However,
in order for us to use this theorem for the prediction of a PCS, we should know the
relation between these processes themselves.

We start with the following theorem.
THEOREM 3.1. A sequence X, in H is periodically correlated with period T if and

only if the sequence Z_,_ [Znk] k=0T-1 in K T with
T--1

Z f X,,. exp (2cik(n +j)/ T)
j=0

is stationary.



706 A.G. MIAMEE

Proof. Ifpart. Assuming _Z, is a SS in K r then its Oth component Z, is a stationary
sequence in K. So, for each m, n e Z we have

o(Z, Z=(Z+l, Z.+l.
Expanding each side and multiplying through by T we get

T-1 T-1

(gin+j, Xn+j) 2 (Xm+l+j, Xn+l+j) for all m, n

Eliminating like terms from both sides of this equality, we get

(X, X) (X+r, X+r) for all m, n e

This shows that X is a PCS with Period
Only ifpart. For any m, n e Z and any 0 N k, k’N T- 1 we can write

T--1

T(Z, Z’)= (X+, X,+ exp (2i(km + kj- k’n k’j)/ T)
j=O

(Xm, X) exp (2i(km k’n)/T)
T-1

+ 2 (X+, X+) exp (2i(km + kj- k’n k’j)/T)
j=l

T-1

2 (X+, X+) exp (2i(km + kj- k’n k’j)/T)

+ (X+r, X+r) exp (2i(km + kT- k’n k’T)/T)
T

2 (X+, X+) exp (2i(km + kj- k’n k’j)/T).
j=l

The third equality follows from the periodicity assumption on X. Letting J =j-1,
we get

T-1

T(Z,Z’}= (X+j+,X+j+)exp(2i(km+k(J+ 1)-k’n-k’(J+ 1))/T)
J=0

T-1

2 (X(++j,X(++j) exp(2i[k(m+l)+-k’(n+
J=0

k k’T(Z+, Z+),

which shows that N is stationary and completes the proof.
Now, assuming that X is a PCS with correlation function (1) we want to find

the matricial correlation function of its associated SS introduced in the last theorem.
For any e Z and 0 N k, k’ N T- 1 the matricial correlation function of is given

by

1 T-1

Rkk’(’) (zk, Zko ’}= _, (Xr+j, Xj) exp (2ri(kz+ kj- kj)/ T)
j=O

1 T-1

Y R(j, z)exp(2zri(kj+kz-kT)/T)T =o
1 T-1=- exp (2rikz/Y) Y R(j, ) exp (2ri(k- k’)j/T).

j=0
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By inverting the Fourier sum (1) we get

R(n, ’) exp (-2rikn/T).Rk r -,=o
Using this we can continue to write

Rkk’(r) exp (2rikz/ T)R,_(r).

This shows that the process _Z, introduced in Theorem 3.1 has actually the same
matricial correlation suggested in Gladyshev’s Theorem 1.1. So, we have obtained an
explicit expression for the SS _Z, in terms of the original PCS X,.

The following proposition helps us to express the PCS X, in terms of its associated
SS _Z. In order to do that, however, we must identify H with the subspace H
0ofK.

PROPOSITION 3.2. If the matricial correlation function (Rkk,(’l’)) T-1k,k’=O of a SS _Z,
k=O in K and the correlation function R(n, ’) are related as in the Theorem 1.1,

then the sequence
T--1 1 kX E Z exp (-2rikn/T)
k=0

is a PCS in K with correlation function R( n, z).
Proof. We can write

(Xn+rXn) (TT-1k=0 ( 1 T--1

k’=0

k E Zk’ exp (-2rink’/T)Z,,+ exp -2ri((n + )k/T),-
1 T--1 T--1

E Zkn+r, zk’) exp (-2rikz/ T) exp (2rin(k’- k)/ T)
T k--=O k’=O

1 T--1 T--1

kO= k’=o gkk’(r) exp (-2rik’/ T) exp (2rin(k’- k)/T)

1 T--1 T--1

kO= k’=0
gk’-k(r) exp (2rin(k’- k)/T)

1 T-1

E TRi(r) exp (2,n’inj/ T)= R(n, "r).
T

The fourth equality follows from (2) and the last one from (1).
We close this section with the following Lemma.
LEMMA 3.3. Let X, be a PCS whose correlation function R(n, ) and spectral

measures dFk(h satisfy (1) and (3), respectively. Then, the matricial spectral measure
d_Fx dFkk,) T-1 defined byk,k’=0

(4) Fkk,(A) Fk,_k(A + 2rk/ T) for each Borel subset A of[0,2r),

is the spectral measure of its associated SS _Z,.
Proof. From (2) and (3) we can write

(Z, Z’) exp (2’ik’/T) exp (-iI-) dFk,_ (,)

exp (-i-(A-2’ik/T) dF,_ ()).
0

The proof is now immediate.
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4. Explicit formulas for the predictor and predictor error of a PCS. The problem
of finding an algorithm for determining the best linear predictor is important in
applications of stochastic processes. In this section we will give formulas expressing
the best linear predictor and prediction error of PCS X, in terms of the predictor and
prediction error matrix of its associated multivariate SS _Z, given in the last sections.
Using this, along with the available algorithms for determining the predictor of
multivariate SS’s, we then will outline algorithms for finding the predictor and
prediction error of X.

The following theorem gives formulas for expressing the v-step predictor X, of
a PCS X in terms of the predictor of its associated SS _Z given in Theorems 1.1 and
3.1. We would like to point out, however, that our SS _Z, here is quite different from
the SS Z used in [7]. In fact, Z is just the 0th component Z, of the SS _Z. This new
SS _Z captures more properties of X,, and hence seems to be more useful for prediction
purposes.

THEOREM 4.1. If the ,-step predictor of the associated SS _Z of a PCS X has an
autoregressive representation

(5) _Z, Y, _A,_Z_,
k=0

then the best linear predictor X,, ofX,+ based on its past-present at n can be expressed
as

(6)

where

a.o exp (2"rr/j(n k)/T) X,,-k,X.,. 4-,,=o ;=o

_A, (a ,0) r-1l,j =0"

It is interesting to note that the coefficients a,oj in (6) are exactly those in the
Fourier decomposition of the coefficients in the periodically varying autoregressive
prediction formula for the PCS X,.

Before proving Theorem 4.1 we need to prove two more lemmas.
LEMMA 4.2. For each n, the subspace H(_Z; n) ofK H. H is of the form

H(_Z; n)-H(X; n)O)H(X; n-1)0)... 0)H(X; n-T/I).

Proof Take any 0-<_ k _-< T- 1 and rn _<- n and consider the linear combination

T-1

E VZm exp (-27rij(m + k)/T)
j=0

in H(_Z; n). We can write it as

T--1

Y’. Zm exp (-2,n’ij(m + k)/T)
j=O

Xm+ exp (2zrij(m + l)/T) exp (-2"rr/j(m + k)/T)
j=0 1=0

( Xm+, exp (2rij(l-- k))
1=o \j=o

T-1

TX,,+I.
/=0
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This proves that
00). O) H(X; n +j)0)0 0)0___ H(_Z; n) for each 0_-<j <_- T- 1.

jth term

This in turn shows that

H(X; n)O)H(X; n-1)O). .O)H(X; n+ T-1)_H(_Z; n) foreachn.

The other inclusion is an immediate consequence of the fact that for each 0-<_j -< T- 1
and each m _-< n,

T-1r zj Xm+k exp (2rij(m + k)/T)
k=O

belongs to H(X;
LEPTA 4.3. For each n, the subspace _H(_Z; n) ofK 7- can be expressed as _H(_Z; n)

(H(_Z; n))
Proof. Take any finite linear combination

kn

in _/-/(_Z; n), and consider its ith component Z, O-<_ <- T- 1. We have

Z’= Y. E (Ak),,jZJk
k=n j=0

Clearly Z H(_Z; n), which implies _Z (H(_Z; n)) . Thus

sp{_Z k_-<

Taking closure on the left-hand side we get _H(_Z; n) (H(_Z; n)) . The other inclusion
follows from a similar argument.

Proof of the Theorem 4.1. Considering the 0th component Z, of the predictor
_Z,,, we can write

z.. _z/, _z; ,))o
=(z IH(_Z; n))

x// @ (x; +s
=0 =0

T-1

(The second equality follows from Lemma 4.3 and our earlier comment on the relation
between projection in K r and the projection in K. The third equality follows from
Lemma 4.2.)

On the other hand we can write

Z. _A _Z a ojZ
k=0 k=0 j--0

T-1 (T--1 )1
2 2 ao ( X,,_+exp(2-ij(n k)/T)/" k=0 j=0 s=0

=o
2 ao exp (2rij(n k)/T) X_+

k--0
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Hence by comparison we get
T-1 1

(X/IH(X; n))= Y =oa,oexp(E,rij(n-k)/T)X_,k=0 j

which completes the proof.
Now we will find a formula for the prediction error g(n)= IIx / -x , ll of a

PCS Xn. In contrast to the stationary case where the prediction error is independent
of time n, here the prediction error g(n) does vary with time. However, it varies in
a periodic way. So, g(n) can be written as

T--1

g(n) E g, exp (27rikn/T).
k=0

By inverting this we get

1 1 g(n) exp (-2rink/ T).g’ =- n=o

Using this we can write

T--1

Tg, E (X+ X., X+-X.) exp (-2rink/T)
n=0

T-1

E (X,,+,, X..,., (X,,+,. X,,,,,) exp (2"rrink/T))
n=O

T-1

Y. (X,,+,.,-X,,,,., (X,,+,,-X,,,,,) exp (2"rrik(n+ v)/T)) exp (2,rrikv/T)
n=O

T exp (2.rrikv/T)(Z- Z k Zko,,Z- o,).
Dividing through by T we get

g, exp (27rikv/T)Gk.

We have thus proven the following theorem, which provides a formula for the prediction
error of our PSC X,.

THEOREM 4.4. With the notation of Theorem 4.1 the prediction error g(n) of a
PCS X, can be written as

T-1

(7) g(n) E Gk exp (27rik(n + ,)/T),
k=0

where

o (o,)-k,k’=Ois the v-step prediction error matrix ofpredicting its associate SS _Zn in K r.
In the rest of this section we present an algorithm for determining the best linear

predictor and the prediction error of a PCS X, under the following assumption.
Assumption 4.5. Suppose X, is a PCS whose corresponding spectral measure d_Fx

given by (4) is absolutely continuous with respect to the Lebesgue measure and
(i) Its derivative _F:(A) is almost everywhere invertible;
(ii) All entries of _F:(A) belong to L;
(iii) All entries of _F:(A) -1 belong to L1.
PROPOSITION 4.6. If the PCS X, satisfies the requirement ofAssumption 4.5, then

its associate SS _Z in K r given in Theorems 1.1 and 3.1, considered as a multivariate
process with components in the Hilbert space K, satisfies Masani’s conditions in 5 of 5].
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Proof. By Lemma 3.3 the matricial spectral measure _Fz of _Zn is exactly the same
as the spectral measure fix. On the other hand, Masani’s conditions in 5 of [5] are
exactly those given in Assumption 4.5. This completes the proof. D

Thus under Assumption 4.5 the matricial density function _F admits a factorization
of the form

_F(;) _(x)_*(x),

where the optimal factor

_
and its inverse _- have square integrable entries whose

negative Fourier coefficients are zero, i.e.,

_(A)= E _Ck exp (ikO), _-(0) E _Dk exp (ikO).
k=0 k=0

(For this and other important results about prediction of multivariate SS’s see [5],
[6].) It is also well known (cf. [5], [6]) that the corresponding T-variate SS _Z, has an
autoregressive representation of the form (5) with _A, given by

k

(8) _aT,= Y+ _C+,_D_,.
n=0

Under these conditions there is actually an algorithm developed in [6] which allows
us to find the matrix coefficients _C’s and _D’s from the Fourier coefficients of the
matricial function _M(A)= _Fx(J)-J. Hence, we can first find _C’s and _D+’s and put
them in (8) to find the autoregressive coefficients _A,. Then we can use relation (5) to
find the best linear predictor X,,+ of the given PCS X,. In a similar fashion we can
use the results of [6] to find the prediction error matrix _G of the u-step prediction
of the multivariate SS _Z, (which is given in terms of _C+’s and _D+’s) and use those in
conjunction with (7) to find the prediction errors of the original PCS X,.

Acknowledgment. The author is glad to acknowledge the referees’ comments which
improved the original version of this paper.
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NONORTHOGONAL WAVELET PACKETS*

CHARLES K. CHUI AND CHUN LI

Abstract. The notion of orthonormal wavelet packets introduced by Coifman and Meyer is
generalized to the nonorthogonal setting in order to include compactly supported and symmetric
basis functions. In particular, dual (or biorthogonal) wavelet packets are investigated and a stability
result is established. Algorithms for implementations are also developed.

Key words, multiresolution analysis, scaling functions, wavelets, dual wavelets, wavelet pack-
ets, frames, tree algorithms, decomposition and reconstruction algorithms
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1. Introduction. Orthogonal wavelet packets (also called wave packets) intro-
duced by Coifman and Meyer [5] (see also [6], [11]) are used to further decompose
wavelet components. Based on Daubechies’ compactly supported orthogonal wavelets
[7], procedures for both computations and implementation can be made very efficient.
However, the intrinsic property of lack of symmetry persists. This causes phase dis-
tortion in applications that require lossy data compression and decompression. More
recently, compactly supported symmetric wavelets are available by sacrificing orthogo
onality partially [2] or totally [4]. A unified treatment of such wavelets is given in [1,
Thm. 5.19]. Thus, it is natural to extend the study of orthonormal wavelet packets to
the nonorthogonal setting. This extension is valuable because linear-phase filters (re-
sulting from symmetric wavelets) cannot be constructed by using compactly supported
orthogonal wavelets, but can be constructed by using semi-orthogonal or biorthogonal
ones. In addition, wavelet packets provide better frequency localization than wavelets
while time-domain localization is not lost [6], [11]. This capability enhances the appli-
cation of wavelet decomposition in processing signals with high-frequency components.
Of course when nonorthogonal wavelets are being considered, two very fundamental
problems must be considered, namely, the existence of duals and the stability require-
ment. The difficulty of these problems propagates when the notion of orthogonal
wavelet packets is generalized to the nonorthogonal setting. The objective of this pa-
per is to give a careful treatment of this generalization, with special emphasis on the
consideration of dual wavelet packets, stability, and development of algorithms. We
emphasize that our starting point is based on the work of Coifman and Meyer [5].

Throughout this paper, the space of all square-integrable functions on the real
line will be denoted, as usual, by L2 :-- L2(), and the notation for inner product and
Fourier transform of functions in L2 is given by

(1.1) (La)
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and

(1.2) /(co) e-w"f(x) dx,

respectively. Also the norm of any f in L2 will be denoted by [Ifll (f, f)l/2; and for
any function f, we will always use the notation

(1.3) b,(x) "= 2./2f(2.Cx k).

function E L2 will be called a "wavelet" if there exists another function
called the "dual wavelet" of , such that the family

j, k e z}

is a Riesz (or unconditional) basis of L2, and the collection

is the corresponding dual (or biorthogonal) basis in the sense that

(1.4)

for all j, k, j, k Z. In this paper, when we call a family a "basis" of any subspace
of L2, we always mean that it is a Schauder basis of this subspace. Unless we specify
explicitly, these $chauder bases need not be Riesz bases. Recall that a Riesz basis is
a Schauder basis satisfying the additional condition that the L2-norm of any series
representation and the 2-norm of its coefficient sequence are equivalent. We shall call
this extra requirement the "stability" condition. A very powerful tool for constructing
wavelets is the consideration of multiresolution analyses (MRA) of L2, introduced by
Meyer [10] and Mallat [9]. A function that "generates" any MRA of L2 is called a
"scaling function."

In the study of scaling functions and wavelets, the symbol of a sequence is often
used. For convenience, we will usually consider symbols

A(z) a,-,z’
nEZ

of sequences {an} in gl, namely, Zlanl < cx. The collection of such Laurent series is
called the Wiener class, which will be denoted by W.

The outline of this paper is as follows. In 2, we will introduce the necessary
notations and definitions and state the main results of this paper. Of particular
importance is that if 1 := is a wavelet with dual 1 := , so that both {j,k} and

{j,k} are Riesz bases of L2, then for each nonnegative integer g, both

(1.5) {n;j,k: j,k Z, 2 _< n < 2TM}

and its dual family

(1.6) {n;,k: j,k 6 Z, 2 _< n < 2+1}
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are also Reisz bases of L2. Here, {n} is the sequence of "wavelet packets" induced by
the wavelet and its corresponding scaling function 0 := , and {n} denotes the
corresponding sequence of dual wavelet packets. This is a consequence of Theorems 3
and 6. It is interesting to point out that only finitely many ’s are used in the
family (1.5), and that when infinitely many Cn’s are considered, then stability (or
unconditionality) may be lost in general. This negative result is due to Cohen and
Daubechies [3] and was brought to our attention by Albert Cohen. Preliminary results
in this paper, which are perhaps of some independent interest, are derived in 3, and
proofs of the main results are given in 4. In 5, two algorithms for implementation
will be developed.

2. Main results. If p0 and GO are Laurent series in the Wiener class )4) satis-
fying

(2.1)
pO(z (1 + z) Ns(z)2

GO(z (1 +z)lV,(z2

and

inf max H IS(ei2-)l < 2N-1/2’
j>0

(2.3)
inf maxH I(e’-’’)l" < 2"-1/2
j>0 w

k--1

where N and N e positive ingegers, then the infinite products

(w) := H P(e-’/2*);

k=l

c2nverge in L2, and the limit functions e Fourier trsforms of some functions
i, tha generate two (possibly different) multiresolution analyses (Mah)

and {g}, respeegively, of (see [4] and [1, hm. g.22]). In Mdiion, from

follows ha and

where z e-iw/2; and writing

1
P(z) - ’pz’,

n.Z
1

CO( )
nEZ
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we see that (2.5) is equivalent to the "two-scale relations"

keZ

kEZ

of the "scaling functions" and . Hence, the sequences (p} and {g0_---} are the

corresponding "two-scale sequences," and P(z_) and G(z) the corresponding "two-
scale symbols," of the scaling_ functions and , respectively.

We will say that and are dual to each other if they satisfy

(2.8) ((. j), (. k)) =/j,k, j, k 6 Z.

Under the assumptions (2.1)-(2.3), a necessary and sufficient condition for the duality
relationship (2.8) is that po and Go are "dual two-scale symbols," in the sense that

(2.9) P(z)G(z) + P(-z)G(-z) 1, ]z 1.

A proof of this statement is given in [1, Thm. 5.22] (see also [4] for the case of polyno-
mial symbols). It should be noted that the assumptions in (2.1)-(2.3) for p0 and G0

can be somewhat weakened. Hence, for more generality, we will drop this requirement,

but simply assume that and defined in (2.4) are in L2, {Vn} and {n} are MRA
of L2, and that (2.8) and (2.9) are satisfied.

Next, let us consider an arbitrary Laurent series R(z) of class YY, which never
vanishes on the unit circle [z[ 1. By Wiener’s lemma, we also have 1/R(z)
and this yields two other Laurent series in YY, namely,

p1 (z) "= -za (-z)R(z2),
G:(z) :=-z-lP(-z)/R(z2).

The reason for introducing P and G is that the two matrices

(2.11)

P(z) Pl(z) ]M(z):= pO(_z) pl(_z)

[  0(z) G (z) ]M(z) := GO(_z)

are nonsingular for Izl 1, independent of the choice of R, and that MT(z) and M(z)
are inverses of each other. A discussion of this result will be given in the next section.
Now, we write

1
P(z) - pzn,

nC=Z
1

and set

(2.13) o’= and -0 :=.
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Then, in view of (2.7), following Coifman and Meyer [5] we may introduce two se-
quences of L2-functions, {Ca} and {n}, defined by

(2.14)

where n 0, 1,
Of course, (2.14) reduces to (2.7) when A 0 and n 0. The functions

(2.15) # :-1 and :=1,

obtained by setting A 1 and n 0 in (2.14), are dual wavelets in the sense of (1.4);
that is,

(2.16)

We will document this statement in a moment. In general, we call {n} and {n}
sequences of wavelet packets, and {n} the dual of {n}. In the orthonormal setting,
where Cn Cn, n 0, 1,... (obtained by considering G(z) P(z) and JR(z)[-- 1
for Izl 1 and A 0, 1, in (2.10)), the functions Cn become the orthonormal wavelet
packets introduced by Coifman and Meyer [5]. (See also [6], [11], and [1, Chap. 7].)
The duality of the scaling functions in (2.8) and that of the wavelets and (as
defined by (2.15)), for j 0 in (2.16), are generalized to wavelet packets in this
paper as follows.

THEOREM 1. Assume that and defined in (2.4) are in L2 and generate two
MRA of 52, and that (2.8) and (2.9) are satisfied. Then, for all m, n O, 1,..., and
k, Z,

(2.17)

Let us turn to a discussion of the MRA generated by the scaling functions 0
and 0 q, namely,

(2.18)
.= clos-(0;,: k e Z>,

clOSL, <O;j,k: k e

and the (complementary) wavelet spaces

(2.19)
Wj := closL-(l;j,k" k 1

generated by the wavelets 1 and /)1. Recall that
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and that for each j E Z,

WIT1 --Wj(2.21) +1 +j,

where - denotes direct-sum decomposition, and the duality condition is reflected by
the orthogonality property

(2.22) +/-Wj and _I_W, jeZ.

(See [1, Chap. 5] for more details.) As a consequence of (2.20) and (2.21), and the
fact that

N N
ez ez

we have

(2.23) L2 W. Z"jez iez

Here and throughout, the "infinite direct-sum" is defined, as usual, to be the L2-

closure of the truncated direct-sums:

m, n Z+.
-m<j<n

More precisely, we have

We will elaborate on the existence and uniqueness of the infinite direct-sum decom-
positions of functions f L2 at the end of the next section. To further decompose
the wavelet spaces Wj and Wj, we consider the linear spaces

u, .= clo(,(.- k): k Z),
U clOSL(=( k): k e Z),

and obtain the following result.
THEOREM 2. For each j 0, 1,...,

0_<n<2J 2J _<n<2+1

(2.26) Un Wj
0<_n<2i 2<n<2i+1
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Gonsequently,

(2.27) L2 Uo- Z Un o- n,
jZ+ 2_<n<2+1 jZ+ 2J <_n<2+1

where, as in (2.23), the infinite direct-sums are L2-closures of the limits of the corre-
sponding one-sided truncated direct-sums. Moreover,

(2.28) Urn l Un, re#n, m,n Z+,

and {era("- k)" k e Z}, {n("- k)" k e Z} are (biorthogonal) bases of Urn, Un,
respectively, where m, n E Z+.

It should be noted that the direct-sum decompositions in (2.27) cannot be written
as L2 -,ez+ Un, in general, in the sense that the truncated projection operators
may not converge strongly. The reason is that the families {era("- k): k E Z, m
Z+} and {n("- k)" k Z, n Z+} may not be Riesz bases. Nevertheless, the
sequence of projection operators corresponding to truncation of the partial sum at
n 2J 1 converges strongly. This will be discussed at the end of next section. The
biorthogonality between the wavelet 1 and its dual 1 as described by
(2.16) can be generalized to wavelet packets as follows.

THEOREM 3. Let Z+ be arbitrarily chosen. Then both of the families

(2.29) {n;j,k" j, k E Z, 2e < n < 2t+l}

and

(2.30) {n;j,k: j, k 6 , 2t _< n < 2TM}

are bases of L2, and they are biorthogonal in the sense that

(2.31)

for all j, k, j’, k’, n, n’ Z with 2t < n, n’ < 2e+l.
Of course, assertion (2.31) reduces to (2.16) when e 0. In the next theorem,

we will allow the (scaling) index j in (2.29) and (2.30) to depend on the index n, and
obtain another pair of biorthogonal bases of L2. For this purpose, we introduce the
notation

(2.32) g(n) "= [log2 TtJ,

where Ix] denotes, as usual, the largest integer not exceeding x.
THEOREM 4. Both of the families

(2.33) {0;0,k, Cn;t(n),k, Cn;e()+l,k: k, n e Z, n > 1}

and

{0;0,k, Cn;e(n),k, Cn;e(n)+l,k: k, n . Z, n >_ 1}

are bases of L2, and they are biorthogonal in the sense of (2.31).
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There is, however, a common theme among the biorthogonal bases in Theorems 2-
4, and a unified result can be stated as follows.

THEOREM 5. Let be a collection of ordered pairs (n, j), where n Z+, j Z,
such that the dyadic intervals

(2.35) Inj’-- [2Jn, 2J (n q- 1))

form a disjoint covering of the interval (0, ), and that every bounded subinterval of
(0,) is contained in the union of finitely many I,,. Then both of the families

(2.36) (n;j,: (n, j) ,7, k Z}

and

(2.37) {n;j,k: (n, j) E if, k Z}

are bases of L2, and they are biorthogonal in the sense of (2.31) for all (n,j), (n’,j’)
in ,7 and k, k Z.

In the following, we will discuss the "stability" of the biorthogonal bases in (2.29)
and (2.30). Since we already have the basis structure, it is sufficient to show that
{n;j,k} and {n;,} in (2.29)and (2.30) are "dual frames," where duality is guaran-
teed by (2.31). Recall that a family {f: j J} is said to constitute a frame of L2 if
there exist positive constants A and B such that

(2.38) AIIfIIz -< I($, f)lz -< BII$11 z, $ e Lz

(cf. [8], [7], and [1, Chap. 3]).
THEOREM 6. Suppose that both

(2.39) {)l;j,k: j, k Z} and {)l;j,k" j, k E Z}

are frames of L. Then .for any g Z+, both of the families in (2.29) and (2.30) are
also frames of L2.

In other words, if the families in (2.29) and (2.30) with e 0 are frames of L2,
then they are frames of L2 for any positive integer e. However, the new frame bounds
are usually exponential in as can be seen later from the proof of Theorem 6. Recall
from Theorem 3 that each of the families (2.29) and (2.30) is "linearly independent"
in the sense that no en’;j’,’, 2 <_ n’ < 2TM and j’, k’ Z, lies in the L2-closure of
the (finite) linear span of

(n, j, k) # (n’, j’, k’),

where 2e < n < 2TM and j, k e Z. Hence, by a result on frames in [8] (see also [4]),
it follows from Theorem 6 that both of the families in (1.5) and (1.6)(or (2.29) and
(2.30)) are Riesz bases of L2, provided, of course, that is a wavelet with dual .

To establish the results stated in this section, we need a sequence of lemmas that
are of some independent interest.

3. Auxiliary results. We first observe that the Laurent series PA and G,
A 0,1, that satisfy (2.9) and (2.10) for some R YY with R(z) : 0 on Izl 1, also
satisfy

(3.1)
P(z)G(z) + P(z)G(z) 1,
P(-z)G(z) + Pl(-z)Gl(z) O,
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and

(3.2) PA(z)G’(z) + P’(-z)G.(-z) Sx,,, Izl 1, A, # O, 1.

We also remark that if PA, GA e W satisfy (3.1) or (3.2), then there exists some
R e W, with R(z) 0 on Izl 1, such that

PO(z)C(z) + PO(-z)GO(-z) 1,
(3.3) -z-1Po(-z)PI(z) =-zG(-z)R(z2), Gl(z)= R(z2 [z[ 1.

That is, we have the following result (see [1, p. 148]).
LEMMA 1. Let PA and G, A O, 1, be Laurent series in the class }/P. Then the

three statements (3.1), (3.2), and (3.3) are equivalent.
Proof. That (3.3) implies (3.2) is trivial. On the other hand, to see that (3.2)

implies (3.1), we will use the notation introduced in (2.11). It is clear that (3.2) is
equivalent to the matrix identity

(3.4) MT(z)M(z) I, [z[-- 1,

where I denotes the identity matrix and AT stands for the transpose of A. Hence,
M(z) is a nonsingular matrix for Iz 1 with inverse MT(z), and we may also conclude
that

(3.5) M(z)MT(z) I, Izl 1.

Multiplying out the matrices in (3.5), we see that two of the four identities constitute
(3.1).

Finally, suppose that (3.1) holds. Replacing z by -z, we have

P(z)a(-z) + Pl(z)Cl(-z) O,
P(-z)G(-z) + Pl(-z)Gl(-z) 1,

Then (3.5) is a consequence of (3.1) and (3.6). In particular, the matrix M(z) is
nonsingular for Izl-- 1. Viewing G(z) and Gl(z) as unknowns in (3.1), we apply
Cramer’s rule to yield

(3.7)

Pl(-z)GO(z)=

PO(-z)

where

(3.8) A(z) := det M(z).

From the definition of M(z) and A(z), it is clear that A(z) is an odd function in z;
and hence, we may write

(3.9) A(z) zR(z2), Izl 1
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for some R e )4). Since M(z) is nonsingular on Iz[ 1, we have R(z) O, [z[-
1. From (3.7) and (3.9) as well as the equivalence of (3.4) and (3.5), we establish
(3.3).

In what follows, we will always assume that po and GO are dual symbols as in
(2.9), that p1 and G1 are defined by (2.10), and that the series expressions (2.6) and
(2.12) are used. With these (two-scale) coefficient sequences (p} and (g-n}, A 0, 1,
we introduce the linear operators :PA and GA, A 0, 1, on

(3.10)

defined by

(3.11) (:Pv)t ZPk-2vk e Z, A O, 1,
kEZ

(3.12) (g.xv)t "= Zg-k+2vk’ " e Z, A O, 1.
kEZ

Then the adjoints P and g, of P and g, respectively, are given by

(3.13) (T’,v)t Zp_2:v:, g. E Z, A O, 1,
kZ

(3.14) (glv)t g_t+2kvk, e Z, A 0, 1.
kZ

Indeed, by adopting the notation

(3.15) <u, v)t2 Z ukVk,
kZ

where u (uk} and v (vk }, for the inner product of the 2 space, we have

(3.16)

<u,
tZ

Pk-2Ut k

and similarly,

(3.17) <u, 6 v> <6;,u, v).

We have the following result.
LEMMA 2. Let 7) and g be as defined in (3.11) and (3.12) with adjoints 7) and, respectively. Then

(3.18) T’g 2i,I, A, # O, 1,

and

(3.19) G:P0 + G[Pl 2I,
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where I is the identity operator on 2.
Remarks. (1) By taking the adjoints of both (3.18) and (3.19), we also have

and

(3.21) :P{0 + PI 2I.

That is, the identities (3.18) and (3.19) are equivalent to (3.20) and (3.21), respectively.
(2) We can view :Px and gx, A 0, 1, as bi-infinite (also possibly finite) matrices,

namely,
P [_],z, [g_],z.

With P, "= and g := being the conjugate trsposes of Px and g, respec-
tively, d I being the identity matr, then (3.18)-(3.21) c be viewed matr
identities.

Proof. We will derive (3.18) d (3.19) via symbol calculus. For y sequence
u {u}ez 1, set

u() := .
kZ

According to (3.11) and (3.14), it is ey to veri that

(p)(z-) (p)- p(z)(-,) + p(-)(--)
tZ

and
({,v)(z-1) Z(Gv)z- 2GA(z)v(z-2).

Thus, we have, for any u t and Izl 1,

Z(:P{u)z-2 =P(z)(Gu)(z-) + P(-z)(u)(-z-)
EZ

=2[P(z)a"(z) + P(-z)G’(-z)]u(z-2) 25x,,u(z-2),

where the identity (3.2) has been used to arrive at the last equality. That is, we have
(:P{u)k 25,Uk for all k E Z and all u {uk}keZ .. Hence, since 1 is dense
in 12, we obtain (3.18).

On the other hand, we have, for any v ,

where the identity (3.1) has been used to arrive at the last equality. Thus,

(g{0V " lV)k 2Vk for all k Z.
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Since this holds for all v E 1, we obtain (3.19).
As a consequence of Lemma 2, we see that

and
(1/2#;P.) 0, ,.

This shows that
(i) 1/2g,:PA, is a projection on 2, A 0, 1;
(ii) The rges of PGo d g[P1 e orthogonal (since (PG0u, g[PlV)

{u,01v)2 0); while
(iii) The rges of P0 d g[P1 form a direct-sum decomposition

of
We now return to our discussion of wavelet pkets defined in 2 (c (2.14)).

om (2.14) d using the notation in (3.11), we have

(3.22) 2n+A(x t) (PA{n(2x -.)}), e Z, A 0, 1.

Similarly, we also have, from (2.14) and (3.12),

(3.23) )2n-{-A(:T ) (GA{n(2x -.)}), t e Z, A 0, 1.

As an application of (3.19) in Lemma 2, by putting (3.22) into (3.14), we obtain, for

(3.24)

In the same manner, from (3.23), (3.21), and (3.13), we also have, for k Z,

(3.25)

Observe that for n 0, (3.24) and (3.25) give the so-called decomposition rela-
tions in wavelet analysis [1, Chap. 5]. In general, we call (3.24) and (3.25) "decom-
position ]ormulas" for the wavelet packets (n) and (n}, n Z+, respectively, and
(3.19), (3.21) the "operator forms" of these decomposition formulas.

In the following, we give explicit expressions of the Fourier transforms of Ca
and .
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LEMMA 3. Let n E Z+ and consider its dyadic expansion

(3.26) n ZeJ2J-l’ ej E {0, 1}.

(3.27) ’(w) H P(e-’2-),
J=l

(3.28) Cn(w) H a’(e-i2-)"
j=l

Remark. Since n is an integer, we note that all but finitely many ej in (3.26) are
zeros.

Proof. We will prove (3.27) by induction. The proof of (3.28) is identical. From
(2.4), noting that 0 , we have (3.27) for n 0. Suppose now that (3.27) is valid
for all n, 0 _< n < 2N, where N is a nonnegative integer. Then for 2N

_
n < 2/v+l

with the dyadic expansion (3.26), we have

-2

and

Thus, from the Fourier transform formulation of (2.14), namely,

and applying the induction hypothesis, we obtain

We next discuss the duality properties between the wavelet packets {n}n_-i and

()n}n=l
LEMMA 4. For all k, Z, and n Z+,

(3.29) 0)=

Proof. We will establish (3.29) by induction on n. The case n 0 is our basic
assumption (2.8) on the dual scaling functions 0 and 0 . Suppose that (3.29)
holds for 0 < n < 2N where N is a nonnegative integer. Then for 2N < jn < 2N+I
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since we can write n 2 [J +A for some A E {0, 1} according to the proof of Lemma 3,
we have, from the Fourier transform formulations of both equations in (2.14),

<(.- k), (.-

2-- Cn(w)n(w) ei(-k)’’ dw

=
1 0

4"

Since [] _< < 2, ig follows from ghe induction hypothesis hag ([1 (.-k), [] (.-
)) , for all k, , d ghis is equivalen

2j) 2j) 1

via ghe Poisson summagion formula (see [1, pp. 4g-46 aria pp. lgl-lg2]). hus, we
have, om (a.2) for

ei(-lp(e-i/)a(e-/)

(-[e(-/)a(-/l + (--/la(--/)]

e(- ,,
2

his shows ghag (.29) also holds for 2
LNN . For ll k, , n +,

(a.al) (+(.- ), e+.(.- e)? 0.

Proo By applying ghe ourier gransform formulagions of (2.14) and ghe formul

(e+(.- ), e+,(.-

1 2j)

e(-lp(e-/)G,(e-/)
2

(-[(-/)a,(-/) +(-/a,(--/)]2

2 ei(-l,, ,, O,
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This completes the proof of Lemma 5. 0
Recall the spaces Un of wavelet packets as defined in (2.24). Any f in Un can be

written as

(3.32)
kEZ

for some c {ck}keZ E 2. From the decomposition formula (3.24), we have

(3.33)

By introducing the scaling operator

(3.34) f := f(2.),

the formula in (3.33) implies that for f E Vn, we have

(3.35) 6f g + h,

where g U2n, h U2n+l. On the other hand, if g ’],ez a,2n(.- ) U2n and
h ,ez b,2n+l(.- g) U2n+l such that

(3.36) g + h 0,

then by Lemmas 4 and 5 we have

0 (g + h, 2(’- k)) ak,

0 (g + h, 2+1("- k)) bk, kEZ.

That is, we have g 0 and h 0. Noting from the definition in (2.14) that

(3.37) U2,

_
Vn, U2n+l Vn,

the above argument shows that

(3.38) Un V24U2n+l, n Z+,

where "4" indicates a "direct sum" of two linear spaces. Analogous results also hold
for Urn, namely

(3.39) , 242+1, n e Z+.
More generally, we have

(3.40)
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where , n 6 Z+, 60 := I, and 6. I-1. Of course, the proof of (3.40) is simply
repeated applications of (3.38) and (3.39). In addition, an equivalent statement of
Lamina 5 is that

(3.41) U2n .]- U2n+I d U2n+I I U2n, n e

We end this section by showing that the inite direct-sums in (2.23) e indd
"direct-sum decompositions." More precisely, for y L2, we will show that there
est unique g W, j Z, such that

Consider the line operators P d A, defined by

(3.43) Pf := <f, ,k>,k d Af "= (f,
k6Z k6Z

It is cle that Pj+ P + A for y j 6 Z, so that

(3.44) P,+ P_ + A#, m, n e Z+.

Let f 6 L2 d e > 0 be bitrily given. Then by the definition of theM{},
there exist some J 6 Z+ d f# 6 V# such that [f- f] < e. Since Pj(Ij)
for all j J, we have

+ j z J;

and the uniform boundedness of []P] (in ft, []P# [[P0] for all j 6 Z) now yields

(3.45) lim [Pf- f[[ 0.

Hence, it follows om (3.44), (3.45), d lim_ [[Pf[ 0 (which is a consequence
of {0}), that

Since ] W, we have established he existence of 9 W in (.42). o show
uniqueness of g, j 6 Z, we first obsee om the duality property in (1.4) that

(3.46) A(=_jg)= Ag g, ,j, J e Z+.

Hence, for any ed j 6 Z, we have, kom (3.42) and (3.46),
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That is, g# Af.
4. Proof of the main results. We are now ready to prove the theorems stated

in 2.
Proof of Theorem 1. In view of Lemma 4, we only have to consider the case

m n. We first note that

(4.1) Un C_ 6tUij, n, t
_

where as before, LxJ stands for the largest integer not exceeding x. Indeed, by observ-
ing that. / 1)), it follows from (3.40) that

Un C_ U2,Lj-U2Lrj/I..o-U2,Lej/2_I tULej.
Similarly, we also have

(4.2) U c_ 6tULej n,t Z+.

Now, without loss of generality, let us assume that m > n in (2.17). Using the
dyadic expansions for both m and n, namely,

E E {0,1},m= 2.ej, n= 2.e, ej,e
jZ+ jz+

we can find some t E Z+ such that ej ej for all j > t, while et > e; i.e., et 1,
0. Thus, by letting n :- j>t 2J-t-leJ, we have n E Z+ and [J 2n+ 1,

[ 2n. Hence, it follows from (4.1) and (4.2) that m("- k) Urn C_
and Cn("- ) Un C_ $tU2n, for all k, Z, respectively. On the other hand, from
(3.41), we have shown that 5tU2n,+l .1_ 5tU2n, and therefore (,(.- k), Cn(’-)) 0.
This completes the proof of Theorem 1.

Remark. In the above discussion, we have proved that for any integers m > n > 0,
there exists a t Z+, such that [J [rJ 1, while [rJ is an odd integer and
is an even integer.

Proof of Theorem 2. Noting that o(" k) o;o,k and 1 (" k) 1;o,k, in
(2.18), (2.19), we see that Vo Uo, Wo U1, V 6Vo and Wj 6Wo. Thus, as
an application of formula (3.40) for j and n 0, 1, we immediately obtain (2.25)
for any j e Z+. The proof of (2.26) is the same. Since each of (V } and (} forms a
multiresolution analysis of L2, it is clear that

E
jz+ jz+

Combining this fact with (2.25) and (2.26) gives (2.27). Finally, (2.28) is a consequence
of Theorem 1.

Proof of Theorem 3. By Theorems 1 and 2, we see that both of the families

{n("- k)" k Z, 2t _< n < 2TM} and {n("- k): k Z, 2t _< n < 2TM}

are bases of Wt and Wt, respectively, and are biorthogonal to each other. Thus, by
observing the definitions (2.24) and (3.34), we see that

{)n;j,k" k ( Z, 2t < n < 2TM} and {n;j’,k: k Z, 2t < n < 2t+l}
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are bases of We+j JWe and We+, 5J’ We, respectively. Since

L
_

w+,,
jZ

both {n;j,k" j, k e Z, 2e _< n < 2e+l } and (,;j,k" j, k E Z, 2e _< n < 2e+l } are bases
of L2. Moreover, from (2.21) and (2.22), we have

(4.3) W _l_ W, (or We+j _l_ We+j,), j t j,; j,j,, Z.

Thus, (2.31) follows from (4.3) for j t j,. The assertion for j’ j is a consequence of
Theorem 1, namely,

This completes the proof of Theorem 3. [:]

Proof of Theorem 4. Fix any g Z+ and consider n with 2e <_ n < 2e+. As
seen in the proof of Theorem 3, {n;e,k" k Z, 2e <_ n < 2e+ and (n;e+,k" k Z,
2e _< n < 2e+ } are bases of W2e and W2e+l, respectively. Since

L2 Vo-]- We Uo4 Z W2e + W2e+t,
eZ+ eZ+ eZ+

it follows that the family of functions given in (2.33) is a basis of L2. Similarly, the
family given in (2.34) is also a basis of L2. Hence, Theorem 4 follows by applying
Theorems 1 and 2 as well as (4.3). D

Proof of Theorem 5. We first observe that (2.31) holds for all (n, j), (n’,j’) ,f
and k, k E Z. Indeed, as seen in the proof of Theorem 3, (2.31) holds for all j j,
n, n’ Z+ and k, k’ Z, no matter how (n, j) or (n’, j’) Lr is chosen. Thus, it
remains to show that if j - j’, (n, j) e , (n’, j’) e , and k, k’ e Z, then

(4.4)

Without loss of generality, we assume j > j’ and let g := j j’, so that

(4.5) (n;,k, Cn’;j’,k’) (n;e,k, Cn’;0,k’).

Here, it is clear that

Since {Inj := [2n, 2J(n + 1)): (n,j) 6 } forms a disjoint covering of (0, cx)), the
family {2-J’In,j: (n,j) e } is also a disjoint covering of (0, cx). Thus, since j > j’,
it follows from (n,j)

_ , (n’,j’) and (n,j) t (n’,j’) that [n’,n + 1) and
[2en, 2e(n + 1)) are disjoint; or equivalently, n’ [2en, 2e(n / 1)), where g j j’. By
(2.28) and (3.40), we obtain

(4.7) Un, _l_ Uj 5eUn.
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[2,2+)

[2-. 2, 2-. 3) [2-. 3, 2-1. 4)

Fro. 1

Hence, (4.4) follows from (4.5), (4.6), and (4.7).
To complete the proof of Theorem 5, we have to show that (,;,: (n, j)

k Z} is complete in L2(R). Since the wavelet basis {l;j,a: j, k Z} is complete for
L(R), it is sufficient to demonstrate that each 1;, (j, k Z) is in the L2-closure of
the linear span of {,;,,: (n; s) e 3", t e Z}. Given j Z, then for any j’ Z, j’ _< j
we can decompose the interval [2, 2+) as in the binary tree in Fig. 1.

Since [2,2+l) is only covered by finitely many dyadic intervals I,,, [2"n,
2"(n + 1)), (n, s) e 7, we can find a sufficiently small j’ e Z, with j’ _< j, such that
[2J, 2j+1) C J(n,.)e.cj In,,, where (n, s) e ’, and In,8 appears in the above binary tree;
and since it depends on j, we denote the set of these (n, s) by . Clearly 7 c . For
k e Z, we have 1;,k E 8U =//J’(//-J’U). Thus, corresponding to each (n,s)
by using the formula (3.38) repeatedly, starting with//J-J’U =//-J’-(t/U1), we have

This shows that Yl;:j,k is in the L2-closure of the linear span of n;8, with (n, s)
7 C and t Z; and consequently, {n;j,k: (n, j) , k Z) is complete in L2.
The same proof is valid for {n;j,k: (n, j) ’, k Z}. This completes the proof of
Theorem 5. rl

Remark. A formulation of Theorem 5 for the orthonormal setting (i.e., Cn Cn,
n +) can be found in Coifman and Meyer [5].

Proo] of Theorem 6. We first prove that, for each integer n satisfying 2 _< n <
2+, there exists some positive constant Cn, such that

(4.8)
kEZ kEZ

for all j Z and f E L2(R). For this purpose, we will adopt the dyadic expansion for, namely: z_= 2-, where {0,1} and t+l 1. By using the operator
defined in (3.11), it follows fTom (3.22)

(4.9)



NONORTHOGONAL WAVELET PACKETS 731

or equivalently, in view of (3.11),

m-2kCL- ;j+l,m(X),
mEZ

j, kEZ.

Thus, we have, for any f E L2,

Moreover, by putting

(4.11) ’E } {0, 1},lp2/ll A e
kZ

we have

and

so that

E1IP-2I Ipl_< 2De1,
mZ mZ

el kZ[Pm-2k E IP;k/
kEZ

for even m,

for odd m,

(4.12)
IPm-2kl I<f, lJ;j+l,m)l2

kZ mZ

-<De21 E l(f, )[J;jTl,m)l2"
mZ

Now, since [] e -t=l gt+22t-1, etc., repeated applications
of the inequality (4.12) to [-J;j+l,k, [J;j+2,k,..., l;j+e,k, yield

(4.13) I(f, ;,k)l2 < (De1’’’ De)2 I(f; el;iTS,k)[ 2"
kZ kEZ

Thus, (4.8) follows from (4.13) by setting

(4.14) Cn := (De, De2... Dee)2.

Observe that Cn is a (finite) positive constant, since it follows from (4.11) and {pk} e
gl that D is finite, A {0,1}. In addition, by setting D "= max{D0, D1}, (4.14)
implies that Cn <_ D2. Thus, from (4.13), we have

(4.15) E E
kZ 2e_<n<2e+

l(f, ;,k)[2 -- 2D2E [(f’
kZ
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If {l;j,k" j, k E Z} constitutes a flame of L2, then there exists a positive constant B,
such that

j,kEZ

Thus, combining this inequity with (4.15) gives

(4.16) [(f, ;,)2 2D2Sf[2.
j,kZ2n<2+

Similly, by letting

(4.17) :=m{,gk,,,gk+,} := m{0,}
kZ kZ

and suming that {;j,k: j, k Z} is ae of L2, we have

(4.18) l(f, ;j,k)l2 25211f112, f e 2
j,kZ 2 n<2+

for some positive constant B.
To complete the proof of Theorem 6, we still have to derive the lower estimates.

Now, since L2 jez Wj+t, we can write, for any f E L2,

(4.19) f Zg+t’ gJ+t Wj+t, j Z.

Moreover, from Theorem 3 as well as its proof, we have

k@Z 2t_<n<2+ k@Z 2 _<n<2+

where <f, Cn;j,k> <gj+t, Cn;j,k> follows from (4.19) and the fact that g,+t e Wj,+t _1_

W+ and Cn;,k e Wj+ for j’ : j (see (4.3)). Thus, from (4.19) and (4.20), it follows
that

(4.21) f Z (f "n;j,k>n;j,k, f e L2.
j,k@Z 2t_<n<2t+

By the same argument, we also have

(4.22) f -- Z (f n;j,k)--n;j,k, f - L2.
j,kZ 2_<n<2+

Hence, by (2.31), (4.21), and (4.22), we obtain, for any f e L2,

(4.23)
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On the other hand, from (4.16), (4.18), and (4.23), we conclude that

(4.24) Z Z
j,kEZ 2t_<n<2t+

[(f, -;d,m)l2 _> 2-eD-2eB-l[f[[2,

and

(4.25)
j,kG..Z 2

l(f, ,;,>12 > 2-eD-2eB-11[f]l2

A combination of the inequalities (4.16), (4.18), (4.24), and (4.25) completes the proof
of Theorem 6. D

5. Algorithms for wavelets packets. In this section, we will give two change-
of-bases algorithms using wavelet packets.

Given a function f E L2, we approximate f on the scale 2-N by some

YN() := e0(N j) ({0(N ")},>

in VN, where c {cj }jez E g2. Thus, from the formula

(-i)= 1/2(;{(- ")}) + 1/2(g;{+(-

(see (3.24)), where j Z and k Z+, we obtain

where the operators Go and G1 are defined in (3.12).
1,2,...,M,

Finally we have, for g

(5.4)
1

2e--I
fN(X) ({k(2N-eX .)}, k,eC)e-,

k=O

where for k -=1 "CJ2j-l, -Cj G_ {0, 1},
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That is, .fN has the unique decomposition

2--i
(.6) N , e N- u VN,

k--0 0_<k<2

where gk,z "= ({k(2g-tx- ")}, gk,tC)e2 e g-euk. This decomposition algorithm
can be expressed recursively as follows:

(5.7) ck,e 1/2gkcLk/2J ,-1, 1,..., M; k 0,..., 2e 1,

where c0, :-- c, )k e {0, 1}, satisfies k 2[J +/kk; i.e., Ak 0 for even k, and
Ak 1 for odd k. The procedure can be described by the binary tree as shown in
Fig. 2. Here,

2_1

(5.8) fN(X)
k:0

where 1, 2,..., M.

cO,O

cO,1 cl,1

C
0.2 cl,2 C2,2 C3,2

C0,M c1,M c2M_2,M M_I,M

FIG. 2

On the other hand, for the reconstruction algorithm it follows from the represen-
tation (5.8) and the formula

(5.9) Ck(x j) (T,{LJ (2x

where A E {0, 1} satisfies k 2L-k2] / Ak, that
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where

M,M I,..., I; k 0, I,..., 2e-I I, and the operators P and 7) are given in

(3.13). Finally, for 1, we obtain

fN(X) <{0(2Nx ")}, C0’0>e2 <{0(2NX ")}, C>e2.
The procedure for the reconstruction algorithm can be described by the binary tree
as shown in Fig. 3.

cO,O

cO,1 C1,1

C0,2 1,2 C2,2 C3,2

eo,M cl,M e-,M ’u -1,M

FG. 3.

Both of the above decomposition and reconstruction algorithms are given relative
to the wavelet packets {k} and the decomposition

VN N-ttVo N-t
O<_k<2

The computational complexity of these algorithms is O(n log n), where n 2M is the
number of operations for precomputing all the , k 0,..., 2M 1. In the following
we give another algorithms corresponding to Theorem 3.

Let E Z+ and M E Z+ be fixed. As before, to a given f L2, let fN approximate
f from VN. Then since

VN WN-14VN-1 WN-14WN-24 4WN-M’"VN-M,

fN has a unique decomposition

(5.12) fN gN-1 + gN-2 +’’" + gN-M + fN-M,

where fN--M C:_ VN-M and gj 6 Wj, j N- M,..., N- 1. Write

/j(X) EC0(2J[ k) <{0(2JX ")}, CJ>t2
kEZ

and
g.(x) dJkl(2Jx k) <{1(2Jx --.)}, dJ>t2,

kEZ
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where c_J {c}kez E 2 and dJ (d)kez E 2. From the decomposition formula
(5.2), we have, for k- 0,

(.la) <{o(-1- .)},0> + <{1(2-1_ .)}, 1>2
fj-i (X) + gj-I ().

Thus, it follows that

(5.14) cJ- GocJ, dJ- GcJ, j N,N- 1,... ,N- M + 1.

This procedure is described by the aph in Fig. 4.

dN-1 dN-2 dN-M
/ / /

CN cN-1 cN-2 ...._) cN-M
FIG. 4

Moreover, since

g e W 8W1 5-W1 5- U,
2t_k<2t+

then by applying the decomposition formula (5.2) again for k 1, 2,..., 2t-1 1, we
have

gj(x) ({(2 x.)},d)t
1 1

1 1
({2(2#-x .)}, god#)2 + 5({3(2#-x .)}, gld)(.lS)

1
2+1-1

where he opera,or , is defined on by (g.). Writing

(.16) a,, := ,d, a,, := d,
we have, similar o (.7),

(.17) aj,,m aj,[J,m--1

wherem=l,...,g, k=2m,...,2m+l-l,and
Thus, we can finally conclude that
(.S)

N-1

fN(x) fN-M(X) 4- gj(x)

{{0(2N--Mx ")}, (]V--M)t2 4-

({o(---)},-)t2 +
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where CN-M, dJ and aJ,k,, N-M g j g N- 1, 2 g k < 2e+l, are given by (5.14) and
(5.17), respectively. This is the decomposition algorithm corresponding to Theorem 3.

On the other hand, if we start with

2m<_k<2m+

m g, g 1,..., 1, for some aJ,k,m E 2; then by using (5.9) again, we obtain

2m<_k<2m+

2m__<k<2m+l

(PA{[J (2J-re+ix .)}, a,,m)-

({[}j (2-’+1x .)}, :P,aJ’k’m)2

2m-lk(2

where

aJ,k,m- 1 ::. :)aJ,2k,m +paJ,2k-{-1,m,

m g, g- 1, ,1; k 2m-l,..., 2m 1. Thus we obtain, for N- M _< j _< N- 1,

(5.21) gj(x)- ((l(2JX- .)}, aJ,l,). --({l(2Jx-

With the above sequences dJ aJ,1,0 and some cN-M E 2, where fN-M(X)
({o(2N-Mx- .)}, cN-M)t2, we can reconstruct fg(X)= ({0(2Nx- ")}, CN)t2 by
applying the formula

(5.22) cJ [){CJ-1 + :)dJ-1, j---N-M+I,...,N.

To see this, we simply observe that

This procedure is described in Fig. 5.

dN-M dN-M/I dN-1

cN-M cN-M+I cN-1 CN

FIG. 5
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CONTINUOUS WAVELET DECOMPOSITIONS,
MULTIRESOLUTION, AND CONTRAST ANALYSIS*

M. DUVAL-DESTIN, M. A. MUSCHIETTI:, AND B. TORRESANI

Abstract. A continuous version of multiresolution analysis is described, starting from usual
continuous wavelet decompositions. Scale discretization leads to decompositions into functions of
arbitrary bandwidth, satisfying QMF-like conditions. Finally, a nonlinear multiresolution scheme is

described, providing multiplicative reconstruction formulas.

Key words, wavelets, multires01ution analysis, contrast analysis
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Introduction. Wavelet analysis of a function f E L2() basically consists in the
decomposition of f as a sum of wavelets (b,a)(x) ( dilated and translated
copies of the mother wavelet , an integrable function with vanishing integral. The
coefficients of the decomposition are nothing but the scalar products (f, (b,a)).

Continuous wavelet decompositions have been introduced (or reintroduced, since
similar tools have been used by mathematicians for a long time to study certain classes
of operators [Call) by Grossmann and Morlet [Gr-Mo], and many applications have
been developed (see [Co-Gr-Tc] and the references therein), in particular in a signal
analysis context [Gr-KM-Mo], [De]. The discretization of the continuous formulas was
studied later [Dal], and handled by the introducion of the notion of frames of wavelets
(see also [He-Wa]). Continuous wavelets and frames of wavelets were used later on
for many problems of applied mathematics and physics, and in particular to model
physiology of vision, following the program of Marr [Mar] (see also [Fr-Mo], [DD]).
In particular, they allowed one of the authors to introduce the notion of scale-space
contrast [DD], and to exhibit multiplicative reconstruction formulas from the contrast
functions.

The discovery of orthonormal bases of wavelets by Stromberg [Str] and Meyer
and his collaborators (see [Me] and the references therein) opened a new door in
the understanding of the theory, making, in particular, the connection with subband
coding, familiar to electrical engineers and image processors IDa2]. This, moreover,
led to the construction of a large family (a library in the author’s terminology) of
orthonormal bases, called wavelet packets bases, providing adaptive decompositions
of functions directly implementable in fast (pyramidal) algorithms [Co-M-Q-W]. A
continuous analogue of wavelet packets was proposed in [To1], [To2], in which the
pyramidal algorithmic structure is unfortunately lost. The key point of the construc-
tion of wavelet packets is that they allow us to control the relative bandwidth of the
analyzing functions in the Fourier space (the so-called surtension factor), as a function
of frequency.

*Received by the editors August 5, 1991; accepted for publication (in revised form) August 31,
1992. This work was partially supported by the Groupement De Recherches "Ondelettes," Centre
National de la Recherche Scientifique.
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We present here a general construction, allowing the construction of wavelet pack-
ets starting from the usual continuous wavelet analysis. By wavelet packets we mean
families of functions generated from a single one by simple transformations and whose
relative bandwidth is nonconstant (contrary to usual wavelets) and can be matched to
a given analyzed function. Let us stress here that our construction is not a continuous
version of that of [Co-M-Q-W], and is actually quite different. Starting from an ad-
missible analyzing wavelet , it is well known that one can associate with it a scaling
function , and then mimic the multiresolution construction. This is briefly described
in 1. In a similar way, the continuous decomposition over scales can be replaced by
a discrete one, as shown in 2. The corresponding sequence of scale parameters can
be chosen arbitrarily, and the functions appearing in the decomposition (the wavelet
packets) must be matched to that sequence. As a particular case, a geometric sequence
yields usual Littlewood-Paley decompositions. In 3 we continue developing the anal-
ogy between continuous wavelet analysis and multiresolution analysis. In particular,
the scaling function can be expressed as a continuous infinite product of dilated copies
of a low-pass filter, denoted by #0 (let us recall that a continuous product, or mul-
tiplicative integral lba(d(x))f(x) is defined to equal exp[f: In f(x)d#(x)] whenever
such an expression makes sense [Gui]). Then using the wavelet packets construction, a
continuous finite product of such #0 filters yields new low-pass filters, denoted by mo,
which makes the connection with the quadrature mirror filters (QMFs) appearing in
multiresolution analysis. Section 4 is devoted to the construction of contrast analysis.
We define the infinitesimal contrast function ca(x) of f(x) as (roughly speaking) the
quotient of the details of f(x) at scale a by the approximation of f(x) at scale a. Then
under some analyticity assumptions on I12, we show that such contrast functions pro-
vide a multiplicative decomposition of f(x) over scales. Otherwise stated, f(x) can
be continuously factorized into exponentials of contrast functions. Such continuous
product formulas can be discretized in the same way as in 3, yielding very simple
factorization formulas, still interpretable in terms of the integrated contrast functions
introduced in [DD]. This procedure is closely connected to models of human vision
[DD], [Me-DD-Ge] in which the emphasis is put on multiresolution image processing
and logarithmic light sensitivity.

1. Infinitesimal multiresolution analysis of L2(gi).

1.1. Bilinear analysis. Let us start from standard notions of continuous wave-
let analysis. (Throughout this paper, our conventions for Hermitian product and
Fourier transform in L2(/R) are the following ones: (f,g) f f(x)g(x)* dx, where
the star denotes complex conjugation and ]() (f, e), where e(x) exp(ix).)
We will focus on the analysis of L2(/R), and sometimes describe in a few words the
corresponding results in the H2(gi) context (we will denote here by H2(/R) {f e
L2(), ]() 0 for all < 0} the complex Hardy space).

Generically, a wavelet (or mother wavelet) is a function e L:(/R) such that the
following admissibility condition holds:

oo 2 du b(-u)
2 du

1.(I.I) c= (u) --If is differentiable, (1.1) basically means that (0) 0, otherwise stated as

=
o.
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Such a mother wavelet provides the following analysis of L2(/R): for any (b,a) E
/i gi_, we introduce the wavelet

(b,a)(X)- a a

and we have the following.
THEOREM 1. Let be a mother wavelet. Then any f L2(j/i) decomposes as

follows:

(1.3) f =/ (f, (b,a)) (b,a)
db da

x._ a

strongly in L(1R).
Proof. The proof follows from standard arguments, and we sketch it for complete-

ness. Let
TI (b, a) (.f, (b,a)).

Then T.f L(, db) by Young’s convolution inequality. Define

(1.4) da(x) f Tl(b,a (b,a)(X)db.

Again, Young’s inequality ensures that da L2(J) for any a //. Moreover, setting

(1.5)
P da

s(x) da(x)
a

we have that s e L2(/R) and Is()l < I]()] almost everywhere, so that the Lebesgue
dominated convergence theorem implies that

(1.6) lim Ill- 112 O,
--O,p----o

yielding the theorem.
Theorem 1 has been known for a long time by mathematicians as Calderdn’s iden-

tity [Calf, [Fr-Ja-We]. It was rediscovered more recently in a signal analysis context
by Grossmann and Morlet [Gr-Mo], and interpreted as follows: TI
is called the wavelet transform of f with respect to the analyzing wavelet
is sufficiently well localized in time and frequency (i.e., both and have sufficient
decay at infinity), TI gives information on the time-frequency localization of f. Con-
versely, (1.3) states that the wavelet transform is invertible on its range, allowing the
reconstruction of the analyzed function from its wavelet transform.

If we restrict to the Hardy space H2(/), a weaker admissibility condition (con-
cerning only the positive frequency part of ) is sufficient. Simply assuming that

c (u)
2 du

u
=1,

Theorem 1 holds for any f H2(/R).
We will need in the sequel a somewhat stronger assumption. We will call

an infinitesimal wavelet if is a real-valued wavelet, belonging to the atomic Hardy
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space Ha(/R). Ha(/R) is the space of the functions of LI(/R) such that their Hilbert
transform (we recall that the Hilbert transform H.:f of a function f can be defined
in the Fourier space as .f() -isgn()]()) is also in Ll(gi) (see [Co-We] for a
detailed account of the theory of real Hardy spaces).

Let then (x) be an infinitesimal wavelet, and let q(x) be its autocorrelation
function:

(1.7) q(x) (y)(x + y) dy.

Clearly q E H(/I), and we easily check that

(I.8) q(x) dx q(x) dx O.

Let

(1.9)

l foxp() q(u) du, > 0

1 Lx
q(y) dy, x < O

denote the mean function of q(x). We also have

() l(tS)l d_t
t

We will also denote pa(x) !pa ()"
LEMMA. p e LI(/R).
Proof. Let q+ (respectively, q-) denote the restriction of q to the positive (respec-

tively, negative) real axis. Since q+ H=l(gi), q+(x) admits an atomic decomposition
with (1, oo)-atoms,

(1 10) q+(x) Z + +Arian(x),

where

(I.ii) Z I,Xtl < ,
and the (1, oo)-atoms an+ (x) are compactly supported Ll-functions with support in an
interval I+, such that

a+n (x) dx 0

and
1Ilalloo _<

II1"
Moreover, such a decomposition is not unique, and (because of (1.S)) can be cho-

An an (x) is an atomicsen in such a way that In+ C gi+ Indeed, if q+(x) ’, + +
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decomposition of q+(x) with (1, oo)-atoms a+ (x), then it also admits an atomic de-
composition q+(x) ’, A+b+(x), where b+(x) [a+(x)+ a+(-x)]x+(x) are also
(1, oo)-atoms, supported on the positive real axis (here X+(x) is the Heaviside step
function). A similar property obviously holds for q-. We then assume from now on

1 z _1 0that Supp(a) c/R+. Denote p+ (x) : fo a+" dy(y) and p; (x) f. a; (y) dy.
Then

so that lpil, < o if the Ipll, are uniformly bounded. Now consider for instance pn+,
and let In+ [a, b]. Then,

(1.13)

1 a x-adx+ dx

1 [ 2a 2b ]a In + b In<- b-a a+b a+b

which yields the desired result. The lemma is then proved.
Then 0 _< 1() < . Let be such that

u

In other words, I (uOI -uO l (u )l for all e , and lim-,oo 0, is
called a scaling function, and we associate to it the corresponding

(1.15) _l(x-b)(b’a)(X)-- a a

We will see in 3 that (x) satisfies some kind of scaling equation (see (3.7)), and
that infinite product formulas for () can be obtained (3.5). Clearly, (1.14) does
not characterize ; although it is in general unnecessary, one can always restrict to a
real-valued . Notice that the squared modulus of the Fourier transform of the scaling
function is by construction a decreasing (respectively, increasing) function for positive
(respectively, negative) values of .

To any f E L2(/R) associate

(1.16) sa(x) -/_(f, ((b,a)>)(b,a)(X,) db,

that is,
du

(f * pa)(X).Sa (x) du (x)
u

Then Sa L2(/R), and we have the following decompositions, whose proofs are imme-
diate from that of Theorem 1.

COROLLARY. Let be an infinitesimal wavelet, and an associated scaling func-
tion. Then any f L2(/) can be expressed as

(1.17) f lim Sa
a--,0
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a da
(1.18) Sao + da-

a

strongly in L2().
The corollary also holds in the H2(/i) context.
In terms of linear filtering, can be seen as a low-pass filter, and as a band-

pass filter. Indeed, it is usual to consider analyzing wavelets such that () is well
localized in the Fourier domain around some frequency wo. Then (t) is localized
around wolf, and/() (and q()), built by "gluing together the I(t)l=, t [1, c["
is centered on the zero frequency. Then Sa describes the low-frequency content of f
up to the scale a (otherwise stated as the approximation at scale a), and da describes
the content of f around the scale a (i.e., the details at scale a).

Denote now by (a and Pa the convolution operators, defined, respectively, by the
multipliers a() I(a)l and/a() I(aS)l 2"

(1.19) [f] ()= ()()= da(),

(1.20) [Pa-] () iSa()]() a().

The previous corollary then yields an approximation of the identity by the operators
Qa and Pa. If we introduce the spaces

V(a) Pa.L2(If),

then it clearly follows from the monotonicity of that for any a < a’, V(a,) C_ V(a).
By analogy with the usual multiresolution analysis [Me], we call such a collection of
spaces a continuous (or infinitesimal) multiresolution analysis. In particular, it must
be remarked that V(a) increases to the whole 52(//) as a -. 0 and decreases to {0}
as a --, cx). Notice that all the V(a) spaces are translation invariant; then they are not

closed, except in the case where I1 XP, where X is the characteristic function of
some measurable set and p a bounded strictly positive function (see, e.g., [Ru]).

1.2. Linear analysis. It is well known that the reconstructing and the analyz-
ing wavelets can be decoupled. Otherwise stated one can use different infinitesimal
wavelets for the computation of the coefficients and for the synthesis of the analyzed
function from the coefficients (see [Ho-Tc], [Ho] for beautiful applications of this prop-
erty in different contexts). In such a case, the admissibility condition (1.1) has to be
modified accordingly [Ho-Tc]. A particular example of such a decoupling, which has
been known for a long time, consists in taking formally a Dirac distribution for the
reconstructing wavelet. Assuming instead of (1.1) that

du o du
1,(1.21) k (u) -u- (-u) -U-

we have the following decomposition of any f E L2():

(1.22) f(x) --/ (f (x,a))
da
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strongly in L2(q). This is the so-called Morlet reconstruction formula of f from
its wavelet coefficients. Such a linear analysis (linear in the function) generates a
continuous multiresolution analysis as follows: introduce the linear scaling function
to E LI(), defined by

u

o is also such that (u) -uc%(u) for all e/. Associate to o the following
functions:

(1.24) (b,a) (X)
a a

Finally, introduce

a(x) Tf(x, a) (f

and

(1.26) as (x) <f, o(x,a)>.
We then have the linear analogue of Theorem 1 and the corresponding corollary.

THEOREM 1’. Let Ha() be a mother wavelet, such that (1.21) holds, and
let o be the associated linear scaling function. Then any f L2(/R) can be decomposed
a8

(1.27) f lim

a da
(1.28)

a

da
(1.29) ea

a

strongly in L2(.).
1.3. Comments and examples. The bilinear analysis gives the convenient

scheme for the construction of orthonormal bases of wavelets [Me], [Da2]. Moreover,
it is better adapted for the characterization of functional spaces (see, e.g., [Fr-Ja-
,We], [Ho-Tc]). On the other hand, the linear analysis is very often used for signal
analysis [Gr-KM-Mo], since it produces a simplified reconstruction formula, involving
a one-dimensional integral.

There are many examples of admissible infinitesimal wavelets, some of which
are described in [Gr-Mo] and [Gr-KM-Mo]. Actually, the simplest one arises quite
naturally from infinitesimal multiresolution analysis. Indeed, let us take a Gaussian
scaling function:

1

where the normalization constant is fixed so that (1.1) holds. Then in the bilinear
analysis scheme, the infinitesimal wavelets can be deduced from (1.7), and we can
choose

2x
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i.e., a derivative of Gaussian. The case of linear analysis yields a more famous infinites-
imal wavelet. Taking for qa a Gaussian function leads to the celebrated Laplacian of
Gaussian, used for a long time in image analysis and processing, and vision (see, e.g.,
[DD], [Mar]):

(x) (1 2x2) e-

In the next section, we will see how such derivatives of Gaussians simply lead to
differences of Gaussians, which are also used in image theory and vision.

2. Wavelet packets in L2(). An important problem is that of the discretiza-
tion of the continuous formulas derived in 1. At least for numerical applications,
we want to be able to get discrete approximations of the identity in L2(//q), and to
control the discretization error. Such a problem was handled in [Dal], where the au-
thor developed the theory of frames of wavelets. In particular, focusing on the scale
discretization problem: if A (aoA, n E z’} denotes a geometric sequence in , for
some positive Ao, then ’eAQ defines a linear operator, which is positive, bounded,
and invertible with bounded inverse for a suitable choice of the Ao parameter and
the infinitesimal wavelet . Moreover, this operator can often be written as a small
perturbation of the identity (up to some multiplicative constant), which permits us to
consider the discretization as a good approximation of the continuous formula.

We are interested here in another way of discretizing the scales, such that the dis
cretization errors are avoided. Such a procedure canonically produces new waveforms
that we will call wavelet packets. Start from a strictly decreasing sequence of positive
real numbers:

< aj+l < aj < a-i <

such that limj-._o aj x and limj_+o aj 0.
Set

a5 da
(2.1) Dj(x) da(x)

5+1
a

Then Dj E L2(), and

(2.2) Dj()- ]() (a) almost everywhere.
5+1

a

Introducing the function J, such that

we then have

We will refer to the J functions as wavelet packets, since they are built up by gluing
wavelets together (in the Fourier space, contrary to the case of those described in
[Co-M-Q-W]). Such wavelet packets are also intuitively close to the atoms introduced
in Littlewood-Paley theory (see, e.g., [Fr-Ja-We]), obtained via a segmentation of
Calder6n’s formula (1.3) into integrals over dyadic cubes. In our case,.j the wavelet
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packets are obtained by a segmentation of (1.3) into integrals over strips in the time-
scale plane. The result then is that the atoms are generated in a simple way. Notice
that (2.3) does not completely define the wavelet packets. Once again, we can restrict
to wavelet packets with positive-valued Fourier transform, but this is not necessary.
By construction, the wavelet packets lead to a partition of unity in the Fourier space
as follows:

j----cx j=jo

for all E/R, where we have set

Defining the translates of the (I)J and J as (I) (x) (I) (x b) and (x) J(x b),
we then have the following.

THEOREM 2. Let be an infinitesimal wavelet, and let and be associated
wavelet packets and scaling functions as in (2.3) and (2.6). Then any f e L2(J/) can
be decomposed as

3--30

strongly in L2 (11).
Denote by Qj the convolution operator, defined by the multiplier and

set P Paj. Let and Wj denote, respectively, the images of L2(/R) by Pj and
Qj. This provides the following resolution of L2():

Again, it must be remarked that Vj increases to the whole L2(/R) as j --* oc and
decreases to {0} as j --. -oc. Moreover, Vj + Wj +1, but in general Wi.

Remarks. The wavelet packets have vanishing integral by construction. Moreover,
they can be seen as differences of two low-pass filters. Indeed, we have

and the partial reconstructions

(2.10) DJ (x) f_(f ) (x) db

as differences of two smoothings of f(x) at two consecutive scales:

(2.11) DJ(x) SJ+(x) SJ(x),

where

(2.12) cg) g
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Once more, we are close to the idea of the "difference of two smoothings" wavelet
familiar in vision theory.

The same can be done in the linear analysis scheme. The wavelet packets are
then defined as

/’ da
(2.13) OJ() (a)

+i
a

and yield a partition of unity in the Fourier space:

+ i.
j=-o j=jo

The linear wavelet packets still appear as differences of smoothings at two consecutive
scales, as

(2.15)

and every f E L2(//) decomposes as

(2.16) f(x) (f,

where O(x) O(x b).
The Gaussian example is once more very interesting, since it provides directly the

DOGs, i.e., the differences of Gaussians at two different scales (see, e.g., [Mar]).
Consider the particular case where all the scale parameters aj are generated from

a unique one a0 as a geometric sequence:

aj aoA-J

for some positive real number A > 1. Then the wavelet packets J (and also the
OJ) can be considered as wavelets in the usual sense, since they are generated from
a unique function 0 (or O) by dilations by powers of A. In particular, the bilinear
analysis yields the usual Littlewood-Paley analysis (also called dyadic wavelet analysis
in [Ma]).

Finally, let us stress that although we have chosen to use the term "Wavelet Pack-
ets," our construction is completely different than the wavelet packets construction
proposed in [Co-M-Q-W]. Both constructions share the fact that the corresponding
functions are of variable bandwidth, and that the bandwidth can be matched to a
function to be analyzed.

3. Mirror filters and factorizable wavelet packets.

3.1. Mirror filters. The orthonormal bases of wavelet packets described, for ex-
ample, in [Co-M-Q-W] are derived in a very simple algorithmic way from the so-called
Quadrature Mirror Filters (QMFs), canonically associated with the multiresolution
analysis. We will see in this section how infinitesimal multiresolution analysis can
produce continuous versions of such filters, and how these infinitesimal filters can be
put together to form QMFs for the wavelet packets. Let us start from the bilinear
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infinitesimal multiresolution analysis (the same arguments can be developed in the lin-
ear analysis scheme, too), with scaling function . If Iq(a)l 0, it follows from the
monotonicity property of 10 that a determination of the complex logarithm In(u)
can always be chosen for 0 < u < a, so that the function

uo(a)- aOa In q(a) Va, such that q(a) 0

can be introduced. Then clearly
a

(3.2) In q(a) vo(u)
du
u

and

(3.3) q() exp y0(u) -U--
Such a formula can be thought of as a continuous multiplicative formula, interpreting
the exponential of the integral as a continuous product of exponentials. Indeed, setting

(3.4) #o() e’(),

we can write the Fourier transform of the scaling function as

u--O

d) du beingthe continuous product rI,=o ( with respect to the logarithmie measure --4
defined by the right-hand side of (3.3).

Fo uch that $() 0, i.toduc .o th. unctio .,(), cdth i..d
filters:

(3.6) (1 1-[ .0(1.
u’--aj+l

Such functions allow a discretization of the continuous product formula (3.5), and make
the connection with the structure appearing in the usual multiresolution context. The
Fourier transform of the scaling functions can be written as

(3.?) a.i, mo(, a.i+ ,
Notice that this expression, together with the monotonicity of ]ql, can be used to
define m(), according to

$()
.()

0 v
V such that q(a:/+l) 0,

such that (aj+x)= 0.

Introducing now the high-pass filter

(3.9)
o v

V such that q(aj+x) 0,

such that (aj+l) 0,
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an immediate consequence of (2.9) is that the filters m and m fulfill the quadrature
mirror filter condition, that is,

(3.10) such that (aj-l) 0.

3.2. Factorizable wavelet packets. We will call factorizable wavelet packets
the wavelet packets generated by an infinitesimal wavelet and a decreasing sequence
{aj } of positive real numbers with the property that there exists a positive real ) > 1
such that for all j E ,
(3.11) aj+l

for some n(j) IN*. In other words, factorizable wavelet packets correspond to
sequences of scale parameters that are subsequences of geometric sequences. Introduce
then the filter mo such that

(3.12) (A) m0()(),

that is,

(3.13) fi (du)__ p0(u)=ef(u)dm0( )

In that case, all the integrated filters m factorize into products of dilated copies of
m0:

n(j)--i

(3.14) mo()= H m(Ana)"
n--O

This means that for numerical computations, the same filter can be used throughout
the decomposition. It is then possible to build an algorithm for the computation of
the wavelet packets coefficients with a pyramidal structure, as in the case of the QMF
algorithm for the computation of the coefficients with respect to an orthonormal base
of wavelets. Factorizable wavelet packets then seem more adapted for numerical imple-
mentation. This does not mean of course that nonfactorizable schemes are impossible
to implement. There can be some specific problems (namely, in acoustics and voice
analysis, or in vision) for which the optimal paving of the Fourier space is fixed by
some phenomenological results, and do not a priori correspond to factorizable schemes.
Nevertheless, depending on the required precision, it is likely that such pavings can
be approached by pavings corresponding to factorizable schemes.

Remark. In the particular case where n(j) is constant (and can be set to.1 without
loss of generality), all the wavelet packets are obtained by dilations of a unique function

and all the integrated filters are dilated copies of m0, too. The previous discussion
then leads to a fast (i.e., NlnN) algorithm, with pyramidal structure, to compute
continuous wavelet decompositions. Such an algorithm is in the same spirit as the
"Algorithme Trous" discussed in [Ho-KM-T], since it is obtained by replacing the
initial infinitesimal wavelet by another wavelet for which we can use QMFs. However,
while the "Algorithme Trous" is associated to an interpolation scheme, and then
damages the localization of the wavelets in the Fourier space (see, e.g., [Du]), the one
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proposed here uses the function , which has essentially the same decay properties
as in the Fourier space. It then seems more adapted to signal analysis, at least
for applications like those described in [Gr-KM-Mo]. Let us nevertheless stress that
we have not proposed any discretization scheme for the (continuous) variations of
the wavelet packets coefficient with respect to the translation parameter b. A brutal
discretization of the translation parameter periodises the m0 and then the m filters,
yielding a more usual QMF relation. However, the exact reconstruction property is
then lost (notice that the errors can in general be controlled).

4. Factorization formulas and contrast analysis. We now describe a mul-
tiplicative way of reconstructing a function f E L2() from sa and the contrast
functions, which can be introduced as ca . A precise meaning can be given to the

8a
multiplicative reconstruction formula, by making some analyticity assumptions on the
scaling function , ensuring that the zeros of sa(x) are isolated (with respect to the
dilation variable a, and for any x E ). We will discuss this analyticity property at
the end of this section.

Let us first assume that sa is a real analytic function of a el0, oo[. Then, if s,,(x)
does not vanish for u [a, A], we can write

Now if Ous,,(x) -d,(x)/u (which is right under the assumptions made on the scaling
function ), we then have

Let us now make sense of the integral when s,(x) vanishes in [a, A]. The goal is
that (4.1) still holds in such a case. Let us assume that a0 is the unique zero of s,(x)
in the interval [a, A], and set, for > 0,

8ao--e(T,) 8co-be(X) 8A(X) 8A(X)

8A(X) exp [(a-edit-lt --b Ao+e --du) du(’)18a-e(x)
it 8u(,)] 8ao+e(x)

Taking the limit --. 0, the analyticity of su(x) implies the existence of k /N and a
function h such that su(x) (u- ao)kh(u,x), with h(ao, x) O. Then

lim Sao_ (x) k
0 So+(x (--1)k and d,,(X)s,(x) u- ao + g(u,x),

for some function g continuous at u co, otherwise stated as

(4.2) Sa(X) SA(X) exp principal value k ri

Notice that such a specification of the integral coincides with the one obtained by
redefining the (real) integration interval a <_ u _< A by the union of the two intervals
a _< u _< a0 , a0 _< u _< A, and the half-circle of radius centered at a0, and
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then taking the limit -- 0. Notice also that when a0 a or a0 A, the integral
diverges, which is compatible with (4.1).

Let us denote by the set of admissible infinitesimal wavelets such that in addi-
tion for any f e L2(/R), sa(x) is analytic with respect to a for any x E q. We can
then introduce the infinitesimal contrast function

(4.3) ca(x)---aOa ln sa(x) Va, x such that sa(x) y 0

do()(4.4) o()’

that is, essentially the details of f(x) at the scale a divided out by the approximation
of f(x) at the scale a (this explains the name of contrast function). Then we have
shown the following.

THEOREM 3. Let .=. be an infinitesimal wavelet, and let f L2(). Then,
for any a < A, we have

(4.5) sa(x) SA(X) exp cu(x)

with the above specification of the integral.
Now (4.4) can also be written as a multiplicative integral, or continuous product

as follows:

A

(4.6) Sa(X) =SA(X) H (du)e,,(),
"-a

the continuous product being defined by (2.5).
Remark. The factorization formula is independent of the determination of the

complex logarithm between two singularities. It is then possible to specify a global
determination of the logarithm for a < u < A, turning around the singularities.

Let us now come back to the question of the analyticity of sa(x). We have the
following.

LEMMA. /f I()12 is infinitely differentiable, such that its derivatives satisfy the
bound

I1()11 _< KCk k! (1+ Il)-- v e z, k e

for some constants C,K > O, then for any f e L2(), sa(x) is an analytic function
of e fo e . Moo,, 0oo() -d().

Remark. Actually, such assumptions imply the strong (i.e., in norm) analyticity
of the map a [$(a)[2 with values in L2(/R).

Proof of the lemma. Set h() I$()12. Let us estimate the remainder of the
Taylor series of Sa(X) around a a0:

(4.8) rn n! Oa ]() h(a)nd] a=ao
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for 50 between a and ao. By assumption, we can find some # such that

sup
la-aol<

so that the integral and the derivative can be permuted. Then

Irnl <_ la-aoln KCn /I]()1 (1 q-[h0l)-1-n d.

Then limn-oo supla_aol< Irnl 0 for [a- a01 < e and e small enough, which proves
the lemma.

It is worth noticing that contrast analysis becomes particularly simple in the case
of the analysis of positive-valued functions, and positive-valued scaling functions (such
as Gaussian functions for instance), as observed in [DD]. Indeed, in such cases one
does not have to take care of the zeros of the sa functions.

Let us finally briefly describe the discretization of the factorization formula, more
precisely its relationship to the wavelet packets we described in 2 and 3. Consider
again the strictly decreasing sequence aj of positive real numbers. Then for all integers
n > m the integral fa. cu(x) du can be truncated into integrals over smaller intervals,
and the factorization-becomes

San (x) S.a. (x) exp cu (x)
j--m -t-1

which reduces to the trivial expression

n--1

(4.10) San (x) Sa.. (x) H Sa+l (x)
=., s (x)

Such a simple factorization can still be expressed in terms of integrated contrast co-

eJficients Indeed, introducing a family of wavelet packets such that (2.3) holds, the
associated integrated contrast coefficients can be defined as

(4.11) Cj(x)
Dj(x)

so that the factorization formula reads

n--1

(’:) o- () o() H ( + c()).
j--m

The contrast coefficients form a sufficient information for the characterization of the
analyzed function. The scheme defined by (4.8) can very easily be used for numerical
computations [DD], [Me-DD-Ge].

Remark. Linear contrast analysis: Let us finally describe the linear analogue
of the previous contrast analysis. Owing to Theorem 1, we introduce the contrast
function

(4.13) Ha(X) a(X)
o()
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Then, assuming that is of class C, such that in addition

(4.14)

for some positive constants C, K, we obtain the analyticity of aa(x) and

A

(4.15) aa(x) aA(X)
t--a

Such a continuous formula can also be discretized along the same lines as (4.6).
5. Conclusions. The continuous wavelet transform is naturally associated with

an infinitesimal multiresolution scheme. The wavelet transform and the continuous
set of approximations of the analyzed function are linked by some kind of scale deriva-
tive. This relationship is used to build a discrete set of wavelet packets by partial
integration of the infinitesimal wavelet on scale intervals. Such wavelet packets allow
exact reconstruction, though the scale axis has been discretized. If the sequence of
scale parameters involved is factorizable as a subsequence of a geometric one, the scale
discretization scheme can be combined with a pyramidal time discretization scheme.
We then lose the exact reconstruction property (notice that the corresponding dis-
cretization errors can probably be controled through appropriate frame estimates).
We have shown that this way of discretizing an infinitesimal multiresolution scheme
on the scales uses the wavelet transform as a scale derivative. Moreover, it may be
generalized to a logarithmic derivative. The resulting infinitesimal analysis is the
"contrast function," and leads to a multiplicative reconstruction formula. Such a log-
arithmic way of performing multiscale analysis is, in particular, of great interest for
the analysis of positive-valued signals, for which the troubles due to the zero-crossings
are avoided. It may be extended directly to the two-dimensional case, and applied to
image analysis. It then provides a rigorous framework to associate two basic properties
of human vision: multiscale information processing and logarithmic light sensitivity
[Me-DD-Ge]. The discrete reconstruction scheme, based on partial integrations of con-
trast functions, gives rise to formulas that are almost equivalent to "ratios of low pass
filters" (ROLPs) decompositions that have already proved their efficiency in image
processing [To-Ru-Va].
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EXPONENTIALLY-IMPROVED ASYMPTOTIC SOLUTIONS OF
ORDINARY DIFFERENTIAL EQUATIONS

I: THE CONFLUENT HYPERGEOMETRIC FUNCTION*

F. W. J. OLVER"

Abstract. There has been renewed interest in both formal and rigorous theories of exponentially-small
contributions to asymptotic expansions. In particular, a generalized asymptotic expansion was obtained for
the confluent hypergeometric function U(a,a-b+ 1, z) in which the parameters a and b are complex
constants, and z is a large complex variable. This expansion is expressed in terms of generalized exponential
integrals and has a larger region of validity and greater accuracy than conventional expansions of Poincar6
type. The expansion was established by transformations and a re-expansion of an integral representation
of U(a, a-b+ 1, z). In this paper it is shown how the same result can be achieved by a direct differential-
equation approach, thereby laying the foundation for a rigorous theory of generalized asymptotic solutions
of linear differential equations.

Key words, factorial series, Gamma function, generalized asymptotic expansion, generalized exponential
integral, incomplete Gamma function, superasymptotics
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1. Introduction. The confluent hypergeometric function U(a, a b + 1, z) has the
well-known asymptotic expansion

(1.1) U(a,a-b+l,z) "z-a E (-)
(a)(b)s

=o s z

valid when the real or complex parameters a and b are fixed, and the argument z
in the sector [ph zl=<-r -& Here (a) and (b) denote the ascending factorials
a(a+l)... (a+s-1) and b(b+l)... (b+s-1), respectively, and 8 is an arbitrary
positive constant. If either a or b is a nonpositive integer, then the expansion (1.1)
terminates and furnishes an exact representation of U(a, a- b + 1, z). In other cases,
for given values of a, b, and z, Izl being sufficiently large, the terms decrease numerically
to a minimum; thereafter they increase unboundedly. The accuracy obtainable from
(1.1) is limited, and greatest when the summation ceases close to the numerically
smallest term. Approximately, this term is given by s int [Izl], the integer part of Izl,
or somewhat more exactly by s int [Izl- Re a Re b + 2].

In a recent paper [7] the author established the following result.
THEOREM 1.1. Define R,(a, b, z) by

(1.2) 1 _)(a)s(b)U(a,a-b+l,z)=z +Rn(a,b,z),
s=o S! Z

where

(1.3) n=lzl-a-b+l+,

Izl being large, a and b being fixed real or complex parameters, and being bounclecl.
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Then

(1.4)
R,(a, b, z) (-)"27r

ezzb-1

r(a)r(b)

,,-1 (1- a)s(1- b)s F,+,+b_s_l(Z)
Y(
s=O S] Z

+(1-a)m(1-b)mRm,,(a, b, z)},
where m is an arbitrary fixed nonnegative integer,

(1.5) R,,,,(a, b, z)= O(e-z-lzlz-’), Iph zl -< r,

(1.6) R,,,,(a, b, z)= O(z-m), 7r--< Iph zl<-zr-6,
and denotes an arbitrary positive constant.

In this result F denotes the function defined by

e-Z fo e-Zttp-1 dt,(1.7) Fp(z)
l+t

when Re p > 0 and [ph z < 1/2r, and by analytic continuation elsewhere.
It will be observed that Theorem 1.1 provides a re-expansion of the remainder

term R,,(a, b, z) when the original expansion (1.1) is truncated at or near its optimal
stage; compare (1.3). In applications there are two advantages of the expansion given
by (1.2) and (1.4), compared with (1.1). First, the total sector of validity ]ph z]-<r
is greater. Secondly, the attainable accuracy is considerably improved.

Another important feature ofTheorem 1.1 is that it leads to a very clear understand-
ing of the Stokes phenomenon: indeed, it was the insightful formal researches of Berry
[1] on this aspect that motivated the research leading to Theorem 1.1. In brief, the
explanation is that if n and [z are large, fixed, and approximately equal, then the
functions Fn+a+b_s_l(g) that appear in (1.4) change very rapidly, but smoothly, from
being exponentially small to being almost constant as ph z passes continuously through
either of the values +Tr.

The proof of Theorem 1.1 was based on an integral representation of the function
U(a, a-b+ 1, z). By suitable expansion of this representation, the remainder term
R,(a, b, z) was expressed as a double integral, from which (1.4) was generated by
appropriate transformations and re-expansion. Now the expansion (1.1) can also be
obtained by direct application of the asymptotic theory of linear differential equations;
see, for example, [5, Chap. 7, 10]. Two questions naturally arise. Can the expansion
(1.4) also be derived by a purely differential-equation approach? If so, can a more
general theory be constructed, indeed, a theory that would be applicable in cases where
no suitable integral representation of the wanted solution exists? Again, the formal
researches of Berry [2] indicate that the answers to both questions are in the affirmative.
The purpose of the present paper is to provide a rigorous proof of Theorem 1.1 based
on differential-equation theory. The analysis we shall develop serves as a valuable
preliminary to the more general case, treated in [10]. Other relevant references are [4]
and [11].

In proving Theorem 1.1 we shall concentrate on the result (1.5) for the central
sector [ph z _-< r. The result (1.6) in the abutting sectors r _-< [ph z[ =<r 6 may then
be derived by application of well-known connection formulae for U(a, a-b+ 1, z);
compare [7, 5].

2. Properties of the function Fp(z). We collect here results pertaining to the function
Fp(z) that will be needed in the present paper and its sequel [10]. In each result p and
z may be real or complex.
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In terms of the generalized exponential integral Ep(z) and the incomplete Gamma
function F(1-p, z), Fp(z) is given by

(2.1) Fp(z)
F(p) E(z) F(p)

F(l_p,z)"r z-p-- 2---
From the definition (1.7) we easily derive the following identities:

(2.2) Fp+,(z)+ F.(z)
F(p) e

-2-Tr Z
p

(2.3) Fp+2(z)+ Fp+l(Z) =p- {Fp+l(Z)+ Fp(z)},
z

(2.4) F,(z) -Fp+,(z) Fp(z),
d
-z (eZFp(z)}= -eZFp+,(z).

By rotation of the integration path we derive the following continuation formula
in which k denotes any integer:

(2.5) Fp ze2kri ie -kpri
sin (kpr) + e_2kpriFp z), Z # 0.
sin (pTr)

When Izl is large and p is fixed, or bounded, we find by application of Watson’s
lemma [5, Chap. 4, 3],

e-Z _)sr(p+s)(2.6) Fp(z)-----Eo(= zp+S Iph z <--,r-(<-,r).

Next, when IPl and Izl are both large,

(2.7) Fp(z) 1/2i e-P’[erfc {c(0)xlz]} + e-lzltc)2/20(z-1/2)],
the O-term being uniform with respect to 0-= ph z in the interval [-r + 6, 3r- 6],
and also uniform with respect to bounded values of IP -Izll. Here c(0) is the continuous
branch of the function

(2.8) c(0) {2 e’ + 2i(0 r) + 2}1/2

that is asymptotic to 7r- 0 as 0- r. The approximation (2.7) is derived in [6], and a
graph of c(0) is also included in this reference. As a consequence of these results,
the corresponding approximation for the sector -37r / 6-< ph z <_-r- 6, and the well-
known asymptotic estimates

erfc () O(e-U), ’- o in Iph ’l _-< r- ,
erfc (’) 2 + O(e-2’-1), " o in [ph (-’)l =< ]r 6,

we derive the following uniform estimates, again valid when Izl is large and [p- Izll. is
bounded:

(2.9) Fp(z) e-Z-lzlo(1), Iph zl--< ’,

(2.10) Fp(z) e-z-lzlo(z-’/2), [ph z[ =< r 6,

(2.11) Fp(z)=+ie:P=’+e-z-lzlo(1), 7r<_- +ph z<-3r- 6,

(2.12) Fp(Z)= +ie:P=i+e-z-lzlo(z-/2), 7r+6_< +ph z_-<3r-6.

In (2.11) either all upper signs are taken, or all lower signs; (2.12) is similar.

The result (2.7) is contained in the proof of Theorem of [6], rather than in the actual statement of
this theorem.
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3. Matching of the remainder term by a series of F-functions. The function
U(a, a- b + 1, z) satisfies the equation

(3.1) Lw =0,

in which L denotes the differential operator

d2

(a-b+ldz---+ z

d a
-1

dz z"
If n is an arbitrary nonnegative integer and we apply the operator L to the nth partial
sum of the series (1.1), then we find that

"’ _) (a)(b)} _),_ A.(3.2) L z .z ’=( ,++,
s=O S

where

(a),,(b),, r(n + a)r(n + b)
(3.3) a,

(n-l)! r(a)r(b)(n-1)!"
Hence from (3.1) it follows that the remainder term in (1.2) satisfies

(3.4) LR,(a, b, z) (-)"

Our objective is to show that R,(a, b, z) can be expanded in the form (1.4) in
which m is an arbitrary nonnegative integer, and the new remainder R,,,(a, b, z) is
estimated by (1.5) and (1.6). We shall approach this problem by constructing a finite
series of F-functions which, when operated upon by L, will match the right-hand side
of (3.4) except for an asymptotically small term.

Consider first L{eZFp(z)/zq}, where p and q are arbitrary constants. With the aid
of (2.4) we find that

d { eZFp(z)} eZFp+l(z) eZFp(z)
z zq zq q

Z
q+l "’’

and hence

dz2 zq Z
q

As a consequence,

L zq zq

eZF,+ z eZFp z
+ 2q zq+l - q(q + 1) q+2

Z

eZFp+,(z)+(2q-a+b-l+z) zq/

+{q(q-a+b)+(q-a)z}
eZFp(z)
zq+2

The term in Fp/2(z) can be eliminated with the aid of (2.3); thus

{ } eZFp+l(Z) eZFp(z)
L eZ.FP(z)-=(p+2q-a+b-1) zq+ +{q(q-a+b)+(p+q-a)z} zq+2zq

This equation may be rearranged in the form

L zq j
=(p+q-a) zq+l +

eZFp z } eZFp+ z)
zq+ + q + b 1) zq+

+ q(q a + b)
eZFp(z)
zq+2
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Then by use of (2.2) we arrive at

L eZFe(z)] p+q-a F(p) eZFp+l(z) e:Fp(z)(3.5)
zq 27r zp+q++(q+b-1) +q(q-a+b) zq+2

In order to make the asymptotic behaviour of the first term on the right-hand side
of (3.5) match that of the right-hand side of (3.4), we must first arrange that the powers
of z agree; thus

(3.6) p+q=n+a.
From (3.3) and Stirling’s formula, we derive

A,---(constant) x e-nrl n+a+b-(1/2),
Also, with q n 4- a -p,

(p+ q- a)F(p) (constant) x n e-Ppp-(1/2),

Evidently, apart from the constant factors, the asymptotic behaviour of these two
expressions will be the same if we choose p n4- a4- b-1 and, correspondingly,
q 1- b. With these choices (3.5) becomes

L
eZF,,+a+b_(z)) n F(n+a+b-1) eZF,,+a+b_(z)

(3.7)
z 1-b --2"n" Z

n+a+l +(1- a)(1- b) Z3_b

The second term on the right-hand side of the last equation is to be regarded as
a residual, and to drive it into another residual, but with a higher power of z in the
denominator, we consider (3.5) with q increased by unity, to 2-b. At the same time,
to preserve the asymptotic form of the other contribution, we decrease p by unity, to
n 4- a + b- 2; compare (3.6). Thus we have

{eZF,,+a+b-2(z)) n r(n+a+b-2) eZF,,+a+,-(z)
L Z2_b -2,rr Z

n+a+l 4-
Z
3-b

eZFn+a+b-2(Z)
z4-b+ (2- a)(2- b)

Then by eliminating the final term from (3.7), we arrive at

(3.8)

eZFn+a+b-l(Z) eZF.+a+-2(z)}L z,_ -(I-a)(1- b) z2_

n
2,a.z,,+a+ {F(n+a+b-1)-(1-a)(1-b)F(n+a+b-2)}

-(1-a)2(1- b)2
eZF,,+a+b-2(Z)

z4-b
The procedure may be repeated. The last term of the right member of (3.8) is now

regarded as the residual, and we drive it into another residual with yet a higher power
of z in the denominator by use of (3.5) with p n + a 4- b 3 and q 3 b. Continuing
in this manner we readily establish, by induction, the general result

(3.9)
ml (1 a)(1 b), eZFn+a+b_s_l(Z)L _)s

zs-b+l J=o s!

2Zn+a+l 4-(_)m-,
(1-a)m(1-b)m eZFn+a+b-m(Z)

m 1)! Z,,-b+2
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in which m is arbitrary, and

m--1 (1-a)s(1-b)sF(n+a+b s 1).(3.10) Bran__ (_)s
s=o

On comparing (3.4) and (3.9) we perceive that the desired matching is representable
in the form

{ m-l)s(1-a)s(1-b)sezfn+a+b-s-l(z)}L R.(a, b, Z)-[-(--) n-1 2erA. y (_
zs-b+ltlBm, s=o s

(_)m+. 2zra______. (1 a)m(1 b)m eZF.++b-m(Z)
nBm, m 1) Z

m-b+2

In 4 we shall, in effect, invert the operator L in the last equation in order to
estimate asymptotically the content of the braces in the left member. However, by
comparison with the known result (1.4) we suspect that a simplifying approximation
can be made for the ratio A,,/(nBm,.). This is indeed the case, and the required result
is as follows.

LEMMA 3.1. Let a and b be fixed (or bounded) complex numbers and m be a fixed
nonnegative integer. Then as n-> o

m--1 (1-a)s(1-b)sF(n+a+b_s_l)F(n+a)F(n+b)__ E (-)
F(n + 1) =o s!

+(1-a),,(1-b),,r(n+ a+ b- m- 1)O(1).

This result is proved in [12, Appendix]. See also [8], [9].

4. Estimation of Rm,,,(a, b, z). Throughout this section it will be understood that
the parameters a and b are fixed (or bounded).

Let us return to (3.4) and (3.9). By combination, we obtain

{ ,.-1=o (1-a)(1-b)seZF"+’+b-s-l(Z)}2"a"
E (-) z-b+lLR,,(a, b, z)-L (-)"r(a)r(b)

(-)" A,,-F(a)F(b)Bm.,, Z
n+a+l

+(_)m+n 2"rr(1-a)m(1-b)m eZFn+a+b-m(Z)
(m- 1)! r(a)r(b) z-+

Hence, with R,.,,,(a, b, z) defined as in (1.4), we have
Cmn (__)m eZFn+a+b_m(Z)

(4.1) L{eZzb-lRm,n(a,b,z)}=zn+/+l+(m_l)! zm-b+2

where

F(a)F(b) {A. n
(4.2) C,,,,, =2"n-(1-a)m(1-b)m F(a)r’(b) Bm’n

And as a consequence of (3.3), (3.10), and Lemma 3.1 we note that as n->oo, with m
fixed,

(4.3) Cm,, nF(n / a + b- m 1)O(1) n "+a+b-m-(1/2) e-O(1).

In order to invert the operator L in (4.1) we need two linearly independent
solutions of the equation Lw 0. One of these has to be the solution that is recessive
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at infinity in the sector [ph z[ <1/27r, that is, U(a, a-b+ 1, z). As a second solution we
select V(a, a b + 1, z), the solution that is recessive at infinity in the sector [ph (-z)[ <
1/27r. For brevity, we shall denote these solutions by U(z) and V(z), respectively. Then
their defining properties are expressed by

(4.4) U(Z)=Z-a{I+O(z-)}, Z-->O0 in [ph zl-<_r-8;

(4.5) V(z)=eZ(--z)b-{l+O(z-)}, z-->oo in Iph (-z)[ _-<r- 8;

compare [5, Chap. 7, 10.1].
Until the end of this section, we shall restrict 0_-< ph z-<_ 7r. The branch of z in

(4.4) is then the principal value, and the choice of branch of (-z)b-1 in (4.5) is given
by

(4.6) V(z)=ei(1-bezzb-{l+O(z-1)}, z->oo in 0_-<ph z<- r,

where zb-1 has its principal value. The Wronskian of the two solutions is

(4.7) //{ V(z), V(z)} eri(1-b)ezzb-a-1.

By the method of variation of parameters, using (4.7), we find that one solution
of (4.1) is given by

Rm,n(a, b, z) ’() (a, b, z)+ R(2) (a, b, z),m, m,(4.8)

where

(4.9)

(4.10)

and

(4.11)

ezzb-lR(1)m,n.(a, b, z) Cmn, -t;,-4_ 7 dt,

(_)m izK(z,t)ezzb-lR?,,(a, b,z)=(m_l)----, tin_b+2 etF,+a+b_,,,(t) dt,

K(z, t)=e’b-) e-’ta-b+{U(z)V(t) V(z)U(t)}.

From (2.6), (4.4), and (4.6) we may verify that as z--> oo, the right members of (4.9)
and (4.10) are O(z--) and O(z-n--), respectively. Hence with R,,,(a, b, z) defined
by (4.8) it follows that ezzb-Rm,,(a, b, z) is O(z-"-a). Again, with the aid also of (2.6)
we see that the right-hand side of (1.4) becomes O(z-"-). This is precisely what is
required by (1.2), and since there is only one solution of (3.4) that is O(z-n-a) as
z --> oo, it follows that (4.8) is the correct choice of solution of (4.1) when Rm,n(a, b, z)
is defined by (1.2) and (1.4).

In order to estimate Rm,,(a, b, z) from (4.8), (4.9), and (4.10), we need a uniform
estimate of K(z, t) when Izl is large. This estimate will depend on the integration paths
used in (4.9) and (4.10). We shall employ the same path for each integral, and our
first restrictions are that 0<_-ph t_-< 7r and Itl >--Iz[ everywhere on this path. Then from
(4.4) and (4.6) we conclude that

(4.12) U(z) V(t) z e’tb-o(1)
when [z[ is large in the sector 0 _-< ph z-< r, uniformly for on the path. As is customary
in proofs of this nature, we now try to arrange that the same estimate applies to the
other constituent V(z)U(t) in the kernel K(z, t). With this in view we prescribe the
integration path in (4.9) and (4.10) to consist of: (i) a circular arc from z to
centered at the origin and described in the positive sense; (ii) the real axis jfrom Izl
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tO . This path is illustrated in Fig. 4.1. If z is real and positive, the circular arc
is absent.

LEMMA 4.1. Assume that

Izl>-krla+b-l] and 0-<phz-<Tr.

Then on the integration path depicted in Fig. 4.1.

()a+b-1 { 7r2[im (a + b)[:}ez-’ =<exp
81zl

provided that (z/ t) a+b-1 has its principal value.
This result is proved in the Appendix. We note, in passing, that the bound is unity

when a + b is real, and is 1 + O(z-1) in other circumstances.
Corresponding to (4.12), we have

V(z) U( t) eZzb- t-O(1),

and hence, by Lemma 4.1,

(4.13) V(z)U(t) z e’tb-lo(1).
On substituting into (4.11) by means of (4.12) and (4.13) we obtain the desired estimate

(4.14) K(z, t)= z-tO(1),

uniformly valid when lies in the path depicted in Fig. 4.1 and Izl is large.
Next, on substituting into (4.9) by means of (4.14), we obtain

ezzb-lR(?,,(a, b, z)= Cm,nZ-"O(1)
dt

On the chosen path

(4.15) f
Hence we have

dt

(4.16) R2?,(a, b, z)= C,,,nZn++b_ r+ O(1).

So far in the analysis we have not assumed any relationship between ]z] and n. It
is at this stage that we introduce the condition (1.3) in which a, b, and a are bounded.
Since n as [zl c we may substitute for C,,,n in (4.16) by means of (4.3). We obtain

(4.17) R(1) (a, b, z)= nn+a+b-m-(1/2)e-ne-Z 0(1) e-z-lzlz-m+(1/2)O(1)zn+a+b-1

FIG. 4.1. t-plane. Path for the integrals (4.9) and (4.10). Sector 0_-<phz-<_r.
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,,(2) (a, b, z) from (4.10) is more complicated.The corresponding estimation of
Consider first the circular arc from z to Iz[. On this part of the path In + a + b rn -[tl[
is bounded; compare (1.3). Hence from (2.9) we obtain

Fn+a+b-m( t) e-t-ltlo(1).
Using this result and (4.14) we derive

1K(z, t)
(4.18) tm_b+2 etFn+a+b_m(t) dt Z-ao(1) [tm_ Z,,_b+ O(1).

Now consider the straight line segment from Iz] to c. On referring to (1.7) and
(4.14) we perceive that

t)

zl tin-b+2
e F,++_m( t) dt

Ii dt Io e-"-"+"+b-"-I

dr.O(Z-a)
zl

m-Rea-Reb+2 1 +
Provided that m> Re a+Re b-1, the integration order may be interchanged [3,
Thm. 1]; thus

zl t’-+
etF"++-"(t) dt

dz tm_Rea_Reb+2 dt.-O(Z-")
1+"

In terms of the incomplete Gamma function the inner integral on the right-hand side
of the last equation is

zm--+F(Re a + Re b- m 1, Izl ).
Since we are assuming that m > Re a + Re b 1, this quantity is bounded by

e-lzllzl r=+r=--zz-a.
compare [5, Chap. 3, eq,. (1.05)]. Hence we see that

fl K(z, t) O(1) fo e-lZl’,"+R+Rb-m-
tm_b+2 etF.++b_m t) dt m-b+2 dr

zl z 1+"
(4.19)

compare (1.7) and (2.9).
We may now substitute into (4.10) by means of (4.18) and (4.19) to obtain

(4.20) R2)’ e (1).m,n[a, b, z) Izlz-mo
Then from (4.8), (4.17), and (4.20) we arrive at

(4.21) Rm,n(a, b, z)= e-Z-lzlO(z-m+(/))
as z o in the sector 0 -< ph z -< r. A similar proof applies when -r -< ph z -< 0.

To complete the proof of (1.5) we need to show that: (i) the order term in (4.21)
can be strengthened to O(Z-m); (ii) the condition m > Re a + Re b 1 can be removed.
Both steps are easily achieved simply by increasing m in (1.4) and using the estimate

F,+a+,,-,-l(Z) e-Z-IlO(1)
as necessary for s <- m 1; compare, again, (2.9).
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5. Conclusions. We have developed a new form of asymptotic analysis for the
study of solutions of linear differential equations in order to establish an exponentially-
improved asymptotic expansion of the confluent hypergeometric function U(a, a b /
1, z) in the neighbourhood of the irregular singularity at z . This expansion was
derived previously from an integral representation of U(a, a-b+ 1, z). Our proof
applies directly to the sector Iph z] =< or, which is the region of maximum exponential
improvement. The corresponding results for the sectors r_-< ]ph z] <=r- 8 can be
obtained by application of connection formulae.

The integral-representation approach also led to strict and realistic error bounds
for the exponentially-improved asymptotic expansion of U(a, a b + 1, z) in the sector
]ph z =< r. It may be feasible to obtain similar error bounds via our differential-equation
approach, but this has not been explored in the present paper.

Appendix. Proof of Lemma 4.1. Write

(t) Re {t +(a + b- 1) In t},

where the logarithm assumes its principal value. Then on the path depicted in Fig. 4.1
we have

eI,( )-l,( ).

Let us consider the behaviour of (t) at passes along the contour ABCD shown in
Fig. A.1. Here ABC is the semicircle =p e ’x, where p Izl and r_-> X--> 0; CD is the
segment of the real axis from =p to t- o. We shall also write

a + b- 1 KR/ iKI,

where KR and are real.
On CD we have

P(t):t+rRlnt, P’(t):l+(rR/t).

Hence (t) is nondecreasing, provided that t->--/R in the case /(R < 0.
Now suppose that lies on ABC and r_-> 0. Then

cos X +R In p IX,
d

dx
-p sin X-/(i-

Hence (I)(t) is nondecreasing.
Lastly, suppose that lies on ABC and KI----K, where ] > 0. Then

d dE(I)
(t) p cos X + KR In p + r{X, dx -p sin X +, dx2 -p cos X-

C
(-p) [o (p)

Fo. A.1. t-plane.

D
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Suppose also that p> t]. Then d/dx vanishes at X =go and X r-Xo, where
Xo=sin-(tc]/p). The graph of (t) plotted against X is illustrated in Fig. A.2.

At C, t=p, X=0, and (t)=(p)=p+alnp.
At =p exo, (t) is at a maximum, and we find that

(p e’xo) -(p) p cos Xo- p + rXo h,

say. Similarly, at =p e-xo, (t) is at a minimum, and we find that

(p e’) -(p e’(-xo)) h,

with the same h. Also, because Xo=sin-(r/p), we have

h p(cos Xo- 1 + Xo sin Xo).
2Since 0 Xo , we have by an elementary inequality 0 h pXo, and hence by

Jordan’s inequality

Ohpk/ 8p

We require one fuher condition, given by p >ri. The purpose of this condition
is to ensure that (p)(p e) and, in consequence, that the point C in Fig. A.2
does not lie below A.2

On combining the foregoing results we see that we can asse that if z and are
any two points on the path depicted in Fig. A.1, being to the right of z, then in all cases

2 2

(z) -(t) h r
8p

provided that Iz[ -rg when us is negative, and [z -rI when i is negative. The
last two conditions are ceainly fulfilled when ]zl&lR+ b-11, and
Lemma 4.1 follows.

FIG. A.2. Graph of dp(pe ix) when K is negative.

Actually, it would suffice for C to be no lower than the local minimum at X r-Xo.
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A GENERALIZATION OF LAGUERRE POLYNOMIALS*

R. KOEKOEKf AND H. G. MEIJERf

Abstract. The authors study orthogonal polynomials on [0, +) with respect to an inner product
involving derivatives that cannot be derived from a weight function. These polynomials can be written as
a 3F3 hypergeometric series and they satisfy a second-order differential equation and a five term recurrence
relation. At most one zero of each polynomial is located outside (0, +), the interior of the interval of
orthogonality. As a special case Koornwinder’s Laguerre polynomials {L’M (x)},+__ are included.

Key words orthogonal polynomials, Laguerre polynomials, inner product
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1. Introduction. In [8] and [9] H. L. Krall introduced some generalizations of
classical orthogonal polynomials which are orthogonal with respect to a weight function
consisting of the classical weight function together with a delta function at the end-
point(s) of the interval of orthogonality. These polynomials were described in more
detail by A. M. Krall in [7]. In [6] Koornwinder generalized this and computed the
polynomials which are orthogonal on the interval [-1, +1] with respect to a weight
function of the form (1-x)(1 +x) + M. 8(x+ 1)+ N. 8(x- 1). These polynomials
are generalizations of the classical Jacobi polynomials. In [1] and [2] Bavinck and
Meijer studied further generalizations of these polynomials in the ultraspherical case
(a fl); they computed the polynomials {S’l’Nx+Jn=o, which are orthogonal on the
interval [-1, +1] with respect to the inner product

F(2c +2)
(P, q/=22"+1. F2(a + 1)

(1-x2)’.p(x)q(x)dx+M.[p(-1)q(-1)+p(1)q(1)]

/ N. [p’(-1)q’(-1)+p’(1)q’(1)].

As a limiting case Koornwinder found the polynomials {L:’4tx+JJ,=o, which are
generalizations of the classical Laguerre polynomials {L J,=0 orthogonal on the
interval [0, +c) with respect to the weight function (1/F(a+ 1)). x’e-X+M 6(x).
These polynomials were described in detail in [4].

In the present paper we consider the polynomials {L:’M’N(X)},=o, which are
orthogonal with respect to the inner product:

(1.1) (p, q>=r(a +1" o
x e-". p(x)q(x) dx + M. p(O)q(O)+ N. p’(O)q’(O),

where a > -1, M >- 0, and N => 0.
We will show that the polynomials {L:’M’V(x)},+=o can be defined by

(1.2)
d d2

L:’’(x) Ao" L)(x) + 31 "xx L)(x) + A2 "x2 L’)(x),

* Received by the editors July 5, 1988; accepted for publication (in revised form) August 31, 1992.
f Department of Mathematics and Informatics, Delft University of Technology, P.O. Box 5031, 2600

GA Delft, the Netherlands.
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where

(1.3)

n(a +2)-(a + 1)
(a+l)(a+3)

n- n-2

M (n+a (n-l)
A1 \ ]n (a+l)

N. - ):n- (a+l

A2 (a+l) n- (a+l): n n-1

MN
(a+l)(a+2)

n n-2

For N 0 we have

n- n -dx L(" x

Koornwinder’s polynomials, and for M N- 0 we have

L’.,(x)= L’)(x),
the classical Laguerre polynomials.

In [5] we studied further generalizations of these polynomials
{L.Mo.. t(x)}+.=o, which are orthogonal on the interval [0, +o) with respect to an
inner product involving higher derivatives"

1 fo K

(p, q)
F(a +1-------. x" e-"P(x)q(x)dx+

=o
M"’P(O)q"(O)"

For N> 0 the inner product (1.1) cannot be derived from a weight function, since
(1, x:) (x, x). Many of the well-known properties of orthogonal polynomials can be
proved by using the orthogonality with respect to a weight function (see [3] and [10]).
So we may not expect these new polynomials to satisfy a three term recurrence relation
and to have real simple zeros which lie in the interior of the interval of orthogonality.

In this paper we investigate some properties of the polynomials {L’M’V(x)}/n=0
In this special case we have an explicit representation which allows us to find results
concerning the zeros, for instance. For general results on the polynomials
{L,Mo,MI,’",Mk(x)}+.=o, the reader is referred to [5].

2. The classical Laguerre polynomials. First we summarize the properties of the
X+cclassical Laguerre polynomials {L)( J,=o we will use. For details the reader is

referred to [3] and [10].
Let a > -1. The classical Laguerre polynomials {L")(x)},+o are orthogonal poly-

nomials on the interval [0, +c) with respect to the weight function x e and with
the normalization

(2.1) L’)(O) ( n + a)
They can be defined by Rodrigues’ formula

1
eX. [e_. x.+],(2.2) L(,)(x) =- x n=O, 1,2,3,

dx"n!
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(a)The polynomials {L, (x)} n=o satisfy the Laguerre differential equation

d2 d
(2.3) x. dx--5 L")(x) + (a + 1 -x) --dx L")(x)+ n L’)(x) =0,

and a three term recurrence relation

(n+ 1). L+)l(X)+(x-2n-a-1)
L(na)(X)+(11+Ol) L(na-)l(X) 0, n 1,2,3,4,...,

Lo’)(x) 1 and L)(x) a + 1 -x.

We have a simple differentiation formula"

d L,(x) r+l(x), n 1 2, 3 4,(2.4)
dx ,-,,,-1

and a representation as a hypergeometric series

(2.5) L{’7)(x) ( n + tz) a+ 1; x), n O, 1, 2, 3,

3. The orthogonality. In this section we prove the orthogonality ofthe polynomials
=a,M,N \+oo
L, t,x)I_-o defined by (1.2) and (1.3) with respect to the inner product (1.1).

We will prove that (p, L,’a’N) 0 for every polynomial p with degree [p] _-< n- 1.
First assume that the polynomial p can be written as p(x)= x2. q(x) for some poly-
nomial q. Then we have degree q] _-< n 3 and n _-> 3. In that case we find for (p, L’t’N):

F(a+l) o

ao
r(+l)

al
r(+l)

A2
r(a+l)

x+2 e-x. q(x)L’’’V(x) dx

x e-". x2q(x)L(n")(x dx

- .l(cz+l)X
+1 e-X xq(..-,,,-1 (x) dx

x’’+2 e-". q(x)L%+22)(x) dx,

which equals zero in view of the orthogonality property of the classical Laguerre
polynomials

Now we consider p(x)= 1 and p(x)-x. First let p(x)-1; then we find for
(P, L:’’):

(3.1)

r(a+l)
x e-’. L’’l’C(x) dx + M. L’’t’V(O)

Ao Io- A1x e-x. L.")(x) dx-
r(+l) r(a+l)

A2
r(a+l)

T(a+2)/..x" e-x. a-’n--2 \.,) dx

x" e /" (+l)/v’.,.,,,_ .)dx

+M.
n

"Ao-
n- "AI+ n-- "A2
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And for p(x)= x we obtain

1 }r(a+l)
x +1 e,-X. LO,l,V(x) dx+N. L’M’N(X)

x=o

Ao j"+ x+’ e-x. L)(x) dx
F(a+l) o

A1 fo* l(a+x+’ e n_ll)(x) dx
r(a+l)

(3.2)
A2 fo -x./(a+2)(X

+1 e n--2 t*) dx+r(+l)
-N. [(:)" Ao-(:)" AI+(:)" A2].

Using Rodrigues’ formula (2.2) and integration by pas we find

(3.3) x+ e_X l.(+i n- k- 1_._, (x)dx= r(+k+l)

whereofcourse(P)=oforOp<q.q
Using this and (1.3) we find for (3.1) and (3.2) by straightforward calculations,

(3.4) -A+(n-1).A+M.
n+

Ao_
n+

A+ A =0
n--

and

(3.5) (a+l). A2-N"
n+

Ao-
n+

A+ A2 --0.
n-- r/-

This proves the orthogonality.

4. Some elementary lrolerties. We start with the coefficients Ao, A1, and A
defined by (1.3). It is not difficult to see that

Ao ->_1, AI->-0, and A2->0.
For the coefficient k, of x" in the polynomial L’M’N(X) we easily find, using (1.2),

(-1)"
(4.1) k. ao.n!

And using (1.2), (2.4), (2.1), (3.4), and (1.3) we obtain

M. L,,t,N(O)=AI_(n_I) A=M. (n+a) [I_N (n+a+l)]n (a+l) n-2

Hence for M > 0,

(4.2) LO,4,1V(O) ( n + a) [ l _N (n + a + l) ]n (a+l) n-2

For M 0 we find the same formula by direct calculation.
Note that L’’M’N(o) does not depend on M and that L’M’N(O)=< 0 for N> 0 and

n large enough.
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In the same way we obtain, using (1.2), (2.5), (2.1), (3.5), and (1.3),

x=0

Hence for N > O,

d
(4.3) {-xL’M’I(x))

(a+l) A= N’(n+7)n-+MN(a+l)

x=O (a+l) n n-1

For N 0 we find the same by direct calculation.
Note that

does not depend on N and that

x=O

x=0

Finally, we take n=>2. Then we have with (1.1), (1.2), (4.1), (2.4), (3.3), and the
orthogonality property,

(4.4) A" (L:’M’N’ L:’t;rv):k"" (x"’ L:’M’N(x)):(n+a)"A’[A+AI+A2]’n
For n 0 and n 1 this formula remains valid.

5. Differential equation. In this section we will prove the following.
THEOREM. The polynomials {L’M’N(X)} +.=o satisfy a second-order differential

equation of the form

(5.1)
d2 d

L,4,X" p2(x) dx--"5 L’’M’(x)--pl(X) "-X (X)+ n" po(X) L’’M’N(X)=0,

where {pi(x)}2
i=o are polynomials with

degree [Po] degree [P2] 2 and degree [Pl] 3,

and all having the same leading coefficient which we take to be 1/ n) Ao Ao+ A1 + A).
Proof We start with the differential equation (2.3) for the classical Laguerre

polynomials:

(5.3)
d2 d

x. dx-- L(,)(x)+ (a + l-x) xx L(,)(x) + n. L(,,’)(x)=0.

Differentiation of (5.3) gives us

d d2 d
(5.4) X.x3 L’)(x)+(a+E-X) dx---s L’)(x)+(n-1) .-dxL’)(x)=O.
From the definition (1.2) we obtain, using (5.3),

d d2

L(,,,)(x)(5.5) L’’M’N(X) qo(X) -X L(,,’)(x) + ql(x) dx----

<0 for n => 1.
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where

(5.6)

qo(x)=A1-1-’" Ao" (a +l-x),

ql(x) A2 -1" Ao" x.
n

Differentiation of (5.5) leads to

d de

ddx L’’t(x)= q(x) "--dx L(")(x) + [q(x) + q(x)] .x2 L(,,’)(x)
(5.7)

d
4- ql(X) X L’(x).

Using (5.4) we find, from (5.7),

d d d2

(5.8) x’-d-x L’’(x)= q*o(X) .-dx L’)(x)+ q* (x) dx--Z L(,)(x),

where

q*o(x) x" q(x)-(n- 1). ql(x),
(5.9)

q*l (X)=X [qo(x)+q(x)]-(a+2-x) ql(x).

Elimination of the second derivative of the classical Laguerre polynomial in (5.5) and
(5.8) leads to

d
[qo(x)q* (x) q*o (x)q(x)] -x L)(x)

(5.10)
d
L,M,N(Xq*l(X)" L’’M’N(X)-x" ql(X) "X ).

We define

(5.11) r(x) qo(x)q*l (X) q*o (X)ql(x).

It is easy to check that degree [r] 2. Hence r 0. So we have from (5.10) and (5.11),

q*(x) L,M,N ql(X) d L,M,Nd L(x) (x)-x. x).(5.12)
dx ) r(x) dx

Substituting (5.12) into (5.5) we obtain a second-order differential equation of the form

de
L’’M’N(x)+ a,(x)

d
L:,M.N(x)+ ao(X) L’M’N(x)=0,(5.13) a2(x) "x xx

where

(5.14)

ae(x) x. {q,(x))e. r(x),

a,(x) =-q,(x). q*(x), r(x)+ x. qo(x)" q,(x), r(x)+{ql(x))e. r(x)

+x. q,(x). [q(x). r(x)-q,(x), r’(x)],

ao(x) =-qo(x)" q*l (x) r(x)-q,(x) r(x) .-x q*l (X)-q* (x) r’(x)

+{r(x)}.
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From (5.11) it follows that

(5.15) qo(x) q* (x)- r(x) q*o (X) ql(x).

Hence, the differential equation defined by (5.13) and (5.14) can be divided by ql(x),
which gives us a differential equation of the form (5.13) with

a2(x)= x. q(x), r(x),

al(x) x. qo(x)" r(x)-q*(x), r(x)+ ql(x)" r(x)

(5.16) / x" [q(x) r(x)- q(x)" r’(x)],

d
ao(x) q*l (X) r’(x) r(x) x q* (x) q*o (X) r(x).

Using (5.9) we obtain

(5.17) al(x)=q(x). [(c+3-x). r(x)-x, r’(x)].

And with (5.6), (5.9), (5.11), and (5.16) we find by straightforward calculations,

ao(x) ql(x) q*o(X) q*o(X)+--x q* (x) -q*l (X) q*o(X)

+q(x) q*l (X) [(n-l). {qo(x)+q(x)}-(a+2-x) q(x)].

Hence, the differential equation can be divided by ql(x) once more and we obtain a
differential equation of the form (5.13) where

a(x) x. r(x),

a(x)=(a+3-x), r(x)-x, r’(x),

ao(x) q*o (X) q*o (X) +--x q* (x) q* (x) -x q*o (X)

+q*(x)’[(n-1)’{qo(x)+q(x)}-(a+2-x)" q(x)].

This proves (5.1) with p2(x)= r(x), p(x)=-a(x), and n. po(x)= ao(x).
Now we can easily check that the leading coefficients of Po, P, and P2 all equal

1
Ao" (Ao+ A1 + A2).

n

6. Recurrence relation. All classical orthogonal polynomials orthogonal with
respect to a weight function satisfy a three term recurrence relation. See, for instance,
[3] and [10]. In this section we will prove the following.

THEOREM. The polynomials {L’’S(x)},+= satisfy a five term recurrence relation

of the form
I" ,M,N f.(n) ot,M,N"

n+2" a’-n+2 (X) "4- n+l L’n+l tX)--[C(nn)--X2] Lt’M’N(x)
(6.1)

+ c., /_,:,"(x) + c. ,._ (x) 0.

Proof Since x2. L’’’U(x) is a polynomial of degree n + 2 we may write

n+2

(6.2) x2. L’M’U(x) C"). L’’t’U(x).
k=0

Taking the inner product with LT’’U(x) on both sides of (6.2), we obtain

(6.3) (L7’’u LT’’u) ")= (L’’U(x), x L’’’tx
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which follows immediately from the definition of the inner product (1.1). Since
(p, L’M’N) -0 for every polynomial p with degree [p] _-< n- 1, we obtain

(6.4) C")=0 fori=0,1,2,3,...,n-3.

This proves the theorem.
From (6.1) it easily follows that

(6.5) C(,) k,
n+2 k,+-- 0,

where k, denotes the coefficient of x" in the polynomial L’M’N(x) given by (4.1). And
for C2 we obtain, from (6.3),

(6.6) C2 k,-2" A,

where A is defined as in (4.4).
We remark that C(/, C, and C can be computed by using (6.3), too. We

omit the details because these coefficients are not essential here.

7. A Christoifel-Darboux type formula. The classical orthogonal polynomials
satisfy the so-called Christoffel-Darboux formula, which gives some information about
the zeros of the polynomials. See, for instance, [3] and [10]. In this section we derive
an analogous formula for the new polynomials {L:’’s(x)}.+=o.

From (6.1) we easily obtain

x L:.(x)=--,) .’.’n--i+2" "t’n-i+2(X)’q- .."n-i+l -.’n-i+l (X)
(7.1)

(n--i) .(n--i) ra,M,N i(n--i) M N+ c._, L:’(x) + ._,_, ._,_, x) + ._,_ L.’_,: X)

for 0, 1, 2, 3,..., n -2.
Now it follows from (1.1) and (7.1) for 0 _-< 2 =< k -< + 2 -< n that

(n-i) (n-k)

(7.2) n-k C n--i

An--i An-k

From (6.1) and (7.2) we obtain

(x2- y2) ., Ld’’(x)Ld’’(Y
k=O Ak

c rla,M,N
t-,+2 (x)L’d’l’V(Y) -’’ ,v

.+" ty)t.." (x)]
(7.3)

C(,,)
L n+ ot,M,N L:,M, ra,M,N.....M,N[L,+, (x) N(y)_,,+, ty), (X)]

c(n-1)n+l [LOd,+,n(x)L:,,n(y) ,M,L,,+I V(y)L’d’-l"(x)].

Note that we have, with (6.5),

(7.4) C(,, k,, /(n-1) k.-1
n+2-- kn+2

and -n+l kn+l
Formula (7.3) can be seen as a Christottel-Darboux type formula for the polynomials
MN{L.’’ (x)}+n=O
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(7.5)

Dividing by x2--y2 and letting y- x we obtain the so-called "confluent form":

2x.
{L’M’N(x)}2

k=0 Ak

kn
1 kn+2

d
]rot,M,N ra,M,N, d ]Ln+2 tX L’’M’N(X)L’M’U(x) --x,.+ (x)--

(n)
n+l

kn
in_ kn+

r,M,N d r,,,M,N o,.M, d
L,,’- 1’ (x)-Ln+l Ga-.n_ (X) G a’n+l (X) N(X). M N

8. Representation as hypergeometric series. From the definition (1.2) and (2.5) we
obtain

n k=O (a + 1)k
(--rl)k+l

Al+
(-n)k+2 ] xk

Ao+ (a + 1)k+, (Ce + 1)k+2 A2 ".I"
If we define

(8.2)
k

L’U’N(x) C
x

k=0 k!’

then it follows from (8.1) and (8.2) that

n+a) (--n)k
Ck--

n ( + 1)k+2

(8.3)
[Ao" (k+a+l)(k+a+2)+

(k-n)(k+a+2)+A2. (k-n)(k-n+l)]

) (--n)k (k + flo)(k + jl)n+an "[A+AI+A2]’(a+3)-" (a+l)2

where

(8.4)
[Ao+AI+A2]" (]3o+]3,)= (2a +3) Ao+ (a +2- n) Al-(2n-1)" A2,
[ao+al+az]’flo fll (ce + 1)(ce +2) ao-n(a +2)" al+n(n-1)"

Since

(8.5) (k +/3o)(k + fl,) flofl,"
(flo + l )k (fll + l )k

(to). (t,)

for /30#0,-1,-2,-3,..., and /31 #0,-1,-2,-3,..., we obtain in that case, from
(8.2), (8.3), and (8.5),

(8.6) L’’M’N(x) (a +l)(a+2) .[Ao+Al+A2].(n+a) .3F3(-n, flo+l, fll+l
n a+3, flo, fll
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With (4.2) we obtain

(8.7) [Ao+ A1 + A2]"
/3o./3 (n+a)- L’M’r(0)=1-

(a+ 1)(a +2) n

N (n+a+l)(a+l) n-2

Hence

(8.8) L’M’N(x) [ 1
N (n+a+l)]. (n+a)(-n, flo+ 1, ill+ 1

(a+l) n 2 n "3F3
a+3, flo,/31

Now we examine /3o and /31 in somewhat greater detail. First we take N> 0. The
right-hand side of (8.7) is nonpositive for n large enough. So we have with (8.7) and
the fact that Ao/ A1 / A2 > 0 for n sufficiently large (for instance),

(8.9) /30_<-0 and fl_->0.

Furthermore, we have with (4.3), (8.2), and (8.3),

(8.10)
n + a) [Ao+A + A2]
n

(-n)(flo+ l)(fll + l)
(a + 1)(a +2)(a +3) x=O

<0

for n _-> 1. Hence for n _>-1 we have

(8.11) (/30+ 1)(/31 + 1) > 0.

From (8.9) and (8.10) it now follows that for n large enough,

(8.12) -1</3o-<_0 and fl->0.

Since

(8.13) (n+a n’+i

n-i/F(a+i+l) for n - +oo,

we find, from (1.3) and (8.13) for n +, that

(8.14)

(8.15)

(8.16)

(a + 2) N na+3
At)---

(a+ 1)(a+3) r(+3)

2a+4M.N n
At0 (a+ 1)(a+2) r(a+2)r(+4)

N g/a+2
A1 (a +1--- F(a + 2)

2MN n2a+3
A1 (a + 1)2 F(a + 1)r(c +4)

N
+ +

M" N n2+2

A2(a+l)2 F(a+l)F(a+3)

if M =0,

if M>0,

ifM =0,

if M > 0,

if M =0,

if M>0.
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Hence for n + we have

(8.17)

(2a+3).Ao+(a+2-n).A-(2n-1).A2
a+3a.N n

(M 0),
(a+ 1)(a+3) F(c+2)

(2a +3). Ao+(a+2-n)" A-(2n-1). A2

M. N r/2a+4
(a+l)(a+2) F(a+l)F(a+4)

(M> 0).

It follows from (8.4), (8.7), (8.14)-(8.17) for n +c, that

0"- 31 t ifM =0,

/3o+/31-- -1 if M> 0,

and

(a+ 1)(a +2)F(a +3)
M. g/a+l

Hence for M 0 we have for n +c,

if M 0,

if M>0.

flo -> -1 and 1 -> a + 1

and for M > 0 we have, for n +c,

/3o-> 1 and 1 ’’) O.

In the case N =0 (Koornwinder’s polynomials) we have

L,,(x)=(n+a) _Fz(-n, y+ln a+2, y

where

a+l
>0.

Note that for n - +co,

y=a+l if M=0,

y0 if M>0.

9. The zeros. All orthogonal polynomials {Pn (x)}+n=o which are orthogonal with
respect to a weight function have the nice property that the polynomial P,,(x) has n
real simple zeros, which are located in the interior of the interval of orthogonality.

Our polynomials {L’"M’N(x)}+,=o fail to have this property, but we will prove the
following.



A GENERALIZATION OF LAGUERRE POLYNOMIALS 779

THEOREM The polynomial L:’M’N(X) has n real simple zeros. At least n- 1 ofthem
lie in (0, +o), the interior of the interval of orthogonality.

In other words, at most one zero of L:’lVt’N(x) lies in (-, 0].
Proof. Suppose that xl, x2,..., Xk are the zeros of L:’’(x) which lie in (0, +o)

and have odd multiplicity. Define

such that

Define

p(x) c (x x,)(x x) (x x),

such that h’(0)=0. This implies

p(x). L,’,"(x) ->_ 0 Vx >- O.

h(x)=(x+d) "p(x)

p(0)
> 0,d=

p’(0)

since p(0) and p’(0) have opposite signs
Hence

(h, L’’v) 1 fo x e h(x)L’’S(x) dx + M. h(O) L’IVt’(O) > O.
r(a+l)

Hence degree [h]->_ n, which implies k_-> n- 1. This proves the theorem.
Now we examine the nonpositive zero of L’M’V(x) in somewhat greater detail.

In view of (4.1) we have L’’(x)>0 for x <0 and Ix] large enough. This implies
that the polynomial L’’(x) has a zero in (-o, 0] if and only if L’’v(0)_-< 0. From
(4.2) it follows that L’’(0)<-0 if N>0 and n is sufficiently large. Now we will
prove the following.

THEOREM. Let N> 0 and n be sufficiently large such that L’4’V(x) has a zero x,
in (-, 0]. Then we have, for M > O,

<Xn <0.(9.1)
2

Furthermore, we have

(9.2) x, -> O for n -> +o.

Proof Let Xl, x2, x,-1 be the zeros ofL:’’(x) which lie in (0, +c), and define

r(x) (x x)(x x2) (x x,_).

Then we may write, in view of (4.1),

L:,,S(x (-1)"
Ao" r(x). (x-x,),

n!

where x, _-< 0. Since degree r] n 1 we have

0=(r, L:’t’u> (-1)". Ao 1|’+
nt. F(a+l) .o

x e-x. r2(x) (x-x,) dx

(9.3) ta,-1,". Ao" M. r2(0).x,+(-l’". Ao" N. r’(0)
nt n!

Jr(0) x,. r’(0)].
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Since the integral in (9.3) is nonnegative we must have

-M. r2(O).x,+ N. r’(O). [r(0)-x,. r’(0)]-<_0.

Hence

[M. r2(O)+N {r’(0))2] x,,>-N r(O). r’(0)=-N. Ir(0)" r’(0)l,

since r(0) and r’(0) have opposite signs. Now it follows that

2x/M. N. Ir(0). r’(0)l" x,>-[M r(O)+N {r’(0)}2] x,>--N Jr(0). r’(0)l.

Hence

2x/M. N x,>--N.

Now (9.1) follows for M > 0.
If x < 0 we may write

(9.4)
L:’’U(x)= L’’U(O)+ -x L’M’U(x)

x=O

X2 ( d2 L,M,N(x)}+ 2"- x2
x=O

+--. (x)
3t x

for some : with x < : < 0.
Since the zeros of (d/dx)L’M’V(x) all lie between two consecutive zeros of

L’M’I(x) by Rolle’s theorem and

x=0

<0

we must have that all zeros of (d/dx)L’M’V(x) are positive. This means that
(d/dx)L’’N(x) is negative and increasing for x <0. In the same way we conclude
that (d2/dx)L:’’N(x) must be positive and decreasing for x<0. Hence

<0 for se<O.

Hence, with (9.4),

(9.5) L’’N(x > a x2 + b x + c

for x <0, where, with (4.2) and (4.3),

(9.6)
1 {d L,M,v }

(9.7)
x=0 n- ((+ 1) .(n+a)(n+a+l)nn-1

and

(9.8) c=L’’M’V(O)=(n+a) [1- N
(a+l) (n+a+l)]n_2
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Using (1.2), (1.3), (2.1), and (2.4) we obtain

x=0 /,/m

(9.9) +

(c + 1) n n-2

(a+l)(a+2)(a+4)’N" n- n-2

2MN (n+a)(n+a+l)(n+a +2)(a + l)2(a +21(a +3) n n-1 n-2

which can be derived easier by using another representation given by (10.1) and (10.2).
With (8.13) it follows from (9.6), (9.7), (9.8), and (9.9) that

a const rt
2+5 if M O,

(9.10)
a const n3+6 ifM > O,

b---const n"+ ifM =0,
(9.11)

b -const n2+2 if M > O,

and

(9.12) c -const. r/2a+3

for n+c. The constants in (9.10), (9.11), and (9.12) are all positive. This implies
for the sum of the roots of a. x2 + b. x + c that

b
const r/-a-4 0 if n +,

2a

and for the product of the roots,

C /,/--2-const 0 if n /c in the case M O,
a

C --3-const n 0 if n - +c in the case M > 0.
a

In view of (9.5), the nonpositive zero x, lies between the two roots of the "parabola"
a. x2+ b. x + c. This proves (9.2).

10. Remark. The polynomials {L’M’N(x)}+.=o can also be defined by
[(ct-k2) X2 /(a+4)/w.L’M’N(x) Bo L’)(x)+ n, x ._,,,_, (x)+ B2 ,-2(10.1)

where

(10.2)

N (n+a+l)Bo =1 (a+l) n-2

B1-- (O + 1)" +a) (a +2) N
n -(-i+3

B2 (a + 1)(a +2)(a +3) n-

M.N
(a + 1)2(c + 2)(a + 3)
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This can be proved by using the formula

d r(,+2)r.n. L(,,’)(x)+(a+ I) "-x L(,,’)(x)=-x" ._, ,.,,,,,

which follows from the Laguerre differential equation and formula (5.1.13) in [8].
Note that we have

(n+)"B=L:’M’rv(O)’n
where Bo_-< 0 if N> 0 and n is large enough,

A2 (a + 2)(a + 3)" B2,

and

B1--<0 and B2->-0.
Finally, for Koornwinder’s polynomials {L’a(x)}.+__o this representation yields

X --1 \’’1"L:’lVt’(x) L")(x)
(a + 1) n
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Abstract. Orthogonal polynomials in several variables are studied. The results include a new
formulation of the recurrence relation, characterization of orthogonality of polynomial sequences, an
analogy of Christoifel-Darboux formula, and properties of reproducing kernel function.
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1. Introduction. One of the most important characteristics of orthogonal poly-
nomials in one variable is the three-term recurrence relation. Let {pn(x)} be a sequence
of orthonormal polynomials, pn(x) 7nXn +’" ". Then

(1.1)

where p-I(X) ------ 0, an n/n+l and cn an-1. One application of this relation
leads to the Christoffel-Darboux formula

n

k=0
"n-{- x-y

which plays a fundamental role in the study of orthogonal expansions, since

n

(1.3) Kn(x,y) :- EPk(x)pk(y)
k--0

represents the kernel of the partial sums of the orthogonal expansions.
The purpose of this paper is to study the corresponding formulas for multivariate

orthogonal polynomials. There are only a few papers dealing with general theory of
multivariate orthogonal polynomials (cf. [4], [8]-[11]). One of the difficulties lies in the
following fact. For n > 0, let Vn be the set of polynomials of total degree n that are
orthogonal to all polynomials of lower degree together with zero; then Vn is a vector
space of dimension greater than one; there is no reason to assume that one basis for
Vn is better than all others. There has been speculation that a general theory should
be given for the class Vn rather than some basis of Vn (cf. [7], [11]). In this paper we
shall try to follow this point of view.

In his important work [8]-[10], Kowalski introduced a matrix-vector notation to
study the recurrence relation; he also characterized the orthogonality of a sequence of
polynomials in several variables via recurrence relations. We shall state his main re-
sults in 2 after introducing the notation. In 3, we shall present another formulation
of the recurrence relation; some important properties of the coefficient matrices will
come out of the new formulation. These properties are then used to prove a simpli-
fied version of Kowalski’s theorem. Moreover, an analogy of the Christoffel-Darboux

*Received by the editors February 14, 1991; accepted for publication August 31, 1992.
Department of Mathematics, University of Texas, Austin, Texas 78712. Present address: De-

partment of Mathematics, University of Oregon, Eugene, Oregon 97403-1222.
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formula will be derived from the recurrence relation in 4; this analogy can be seen as
given in terms of Vn rather than a particular basis of Vn. In 5, kernel function and
some of its properties will be discussed. Finally, some examples will be given in 6.
The work along this line will be continued in our future communications.

This work is inspired by a special recurrence relation for orthogonal polynomials
in two variables that has been used to study minimal cubature formulas (cf. [2], [12]).

2. Preliminary. Let Hdn be the space of polynomials of total degree n in d
variables, and let Hd be the space of all polynomials in d variables. In all our notation,
the superscript d will always associate with number of variables; we shall omit d from
any notation after its initial definition, when it causes no confusion. A real valued
linear functional is said to be a quasi-inner product in IId if there exists a basis B
of IId such that

--0 ifPQ VP, QEB.(2.1) (PQ) 0 ifP=Q

Examples include any linear functional expressible as an integral against a nonnegative
weight function w, which induces the inner product (., .),

(2.2) (f g) (fg) jf, f(x)g(x)w(x) dx.

For an inner product wetake (p2) 1 in (2.1).
Given a quasi-inner product L: in IId, two polynomials P and Q are said to be

orthogonal if .(PQ) O. For each k _> 0, let Vkd C H be the set of polynomials
of total degree k that are orthogonal to all polynomials in Hk-1 together with zero.

d (k+d-1)Then Vkd is a vector space of dimension rk :-- Clearly

(2.3) IIn ( Vk and II ( Vk
k--O k--O

and Vk’s are mutually orthogonal. We shall say that {Vk}=0 are orthogonal without
refering to . A basis B of Hd is called orthogonal if

(2.4) B (Bk,
k=O

where B is a basis of Vk for each k _> 0.
(pk, p2,..., prk }, we define vector

If a basis of Vk is given by Bk

Sometimes we shall say that Pk is a basis of Vk, and {Pk}k_-0 is an orthogonal basis of
Hd. We shall also use the notation (2.5) for any polynomial sequence {pk }j=rk 1, where
the supscript k always means that p is of total degree k. For x, y E lld, we always
write x (xl, x2,..., Xd)T, y (y Y2, Yd)T.

We now state Kowalski’s theorem. For x ]d we define
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Let M1, M2,..., Md be any matrices with identical dimensions; we denote

THEOREM K Let B {Pp} rk be an arbitrary sequence in Ha Then thek-0i=l
following statements are equivalent:

(1) B is a basis of lid and there exists a linear functional which defines a
quasi-inner product in Ha and satisfies

,(1)=1, (]?k?) O, k L

(2) For each k >_ O, there exist (unique) matrices Ak, Bk, and Ck such that

(a) rank Ak rk+l;

(b) xlPk AkPk+l + BkPk + CkPk-1 (Co O, ]P-1 O);
and for an arbitrary sequence Do, D1,..., of matrices satisfying DkAk I (unit

matrix) the recursion
(c) I0 [1], Ik+ Dkbp(IkC[+l), k O, 1,..., produces nonsingular symmet-

ric matrices Ik.
The notation A i x j means that A is an i j matrix. We note that the matrices

in the recurrence relation (b) are of the dimensions Ak drk rk+l, Bk drk rk and
C dr r+l.

3. Recurrence relation. For a matrix P (pij) whose coefficients pij be-
long to Hd, we denote by :(P) the matrix whose coefficients are numbers (p). If

x(I?k()}=0 is an orthogonal basis, we denote by Hk the matrix

(3.1) Hk

From the definition of the quasi-inner product, it follows that Hk is invertible. Indeed,
the linear property of and (2.1) imply that (p2) 0, V P 0, P E Hd. Thus for
any vector c E ]Rk,

cTHkc =/:([cTl?]2) # 0,

which implies that Hk is invertible.
THEOREM 1. /f {k(X)}k__0 is an orthogonal basis with respect to a quasi-inner

product ., x Rd, then .for each k >_ O, 1 <_ i <_ d, there exist unique matrices

Ak,i rk rk+i, Bk,i rk rk, Ck,i rk rk-1 such that

(3.2) xii?k A,ik+ + Bk,il?k + Ck,iI?k-, 1 <_ i <_ d, k >_ 0,

where IP_I 0 and for all 1 <_ i <_ d, k >_ O,

(3.3)
(3.a)

Ak,iHk+l
Bk,iHk L(xikI),

TA,H+ HC+,.
Furthermore, there exist matrices Dk, r+ rk, 1 <_ i <_ d, Ek rk+l rk, and
Fk rk+ rk_ such that

d

(3.6) Pk+ ZxD,Pk + EkPk + FkPk-,
i--1
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where

d

(3.7) E D,iA,i I,
i=1

d d

i=1 i=1

Proof. The existence of Ak,i, Bk,i, and C,i follows easily from the orthogonality.
Actually, (3.2) is just another formulation of Theorem K(b). Multiplying (3.2) by
k+l,T k,T and IP’_ 1 respectively and applying the quasi-inner product, we can easily
check that (3.3), (3.4), and (3.5) hold. Equation (3.6) is a reformulation of the corre-
sponding recursion formula of Kowalski [8, Thm. 2]. Substituting xlPk in (3.2) into
(3.6), we get (3.7) and (3.8) from orthogonality. 0

In the following, we denote by Ak drk rk+l and Ck rk drk-1

(3.9) T nd Ck--[Ck,llCk,2l’"lCk,d],Ak [AkT, IAkT,21. iAk,d] T

COROLLARY 1. Let Ak,i, Ck,i, 1 < i < d, k > O, be as in Theorem 1. Then

(3.10) rankAk rk+l, rankCk+l rk+l

and

(3.11) rank Ak,i rank C+l,i rk 1 <_ i <_ d.

Proof. Comparing (3.2) and Theorem K(b), we see that Ak in (3.9) is the same
as Ak in Theorem K. Thus rank Ak rk+l. From (3.5) we get that

AHk+t GckT+t,
where Gk drk x drk has Hk as diagonal blocks, Gk diag(Hk, Hk,..., Hk). Since
Hk is invertible, we then have that Gk is invertible; thus

rank Ck+l rank TGC’k+ rankAkH+l rankAk,

which proves (3.10). We now prove (3.11). By (3.3) and (3.5), we only need to prove
that (Xi]Pk]PkT+t) has rank rk. Suppose its rank is less than rk. Then there exists a
nonzero vector ck such that

This means that xiQ +/- Vk+l where Q TCk k E Vk. However, xiQ IIk+l
Vk+l Hk, thus xiQ Hk, which is a contradiction to Q V. 0

We remark that the matrices Dk,i in the recursion formula (3.6) are not unique
when d > 1. h way of choosing Dk [Dk,llDk,2]... ]Dk,d] is given in [8]. It was
also shown there that rank Dk rk+l. However, it seems unlikely that anything can
be said about the rank of D, (see Example 2 in 6). From (3.7) and the fact that
rank Ak r, some Dk,i may even be zero for d large. The recursion formula (3.6)
may deserve further attention.

We note that the matrices Bk,iHk are symmetric by (3.4). This fact and the
equation (3.5) that came out of the present form of the recurrence relation will enable
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US to derive an analogy of Christoffel-Darboux formula in 4. The importance of
(3.10) can be seen in our next theorem, which simplifies Theorem K.

THEOREM 2. Let B {P}=o rj=l, POt O, be an arbitrary sequence in IId
Then the following statements are equivalent:

(1) There exists a linear ]unction which defines a quasi-inner product in IId
and makes {Fk}=o an orthogonal basis in IId;

(2) For k >_ O, 1 g i g d, there exist matrices Ak,i, Bk,i and Ck,i such that

(a) rankA r+t, rank C+t rk+t;

(b) xF A,F+t + B,iFk + C,iF_, 1 <_ i <_ d.

Proof. Clearly the fact that (1) implies (2) is contained in Theorem 1 and its
corollary. To prove that (2) implies (1), we shall follow the outline of the proof in [10].
The linear functional

:(1)=1, /:(Fk)=0, k_>l

is well-defined on IId, since rank Ak rk+l implies that B is a basis of IId. We now
use induction to prove that

(3.12) :(PiP) 0, i j.

Let k _> 0 be an integer. Assume that (3.12) holds for every i,j such that 0

_
i _< k

and j > i. Note that rank Ak rk+x and (b) implies that there exist D,i such that
(3.6) holds. Therefore, for t > k + 1,

The induction is complete. Next we prove that H :=/:(lPkPkT+l) is invertible. Clearly
Hk is symmetric. From (b) and (3.12), we get that

A,Hk+t HkckT+,i,
thus

AkH+ GkckT+,
where Gk diag(Hk,... ,H). Since (1) 1, we see that Ho :(OloT) (po)2.
Thus Ho is invertible. Suppose Hk is invertible. Then Gk is invertible and by
rank Ck+ rk+ we get

rankAkHk+t rank GkckT+ rk+.

However, rankAk rk+ by (a) and Ak drk rk+l, Hk+l rk+l rk+; we then
have (see [6, p. 66])

rankHk+l _> rank(AkH[+l) >_ rankAk + rank TUk/1 rk/l

rank THk+ rank Hk+l.

Therefore,
rank Hk+ rank TAH’+t rk+l,
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which implies that Hk+l is invertible. By induction, we have then proved that Hk is
invertible for each k _> 0. Since Hk is symmetric and invertible there exist invertible
matrices Sk and Ik such that Hk SkIkS and I is diagonal. For Qk Slll*k we
then have

(QkQ’) S(IPkP)(S;)T S;1Hk(S;1)T Ik.
This proves that defines a quasi-inner product in Hd; makes {Pk}=0 an orthogonal
basis by (3.12). The proof is completed.

This theorem should be compared with that of Favard for polynomials in one
variable (cf. [5, p.18-22]). We note that a comparison criterion of orthogonality for
sequences of polynomials and an integral representation for a corresponding quasi-
inner product are given in [9].

4. Christoffel-Darboux formula. The following theorem is a generalization
of the well-known Christoffel-Darboux formula (1.3) (cf. [5, p.23]).

THEOREM 3. Let x E d and {k(x)}=0 satisfy

(4.1) xiPk Ak,iIk+l + Bk,i]k T Ck,ik-1, 1 <_ <_ d,

where

_
0 and

(4.2) Ak,iHk+I HkCkTTl,i, 1 <_ i <_ d, k >_ 0,

with Hk being symmetric, and invertible and Bk#Hk being symmetric. Then for any
integer n E O, x, y Rd,

n

(4.3) - P’(x)H-lIk(y) [An’i]n+I(x)]THzl]n(Y) nT(x)H [An,in+l(y)]
k=o xi y

l<i<d.

Proof. Let

k [Ak,ik+l (x)]THk-k(Y) Ik(x)TH [Ak,ik+ (y)].
From the recurrence relation (4.1) we have

(4.4)

Since Hk and Bk,iHk are both symmetric, we have

B,iHk (Bk,iHk)T HkBkT,,
which implies that

BkT,H HIBk,.
Therefore, the second term in the right-hand side of (4.4) is zero. From (4.2) we have
that

T -1Ck,,Hk H[*__IAk_,,,.
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Thus the third term in the right-hand side of (4.4) is

-lP’_l(x)HlAk_lflPk(y) / ]P’(x)A’_ H-1 ]Pk_(y)

_
1,i k-1

Therefore, (4.4) can be rewritten as

(xi y,)]P(x)Hk(y) Ek Ek-X.

Summing this identity from zero to n and noticing that _1 0, we obtain
(4.3). El

COROLLARY. Let {k(X)}x=0 be as in Theorem 1. Then

Z ]P"(x)H-lPk(x)IPTn(x)H[A,,,iO,]Pn+(x)] [An,,n+(x)]Tg-
k=O

l <_i <_d,

where O, O/Oxi denotes the partial derivative with respect to x.
Proof. Since n(x)THl[An,,Pn+l(x)] is a scalar function, it is equal to its own

transpose. Thus,

]P(x)TH-1 [AflPn+(x)] [A,,,n+ (x)] THn(x).

Therefore, the numerator of the right-hand side of (4.3) can be written as

[An,,Pn+, (x)]TH, [IP(y) ]Pn (x)] IPn (x)TH-1An,, [lPn+l (y) Pn+l (X)].
Thus (4.5) follows from (4.3) by letting yi --. x,. El

In particular, if Hk is positive definite then the right-hand side of (4.5) is positive
for all x E Rd. The important examples include all orthogonal polynomials with
respect to inner product (2.2). When {P(x)}k__0 in Theorem 3 is an orthogonal
basis, IPk(x) is a basis for vector space Vk for each k > 0. However, (4.3) is actually
independent of this particular basis of Vk. Let

n-1

(4.6) Kn(x,y) Z IP"(x)H-Pk(y)"
k--0

THEOREM 4. Let Vk, k > O, be defined via a quasi-inner product . Then Kn(., .)
depends only on Vk rather than a particular basis of Vk.

Proof. Let ]Pk be a basis of Vk. If Qk is another basis, then there exists an
invertible scalar matrix Mk such that

]Pk (X) MkQk (x).

Let Hk Hk(P) L(]k’) and Hk(Q)= (QkQ’). Then

H[() M[IHI(Q)(M[)-.
Therefore, we have

T -1]k Hk ()k T -1
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which proves the desired result. [:]

As a consequence of this theorem, the formula (4.3) can be seen as a natural
extension of the Christoffel-Darboux formula of one variable, since the orthogonality
is defined via Vk (cf. (2.4)). From this theorem, one can choose some convenient basis
of Vk when dealing with Kn(., .). In particular, if an orthonormal basis of V is chosen,
then there will be no inverse matrix operation in the formula, since H becomes an
identity matrix. The choice of orthonormal basis is particularly preferable when we
need to prove certain properties of Kn(., .), as we shall see in the next section.

We note that another expression of the Christoffel-Darboux formula is given in
[4]. However, the formula is much more complicated; in particular, the numerator
of the right-hand side in it has more terms than the left-hand side that is defined as
(.).

5. Kernl function. For orthogonal polynomials in one variable, K,(., .) is he
reproducing kernel function; i has many importan properties and applications. We
now discuss some of igs corresponding properties for mulfivarie orthogon&l polyno-
mials.

THEOREM 5. Le . be an inner product in IId. Then
(1) Kn(., .) is the reproducing kernel, i.e., for all P IIn-,

(5.1) P(x) : [K,(x, .)P(.)]
(2) For an arbitrary point t E ]Rd,

(5.2) Kn(t, t) -1 min[p2],

where minimum is over all polynomials P IIn-1 subject to the condition P(t) 1.
Proof. Since is an inner product by (2.1) there exists a basis B (pk}oo r

k=0 j=0
of Hd such that

(5.3) .(pkp]) 8ij8t.

For any polynomial P Hn-1, we have by orthogonality

n-1

(5.4) P(x) Z Pk(x)Tak(P)’ where ak(P) (Pk)
k--0

or
n-1

P(x) y ]k(x)T(PIk) [Kn(x, ")P(’)],
k-0

which is (5.1). From (5.3) and (5.4), we also have

n--1 n--1

[p2] Z ak(p)Tak(P) Z Ilak(P)ll2
k-O k--0

where I1" ]1 is the Euclidean norm, Ilall 2 aTa. If P(t) 1, we then have by Cauchy’s
inequality,

n--1 n--1

i P(t) Z Pk(t)Tak(P) - Z ][ak(P)ll ][k(t)ll
k=0 k=0

n-1 n-1

--< Z [la(P)ll2 Z IIP(t)ll2 [p2]gn(t’ t),
k=0 k=0
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where equality holds if and only if

ak(P) KPk(t), K [Kn(t, t)]--1.
This proves (5.2), and the proof is completed.

These two properties are completely analogous to the corresponding ones in one
variable (cf. [5, p.38]); their proofs are similar as well. We enclosed the proof here
to illustrate the importance of Theorem 4, which allows us to use orthonormal basis
in the proof. We now briefly discuss the role of Kn(., .) as the kernel function of
the orthogonal expansion. This part illustrates very well the point of view that we
mentioned in the introduction (see also [11]). Most of the results in the following can
be obtained from the standard theorems in inner product space.

Now let/: be an inner product expressible in the form of (2.2), or more generally,
we replace w(x)dx by some distribution da, f da > 0. If f e Lda, then by (2.3), the
expansion

(5.5) f Vk(f), Vk(f) projyf
k=O

can be formed (at least formally). Let Pk be a basis of Vk. Then Vk(f) can be
expressed by Pk as

(5.6) Uk(f) Ta/ k(f), ak(f) E Rr.

Therefore, we have

/ f]k dt "-/Vk(f)kd-/kak(f)- Hkak(f).

We shall call the expansion

Pk ak(f) PkHk fPk dt
k=O k=O

the Fourier orthogonal expansion of f. Let nf Sn(da, f) denote the nth partial
sum of (5.8). Then we have from (4.6) that

Snf(x) jd Kn(x, y)f(y) da(y).

Therefore, Kn(., .) is the kernel function of the partial sums. From Theorem 4,
is defined in terms of Vk, 0 _< k _< n- 1, rather than some basis of Vk. The proof of
the following theorem relies on this fact; otherwise, the proof is standard.

THEOREM 6. Let be an inner product associated with da (or as in (2.2)),
f L2da. Then among all polynomials P in Hn-t, the integral

If(x) P(x)l2 dc

becomes minimal if and only if P Sn(da, f).
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Proof. Let P be an orthonormal basis of Vk. For any P E IIn-1 there exists bk
such that

n--1

P(x) TbP(x).
k=0

Since Snf is defined in terms of V, we have

n--1

aP(x),
k--0

where ak

Then we follow the standard argument to get that

n--1 n--1

/f da 2 ba + b’b
k=O k=O

n-1 n-1
T 2bkTak]f dc- a"ak + [aa +bb-

k=0 k=0

By Cauchy’s inequality the third term in the right-hand side is nonnegative; and the
integral is minimal if and only if bk ak or P S.f. []

The minimal itself leads to the Bessel’s inequality, which, in terms of a basis Pk
of V, is

ak(f)THfXak(f) <_ f Ill
k=O

where ak(f) is given by (5.7). We note that ak(f)THlak(f) does not depend on a
particular choice of the basis of Vk. When Ha is dense in L2 (dc), the Parseval’s identity
that is (5.9) with equality holds and Snf converges to f in L2(dc). For d > 1, the
convergence behavior of Snf other than that of L2(d) has not been studied; one may
start with the special bivariable orthogonal polynomials that have compact formulas
such as those given in survey paper [7] by Koornwinder.

6. Examples. All examples in this section are given by polynomials in two
variables which are orthogonal with respect to some weight functions w (see (2.2)).
The first example deals with the simplest case that the orthogonal polynomials are
the product of two univariant ones.

Example 1. Let P(xl,X2) Pj-l(Xl)qk-j+l(X2), k > 0, 1 < j < k + 1, where
pj(x) "yjxJ +... and q(x) jx +... are the orthogonal polynomials on the
symmetric intervals In and Ia with respect to even weight functions wn and wq, re-
spectively. Then polynomials {p_.k } are orthogonal over the region In x Iq with respect
to weight function Wn(Xl)Wq(X21. ofExamples {pj} and {qj} include ultraspherical
polynomials and Hermite polynomials. Let Fj+I "j/’j+l, Aj+I =/ij//j+l. We can
easily verify that the recurrence relation (3.2) is

TxiPk Ak,iPk+l + Ak_l,iPk-1, k >_ O, i 1, 2,
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where

A,I [) diag(r0, rx,..., r,)], Ak,2 [diag(Ak, Ak-1,..., A0) {)].
The recursion formula (3.6) now takes the form

]k+l (xlDk,1 + X2Dk,2)]k -- Fk]k-1,where Dk,i, which are not unique, can be chosen as

Dk,1 [{)I diag(1/2Fl,..., 1/2r;_, r;1)] r,
Dk,2 [diag(A-1, 1/2A-_I,..., 1/2AI) O] T

and Fk are given by (3.8) with Ck,i TAk_l,i.
As we pointed out before, the choice of orthonormal basis for Vk seems to be

preferable in view of the Christoffel-Darboux formula. However, there are other bases
that have been used in applications because of their other relatively simpler structures.
An important example is the basis whose elements are monic polynomials (cf. [2], [11],
[12]). Our next example illustrates this choice.

Example 2. Let S ((xl,x2) Xl _> 0, x2 _> 0, xl +x2 _< 1}. Let Vk be orthogonal
with respect to the weight function W,,7 that has support on S, Wa,o,7(xt,x2)
xx2(l- Xl- x2)v, (Xl,X2) e S, c, , /> --I.

One orthonormal basis of Vk is given by (cf. [7, p. 449])

P?(xl x2) ck(1- "-(’)( Xl
x2)"pj I x2 ’k-J (x2).

,(a,b)Here ,j (x) is the classical Jacobi polynomial on [0, 1] with respect to w(x) xa(1
x)b, c 0 are the proper constants. It can be verified that the coefficient matrices
in the recurrence relation (3.2) have the form

Ak, [T hi, Ak,2 [D ],

where T is a tridiagonal matrix, D is a diagonal matrix, and a (0,..., 0, a)T for
some a 0.

Another basis that we consider is the monic one,

Q+l(Xl,X2) x{xk2 -:i + q](xl,x2), where q] E Hk-1,

k > 0, 0 < j < k. These orthogonal polynomials are first considered in [1]; they have
some very nice properties (see [11-[3]). In [2], all coefficient matrices in the recurrence
relation (3.2) have been given explicitly; the matrices Ak,i are simply

Ak,1 (Ik D), Ak,2

and Bk,i are tridiagonal matrices, and Ck, are of the form [T hi, where Tk’s are the
tridiagonal matrices and a (0,..., 0, a)T. We refer to [2] for the explicit formulas
for Bk,i and Ck,i. The matrices Dk,i in (3.6) can be chosen to be very simple in many
ways; however, there does not seem to be a choice that is better than all others. One
possible choice is

Dk,1 (It:l 0)T, n,2 (0le)T,
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where e (0,..., 0, 1)T. Since the monic orthogonal polynomials play a very im-
portant role in the study of the minimal cubature formulas (cf. [2], [12]), a more
comprehensive study of them seems to be worthwhile.

Acknowledgment. I thank Professors H. Berens and H. Schmid for making me
acquainted with their work and other assistance. I also thank Professor T. Koorn-
winder for bringing [10] to my attention.
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ASKEY-WILSON POLYNOMIALS AS ZONAL SPHERICAL
FUNCTIONS ON THE SU(2) QUANTUM GROUP*
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Abstract. On the SU(2) quantum group the notion of (zonal) spherical element is generalized
by considering left and right invariance in the infinitesimal sense with respect to twisted primitive
elements of the s/(2) quantized universal enveloping algebra. The resulting spherical elements belong-
ing to irreducible representations of quantum SU(2) turn out to be expressible as a two-parameter
family of Askey-Wilson polynomials. For a related basis change of the representation space a matrix
of dual q-Krawtchouk polynomials is obtained. Big and little q-Jacobi polynomials are obtained as
limits of Askey-Wilson polynomials.

Key words, quantum groups, SU(2), spherical functions, infinitesimal invariance, Askey-
Wilson polynomials, dual q-Krawtchouk polynomials, big q-Jacobi polynomials, little q-Jacobi poly-
nomials
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1. Introduction. One of the interesting aspects of the rapidly developing sub-
ject of quantum groups is that they seem to provide the natural setting for q-hypergeo-
metric functions and orthogonal polynomials. For the relatively simple case of SUq(2)
a first example of this phenomenon was given by Vaksman and So.el’man [21] (see
also Masuda et hi. [14], [13] and the author [10]), where it was shown that the matrix
elements of the irreducible representations of SUq(2) can be expressed in terms of
little q-Jacobi polynomials. Next Noumi and Mimachi [16] showed that the "spherical
harmonics" on quantum homogeneous spaces of SUq(2) can be expressed in terms of
big q-Jacobi polynomials. As a following step, the author [11] gave an interpreta-
tion of a two-parameter family of Askey-Wilson polynomials (including continuous
q-Legendre polynomials) as (zonal) spherical functions on SUq(2). Here the notion
of spherical function was generalized in the sense that bi-invariance with respect to
the quantum subgroup U(1) was replaced by "infinitesimal" left and right invariance
with respect to twisted primitive elements of the corresponding quantized universal
enveloping algebra blq(sl(2, C)). Since this paper [11] was meant as a survey paper,
the full results were only announced there, while a proof was sketched for the most
simple case (parameter values a T 0) corresponding to the continuous q-Legendre
polynomials. Nevertheless, the paper [11] has already had some follow-ups by (i) the
work of Koelink [8] (appearing as a companion paper to the present paper), which
culminates in a quantum group derivation of the continuous q-Legendre case of the
Rahman-Verma addition formula [19] for continuous q-ultraspherical polynomials, and
(ii) an announcement by Noumi and Mimachi [17], [15], where they extend the au-
thor’s result to the expression of all corresponding matrix elements (not just the left
and right infinitesimally invariant ones) as Askey-Wilson polynomials.

It is the purpose of the present paper to give full proofs of the results an-
nounced in [11]. The contents are as follows. In 2 we give the preliminaries about
q-hypergeometric functions and orthogonal polynomials, mainly referring to Askey

*Received by the editors August 8, 1990; accepted for publication (in revised form) September
8, 1992. The research for this paper was done at CWI, Amsterdam.

University of Amsterdam, Faculty of Mathematics and Computer Science, Plantage Muider-
gracht 24, 1018 TV Amsterdam, the Netherlands.
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and Wilson [5] and Gasper and Rahman [7]. In 3 we give preliminaries on the quan-
tum group SLq(2, C). Section 4 introduces the (a, r)-spherical elements on SUq(2)
and derives an explicit Fourier series for such elements belonging to irreducible rep-
resentations. An important tool here is the explicit matrix of dual q-Krawtchouk
polynomials for the basis change from the standard basis to a basis of eigenfunctions
for an (almost) twisted primitive element. This last result (already announced in [11])
is also crucial in Koelink [8].

In 5 we prove that the elementary (a, )-spherical matrix elements, when ex-
pressed as polynomials, satisfy the same second-order q-difference equation as the
Askey-Wilson polynomials. This is done by use of the Casimir operator on the quan-
tum group. This way of proving that our polynomials are Askey-Wilson polynomials
is different from the proof we had in mind when writing [11]. There we worked with
the explicit Fourier series and the knowledge obtained from the quantum group theory
that we were dealing with orthogonal polynomials. Then the result could be derived
by deriving the three-term recurrence relation. Section 5 contains also the expression
of the Haar functional as an Askey-Wilson integral, when applied to (a, ’)-spherical
elements. Finally, in 6 we examine the limit cases as a or --, o. For the Askey-
Wilson polynomials this means a limit transition to big or little q-Jacobi polynomials.

Notation. Z+ denotes the set of nonnegative integers.

2. Preliminaries on q-hypergeometric orthogonal polynomials. Let 0 <
q < 1. Define q-shifted factorials

n-1

(a; q)n :-- H (1 aqk ),
k-0

(a; q)oo "= lim (a; q)n,

(a,..., at; q)n "= H(a.; q)n,
j=l

and the q-hypergeometric series

(2.1) 8+1s [al’’’’’aS+x ] (al’’’’’aS+;q)kzk
:=  :i Sik--0

Usually in this paper we will have the case of a terminating series in (2.1), i.e., ax q-n
(n E Z+), so the series terminates after the term with k n. Then we require that
b,... ,bs {1,q-,... ,q-n+1}. See Gasper and Rahman [7, Ch. 1] for standard facts
about q-hypergeometric series.

Askey-Wilson polynomials are defined by
(2.2)

[q-n, qn-labcd, aei, ae-i ]Pn(cos 0; a, b, c, d q) := a-n (ab, ac, ad; q)n a3 ab, ac, ad
q’ q

See Askey and Wilson [5, (1.15)]. They are symmetric in a,b,c,d (cf. [5, p. 6]).
Sometimes it will be useful to write the a3 factor in (2.2) as

(2.3) rn(cosO;a,b,c, d q) := a3 [q-n’qn-xabcd’aeio’ae-i ]ab, ac, ad
q’ q

The orthogonality properties are stated in [5, Thms. 2.2, 2.5].
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PROPOSITION 2.1. Assume a, b, c, d are real, or if complex, appear in conjugate
pairs, and that lal, Ibl, Ic], ]d < 1, but the pairwise products of a, b, c, d have absolute
value less than one, then

l fo2-- Pn (cos/9) Pm(cos/9) w(cos/9) dO 8m,n hn

where

pn(cosO) pn(COS/9; a, b, c, d q),

(e2i0, e-2i; q)ow(cos 01 (aeia, ae_ia, beia be_O, ceia ce_iO, deiO de_a; q)oo
hn(2.4) h--

(1 qn-labcd) (q, ab, ac, ad, bc, bd, cd; q)n
(1 q2n-Xabcd) (abcd; q)n
(cd; q)

ho (q, ab, ac, ad, bc, bd, cd; q)o

PROPOSITION 2.2. Assume a, b, c, d are real, or if complex, appear in conjugate
pairs, and that the pairwise products of a, b, c, d are not > 1, then

2-- Pn(cos 19) Pm(cos/9) w(cos 0) dO +EPn(xk) Vm(xk) wk 8m,n hn
k

where pn(cos 01, w(cos/9) and hn are as in Proposition 2.1, while the xk are the points
(eq + e-q-)/2 with e any of the parameters a, b, c, or d whose absolute value is
larger than one; the sum is over the k E Z+ with leqk > 1 and wk is Wk(a; b, c, d) as

aa bu [5, (2.10)] h (q + a-q-)/2. (o that (1 -aq2k)/(1- a)
should be replaced by (1- aZqZ)/(- aZ) in [5, (2.10)].)

With notation as in Proposition 2.2 let dm dma,b,c,a;q be the normalized or-
thogonality measure for the Askey-Wilson polynomials. So, for any polynomial p,

p(x)w(x)
dx

(2.7 p(x)dm(x) 0 (1 x211/2 +
-p(xk)wk

o k

By [5, (5.7)-(5.9)] the Askey-Wilson polynomials, written as

Rn(ei) := a3 [q-n, qn-ZabCd’ab, ac, adaei’ ae-i
axe eigenfunctions of a second-order q-difference operator:

A(-O) (l(q-te’) R(e’)) + A(O)(l(qe’) l(e’))
-(1 q-n) (1 q"-abcd) Rn(ei),

where

A(O) := (1 ae’) (1 bei) (1 ce’0) (1 dei)
(1 e2i) (1 qe2i)

If f(ei) is a polynomial of degree < n in cos0 and if (2.8) with Rn replaced by f is
valid, then f will be a constant multiple of
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We will need some special Askey-Wilson polynomials which happen to have sim-
ple explicit Fourier-cosine expansions: Chebyshev polynomials of the first kind

(2.9) pn(cos0; 1,-1, q1/2,-q1/2 q) (2 din,o) (qn; q)n cos(nO)

(cf. [5, (4.25)]) and continuous q-Legendre polynomials

Pn(COS 0; q1/2, -q1/2, q1/2, -q1/2 q)
(q; q2)k (q; q2)-k(--q; q)2n (q; q)n Z (q2; q2)k (q2;

k=0

(cf. [3, (3.1)1 together with [5, (4.2), (4.20)]).
LEMMA 2.3. The connection coecients c,, in

(2.10)
n

Pn(x;q1/2a,,qa2/fl, q 1/2a Iq)---- Zck,nPk(x;a,--a,--q1/2a, q1/2a q)

can be explicitly written as

(2.11)
q(n-k)2/2

Proof. Askey and Wilson [5, (6.1), (6.2)] gave the connection coefficients between
two families of Askey-Wilson polynomials with one common parameter. Their expres-
sion involved a terminating balanced 5a of argument q. With our special choice of
parameters in (2.10) this 5a has the form occurring in the q-Clausen formula as given
by formulas (2.16) (first identity) and (2.4) (with q-n) in Gasper and Rahman
[6]. (Note that both the left- and right-hand side of this version of the q-Clausen
formula are written differently from the usual formulation [6, (1.6)].) Substitution of
this q-Clausen formula yields (2.11). [3

Now substitute a- 1 in (2.10), (2.11) and apply (2.9). Then

n

pn(cosO; q1/2, , q/fl, q1/2 q) Y Cll,n (qll; q)ll ei,

with Ck,, given by (2.11) for a 1. When we switch to base q2 and put _q2a+l
we obtain

(2.12)
n

pn(cosO;q,-q2a+l,-q-2a+l,q q2 Clkl,n (q21kl;q2)lk eiko

with

(2.13)
(q2k; q2)k Ck,n

(q2; q2)2n (q2n+2; q2)k q(n-k)(,-k+2a)
(q2; q2) (q2; q2)n_k

X {2ql [q_2n+2k, q_2n ]}2q2k+2
q2 _q2n-2a+2



ASKEY--WILSON POLYNOMIALS ON QUANTUM SU(2) 799

Finally, by Jackson’s transformation formula [7, (III.7)], (2.13) can be rewritten as

(2.14)
(q2k; q2) C,n

(q2; q2)2n q(n-k)(n-k+2o)
(q2; qZ)n (q2; q2)n+k (q2; q2)n_k

{32[q-2n+2k’q-2n’-q-2n-2"q-an,0 ]}2;q2 q2

Next we define little q-Jacobi polynomials

(2.15) pn(x;a,b;q) := 2l(q-n, abqn+X;aq;q, qx)

(cf. Andrews and Askey [1]) and big q-Jacobi polynomials

(2.16)
q-n’qn+a+[3+l’xqa+l/c ]Pn(’’f0 (x; c, d; q) 32 q,+, _qa+d/c ;q, q

(cf. Andrews and Askey [2]). In this last reference some different normalization is
suggested for the big q-Jacobi polynomials, but the authors are not very definite
about it. Here we follow the normalization used by Noumi and Mimachi [16]. Little
and big q-Jacobi polynomials are orthogonal with respect to discrete measures.

We define dual q-Krawtchouk polynomials by

(2.17) Rn(q-z qz-g-c; qC, N q) := 32(q-n, q-z, _qz-g-e; O, q-N; q, q).

These are special q-Racah polynomials and satisfy the orthogonality relations

(2.18)

N

(_qc; q)N E(RnRm)(q-z qz-N-c; qC, N q)
ag--o

(1 + q2z-N-c)(_q-N-c, q-N; q)
X Ohm(1 + q-N-C)(q, _q-C+; q)z(_qz-2N-c)z

(q;q)n
(q-N;q)n

(_q-N-c)n,

where n, m 0,..., N. See Askey and Wilson [41 and Stanton [20]. They satisfy (see
[20]) the three-term recurrence relation

(2.19)
yRn(y;qc, N lq) =(1--qn-N)Rn+i(y;qc, N lq)

+ (q-N q-N-) q, Rn(y; q, N q)
(1 qn) q-N- Rn-x (y; qc, N q).

3. Preliminaries on the quantum SL(2, C) group. The reader may use the
author’s survey [11] and the references given there for further reading in connection
with this section. Fix q E (0, 1). Let dtq be the complex associative algebra with unit
1, generators a, , 7, , and relations

(3.1)
a=qfla, aT=qTa,

a6 qfl7 6a q-t7 1.

6=q6, 76=q67, flT=Tfl,

It turns out that jtq becomes a Hopf algebra over C under the following actions of
the comultiplication A: dtq --. Aq (R) Jtq, counit e: Jiq --, C (unital multiplicative linear
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mappings), and antipode S: fl-a --* ,4a (unital antimultiplicative linear mapping) on
the generators

(o (1 o) (oS
0 1 7 -q7 a

where the formula for A has to be interpreted in the sense of matrix multiplication:
A(a) a (R) a +/ (R) , etc.

A Hopf ,-algebra is a Hopf algebra ,4 over C with an involution a - a* such that
,4 becomes a unital ,-algebra and A: 4 - .4(R),4 and : ,4 --* C are ,-homomorphisms.
Then it can be shown that S is invertible and that S o, o S o, id. We can make

into a Hopf ,-algebra by taking for the involution the unital antimultiplicative
antilinear mapping a -, a* such that

,, , _q_

Leg/,/ be ghe complex associagive algebra wigh unig 1, generators A, B, , D, and
relagions

A D
q_q_

We can make ingo a Hopf ,-algebra with comulgiplicagion : N, counig

e: C, antipode S: , and involution ,: by requiring

( , ( ,
() ( 1, (e (c) 0,

wo Hopf algebr, are said o be in dlit if ghere is a doubly nondegenerage
biline form (u, ) (u, ): x C such ha, for u, v U, , b ,
(a.

If, are moreover Hopf ,-algebra, hen hey are said to be Hopf
dulit if he above pairing satisfies in addigion

Insgead of (u, ) we will also write u() or
It can be shown ghat and become Hopf ,-algebr in dualigy wigh ghe

following pairing between he generagors:

a 0 1o), o
7 1 0/"
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The pairing between products of generators then follows by the rules (3.5).
The element

(3.7) 2 :=
q-tA2 + qD2 2

+ BC *
is a Casimir element of Hq: it commutes with any X E Ha.

In a Hopf algebra H an element u is called group-like if A(u) u (R) u, primitive
if A(u) 1 (R) u + u @ 1, and twisted primitive (with respect to a group-like element g)
if A(u) g (R) u + u (R) S(g). In Ha the group-like elements are all elements A’ (n e Z)
and (cf. Masuda et al. [12]).

LEMMA 3.1. The twisted primitive elements with respect to A are the elements
X in the linear span of A- D, B, and C. They satisfy

A(X) A (R) X + X (R) D.

For t 1 the twisted primitive elements with respect to A are the constant multiples
o] A A-.

Let b/and ,4 be Hopf algebras in duality. For u b/and a 4 define elements
u.a and a.u of j[ by

u.a := (id (R) u)(A(a)), a.u := (u (R) id)(A(a)).

Hence, if v H,
(u.a)(v) a(vu), (a.u)(v) a(uv).

The operations defined in (3.8) are left, respectively, right algebra actions of/gq on

(3.9) (uv).a u.(v.a), a.(uv) (a.u).v.

If A(u) Y](u) u(x) (R) u(2) (u e/d) and a, b e ,4, then

(3.10) u.(ab) (u(1).a) (u(2).b), (ab).u E(a.u(1)) (b.u(2)).
(,,)

Furthermore, if u b/, a jr, then

(3.11) (id (R) u.)(A(a)) A(u.a);

and if, moreover, v b/, then

(3.12) (v, u.a*) (S(v)*,S(u)*.a).

We call an element a .4 left (right) invariant with respect to an element u E b/
if u.a s(u)a, respectively, a.u s(u)a. Note that the unit 1 of ,4 is bi-invariant
with respect to all u /g. If u is twisted primitive, then (u) 0, and

u.a 0 and

a.u=O and

b.u 0 == u.(ab) O,
b.u 0 == (ab).u O.
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LEMMA 3.2. The left (or right) invariant elements of A with respect to some
twisted primitive element of 11 form a unital subalgebra of ,4. In particular, if X E
Span{A-D, B, C}, then the set of all a jtq satisfying X.a 0 (respectively a.X O)
forms a unital subalgebra of Jtq.

Let L/and Jt be Hopf algebras in duality. A matrix corepresentation of ,4 is a
square matrix t (ti,j) of elements of 04 such that

(3.13) A(ti,j) E ti,} (R) t},, e(ti,j) 8i,.
k

To a matrix corepresentation t of ,4 corresponds a matrix representation of H, also
denoted by t and defined by

:= u bl.

The matrix entries of a corepresentation of ,4 (elements of ,4) are completely deter-
mined by the matrix entries of the corresponding representation ofH (linear function-
als on H). A matrix corepresentation t of A is called unitary if t*,j S(tj,) and a

representation t of H is called a ,-representation if t,(u*) t,i(u) (u lg). Note
that a matrix corepresentation of ,4 is unitary if and only if the corresponding matrix
representation of/g is a ,-representation.

Up to equivalence, there is for each finite dimension precisely one irreducible ma-
trix corepresentation of Aq, which can be chosen to be unitary. The corresponding ir-
reducible ,-representation of Ha is realized as a representation t (t,)5=_l,_t+l,...,t
(l e1/2Z+) on a (2/+ 1)-dimensional vector space with {eln}n=_l,_l+l as an or-
thonormal basis such that

(3.14)

tl A e q-’ e tt D etn qn etn

tl(B) e (q-l+n-1 ql-n+l)1/2 (q-l-n qt+n)1/2
q-1 _q

tl(C) en (q-l+n ql-n) 1/2 (q-t-n-1 ql+n+l) 1/2

q-1 _q

with the convention that e and el+1 are zero. The t,j being elements of jtq--1--1
can be expressed in terms of the generators by expressions involving little q-Jacobi
polynomials. The lowest dimensional cases are particularly simple:

to (t,o)= (1), t1/2 1/2,_1/2 i 7

t .1/2, 1/2
a

(3.15)

t-1,1 t-l,0

2 (1 + q2) 1/2 .y
1/2 8f 1 + (q + q-1)17(1 -I-) (1 q- q2) 1/2/c )(1 + q2) 1/2’C

Define

(3.16) A := Span{t, [i, j -1,-l + 1,..., 1}.
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PROPOSITION 3.3. The t,j (i, j -l,-1 + 1,..., l) form a basis ofj and

(3.17)

C). Let X //q. It follows from (3.8) andLet a "= ’],j=_ 7,j t,j E A (7,j e
(3.13) that

(a.18) X.a ti,k,
(3.19) a.X ’]k,j (’], t,k (X) ",, t,j.

LEMMA 3.4. With a and X as above we have the ]ollowing:
(i) X.a O t’(X) (=_,
(ii) 0

Proof. (i) By (3.18) and Proposition 3.3, X.a 0 tj(X), 0 for all

i, 0 i.

(ii) By (3.19), a.X
0 for all k,j t’(X*)(ie) 0 for all j, where we used that t’ is a ,-
representation of q.

For the Cimir element (cf. (3.7)) we compute from (3.14) that

-t-1/2 qt+1/2 )
2

id.t(12) q-1 q

Hence, by (3.18), (3.19),

(q_t_1/2 q,+1/2)
2

a a.’(3.20) f.a
q_l -q

The tensor product t (R) t’ is defined as the matrix corepresentation of Aq with
matrix entries

(i, j -1, -l + 1,..., l; i’, j’ -l’, -l’ + 1,..., l’).

PROPOSITION 3.5. t (R) t’ is equivalent to the direct sum of the corepresentations
tk (k + l’,l +l’ 1,..., II- l’l).

There is a unique linear functional h: A - C, called the Haar functional on Aq,
with the properties

(i) h(1)= 1;
(ii) h(aa*) > 0 for all a Aq;
(iii) (h (R) id)(A(a)) h(a)l (id (R) h)(A(a)).
Then h(aa*) > 0 if a > 0. It can also be shown that

(3.21) h((t: )* q2(t-i),, t,) ,, ,, ,, 1 q2
1 q2(2/+1)

For 0 C let r" Aq --. C be the unital algebra homomorphism (one-dimensional
representation of Jq) defined by

/ 0 e-i
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In particular, if 0 E lR, 7r is a .-representation of 4q. We have

(3.23)

4. (a, r)-spherical elements. Define, for a E JR,

X i q1/2 B i q-1/2 C (A D).q- -q

Then

q-" q"
(A D) -S(X)(4.2) X$ i q-1/2 B i q1/2 C

q-1 q

by (3.3), (3.4), and X is twisted primitive with respect to A (cf. Lemma 3.1):

A(X) A (R) X +X (R) D.

Define also the twisted primitive element

Xoo:=D-A- lim(q-l-q)q"X,,= lim (q-q-)q-"X,,.

Left or right invariance of an element of Jtq with respect to Xo is the same as left or
right invariance with respect to the diagonal quantum subgroup of SLq(2, C).

We will call an element a ,4q (a, r)-spherical if a is left invariant with respect
to Xa and right invariant with respect to Xr:

X.a O and a.X O.

The nonzero (a, T)-spherical elements in the subspaces (defined by (3.16)) will be
called elementary (a, T)-spherical. It follows from Lemma 3.2 that the (a, T)-spherical
elements form a subalgebra with 1 of jiq. Since the subspaces j[ are invariant under
left and right action of Ha (cf. (3.18), (3.19)), it follows from the direct sum decom-
position (3.17) that any (a, T)-spherical element in Jla will be a sum of elementary
(a, T)-spherical elements.

From now on assume that a and T are finite. From (3.14) we obtain the following.
etm ThenLEMMA 4.1. Let 1/2Z+, a_,a_t+,... ,at C. Let v "= ,,=-t a,

+1 q--q(A-D)) v=0(4.3) t iq B iq=1/2C q_ q

if and only if
(4.4)
iq+1/2 (q-t+m qt-m)1/2 (q-t-m- ql+m+l)1/2 am+l iq:v1/2 (q-t+m-1 ql-m+l)1/2

(q-l-m ql+m) 1/2 am-1 (q-a qa) (q-m qm) am O, m --1, --1 q- 1,..., l,

with the convention that a-t- 0 at+l
By Lemma 4.1 we easily find the general solution to (4.3) for low l: if 0, then

v const. if 1/2, then v 0; if 1, then

(4.5) v const -iq:1/2 e +
(q- + q)1/2 e iq+1/2 e
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Also, if a 0, then the coefficient of am in (4.4) vanishes, so (4.4) becomes a two-term
recurrence relation with solution v 0 if E Z+ + 1/2, and

v const. E q=m
(q4; q4)(l=m)/2 (q4;q4)(l+m)/2m=-l,-l+2,...,l

if E Z+.
From Lemma 3.4 we derive the following.

1LEMMA 4.2. Let, .for some e Z+ and a, r e IR, tl(Xq) and tl(X$) have both
one-dimensional zero-space spanned by m=-t amem and m=-t bmetm, respectively.
Then the (a, T)-spherical elements in j form a one-dimensional subspace spanned by

(4.6) E ajti,j
i,j=--I

In view of (3.15), (4.5), and (4.6), the (a, T)-spherical elements in j[ axe just the
constant multiples of

(4.7) 2pq,r + (q-q -qq)(q-r -q)
q-i+q

where

(4.8)
pq, :=1/2 (c2 + 62 + q72 + q-lfl2 + i(q-q qq)(q57 +

i(q- qr)( + q/c) + (q-q qq)(q- q)[3/).

Note that
Pq,T Pq,T

In order to compute the null space of t(Xq) in general, we consider the more
general problem of finding the eigenvectors of t(-DXq). Note that

(DXq)* DXq;

hence t (-DXq) is selfadjoint. Clearly, t (Xq) and t (-DXq) have the same zero
space.

et. ThenLet A R, v -=m=-t am
tl(-DXq) v A v

if and only if
(4.9)
-i q1/2 (q-+m q-,) 1/2 (q--m- q+m+) 1/2 am+t / i q-1/2 (q-,+m-t ql-m+l) 1/2

x (q--m q+m)1/2 am-1 + (q-q qq) (q-m qm) am q--m A (q- q) am

for m -l,-1 + 1,...,1. Put

/?m := in q-1/2n<n-i) q-nq (q2; q2) (q4t; q-Z);+ a-t+n
x := q-Ut-q ((q- q)A + qq q-a).
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Then (4.9) can be rewritten as
(4.10)

(1 q2n-41) ern+1 (1 q2n) q--41--9.a ern- + (q-4! q-4-2a) q2n Rn x Rn
n 0, 1,...,2/,

with the convention that R_ 0 R2/+l. We recognize (4.10) as the three-term
recurrence relation (2.19) for the dual q-Krawtchouk polynomials (2.17). Thus the
possible eigenvalues in (4.10) are

(4.11) Xj :-- q-2j-2l q2j-21-2a, j -l,-l+ 1,...,1,

and the corresponding eigenvectors, up to a constant factor, are given by

Rn Rn(xj; q2a, 21 q2).

When we translate this back to (4.9) we obtain the following.
THEOREM 4.3. tt(-DXa) has simple spectrum consisting of eigenvalues

_q2j-a + qa-2:i q, + q-a
q-I _q j -1,-I + 1,...,1,

with corresponding eigenvectors

21

const E i-n qna qn(n-1)/2 (q2; q2)=1/2 (q4/; q-2)n} Rn(Xj; q2a, 21 q2) en_
n--O

where xj is given by (4.11).
Similarly, in order to compute the null space of tt(X$) in general, we consider the

more general problem of finding the eigenvectors of t (AX$). Note that

AX$)* AX:,

so tl(AX$) is selfadjoint and has the same zero space as tt(X$). But also,

AX$ XA J(-XSD) J(-DX),

where J: b/q -- b/q is the involutive algebra isomorphism generated by

J(A) D, J(D) A, J(B) C, J(C) B

(well defined in view of (3.2)). Also observe from (3.14) that

t,.(J(X)) tt_.,_.(X),

em is eigenvector of tt(-DX) with eigenvalue if andLEMMA 4.4. ’:m=_tam
et_m is an eigenvector of tt(AX$) with eigenvalue ).only if ’m=-t am

Since XSD DXa, we see also that tt(X) v 0 if and only if tt(X$) (tl(D) v)
0. In combination with Lemma 4.4 this yields the following.
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1LEMMA 3,.5. Let E Z+ and c-t,c-t+l,..., ct E C. Then

So, by Theorem 4.3 and Lemma 4.2 we get the following.
LEMMA 4.6. tt(X) and tt(X$) have zero-dimensional null space i Z+ + 1/2

and one-dimensional null space panned by

m=--l m=--l

if Z+. Here

Furthermore, the subspace of (a, T)-spherical elements in q is zero-dimensional if
e Z+ + 1/2 and one-dimensional ill e Z+. For e Z+, the (a, ’)-spherical elements

are spanned by

(4.13)

The symmetry c ct’a-m in (4.12) follows from Lemma 4.5, but this symmetry
can also be shown for the 32 in (4.12) by iteration of [7, (3.2.3)].

We already found that the (a, T)-spherical elements in j[ were spanned by the
element given by (4.7). Since, by Proposition 3.5, the/-fold tensor product of the
representation t1 will be a direct sum of irreducible representations equivalent to
tk, k 0, 1,... ,1; the polynomials of degree _< in pa,r will certainly be (a, T)-
spherical elements contained in =0J[. On the other hand, the algebra homomor-
phism r/2" 4q C (cf. (3.22)) sends (pa,r)k to (cos 0)k, so the monomials (pa,r)k will

be linearly independent in jtq. So the element given by (4.13) must be a polynomial
of degree in p,. Thus we can state the following.

PROPOSITION 4.7. The algebra of (a, T)-spherical elements in jtq is generated by
pa, (given by (4.8)) and is, as a linear space, the direct sum of the (a, T)-spherical
elements in q (1 0, 1,2,...), which are spanned by

(4.14) t,r ttZ q(n-m)/2c"cn ,,m P
m----I

where P[’ is a certain polynomial of degree I.
Apply r0/2 to both sides of (4.14). Then, by (3.23),

l,a l,- einO(4.1 1 C"(co 0).
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Remark 4.8. Consider (4.15) with a T, together with (4.12). Compare it with
(2.12), together with (2.14). Then we obtain

(4.16) (q2/+2; q2)l
pt(. _q2,,+l, _q-2,+l, q, q q2),

where p is an Askey-Wilson polynomial (2.2).
LEMMA 4.9. We have

(4.17) (1 q2)q2th(P,’’(p) P’(p)) it,,
1 q2(2+1) P’(1/2(q + q-i))p[,’,’(1/2(q + q-i)).

Proof. Apply (3.21) and (4.14). The case # l’ is clear. For l’ we have

5. The action of the Casimir operator. Let A E Z+, let be the Casimir
element given by (3.7), let p, be given by (4.8) and P’ by (4.15). We have

(5.1) (Afl, P’(p,)) (Ax, fl.P’(p,))
2

( q-l-1/2 ql+1/2
q

2

p,.r(1/2(q), + q_),)),

where the second identity follows from (3.20). Let X be given by (4.1).
LEMMA 5.1. We have

q(q-1 q)2 A,2 e f(q)’) (A+2 A’) + f(q-) (A-2 A)
+ (1 q): A + HqX +XHq,

where

(5.3) f(q)’) :=
(1 + qa+r+l+X)(1 A- q-a-+l+) (1 qa-r+l+) (1 q-+r+l+)

(1 q2) (1 q2+2)

Proof. If Y, Z /q, then Y Z will mean that

Y Z+blqX,,+X-lgq.

First observe that

ABC q(B q-IC)AC + qCA(q-lC B) / q2ACB
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Substitute

and

AxCB AXBC_ AX(A2 D2)/(q_

q1/2 B q-1/2 C -i(X.,. -4- (q-r q")(A D)/(q-1 q))

and similarly for X. Then

iq1/2 (1 q2)(q-1 q) ABC (q-l(q-.,- q-,-) q(q-,, q,,)) CA+I
(q(q-- q-) qX(q-,, q,,)) CAX-1 + iq2X+1/2 (AX+2 Ax-2).

Observe that

CAt, (C qB)At, + ql-tt At,(B q-lC) / q-2t, CAt,.

Substitute again (5.4) and its analogue for Xa; we obtain

(q-2 1)(q-1 q) CA’ i(q1/2-t’(q-,, q,,) q1/2 (q-’," q,’)) (A+I At,-1).

Substitute this last equivalence in (5.5). We obtain

(1 q2X)(q-1 q)2 AxBC (q-2X-2 1)-1
(q-l(q-,- q) qX(q-,, q,,)) (q-l-X(q-,, q,,) (q--’r q’r)) (AX+2 Ax)

(q-2X+2 1)-1 (q(q-.,- q,-) qX(q-,, q,,))
(ql-X(q-a qa) (q-" q))(Ax Ax-2) + q2X(q-I q)(AX+2 Ax-2).

Now add (1 q2X) AX(q-tA2 + qD2 2) to both sides and multiply both sides with
q(1- q2X)-l. Then the left-hand side becomes q(q-1 q)2 AX and the right-hand
side can be rewritten as

f(qX) (AX+2 Ax) + f(q-X)(AX-2 Ax) + (1 q)2 Ax

with f given by (5.3).
Substitute (5.2) into the left-hand side of (5.1). With the notation

R(qX) := p[,’r(1/2(qX + q--X))

we obtain
(5.6)
f(qX) (Rt(qX+2)_R(qX))+f(q-X) (R(qX-2)_Rt(qX)) _(1_q-2)(l_q2+2) R(qX).

Since this is an identity of rational functions in qX which is valid for infinitely many
values of qX, it will remain valid if qX is arbitrarily complex, in particular if qX is
replaced by eie. Then we recognize (5.6) as the second-order q-difference equation for
Askey-Wilson polynomials; cf. (2.8). Hence

Rt(eie) const, pt(cos 0; _qa+r+l, _q--+l, q-+l, q-++l q2),

where p is an Askey-Wilson polynomial (2.2). We can compute the constant by
comparing the coefficient of em at both sides (use (4.15)). The result generalizing
(4.16) is the following.
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THEOREM 5.2. The polynomial Pta’r occurring in (4.14) and (4.15) equals

(q2/+2; q2)l
pt(. _qa+r+l, _q-a-r+l, qa--r+l, q--a+r+l q2).

THEOREM 5.3. Let din(x) dma,b,c,d;q(X) be the normalized orthogonality mea-
sure for the Askey-Wilson polynomials pn(x; a,b,c,d q) as in (2.7). Let p be any
polynomial. Then

h(p(p,)) /p(x) dma,b,c,d;q2(X),

where a _qa++l b _q-a-+ c qa-+l d q--a+r+l
Proof. By (4.17) (for l’ 0) and (5.7) the theorem is therefore valid for p

P[’ (/e Z+).
In the proof of Theorem 5.3 we only used the case l’ 0 of (4.17). Substitution of

(5.7) and (5.8) into (4.17) for general l, l’ should yield the full orthogonality relations
for the Askey-Wilson polynomials of these particular parameters. We can indeed
check that this is true. For the left-hand side of (4.17) becomes

[Cll’trl 2’ 12 /(q2+2; q2) pl(X; a, b, c, d; q2)2 dma,b,c,d;q2(X),

where a, b, c, d are as in Theorem 5.3, while the right-hand side becomes

l,O" ]2 l,Tc [c 12 (q2;q22]l (_q2a+2, _q-2a+2 _q2-+2 _q-2-+2; q2)l
(q2/+2; q2) q41

These two expressions are equal because of (2.4), (2.5), and (2.6).
Remark 5.4. It follows from (4.15), (4.12), and (5.7) that

(5.9) pn(cosO; __q(a+r+l)/2, __q(--a--’r+l)/2, q(a--’r+l)/2, q(--a+’r+l)/2 q)
n (qn+l;q)n (q; q)2n q(n-k)(n-k+a+’)/2

(q;q)n+k(q;q)n-k
k-- --’1"!,

q-2n O
q q 32

q-n+k q-n, _q-n-
q-2n, 0

q’ q eikO"

This formula, obtained from the quantum group interpregation, cannot be found in
the literature in the case of general a, r. or a r we already gave an analytic proof
of (5.9) in (2.12), (2.14). In a forthcoming paper [9] we will give an analytic proof
for (5.9) in general and even for an extension of it wih one more parameter. There
it will turn out that the addition formula for classical ulgraspherical polynomials (for
Legendre polynomials in the case of (5.9)) is a limi case of our result. So i may be
considered as an alternative o he Rahman-Verma [19] addition formula. In fac igs

derivation will be similar as for ghe Rahman-Verma formula.

6. Little and big q-Jacobi polynomials as limit cases of Askey-Wilson
polynomials. Propositions 6.1 and 6.3 in this section are limit results for special
functions, motivated by quantum group theory, but independent of quantum groups
in formulation and proof. Before the author’s paper [11] these limits have not been
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mentioned in literature, although R. Askey told me that he had been aware of them
already some years ago.

Let Xa (a E JR) be given by (4.1). Let Ba := {a e Jtq Xa.a 0}. By Lemma
3.2, B is a subalgebra of Jtq; and, by (3.12) and (4.2), B is moreover a ,-subalgebra.
It follows from (3.11) that A(B) C Jtq (R) B. Thus the quantum group SUq(2)
corresponding to the Hopf ,-algebra Jtq acts on the quantum space corresponding
to the ,-algebra B. Thus it is natural to conjecture that this quantum action of
SUq(2) coincides with its action on some quantum sphere as considered by Podle
[18]. According to Noumi and Mimachi [17, 5] this is indeed the case and they have
made a precise identification between the two models.

Here we will restrict ourselves to the question of finding the elementary (a,
spherical elements in jtq. These can also be characterized as the elements of
belonging to irreducible subspaces (with respect to SUq(2)) and being invariant with
respect to the diagonal quantum subgroup of SUq(2). We will obtain these (a,
spherical elements as limit cases for T --, Cx of the corresponding (a, ’)-spherical
elements.

It follows from Proposition 4.7, Theorem 5.2, and (2.3) that the (a, x)-spherical
elements in JItq (l 0, 1, 2,...) are spanned by

(6.1)

provided this limit exists and is nonzero. The limit can be obtained from the follow-
ing limit transition from general Askey-Wilson polynomials to general big q-Jacobi
polynomials.

PROPOSITION 6.1. Let Askey-Wilson polynomials and big q-Jacobi polynomials
be denoted by (2.3) and (2.16), respectively. Then

(6.2) lim rn
q2 x 1/2 a(d/c) 1/2 a-a--0 2a-) 1/2

;q"+ q1/2 (c/d)1/2,

q1/2a-i(d/c)1/2,-qa+1/2a(c/d)1/2 q) Pn(a’)(x; c,d; q).

Proof. The left-hand side of (6.2) can be written as

’n (q_n, qn+a+a+;q)kq
1

/=0z" (qa+l -qa+ld/c, -qa+f+la2, q; q)k
qa+lx q2a+la2d

qj + q2j [’l
c

by

From (6.1), (6.2), and (4.7) we now obtain the following.
THEOrtEM 6.2. The (a, o)-spherical elements in A (l O, 1, 2,...) are spanned

p/(O.O) (q_l(1 q2a).y iqa-l( + q"/c); q2a, 1; q2),

where Pt(’) is a big q-Jacobi polynomial.
The above theorem corresponds nicely with the interpretation of big q-Jacobi

polynomials on quantum spheres by Noumi and Mimachi [16].
We can also try to get the (cx), cx))-spherical elements in jl by the limit

(6.3) lim rt(p_,r; q2r+l, q-2r+l, _q, _q q2).
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For this we need the following.
PROPOSITION 6.3. Let Askey-Wilson polynomials and little q-Jacobi polynomials

be denoted by (2.3) and (2.15), respectively. Then

( - ) (q+i;q)nqx q+1/2a2 1/2 -q1/2 -q+ q
(q-n-a;q),(6.4) lim r, q a-2, ;q)

a--,o a2 Pn(x; q, qa

Proo Put d := a2 in the proof of Proposition 6.1. Then we obtain for the limit
in (6.4)

[q-n,q"+a++,q"+lx ]32 qa+l, 0
q’ q

Now the proposition follows kom [7, (III.7)] and (2.15).
om (6.3), (6.4), and (4.7) we now obtain the following.
TaEOEM 6.4. The (, )-sphecal elements in (l O, 1, 2,...) are spanned

by
pt(-q-iV;1,1;q2),

where pt is a little q-Jacobi polynomial.
The (, )-spherical elements in coincide with the bi-invariant elements in

with respect to the diagonal quantum suboup of SUq(2). These lt ones e well
known; cf. for instance [10], where we find the same explicit expression in Theorem
6.3.

Remark 6.5. Askey-Wilson polynomials, with q fixed but with dilation of the
gument admitted, form a five-pameter family of orthogonal polynomials. When
these pameters e chosen the a, , a, c, d in the leK-hand side of (6.2) then, for
each choice of a, , we obtain a threpameter family of orthogonal polynomials
which contain on the one hand the continuous q-Jacobi polynomials in Rahman’s
notation P’)(x; q) (cf. [5, (4.17)]) and on the other hand big and little q-Jacobi
polynomials limit ces.

Remark 6.6. When we compare Proposition 6.1 with Proposition 2.2 we see that
the orthogonal polynomials in x aer the limit sign in the left-hand side of (6.2) will
have continuous ms on the interval [-2a(cd/q), 2a(cd/q) ]] and discrete ms points
on the two sets

{cqk + a2dq-k- k Z+, qk > a(qc/d)- }
and

{-dq -a2cq-k-1 k Z+, qk > a(qd/c)-1/2 }.

Clearly, when a --, 0, the continuous mass interval shrinks to {0}, while the discrete
mass points tend two the two infinite sets {cak k Z+} and {-dqk k Z+}, just
the location for the mass points of the big q-Jacobi polynomials. A similar remark
can be made about the limit transition in Proposition 6.3.
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SOME INEQUALITIES FOR THE FIRST POSITIVE ZEROS OF
BESSEL FUNCTIONS*

LEE LORCHt
Abstract. For the first positive zero j jl of the Bessel function Jr(z), it is shown for

-1 < u < c, that (i) j2 (u + 1)(u + 5) increases from zero to +o so that j2 > (v + 1)(u + 5),
and that

24(v + 1)2
(ii) j2 > -2(v2- 1).

1 2v - J(2v -t- 3)(2v - 11)

These inequalities find use in the work of Ashbaugh and Benguria on bounding ratios of eigenvalues.
In addition, some associated monotonicities and inequalities are established and some conjectures of
Ismail and Muldoon on lower bounds for j are verified.

Key words. Bessel functions, zeros, inequalities, monotonicity

AMS subject classification, primary 33A40

1. Introduction and statement of principal results. In the course of their
work on bounding ratios of eigenvalues, including proofs of long-standing Payne-
Plya-Weinberger conjectures, Ashbaugh and Benguria [1], [2], [3], encountered the
need for some inequalities for j jl, the first positive zero of the Bessel function

They require the inequalities

(1) j2 > (v + 1)(v-+-5), -1 < v < c,

and

for the special values v 1/2n 1, n 1, 2,..., where n is the dimension of the space
in which the domains they study are embedded. To fill this need, proofs of (1) and
(2) are among the results provided here.

A straightforward calculation shows that (2) provides a sharper (larger) lower
bound for jl than does (1), i.e., that the right member of (1) is smaller than the
right member of (2). Hence, it would suffice to prove only (2).

The inequality (2) can be rewritten readily as

6(v + 1) 2v -t- 5 -t- V/(2v + 3)(2v -t- 11)
1 + j2 -t- 2(v2 1) < 4(v + 1)

v>-l.

With v 1/2n- 1, this becomes

6. . + 3 + v/(. + + 9)(2’) 1 +
2j2 + n(n 4) <

2n
n>0.
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In this form, the inequality establishes that Chiti’s upper bound for (Jn12/Jn12-1)2
is more precise (i.e., smaller) than the upper bound for that ratio found by Brands
and also jointly by Hile and Protter. This is discussed and references are provided in
[2]. Here j jl.

However, a separate analysis of (1) will be included, inferring its validity from the
more informative result that

(3) f(u) j2 ( . 1)(P + 5)

increases steadily from zero (since f(-1+) 0) to +c, -1 < < o.
This monotonicity is obviously equivalent to the inequality

dj
(4) j- > u+3,

which may have further interest because of its simplicity; it is in this formulation
that the monotonicity of f(), and hence also the truth of the inequality (1), will be
demonstrated.

The inequality (1) was formulated by Elbert [4], who proved it for -1 < u < 0,
indicated a proof for 0 _< < 1, and conjectured its validity for 0 _< u < o.

2. Collateral results. The proof of (4), beginning with inequalities found by
Ismail and Muldoon [8], invites attention to various conjectures in [8]. These will be
verified below (6).

3. Proof of inequality (4). This proof involves a consideration of three subin-
tervals (the first two overlap) of- 1 < u <

(A) -l<u_<l.4, (B) 0_<u<2, and (C)

In (A), inequalities due to Ismail and Muldoon [8] will yield the desired conclusion.
In (B), the result follows from Elbert’s concavity theorem d2j/d2v < O, u >_ 0 [5] and
the Elbert-Laforgia inequality dj/du > 1, u _> 0 [6]. In (C) the Elbert-Laforgia
inequality will play the essential role.

Proof:for (A). From [8, (6.2)], (4) will hold for -1 < u _< 1.4 if

[ 4(u + 1)2]2 1 + j2
>_ u + 3, -1 < u <_ 1.4,

i.e., if 8(u / 1) >_ j2, -1 < u <_ 1.4.
This in turn will be the case, according to [8, (6.10)], if

8(u + 1) > 2(u + 1)(u + 5)(5u + 11)
-1 < u < 1.4,

7u/ 19

i.e., if 0

_
5u2 / 8u 21 (u + 3)(5u 7), which holds for this u-interval.

Prooffor (n). 0

_
u < 2. Here, and below in the proof of (4), we rely on nlbert’s

concavity theorem. Accordingly,

dj dj j+h j(5) d-- > -- >
h

#>p>_0, h>0.
v--p ’--I

Putting # 2 and h 1/2, we have

--" > 1.2556738, 0 < u < 2,
d
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so that

dj
Jvv v > 1.2556738j v, 0 _< v < 2.

The right side is an increasing function of v, since dj/dv > 1, v >_ O. This lower
bound exceeds 3 already when v -0.

Proof for (C). Similarly, (4) holds if j v _> 3. This is the case for v 2,
since j2,1 > 5, and hence also for all v > 2, since jv v is an increasing function in
0<v<oo.

This concludes the proof of (4), hence also of (1) and of the monotonicity of (3)
for all -1 < v < cx.

4. Remarks on the proof. (1) Martin Muldoon has pointed out in conversation
that (1) by itself provides a lower bound smaller than that established in [8, (6.8)] for
-1 < v < 7. If the proof of (1) were the only objective, Muldoon’s observation would
permit deleting the proofs of (A) and (B) above, retaining only the brief proof of
case (C).

(2) Inequality (4), stated and proved for j jl, holds all the more for j
jvk, k 2, 3,..., and, more generally, for j j, _> 1, defined in [6]. In particular,
j jk, k 1, 2,..., and jw Yk when k- 1/2, k 1, 2, 3,..., where Yvk
is the kth positive zero of Y(x), the Bessel function of second kind. This extension
follows from (4) on noting that, for fixed v, (i) j increases with (cf. [6]) and (ii)
dj/dv also increases with from the lemma in [11].

5. Proofof inequality (2). This will be proved in two overlapping installments:
(A) -1 < v _< 15 and (B) 1.34 _< v < oo. The proof of (B), as noted below, will
establish results (1’) and (3’), strengthening (1) and (3) in the interval 1.34 _< v < c
and also (4’), which strengthens (4) in the interval .05 < v < oo.

(A) For these v, the already established Ismail-Muldoon lower bound [8, (6.9)]
for j2 exceeds the right member of (2), i.e., after dividing each by 2,

12(v + 1)22/3[(v + 2)(v + 3)] 1/3 > v + 1
1 2v + V/(2v + 3)(2v + 11)

1 538 V/(2v + 3)(2v + 11) v + .
This inequality holds for -1 < v < 15.28966
To verify this, we multiply both sides of the inequality by 8 and then cube each

side. This yields an equivalent inequality which, simplified, becomes

56v3 -+- 740v2 + 2098v + 1927 > 9(2v + 3)I/2(2v + 11)i/2(4v2 + 16v + 31).

Squaring each side of this inequality, then collecting all terms and finally dividing
by 256, leads to another inequality, again equivalent to (2), namely,

-8v6 + 20v5 + 1118v4 + 5915v3 + 13067v2 + 12713v + 4471 > O,

which may be written as

(v + 1)2(-8v4 + 36v3 + i054v2 + 3771v + 4471) > O,

and, since v > -1, finally as

--8/]4 -[- 36V3 + 1054V2 + 3771V + 4471 > 0.



SOME INEQUALITIES FOR FIRST POSITIVE ZEROS 817

This quartic has exactly one positive root, u0, which could be written in "exact
form." Numerically, u0-- 15.28966

Thus, (2) has been proved for -1 < u _< u0 15.28966
Remark. This shows that the Ismail-Muldoon lower bound in [8, (6.9)] for j2

improves on the bound provided by (2) when -1 < u < u0. The position is reversed
for u > u0, as is evident from the foregoing discussion.

(B) The proof of (2) for u > u0 will in fact cover the larger interval u _> 1.34,
since doing so presents an opportunity to establish results yielding additional informa-
tion. This will permit improving (1), (3), and (4) for appropriate infinite u-intervals,
although not for the entire interval -1

The inequality (2) can be rewritten in the form

(2")
j2
+ >3 V/(2u + 3)(2u + 11)- u + .

Now, (2u + 3)(2u + 11) < (2u % 7)2 so that the right side of (2") is less than
+ 13/2) Thus, (2"), and hence (2) would follow for those u > -1 for which

(1’) j2 > (v + 1) (v +-
an inequality stronger than (1) for those u > -1 for which it is valid.

Paralleling the discussion of (1), it will be shown that (1’) holds .for u >_ 1.34 (and
hence also (2) and (2")). It is reversed for u-- 1.33 [9, p. 195].

The inequality (1’) follows, since fl (1.34) > 0 [9, p. 195], from the property that

(3’) f(u) j2 (u + l) (u + l-32 )
is an increasing function of u for .05 _< u < . However, f (.04) > f (.05).

The monotonicity assertion concerning f (u) is equivalent to the inequality

dj 15
(4’) > .05 < <

an inequality which, by the way, reverses when u 0.
The proof of (4’) is separated into four parts, the first of which alone suffices,

together with (A), to complete the proof of (2) and (2").
(i) 5

_
u < cx). Since dj/du > 1, u >_ O, we have

dj
j- v > j v,

an increasing function of u _> 0. But j v > 15/4 when u 5, so that this part of
the proof of (4’) is complete---and with it the proof of (2) and (2") is also complete.

(ii) 3/2

_
v < 5. Putting # 5 and h 1/2 in (5), we have

Ju u > 1.16865654j u, O<_u<5,

an increasing function of u. When u 3/2, this lower bound exceeds 15/4, thus
verifying (4’) also for 3/2 _< u < 5.
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and so

(iii) .78 _< r" < 3/2. Following the pattern of (ii),

j2,1 jl.,l-- > > 1.28442564,
dr" .5

3

dj 3
j r" > 1.28442564j -.r’, r" < ,

an increasing function of r" which exceeds 15/4 [9, p. 195] when r" .78. This verifies
(4’) also for .78 _< r" < 3/2.

(iv) .05 _< r" < .78. For this portion of the r’-interval, there is available a larger
lower bound for dj/dr" than the one given by (5). From the mean-value theorem,

d2jdj dj + ?-dr, dv =0 =
for some/z, 0 < # < r’. Elbert and Laforgia [7] have shown that d3j/dv3 > O, v > O,
so that d2j/dv2 is an increasing function of v. Thus, we now have

d2jdj
>

dj + r’-l-u2d-- - v=o =o

Using the numerical values [10, (1.1)] now yields the lower bound to be used here, i.e.,

dj
> 1.54288974- 175493593r’,r" > 0.(6) d--

The argument is now subdivided into several steps.
(a) .34 <_ r" < .78. Here dj/dr" > 1.40600473 so that

dj
J-u r" > 1.40600473j r’, 0 _< r" < .78,

an increasing function of r" which exceeds 15/4 already when r" .34 [9, p. 195].
(b) .15 _< r" < .34. Similarly, for this interval,

dj
J-u r" > 1.48322192j

an increasing function of r" which exceeds 15/4 already when r" .15 [9, p. 195].
(c) The procedure is now clear. It can be applied successively to the intervals

.08 _< r" < .15, .06 _< r" < .08, .05 _< r" < .06, using, as above, the values for jl
recorded in [9, p. 195].

Remark. As noted in 1, (2) implies (1).
6. On some Ismail-Muldoon bounds. (1) Ismail and Muldoon observed nu-

merically [8, p. 201] that their lower bound for ja in [8, (6.27)] is better (larger) than
the lower bound given by [8, (6.24)], when r" > 0.

Their implied conjecture thus suggests that the following inequality holds between
these respective lower bounds for .4

j0 + a + 8(j0 + a) + s(j0 + 0)- le81 + g
> j +a + 8(y0 +) + 8(yg + a), > 0,
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Now
(-)3g(v):=u3+9v-241n 1+] >0, u>O.

and

2(u+1) +16u3+32u2+80u+64-1281nl+v I+

96[2]3/29632)3-- i+ (+I) + + (+I

Showing that the first of these exceeds the second for all u > -1 is equivalent to
verifying that

{l(u+3)}>0, u>-l.F(u):=va+gu+10-241n

Now, F(-1) 0, while F’(u) > 0, u > -1, so ha F(u) > 0, u > -1, hereby
establishing he correctness of ghis conjecture.

(3) Another Ismail-Muldoon conjecture [8, lne following (6.8), p. 198] (which
ghey supporged numerically) ha can be confirmed readily is ha Schafheiflin’s upper
bound for jt, given by [8, (6.16)] is sharper (i.e., less) han he one provided by [8,
(6.10)] for all u > -1. Tha is, for u > -1,

2(u + l)(u / 5) 2(u -e l)(u + 5)(5u + Ii)
1 + [1 1/4(u + 1)(u + 5)/{(u + 2)(u + 4)}]1/2 7u + 19

these being the respective upper bounds for .2
31 recorded in [8, (6.16)] and [8, (6.10)].

By cross-multiplying and simplifying, this becomes

[ 3(u+ l)(v+ 5)] 1/2
2( + ) < ( + ll) i

( + 2)( + )
Squaring both sides and simplifying leads to the equivalent (and obvious) inequality
9(u+ 1) > 0, u > -1.

(4) Another essentially correct Ismail-Muldoon conjecture [8, p. 198] states that
Schafheitlin’s upper bound for j2I,A/(1 + B), recorded in [8, (6.16)], is sharper
(smaller) than the upper bound,

8(7u 4- 19)(u q- 1)(u q- 2)(u q- 3)(u -I- 6)
42u34- 362u24- I026u 4- 946

while g(0) 0, and so g(u) > 0, u > 0.
This verifies the Ismail-Muldoon conjecture and shows also that the bound in [8,

(6.27)] becomes increasingly better than the one provided by [8, (6.24)], 0 < u < cx.
(2) Ismail and Muldoon observed numerically [8, p. 200] that the lower bound they

provide in [8, (6.26)] is larger than the one they give in [8, (6.23)], thereby implying
the conjecture that this ordering would hold for all u > -1. This is the case. These
lower bounds for .4

3u are, respectively,

9’() ( + 3)( + 3) 8
u + 3

> 0, u > -1,
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provided by [8, (6.11)] when v > -0.54. Here

A 2(v + 1)(v + 5),
S [i (v + l)(u + 5)/{(u + 2)(u + 4)}] 1/2.

More precisely, it will be shown that there exists a unique p -0.534... such
that the difference of these bounds,

A 8(7v + 19)(v + l)(v + 2)(u + 3)(v + 6)(7) G(u)
1 + B 42v3 + 362v2 + 1026v + 946

is negative for v > p. On the other hand, G(v) > 0 for -1 < v < p, so that [8, (6.11)]
is better than [8, (6.16)] for -1 < v < p. When v p, G(v) 0.

Now,

G(v)H(v) ( + 5)(21v3 + 181v + 513v + 473)

( i 2 + 6 + 17 ) (7 + 19)( + 2)(v + 3)( + 6),

where

I / u2 + 6u + 17 I 21u3 -t- 181V2 + 513v + 473
H(v) 2 +,(u + 2)(u + 4) 4( + 1)

/

Clearly, U() > 0, -1 < v < cw, so that G() and G(v)U() have the same signs
in-l<u<. Now,

( + 4)/G()H() ( + 4)’/(74 + 94a + 496 + 1766 + 996)
(7 + 19)( + 3)( + 6)( + 2)/2(2 + 6 + 17)/2

:= G1() G2(u),
whence G(u) h the same signs in -1 < u < does

(8) G(u) G(u) -(u + 1)a(u + 5)(28ua + 191u + 371u + 148).

Thus, the signs of G(u) in -1 < u < e opposite (except when zero) to
those of

(9) ()- 28v3 + 1912 + 371v + 148.

Following the classical method of solving cubic equations, we put v x-(191/84)
so that

8 8 [2073214x3 4689594x 2759281](10) () -q(x) -The cubic q(x) has precisely one real root ; this can be expressed in exact form,
namely,

2759281 2759281 2 781599 3

414642S + 4146428 103---7

2759281 2759281 2 781599 3

+ 4146428 4146428 1036607
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Thus, (u) has exactly one real root p, where

191
(11) P 8--- -0.534

It is easy to see that (v) < 0, and hence G() > 0, -1 < v < p, while () > 0
so that G()<0for p<<oandG(p)=0.

Remark. The inequalities (bounds) on jr1 and jdj/du borrowed from [8] to es-
tablish various inequalities above are not the sharpest provided in [8]. However, the
sharper (and more complicated) bounds found in [8] do not appear to yield stronger
inequalities of the type discussed herein.

7. Miscellaneous comments. Inequalities (1) and (4) are each "best possible"
in a certain sense. Increasing the factor u + 5 by any fixed positive quantity reverses

(1) in a neighbourhood of u > -1. This is the case as well if (1) is rewritten as
j2 > 122 _[_ 6 + 5. Increasing the lower bound by a positive constant would again
reverse the inequality in a neighbourhood of u -1. The same is true of (4) if the
term u / 3 is increased by a fixed amount. For example, given a > 0,

(12) j2 < (v/ 1)(v/ 5 /a), -1 < <_ a- 1

and

dj 1
(13) j-- < u + 3 + a, -1 < _< -1 + .

Similarly, the monotonicity of (3) is "best possible" in that

fa(u) := j2 (u + 1)(u + 5 + a), a>O,

while ultimately increasing, decreases in -1 < _< -1 + .
To prove (12), we observe that, for -1 < <_ a- 1,

( + 1)( + 5 + a) > 2( + 1)( + 3) > j2.

The second inequality is a standard upper bound for j2, recorded, e.g., in [8, (6.8)].
As to (13), it should be noted that fa(-1+) 0 and that fa(U) < O, -1 < <_ a- 1,
from (12). This implies the comments about fa(U), and hence also (13), except for
the ultimate increasing character of fa(). This latter follows from the inequality
dj/du > 1 since j u increases and (as is clear from the well-known asymptotics of
jl [9, p. 153, 5.3]) becomes infinite as u -+ oc so that

dj 1
j-- > j > ,+ 3+ a

for sufficiently large.
Also, for any A > 0, the inequality

(14) j2 > ( + 1)( + A)

holds for all sufficiently large , depending on A, again as .a consequence of the mono-
tonicity of

j2 ( + 1)( + A).
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To establish this monotonicity, it suffices to note that

j---v-l(A+l)-- >j-v- (A+I)
becomes and remains positive since j y increases to

Other inequalities discussed in previous sections are also "best possible" in the
intervals in which they hold.

Another inequality might be useful for cases, such as those considered in [1], [2],
1[3], where _> "

(15)

This becomes an equality when -2"The inequality is a consequence of the monotonicity of

((u)=jz-(u+l) u+gr 0_<u<

since 7(1/2) 0.
The proof that o(u) increases in 0 _< u < o follows the same lines as for (4)

and (4’). We have

1 dj 1 2 1
()=J--g -.

(i) 4 _< < o. Since dj/&/> 1, so that 1/2’() > j - 1/2r2 1/4, an increasing
function of which is positive already when 4.

(ii) 1 _< v < 4. Here we use (5) with # 4, h 1/2 so that dj/dv > 1.18843804.
Thus,

1 (121/.(v)>l.18843804j- gr +
an increasing function of which is positive already when 1.

(iii) 0 <_ < 1. This remaining interval is subdivided into the subcases, 1/2 _< y <
1, 1/4 _< < 1/2, 0 <_ < 1/4, which are treated successively in the same fashion as (ii).
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SPECTRA OF JACOBI MATRICES, DIFFERENTIAL EQUATIONS
ON THE CIRCLE, AND THE su(1,1)LIE ALGEBRA*

JULIAN EDWARD?
Abstract. A family of differential operators on the circle is shown to be isospectral to a certain

family of bilaterally infinite Jacobi matrices. The spectral properties of the differential operators
are then used to explain a previously noted isospectral deformation of the Jacobi matrices. Differ-
ential operators on the circle are used to provide realizations of principle and complementary series
representations of su(1,1).

Key words. Jacobi matrices, spectrum, differential equations, Lie algebra, su(1, 1)
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1. Introduction. A bilaterally infinite Jacobi matrix is a symmetric tridiagonal
matrix of the form

(i.i) M

"’. "’. b0 0
b0 a0 bl

bl al b2
b2 a2 b3

with bj > 0 and aj E R.
In cases where M, acting on g2(Z) (the set of square summable bilateral se-

quences), has discrete spectrum the eigenvalues have rarely been explicitly computed.
One case where the eigenvalues have been computed explicitly is the case where M is
connected with associated Meixner polynomials.

More explicitly, suppose

(1.2) a=j and b j2+/j+,

with a, ,, R, and 2 > 4a > 0.
Then the spectrum ofMwshown by Mson and Reph in [1] to be the following

discrete set:

(1.3) Aj j52-4a+ 1+- (52_4a_5), jeZ.

To obtain this result, the authors above studied the properties of the le and right
subdominant solutions to the second-order difference equation sociated with M.
Unfortunately, using these methods the authors were unable to explain the curious
fact that the spectrum of Mw independent of .

The main purpose of this note is to provide an alternative proof of (1.3) in a
setting in which the independence of Aj on is eily explained. It is also possible
that the techniques used here could be useful in studying the spectra of other Jobi
matrices.

Received by the editors March 17, 1992; accepted for publication (in revised form) September
3, 1992. This research was partially supported by the Natural Sciences and Engineering Research
Council of Canada.

Department of Mathematics, University of Toronto, Toronto, Canada, M5S 1A1.
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The key observation is the following. Let W be a closed curve, and let an arclength
parametrization ofW define a local coordinate x. Then the matrix M, acting on 2(Z),
is isospectral to the following differential operator on W:

Here q E C(W), and the differential operator acts on the square integrable functions
on W, L2(W). The observation is proven in 3.

The isospectral variation noted above will then be explained by the following.
LEMMA 1.1. Suppose f q(x)dx O. Then the spectrum of-iO/Ox + "/q(x) is

independent of /.
This will be proven in 2. In 4, we use the connection between Jacobi ma-

trices and differential operators on the unit circle, S1, to obtain the principle and
complementary series representations of the Lie algebra su(1, 1). The principle se-
ries representation is shown to be realized by a set of differential operators acting on
L2($1). The complementary series representation is shown to be realized by a set of
differential operators living on S and acting on a Hilbert subspace of some Sobolev
space over S.

The principle and complementary series representations of su(1, 1) arise in a num-
ber of differential equations [2]-[6], and the simplicity of the representations given here
might make them a good approach to studying the properties of the differential equa-
tions.

2. The spectrum of a differential operator on S1. Let W be a closed curve
in ]R2 of arclength L, and let an arclength parametrization of W provide a local
coordinate x on W.

We define L2(W), the set of complex valued, square integrable functions on W,

L2(W) (f If(x)12dx < o
=0

L2(W) is a Hilbert space equipped with inner product

f(x)(x)dx(f g) - -o

and norm

Let Coo(W) be the set of infinitely differentiable functions on W.
Let i --, and denote the differential operator -iO/Ox by Dx. Denote the

spectrum of an operator A by a(A).
LEMMA 2.1. Let q Coo(W). Then

(2r lj0L )a(Dx / q) -k + - q(x) dx; k e Z
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Proof. Suppose (D=+q) A, E L2(W). Let (0) C. Then by uniqueness,

(xo) C exp (i o=(A q(x))dx)
Since D /q- A is an elliptic operator, it follows that e C (W) IS]. In particular,

e(o) C xp

It follows that

27r 1 j0
L

--k+- q(x)dx withkZ.

Conversely, suppose A 2rk/L + 1/L f: q(x)dx. Let p" R --, W be clenh
preserving covering map. Define C (R) by

(y0) exp i (A q o p(y))dy

Then it is ey to veri that satisfies

$(Y0) (Y0 + L),

It follows that there exists C(W), with o p , such that

(D= +q) A. D

Note that Lemma 1 now follows.
Now let the usual arclength parametrization of Sz provide the local coordinate 8.
THEOREM 1. Let A (d + 2vfdcosO)De + 2esin8 + 2e cos0, with d2 > 4a and

e, e’ E . Then a(A) {x/d2 4a k + e’(v/d2 4a d)/v/-d; k E Z}.
Proof. Let f S --, W be a diffeomorphism such that with respect to the

coordinates and x on Sz and W, respectively,

1
f’(O)

d + 2rcosO"
We use f to push A forward onto W. Let u C(W). Then

((f,A)u)(x) (A(u o f))(f-(x))
(D= + q)u(x),

where q(f(x)) 2esin0 + 2e’ cos0.
Since f,A is isospectral to A, we can apply Lemma 2.
It follows from [7, eq. 3.645] that

2 1
dO

2r
(2.1)

d + 2Vcos v/d2 4a"
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Noting that L f: f(O)dO, it follows from (2.1) that

The theorem now follows.

3. Differential operators on Sx and Jaeobi matrices. Let ej be the column
vector defined by

The set of square summable bilateral sequences, denoted g2(Z), is given by

u ujej

The inner product on e2(Z) of vectors u ’=-o ujej and v ’=_ vjej is given
by

PROPOSITION 1. Let M (Mm,n) be a bilaterally infinite Jacobi matrix acting
on g2(Z) with Mn,n 5n, Mn,n-1 Mn-l,n V/cn2 +n + % and 2 > 4c > O.
Then M has discrete spectrum.

Proof. We prove this result by comparing M to a differential operator acting on
L2(S1). Let

B ( + 2vfd cos O)Do + v/-de’.

Then B is a symmetric differential operator on L2($1), and, since i + 2x/-cos0 > 0,
B is also elliptic. Denote its selfadjoint extension again by B. By the basic theory
of pseudodifferential operators on compact manifolds, B has a discrete spectrum and
(S + i)-1 is a compact operator [8].

L2(S1) is identified with 2(Z) by the unitary transformation ej - ej. Via this
identification, B induces the operator B on 2(Z), and

(M- B’)ej (V/c(j + 1)2 + f(j + 1)+ 7- x/’(j + 1))
"ej+l f- (jolj2 -" j- /"j) ej--I

It follows that M- B is a bounded operator on 2(Z).
Since (B +i)-1 is a compact operator on g2(Z), it follows that (M-S)(S

is also compact. Thus M differs from B by a relatively compact perturbation, and
it follows that M and B have the same essential spectrum [9].
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Define a function on Z by

{ 1-I=(J + e)/(v(j ) + + ’)
7rn 1

1-Ij=l (-v/’dJ + e + e’)/(x/’d(1 j) e + e’)

with a, e, e’ E C.
LEMMA 3.1. There exist constants K1, K2 > 0 such that

gllnl (1-2e/v/)3/4 <_ [71"HI _< K2lnl (1-2e/v/-d)5/4

ifn >0,
if n 0,
ifn <0,

/]’n O.

Proof. Suppose that n. > 0. Choose j0 E N such that for j _> j0, the following
conditions are satisfied:

(i) v/-d(j-1)+e+e’ > 0;
(ii) I(x/-d- 2e)/(/-d(j 1) + e + e’)l < 1;

oo t 5(iii) < ’4=0(-1) /(/ + 1)((v/-d- 2e)/(v/’d(j 1) + e + e’)) < .
Then, using the Taylor series of ln(1 + x) for Ixl < 1, we obtain

3 n 1c +( ). v(J 1) + + , -< "3=30

_< C2 + (v/-d- 2e) E. x/-d(j 1) + e + e’
3--30

for some C1, C2 > 0. Hence

C + 1/4(1 /v)1,, _< In I,1 _< c + (1 /)inn

for C,C > 0.
Thus we obtain

eC;n(1-2e/v/5)3/4 <-- I1 eCn(-2lv)5/a.

The proof for n < 0 is similar. D
We now prove (1.3).
THEOREM 2. Let M satisfy the assumptions of Proposition 1. Then

{ 1()(M) v/e a + 1 + (v/ a e); j e Z

Proof. Consider the differential operator A on S given by

A (5 + 2v/-d cos O)Do + 2el sin 0 + 2e cos 0,

with e, e’ C chosen so that

We will show that A acting on L2(S1) has the same spectrum as M acting on
2(Z). The theorem will then follow from Theorem 1. Note that by Theorem 1 and
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Proposition 1 the operators A and M both have discrete spectrum; so it suffices to
show that the eigenvalues coincide.

Under the identification L2(S1) g2(Z), A induces an operator A’ on/2(Z) with

A’ej (x/dj + e + e’)ej+l + je + (vfdj e + e’)e_.

Consider the operator T" e2(Z) - e2(Z) given by Tej 1/v/-e. Then

T-A’Tej v(j + 1)2 / (2e’vC- c)(j / 1) / (e’)2 e / vfe v/-de’e+

+e + V/j + (2eCd-) + (e) + /-

Thus M T-A’T. It remains to show that the eigenvalues of A and T-A’T
coincide.

Suppose E a(A). Thus there exists u(O) ]=-oo uei such that

u E L2($1),
(A- X)u 0.

Since A- is an elliptic differential operator, it follows that u C(S). Hence

(3.1) lim lug[ ]j[’ 0 Vpe N.

Let u’ =_ujej. It follows from Lemma 3 and (3.1) that

T-u e(Z).

Thus T-lu is an eigenvector of T-A’T with eigenvalue A.
Conversely, suppose A a(T-A’T). Thus there exists u’ ujej satisfying

T-A’TC Au’ with C /2(Z). Consider the distribution on S1 defined by

It is easily verified that (A- A)u 0 in the weak sense. Since A- A is elliptic, it
follows that (A- A)u 0 in the strong sense and u C(S). Thus A E a(A).

4. Representations of su(1,1). Consider the following differential operators
on SI:

cos ODo + aei + be-i,
sin ODo alei + bie-i,

=Do+a+b,

with a, b C. The following is easily verified.
LEMMA 4.1. [T, T2] -iT3, [T2, T3] its, and IT3, T] iT2.
Thus for each a, b C, the operators Tx, T2, and T3 form a representation on

su(1, 1) on C(S). We will show that for various values of a and b these operators
are (up to conjugacy) the principle series and the complementary series.



830 JULIAN EDWARD

Principle Series. Let a 1/2 -ai and b hi, with a E , and consider T1, T2, T3
acting on L2($1). As in the previous section, identify L2(S1) with 2(Z) via the
mapping eij --. ej, and let T,T and T be the transformed operators.

Thus

Tej 1"
3.1 - 1/2 --(:ri)ej+l .(1.33._ Oi)ej-1,

Tj 1. (1. )_--$(37 + 1/2 --ai)ej+l + 33 -[- 1,

T ( + 1/2).
Let rn be the following complex valued function on Z:

I]n=l (22 -hi) / (22 + hi) if n > 0,
rn 1 if n 0,

I]j=nl(1/2-1/2+ai)/(1/2-1/2-ai) if n<0.

Let/g" 2(Z) --. 2(Z) be the unitary transformation defined by b/e v/e. Then
it is easily verified that

1 if2 1 2(UT2U-1)ej (j + 1)2 + ej+l j2 + ej--1,

This is precisely the tion of the principal series representation.
Complementa sees. Let a (t-s)/2 and b (t+s)/2, with -l+t < s < -t[.

Define a nction rn on Z by

{ =(j + t + )/(j 1 + t- ) if n > 0,
1 if n 0,
=(-j+t-)/(1-j+t+) if n<0.

By Lemma g, eigher or g will be an unbounded function of n. hus ghe gechnique
used o obgain ghe principle series is no applicable in his ce.

InseM, MapPing ghe mehods used in [10], we consider he weighted space
2(7, 71"j), with

t2 (Z, 71"j) ujej uj E C and }Z ]Uj]2"ffJ < O0

The inner product of v -=-o vjej and u )-j=-o u.ie is given by (u, v)
O0E=_,,.
Under the mapping e eij0, e2(, j) is identified wih some Hilber space H,

which, by Lemma a, is he proper subspace of some Sobolev space.
Consider he operaors T, T, and Ta acing on H. These induce operaors T,

T, and T ting on e2(Z, j), given by

( + tl.
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Let j ej/vf. Then {lJ e Z} provides an orthonormal basis of 2(7Z, 7r). It is
easily verified that

(4.1) (Ti+x, ), (e+x, Ti), 1/2 v/(j + t- )(j + + t + ),
(T+n,)=0 for n : -1,1.

Let H" 2(Z, 7rn) --* 2(Z) be the unitary transformation given by L/dj ej. Then it
follows from (4.1) that

blTLt-ej 1/2v/(j + t- s)(j + 1 + t + 8)ej+l -- 1/2v/(j 1 + t- s)(j + t + s)ej_x.

Similarly,

lgTU-Xej i v/(j + t- s)(j + 1 + t + s)ej+ ii v/(j 1 + t- s)(j + t + s)ej_x,

and

bITbl-Xe (j + t)e.

Thus the operators bITbl-I, HTH-I, and UTbl- give the action of the comple-
mentary series representation of su(1, 1) on t(Z).
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CONVEXITY OF SOLUTIONS TO SOME
ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS*

ANTONIO GRECOi AND GIOVANNI PORRUi

Abstract. This paper is concerned with positive solutions u(x) to some special elliptic partial
differential equations in a bounded convex domain C RN. For a decreasing function g(t) the
transformation v g(u) is performed and, under appropriate restrictions on 9(t), it is proved that
v(x) is convex in . Consequently, the level sets of u(z) are convex.

Key words, elliptic equations, maximum principles, convexity

AMS subject classifications. 35B50, 35J99

1. Introduction. In [1] Brascamp and Lieb show that the first (positive) eigen-
function of the Laplacian in a strictly convex domain f C RN is log-concave. Their
method makes use of the fact that the linear parabolic operator /t- A, under ho-
mogeneous Dirichlet boundary conditions, preserves log-concavity of the initial data.
Extending this method, Lions in [12] proves the log-concavity for the solution u > 0
of the problem

Au=-h(u)u infl, u=0 on Off,

where h h(t) is a positive real function satisfying

h’(t) <_ O, h" (t)t + h’ (t) <_ O.

In [9], Korevaar gives a new proof of the above result by considering the concavity
function

(1.1) C(v; x, y) v(z) [v(x) + v(y)]
z

(x + y)
2 2

where x, y E f. Of course, v(x) is convex in f if and only if C(v; x, y) <_ 0 for all
(x, y) E f f. Consider the following elliptic equation:

aJ (Dv)vj b(x, v, Dv) in f,

where vi Ov/Ox, Dv is the gradient of v and the summation convention (here and in
the sequel) over repeated indices is in effect. In [9] Korevaar shows that if v(x) satisfies
(1.2), where b(x, v, p) is increasing with respect to v and jointly concave with respect
to (x, v), then the concavity function (1.1) cannot attain any positive maximum in

Extensions of Korevaar’s method have been found independently by Caffarelli
and Friedman [2], Caffarelli and Spruck [3], Kawohl [5], Kennington [6]. In [5] and [6]
the maximum principle for the function (1.1) is proved under the conditions: b >_ 0,
b strictly increasing with respect to v and b(x, v, p) harmonic concave with respect to
(x, v). (Note that if b is positive and concave then it is harmonic concave; the reverse

*Received by the editors January 17, 1992; accepted for publication (in revised form) October
19, 1992.

Dipartimento di Matematica, Via Ospedale 72, 09124 Cagliari, Italy.
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is not true in general.) The method of proof is by contradiction. By assuming that
the function (1.1) has a positive maximum in f f and by a suitable use of (1.2) it
is possible to reach a contradiction.

In this paper we present an alternative proof of the last result by finding an elliptic
(degenerate) inequality (in R2N) satisfied by C(v; x, y). Our proof does not require
the assumption b >_ 0 and applies when Ob/Ov >_ O. We also propose a new proof of a
boundary point lemma.

Other techniques have been developed for studying convexity properties of solu-
tions in [10] for ring domains and in [7] for parabolic equations.

2. A maximum principle. Let us state an unusual form of the classical max-
imum principle for elliptic degenerate inequalities.

LEMMA 2.1. Let G be a domain in Rm and be a C2(G) solution of the differ-
ential inequality

(2.1) bhkChk + bhCh >_ c,

where c >_ 0 and the m m matrix [bhk] is positive semidefinite in G. If.for any compact
set K C G there exists a real number M and v (1

_ _
m) indices hi,..., h such

that it results (at each point in K) in

(2.2) Mbhhi q- bh

_
O, i 1,...,

and

i--1

then cannot have any local positive maximum in G.
Proof. Suppose there are a point x0 and a compact set K with x0 E K C G so

that (I)(x0) > 0 and (I)(x0) > (I)(x) for all x OK. We can choose e > 0 small enough
so that the function

(x) (x) q- (exp(Mxhi) +... q-exp(Mxhv))

has a local positive maximum value at some point X ( K. At X it must be

(2.4) bhkChk + bhCh <_ O.

On the other hand, by using (2.1), (2.2), and (2.3) we find (at each point in K)"

bhkChk -b bhCh >_ C +M(Mbh’h -b bh) exp(Mxh) > c.
i--1

The last inequality contradicts (2.4) at the point xl. The lemma is proved. For 1
this lemma is proved in [4, pp. 31-32].

We also need the following result about matrices.
LEMMA 2.2. Let A [aiJ] be a N x N positive semidefinite matrix. Then the

2N x 2N new matrix

(a2AaTA)B aTA T2A
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is positive semidefinite for any pair of real numbers a, T.

Proof. If is a vector in R2N, let us denote by x the first N coordinates of and
by y the last N coordinates. We have (B, ) (Az, z), where z ax + Ty. The
lemma follows.

DEFINITION 2.1. A function f(x) is said to be harmonic concave in a convex
domain G C Rm if for any pair Xl,X2 E G for which f(Xl) / f(x2) > 0 it results

[f(xl) + f(x2)]f((xl + x2)/2)_> 2f(xl)f(x2).

Since no condition is imposed when f(Xl) 4- f(x2) < 0 any nonpositive function
is (according to our definition) harmonic concave. Of course, if a function is concave,
then it is harmonic concave. It is easy to prove that if f(x) is harmonic concave, then
so is f(x) 4- c for any negative constant c. (For a positive constant c the previous
result is not true in general.) Definition 2.1 is natural for proving the following.

THEOREM 2.1. Let f be a convex domain in RN and let v C2(t) be a solution

of the strictly elliptic equation

aiJ (Dv)vij b(x, v, Dv),

where aiJ(Dv) are smooth and b(x, v, Dv) is smooth, nondecreasing with respect to v
and harmonic concave with respect to (x, v). Then the concavity function defined in
(1.1) cannot have any local positive maximum in t.

Proof. We may suppose aiJ aJi. If v is a solution of (2.5) we set

(, v) 2(z) (x) (),

where (here and in the sequel),

Z

Of course, we have (x, y) 2C(v; x, y), with C(v; x, y) introduced in (1.1). Let
(x, y) t gt be a point at which

b(x, v(x), Dv(z)) + b(y, v(y), Dv(z)) > O.

Since b is harmonic concave with respect to (x, v) we have

+ (v) )[b(x, v(),) + b(v, (v), p)] *,
2

p

-2(, v(),)(v, (v),) _> 0

for all p RN. At each point in fl fl where (2.7) holds we define the second-order
operator

L =_b2 (v, v(v), Ov(z))a’
+ 2b(y, v(y), Dv(z))b(x, v(x), Dv(z))aiJ(Dv(z)),v
+ b2 (x, v(x), Dv(z))a (Dv(z)

By Lemma 2.2, the operator n is elliptic (degenerate). By using (2.6) we find

L =b2(y, v(y), Dv(z))[2-1aiJ (Dv(z))Vz,z aij (Dv(z))vx,x]
+ 2b(y, v(y), Dv(z))b(x, v(x), Dv(z))2-aO (Dv(z))vz,z
+ b2(x, v(x), Dv(z))[2-1aiJ (Ov(z))vz,z a’J (Ov(z))vv,v ].
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Since .(,) .() .(), .(, ) v. () .(),
we have

a:i(Dv(z))v, a’:i(Dv(x))v, /av,..
Here d below we kequently apply the me value theorem, so that in this instce
ap. is eluated at an intermediate point between Dv(z) and Dv(x). Similly we find

(D,(z)),, (D,(u)),, +
Aer use of these substitutions and of (2.5) at the points z, x, d y we find

L+b2(y, v(y) Dv(z)).,.,... + (,,(), D,()),,.,.
=2-[b(y, v(y), Dv(z)) + b(x, v(x), Dv(z))]2b(z, v(z), Dv(z))

b2(y, v(y), Dv(z))b(x, v(x), Dv(x)) b2(x, v(x), Dv(z))b(y, v(y), Dr(y)).

We also have

() + () (

b(, (),() (,(),() ,.e.,
(, (),()

Hence we find

+(,(),())"e. + (,(),())".
=-[(, (),()) + (,(,()l]e

+ e- [(, (),

:[(, (),

where p Dv(z) and

(2.9) Q Up.vxx apvyy

Finally, by using hypothesis (2.8), we find

(2.10) L + b2(y, v(y), nv(z))Q. + b2(x, v(x), nv(z))Pu. c,

where
a-[(u, v(u),n,()) + (, (), n(z))]..

Since the entries in the first diagonal of the matr relative to our operator L are

b2(y, v(y), nv(z))aii(nv(z)) and b2(x, v(x), nv(z))aii(nv(z)),

the sumptions of Lemma 2.1 e fulfilled. In ft, we may choose m
1, h2=N+l, and

M=l+m sups, sup
]’
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where the sup is taken over a compact set in f /N+I. Now we consider the points
(x, y) E at which

b(x, v(x), Dv(z)) / b(y, v(y), Dv(z)) <_ O.

At these points we define

L =_ aiJ(Dv(z))x,xj 2aiJ(Dv(z))x,uj + ai(Dv(z)),u.

By Lemma 2.2, the operator L is elliptic (degenerate). By using (2.6) we find

L --2-1a (Dv(z))vz,z a (Dv(z))v,,,
aiJ(Dv(z))vz, + 2-1aiJ(Dv(z))vz,zj aiJ(Dv(z))vu,u.

By using the mean value theorem and equation (2.5) the last equality gives

L b(x, v(x), Dv(x)) ap.v,x. b(y, v(y), Dv(y)) ap. vu,u
b(x, v(x), Dv(z)) Q8. b(y, v(y), Dv(z))

where Qs and P are given by (2.9). The latter equation and assumption (2.11) imply

L+Q. + Pv. >_ O.

Hence the function (x, y) satisfies either (2.10) or (2.12) in f . The theorem
follows by Lemma 2.1.

Remark 2.1. Theorem 2.1 is proved (by using different methods) in [5] and in [6]
in case of b >_ O, Ob/Ov > 0, and in [9] in case b is concave.

3. Convexity results. If v(x) is not convex in 12, then we have the following.
(i) C(v; x, y) has a local positive maximum in f; or

(ii) C(v; x, y) becomes positive as (x, y) approaches
The (i) possibility has been discussed in Theorem 2.1. Now we examine the (ii)

possibility.
LEMMA 3.1. Let C RN be a bounded domain, strictly convex and with a smooth

boundary 0. Let u C(), u > 0 in , u 0 on O and un < 0 on 0, where n
is the exterior normal to 0. Let g R+ ---, R be a smooth function satisfying

(3.1) lim g(u)= a (e R)
u-*0

(3.2)
u--*0

If C(g(u); x, y) has not positive maxima in f, then C(g(u); x, y) cannot become
positive as (x, y) approaches 0( ).

Proof. We refer to [5, p. 115].
LEMMA 3.2. Let C Rg be a bounded domain, strictly convex and with a smooth

boundary 0. Let u C2(), u > 0 in , u 0 on 0, and un < 0 on 0, where n
is the exterior normal to 0. Let g R+ ----, R be a smooth .function satisfying

(3.3) lim g(u)- +oo,
u--0
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(3.4) g’ (u)
u--+O

(3.5) a,,() > o, lim g’ (u)/g"(u) O.
u---O

Then C(g(u); x, y) cannot become positive as (x, y) approaches O(f f).
Proof. Otherwise there exist sequences {xj}, {yj} in f with limits x0, y0 such

that (xo, y0) E c9(f f), and, for some positive e,

(3.6) C(g(u); xj, Y.i) >- e, j 1, 2,

By definition of C and (3.6) we have

(a.7) a((z)) -[(()) + a(u(u))] > , z ( +y)

If x0 y0, then (x0 / y0)/2 E f. As j approaches infinity, g(u(z:i)) approaches
g(u((xo -+-y0)/2)) (a finite number), whereas xj or yj (or both) approaches 0, where
u vanishes. Hence, by using (3.3) we reach a contradiction. Suppose x0 y0. Let us
rewrite (3.7) as

[a((z)) a(u())] + [a((z)) (u(u))] > e.

By using the mean value theorem we find

where lies between xj and zj, r/j lies between zj and yy, and y is the unit vector

’ (Y.i xj)/lYy xjl (of course x yj by (3.7)). By using once more the mean
value theorem we obtain

where Cj lies between and j. Obviously Cj approaches x0 as j approaches infin-
ity. We may take subsequences {xjk }, {yjk } so that the corresponding sequence of
unit vectors {j } converges to a unit vector . For short we suppose the original
sequence to have this property. Let be tangential to 0 at x0. Since u vanishes
and un < 0 on 0[2 (by assumption), the Hessian matrix D2u is strictly negative in all
tangential directions. Consequently, since g"(u) > 0 and g(u) < 0 as j ---, oc we get
a contradiction in (3.8). Finally, let be nontangential. Then we have u2(xo) > O.
Assumptions (3.5) lead again to a contradiction (as j c) in (3.8). The lemma is
proved.

Lemma 3.2 is stated in [5] without assumptions (3.5). The proof is similar to
ours, but only the case x0 y0 is taken into account. Lemma 3.1 and Lemma 3.2
are also proved in [9] by using assumptions (3.4), (3.5), and the additional restriction
lim--.0 g(u)/g’ (u) O.

Acknowledgment. We are grateful to the referee for some suggestions that
allowed us to improve our manuscript.
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ONE-PHASE RIEMANN PROBLEM AND WAVE INTERACTIONS
IN SYSTEMS OF CONSERVATION LAWS OF MIXED TYPE*
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Abstract. The Pdemann problem for any Riemann data lying outside of the elliptic region of a
system of conservation laws of mixed type is established. The approach is a vanishing viscosity one.
The solutions constructed are also admissible by the traveling wave criterion. The structure of the
solutions is analyzed. Interactions among phase boundaries and shocks are studied.
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1. Introduction. The field equations which express the principles of balance for
one-dimensional continuous media are typically the nonlinear systems of conservation
laws

(1.1) Us + F(U)x O.

If the Jacobian matrix

OF
(’)

has n distinct real eigenvalues, the system (1.1) is called strictly hyperbolic. If (1.2)
has real eigenvalues and some of them are equal to each other at some point U0 E n,
the system (1.1) is said to be nonstrictly hyperbolic type and the point U0 is called an
umbilic point of (1.1). Real problems are often not strictly hyperbolic. For these kinds
of systems, transitional shocks must be introduced into the system and the geometry
of the state space is singular (cf. [11]-[15], [24], [25], [29]). Antman [1] discussed
some interesting phenomena in the governing system of equations of a special class of
motion, part of a very general family of nonlinear viscoelastic materials of hyperbolic-
parabolic type.

Some models, for example, Stone’s model (cf. [11]), the model for an elastic
bar or van der Waals fluids undergoing phase transitions etc., have elliptic regions in
which the eigenvalues of (1.2) are complex. The presence of elliptic regions adds more
complexity to the systems, for instance, the local analysis may not apply in these
kinds of systems and the problems must be considered in the large.

To study the mathematical phenomena involved in nonstrictly and hyperbolic-
elliptic mixed type systems of conservation laws, we consider the p-system

(1.3a) us + p(w)x 0,

(1.3b) w -ux 0, x E R, t > 0,

*Received by the editors March 26, 1992; accepted for publication (in revised form) September
10, 1992.

Center for Dynamical Systems and Nonlinear Studies, School of Mathematics, Georgia Institute
of Technology, Atlanta, Georgia 30332.
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which describes the one-dimensional longitudinal isothermal motion in elastic bars or
fluids, where u is the velocity, w the specific volume, and p the pressure. For our
purposes we set the function p to satisfy p E CI(R) and

p’(w) < 0 for w [a, 1,
(1.3c) p’(w) > 0 for w e (a, )

so as to make the system (1.3a), (1.3b) a hyperbolic-elliptic mixed type system. We
call the region w < a the a-phase region and w > f the /-phase region. A shock with
two ends in different phase regions is called a phase boundary. See Fig. 1.

W,o O , Wl W

Fro. 1

In this paper, we establish the existence of the Riemann problem of (1.3) with
arbitrary initial data

(u_, w_) for x < O,
(1.4a) (u(x, 0), w(x, 0))

(u+, w+) for x > O,

(1.4b) w+ (a,/).

We investigate the structure of the solutions we constructed. We also study the inter-
actions among phase boundaries and "ordinary" shocks. We note that our technique
can be generalized to the case where the system (1.1a), (1.1b) has finitely many elliptic
regions as well as umbilic points.

Just as for hyperbolic systems of conservation laws, there is the issue of admissi-
bility of solutions for the systems of hyperbolic-elliptic type like (1.3). Slemrod [24]
proposed that an admissible solution of the Cauchy problem of (1.3) should be a
e - O/ limit of the solution (u, w) of the Cauchy problem

(1.5a) ut + p(w)x eux e2Awz 2e2Dwxw,

(1.5b) wt u O,
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with the same initial value. We notice that Truskinovskii [30] independently proposed
this criterion. A localized version of this criterion is the viscosity-capillarity traveling
wave criterion, or the traveling wave criterion for short, which says that a shock of
speed s connecting (Ul, Wl) and (u2, w2), satisfying Rankine-Hugoniot conditions, is
admissible if (1.5) has a traveling wave solution of speed s connecting Wl and w2.
When A 1/4 and D 0, (1.5) reduces to the common form of viscosity

(1.6a) ut + p(w)
(1.6b) wt us ewes,
with the same initial value. The corresponding traveling wave equation states that a
shock solution to (1.3) is admissible if the problem

(1.7a)
d2b dzb() s2(zb() wl) (p(b()) p(wl))

(1.7b) z(-cx) w, (+) w2, ’() 0

h a solution. Some works related to the traveling wave problem (1.7) can be found
in [7], [8], [10], [13], [20]-[26], [30], [31] and references cited therein.

Our approach of establishing the existence of solutions of the Riemann problem
(1.3) with the initial value (1.4) is to construct the solutions a e 0+ limit of
solutions of

+
(1.8b) wt u etw, x E 1t, t > 0,
and (1.4). We shall call solutions of (1.3), (1.4) constructed in this way the solutions
satisfying similarity viscosity criterion. This approach was pursued by many authors
[2]-[6], [S]-[10], [16], [27], [2S], [32]. We can see that (u(x/t), w(x/t)) is a solution of
(1.8) and (1.4) if and only if it is a solution of

+
(1.9b) ew" -w’ u’,

(1.9c) (u(-cx), w(-cx)) (u_, w_), (u(+cx), w(+cx3)) (u+, w+),
where x/t and ’" is didO.

For this case, where w_ and w+ are separated by the interval ((, ), Slemrod [27]
proved the existence of (1.9). Fan [6] showed that there is a sequence {e,}, en -- 0+as n --. cx, such that (u,.(), w,.()), provided by Slemrod in [27], converges to a
weak solution of the Riemann problem (1.3) as n --. oc. The condition needed in [6]
is, besides (1.3c),
(1.10) Ip(w)l- as Iwl-*
The solution constructed in [27] and [6] is also admissible by the traveling wave crite-
rion (1.7) (cf. IS]).

The existence of the Riemann problem (1.3) in the case w+ < a, u_ < u+ (or
w+ > fl, u_ > u+) remains, in general, unproved. For convenience, we shall call
the Riemann problems with initial data lying in the same phase region the one-phase
Riemann problem. An understanding of the Riemann problem in this case is necessary
for the study of the interactions between phase boundaries.

In this paper, we shall prove, as one of our results, the existence of the Riemann
for any initial data outside of the elliptic region. We state this result more precisely
in the following theorem.
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THEOREM 1.1. Suppose Ip(w)l - as Iwl - oc. Then .for any Riemann
initial data lying outside of the elliptic region, there is a solution of the Riemann
problem (1.3), (1.4) satisfying the similarity viscosity criterion and possessing at most
two phase boundaries. Furthermore, this solution is also admissible according to the
traveling wave criterion (1.7). As a consequence, solutions of (1.3), (1.4), which are
admissible by the traveling wave criterion, always exist.

After we establish the existence of the Riemann problem, we proceed to study
the structure of these solutions. Then we apply our results to study the outcome
of the interactions between phase boundaries and between a phase boundary and an
"ordinary" shock.

This paper is divided into six sections. In 2 we utilize the Leray-Shauder type
fixed point theory to prove that (1.9) has a solution if some a priori estimates are
given. In 3 we prove the estimates needed in 2. We also prove that the total
variations of the solutions, (u(), w()), of (1.9) constructed in 2 are independent of
e > 0. Then, by the well-known Helly theorem, we can extract a sequence {en} such
that en --* O+ as n -- x) and (un (), Wen ()) converges almost everywhere to a weak
solution of (1.3), and hence the first part of Theorem 1.1 isproved. We state these
results more precisely in 4. In 5 we prove the second part of Theorem 1.1. We also
study the structure of solutions of the Riemann problem. In 6 we continue to study
the structure of the solutions under the assumption that p(w) is convex for w <_ (
and concave for w _> , which makes the description of the structure of the solutions
easier. After collecting information about the structures of solutions, we investigate
the interactions among phase boundaries and "ordinary" shocks.

2. Existence of the connecting orbit (ue (), we ()). In this section, we
shall prove that the boundary value problem (1.9) has a solution, provided some a
priori estimates which we shall establish in the next section are given.

We consider, instead of (1.9), the following altered system:

(2.14)
(2,1b)
(2.1c)

u" -u’ + #p(w)’,
ew" -w #u,
(u(+/-L), w(+/-L))= (u+, w+),

whereL>l, 0_<#_<1.
First of all, we recall some preliminary results from [2] and [27]. The following

lemma is from [2, Thm. 4.1] or [27, Lemma 2.1].
LEMMA 2.1. Let (u(), w()) be the solution of (1.3). Then one of the following

holds on any subinterval (a, b) for which p’(w()) < 0:
(1) Both u() and we() are monotone on (a, b);
(2) One of the u() and w() is a strictly increasing (decreasing) function with no

critical point on (a, b) while the other has at most one critical point that is necessarily
a local maximum (minimum) point.

Now, we rewrite Lemma 2.2 of [27], which describes the shape of a solution of
(1.9) in the elliptic region {(u.w) e R2 w e (a, )}.

LEMMA 2.2. Let (u(), w()) be a solution of (2.1) with it > O. Then on any
interval (/1,/2) C (-L,L) .for which p’(w()) > 0 the graph of u() versus w() is
convex at points where w’() > 0 and concave at points where w’() < O.

By considering (2.1), the existence of the connecting orbit problem (1.9) can be
proved, as shown in the following theorem.
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THEOREM 2.3. Suppose u_ < u+ and w+ < . Then there is a solution of (1.9)
satisfying

(U(I), W(I)) #(lt(2), W(2)) fOr ay 1,2 E (--(x),--oG), 1 # 2,

W(l) _> min(w_, w+),

and that

(2.3) there are at most two disjoint open intervals(a, b) such that

(2.3a) w() e (ff, () for e (a, b), and

(2.3b) either w(a) @, w(b) or w(a) (, w(b) @,

provided that the possible solution of (2.1) satisfying (2.2) and (2.3) is bounded in
CI([-L,+L]),

I1(, zo)llCl([-L.L];2) < M,

for some M > 0 independent of # [0, 1] and L > 1.

Proof. We rewrite (2.1) as

(2.4)

where

w()
A straightforward calculation shows

/(u()) (P()-())"

y() y(-n) + z(y) exp dT

-L

A- It6 / f(y(T))dT
-L

#2/ f Tf(y(T) exp ( T2 2 )6 26
dTd,

where

(2.6)

1 [z(x) fL_L exp(-2/26)d
y(+L) y(-L) #6 f(X(T))dT

-L

2t- Tf(X(T)) exp
26 drd

=z() + ,z(x).

Choose /e (@, a). We are interested in those functions (u(), w()) e CI([-L, +L]; R2)
satisfying

((6), (6)) #((:), ())
and W(I)

for any t, 2 E [-L, +L], x # 2,
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and

(2.8)
there are at most two disjoint open intervals (a, b) such that

w() e (t, a) for e (a, b), and

either w(a) y, w(b) a or W(a) a, w(b) y.

Now, we consider the open subset in C1 (I-L, +L]; ]i2)"

(2.9)
:={(u,w) e CI([-L,L];R2) ]](U,W)]]C,([-L.L];R2) < M + 1,

and (2.7) nd (2.8)are satisfied}.

We define an integral operator

T" x [0,1] --. CI([-L,L];R2)

(2.10)

T(x, #)() =y(-n) + z(x) exp de + -I / /.rf(X(T))exp(T2--2

e2 2e ) dvd,

where z(x) is given by (2.8). It is clear that a fixed point of T(x, #) is a solution of
(2.1).

It is a matter of routine analysis to show that T maps flx [0, 1] continuously into

CI([-L,L];R2). Furthermore, we can verify, by taking d/d twice on (2.10), that

e(T(x.#)())" #f(x())’- (T(x.#)())’.

This implies that T maps fl x [0, 1] into a bounded, with bound independent of #,
subset of C2([-L,L];]2). Thus T is a compact operator from CI([-L.L];R2) x [0, 1]
into Cl([-L, L]; R2).

We recall the following fixed point theorem (see Mawhin [19, Thm. IV.l]).
PROPOSITION 2.4. Let X be a real normed vector space and a bounded open

subset of X. Let T" [0, 1] --. X be a compact operator. If
(i) T(x,#) x ]or x e OQ, # e [0,1], and
(ii) the Leray-Shauder degree Di(T(x, O)- x, , )# O,

then T(x, 1) x has at least one solution in .
To solve our problem, we take X CI([-L, +L];R2). We can see that (ii) is

satisfied. Indeed,

y(n) y(-n)
exp de + y(-n) x =: x0 x,(2.11) T(x, O) x

fL_L exp (-2/2e)de
-L

where x0 E n, and hence the degree DI(T(x, O) x, n, 1.
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Now, we preceed to verify (ii) of Proposition 2.4. We assume, for contradiction,
that there is a fixed point of T(x, #),

(2.12) x (u, w)() e Off.

Then one of the following cases must hold.
Case A. II(u(), W())IlCl([_L,L];R.) M + 1.
This case is excluded by the inequality (2.4).
Case B. The condition (2.7) is violated.
In this case, there are 1,2 ( I-L, +L], 1 2, such that (u(l), W(l))

(u(2), w(2)) and w() _> r/.
The curve (u(),w()) in (u,w)-plane near and 2 cannot go

across each other, as shown in Fig. 2. Otherwise, the curve of (u(), w()) plus a

C([-L, +L];]R2) perturbation still intersects itself and hence is not in . Hence
x (u(), w()) is not in 0f, which yields a contradiction.

FIG. 2

From Lemma 2.1, we know that if (u(), w()) stays inside the region w <_ a, the
curve (u(), w()) cannot intersect itself. Thus, w(3) > a for some 3 e I-L, +L].

We can further describe the curve (u(),w()) in the (u,w)-plane as follows.
There is an interval [-n,o] such that w() _< a and W(01) , and by Lemma 2.1,
w’(01) > 0. As increases from 01, (U(), W()) moves into the region a < w < /3.
As long as w’() > 0 and w() e (a,/), the curve (u(), w()) in the (u, w)-plane

1We can make the above description rigorous by specifying a normal vector field n() along
the curve (u(), w()). Let y be the point (u(), w() + n()). Suppose the line connecting y and
(u(), w()), for near 1, intersects the portion of the curve (u(), w()) in (u, w)-plane near 2
at (, ). Then we say the two portions of the curve (u(), w()), near 1 and 2, respectively,
do not go across each other if there is an interval (1 01, 1 + {72) such that

a() := ((, e) ((), ()))() > 0 (< 0)

for E (1 --{71, 1 -t-{?2) and

The rest of the description of the curve can also be made rigorous in the same way.
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is convex with respect to w. Let (1,2) be the largest interval such that w’() > 0
and w() e (a,/). Then either w(O2) or w(O2) e (a,/) and w’(O2) 0 hold.
We assume, without loss of generality, that w(O2) and w’(O2) > 0, since other
cases are simpler. In view of Lemma 2.1, this interval is followed by another interval
[t?2, 3] in which w() _> / and u’() > 0, while w() has one and only one critical
point which is a local maxima, and w(O3) -/. Then there is the maximum interval
[03,04) in which w() e [a,/], w’() < 0, and the curve (u(),w())in the (u,w)-
plane is concave with respect to w. We see that at the right end of the interval, either
w(04) a or w’(04) 0 must be true. Let us assume w(04) a and w’(04) < 0, since
the argument for this case covers the other cases and leads to the same conclusion.
Thus, as increases from 04, (u(), w()) moves into the region w < a.

From the shape of the curve (u(), w()) in the (u, w)-plane for e [-L, 04], it is
clear that

(2.13) 2 > 0a,

since otherwise, the curve will cross itself in the region w _> a.
Following [03,04] is the interval (04, 05) in which w() < a. We, of course, pick

the largest such interval, or more precisely,

5 := sup{ e [4, +L] w() < a for e (Oh, )}.

One of the following cases must occur.
Subcase B1. 05 L.
In this case, the derivative w’() < 0 if w() E [c, ] for

because if otherwise, w() would have at least two extreme points in (4, +L) which
is impossible by Lemma 2.1..Furthermore, the point 2 must satisfy 2 (04, L) and

(2.15) w(2) e (a, ] and w’(2) < 0.

Hence 1 I-L,) and

(2.16) w’() > 0 and w() > W(l) w(2) for e (,2).

Integrating (2.1b) over [,2] and using (U(I),W(I)) (U(2),W(2)), (2.15), and
(2.16), we obtain

[w() w(2)]d( e[w’(2) W’(I)] < 0,

which is a contradiction. Thus, this case cannot happen.
Subcase B2. 5 < +L.
For this case, w(05) c, and w(O5) _> 0, u() is decreasing over [Oa.O5]. w() has

one and only one critical point 1 which is necessarily a local minima, and

(2.17a) u’() < 0 for e (4, 5).

We claim that

(2.17b)
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for some i > 0. Otherwise, a is a local maxima of w(), and hence

w’(O5) 0 and w"(05) <_ O.

Thus, (2.1b) yields
> o.

This inequality and (2.17a) imply that u’(05) 0 and w’(05) 0. Then, by the
uniqueness of the initial value problem for (2.1), (u(), w()) (u(O5), w(O5)), which
violates the condition (2.1c). This contradiction proves (2.17b).

If

(2.18) W(l) < /,

then there are at least three disjoint subintervals (a, b), i 1, 2, 3 lying in I-L,
[0a, 1] and (1, 5], respectively, such that

(2.19)
.. i 3.. v

It is clear that because of (2.18), (u(), w()) plus some C perturbations still have
three disjoint subintervals (a, b), i 1, 2, 3 satisfying (2.19). This simply says that
(u(), w()) 0f, which contradicts (2.12), and hence

>

By Lemmas 2.1 and 2.2, the portion of the curve (u(), w()) for e [05, +L] is confined
in the domain w _> r/, and hence w(/L) = w+, which is again a contradiction. Thus,
Case B dose not occur.

Case C. The condition (2.3) fails to hold.
In fact, the arguments we used to handle the Subcase B2 can be applied to this

case and yield a contradiction. This shows that Case C cannot happen either.
Summarizing our analysis for the above three cases, we find that if (u(), w()) e

012, then x (u(), w()) cannot be a fixed point of T(x, #) for # e [0, 1]. Applying
Proposition 2.4, we see that T(x, 1) has a fixed point.

To prove the existence of solutions of (1.9), we need to pass to the limit L --, oo.
We follow Dafermos [2] and extend (u(), w()) as follows:

(u+, w+), > L,
(u(; L), w(; L)) (u_, w_), < -L.

By the hypothesis (2.4), we see that {(u(.; L), w(.; L))} is precompact in C((-oo, oc); JR2).
So, there is a sequence Ln - as n --. cx) such that

(u(; L.), w(p; L.)) --. (u(, oc), w(,

uniformly as n -, oc. By integrating (2.1a), (2.1b) with # 1 twice from 0, we can
prove that the limit (u(, cx)), w(, oc)) satisfies (1.9a), (1.9b). It remains to prove
that (u(-t-o, oo), w(+/-oo, oo)) (u+, w+/-). To this end, we manipulate (1.9a), (1.9b)
to obtain

d (exp(---)Y’())=l [f(y())’ ()]exp
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or

exp y’()=y’(0)+ Vf(y)y’()exp e
0

Applying (2.4) and Gronwell’s inequality on (2.15), we obtain

where R > 0 depends at most on M, t, and g > 0. Inequality (2.21) holds for y(; L)
also. Then

follows from (2.21) easily. It remains to prove that the solution (u(, cx3), w(, cx3))
constructed above satisfies (2.2) and (2.3). Indeed, the same reasoning for Cases S
and C implies that (u(, c), w(, cx)) satisfies (2.8) and (2.9) also. Since r/
is chosen arbitrarily, (2.2) and (2.3) hold for (u(, cx), w(,

COROLLARY 2.5. Let (u(), w()) be a solution of (2.1) or (1.9) satisfying (2.2),
(2.3).

(i) The subset of [-L, +L]

{e[-L,+L] w()_<a}

has at most two connected components. Furthermore, each component must have -L
or +L as one of its endpoints.

(ii) The set
{e[-L,+L] w()e(a,/3)}

consists of at most two connected components.
(iii) The set

{c[-L,+L] w()_>

if nonempty, is an interval.

Proof. This is proved in our discussion in the proof of Theorem 2.3, Case B.
The assumption (2.4) in above theorem can be replaced by a weaker one, as stated

in the following theorem.
THEOREM 2.6. The conclusion of Theorem 2.3 remains valid if (2.4a) is replaced

by
sup (lu(O / Iw()l) < M1,

--L<_<_L

where M1 is independent of # e [0, 1] and L > 1.

Proof. The proof is the same as that of Theorem 1.3 in [23].
Theorems 2.3 and 2.6 give the conditions under which (1.9) has a connecting orbit

for w+ < a and u_ < u+. Slemrod [27] proved the following theorem for the case
w+ < a and u_ < u+.
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THEOREM 2.7. Assume that w+ < and u_ < u+. Then, there is a solution of
(1.9) satisfying

<.,

if every possible solution of (2.1) satisfies

(2.23)

.for some constant C independent of # E [0, 1] and L > 1.

3. A priori estimates. In this section, we shall prove the a priori estimates
needed in Theorems 2.3 and 2.7 as well as some e-independent estimates.

THEOREM 3.1. Suppose w+ < ( and u_ < u+. Let (u(), w()) be a solution

of (2.1) with the properties (2.2) and (2.3). Then,

where C is, throughout this section, a constant independent of e > 0, # E [0, 1], and
1 <L< /oc.

Proof. When # 0, our assertion can be easily verified. Thus, we assume # > 0
in the rest of the proof. We first prove u() > C. Let be a local minimum point
of u(). Then either

(3.2) w() (a, ), w() < 0

or

(3.3) w() e (a,/), w’() > 0

hold.
Case A. (3.2) holds.
In this case, by Lemma 2.1, w() < . Otherwise, both u() and w() would

have critical points in the set ( [-L, +L] w() > }, which is an interval by
Corollary 2.5. Thus, w() < (. Hence

e{e[-L,+L] w()<_t}=[-L,011U[0a,+L],

where 01 _< 04. If 01 < 0a and , E [-L, 01], then w’() < 0 implies that w,() also
has a critical point in [-L, 01], which is prohibited by Lemma 2.1. Thus, [04, L].
Performing a calculation on (2.1), we obtain

e
\dw()] dw,() dw(-----

This implies that, as increases, du()/dw() is decreasing if Idu(5)/dw(5)l <_
V/-P’(W()) and is increasing if Idu,()/dw()l >_ V/-p’(w()). Thus the "initial"
condition

(3.5b) due()
dw() [== 0
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leads to that for E [4, +L],

< max (X/-p’(w)),w+>w>

and hence

_> u+ + (.

Case B. (3.3) holds.
By Corollary 2.5, I-L, L] can be divided as

[-L, L] [-L, 01] U (01,02) U [02, 03] U (03, Oa) U [04, +L],

where, of course 01 < 02 < 03 < 04, and

(3.9a) { e I-L, +L] w,() _< a} [-L, 01] U [04, L],

(3.9b) { e I-L, +L] w,() e (a,l)} (01,02)U (03,04),

(3.9c) {e[-L,+L] w,()_>}=[02,03].

It is clear that when (3.3) holds, , e (01,02) 0 (cf. Fig. 2).
If <_ 0, then the argument in the proof of Theorem 3.2 of [6] applies and yields

u() > C. Thus, we assume

(3.10) > 0

in the sequel of this proof.
Since is a local minimum point of u(), u() > 0 for E (, + 5) for some

5 > 0. Then we can define

(3.11) ?1 :----sup{ > u() > 0 for

Since w,() < a and w(,) > 0, there is a local maximum point r/2 of w,() with

2 > ,. We can further require that T]2 is the least of such points, i.e.,

(3.12) o}rt2 := sup{ > w() >

Then, by Lemmas 2.1 and 2.2, 1 (,, ?2), and hence (cf. Fig. 2)

(3.13) 1 > 2 > .
By integrating (2.1a)on (, ), where e (,, r/2), we obtain

0 < eu(C) -ffu()d + #[ p(w,()) -p(w,(,)) ].
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It follows from (3.10) and (3.11) that -u,() < 0 for E (,r/1). Thus, in view of
(3.3), we have

0 < eu() <_ #[p(we())- p(w())]
< ,[p(()) (.)].

Therefore,

(3.15) a < we(T/2) Wl.

Equation (3.13) also yields a useful inequality:

0 < eu() <_ #(pG3)- p(a))

for e [, /1].
Using (2.1), we can obtain

du2 () eu()
1 4- p’(w())

k. due()

Hence, if

and f [f, T/l], then

d2w, -# <_ 1
(3.18) du2, () <

2eu() 2(p(fl) p(a))"

Thus, as decreases from 2 to , dw()/du() will increase from zero, and eventu-
ally

(3.19) dw() 1

du() =n3 2maxwe[wo,,l](v/IP’(W)l)

for some 3 (T]2, e) Let

(3.20) r/4 "--sup{r/3 e (e, r/2) (3.19)is satisfied}.

Then,

dw() dw()
du() =, du() =
rue(n,) d2w, u(/2) ue(r/4)
Ju(n. du2" ()d(u())_> 2-)-p(a))

or

(3.21) 0 < ()- u(,) < p(Z) -(.)
maxIo,3 (x/Ip’(w) I)
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From (3.18), we also see that

dw.(,) > 1

du({)

for C (,)/a). Thus,

(3.22)

Similarly, we can prove that

0 te()/1) te()/2)
(3.23) < p()-p(o)

+2 max (,/lf(w)l’(w-wo).
max,e[,o,,,1 (x/’lp’ (w)

Then we obtain

(3.24) u(e) >_ u()/)-
2.(p()-p(a))

-4 max (V/If(w)])(w,-wo).
If ue()/1) _> u+, then (3.24) shows that ue() is bounded from below uniformly in

e > 0, tt E [0, 1], and L > 1. Now, we devote our attention to the case when

u(nl) < u+.

Then, )/1 < L because ue(L) u+. By the definition (3.11), of )/1, u()/1) 0. Then,
by Lemmas 2.1 and 2.2, )/1 has to be an extreme point for ue(). Since u() > 0 for
E (e,)/1), )/1 is a local maximum point. Lemmas 2.1 and 2.2 imply that either

(3.25) w()/1) > 0 and w()h) (a, )

or

(3.26) We()/1) < 0 and We() e (Ol, ).

The case (3.25) cannot happen because it implies that )/1 [-L,01], which violates
the known fact that )/1 > [(91, (92). Then (3.26) and (3.25) imply that there is a
local minimum point )/5 > )/a of u(), which satisfies

(3.2?) and w()/5) _< a.

Then our argument for the Case A applies and gives us

max(3.28) lu+ ue()/5)l _< (a w+)
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Using (3.28)in (3.24), we obtain the desired result

(3.29)

() >() 2(() ())

2((Z) ())

-4

>_u()
max,e[,o,,l (v/]p,(w)l)

4

>+ (. +)

max (V/,p’(w)l)(w-wo)wE[wo,w]

max (V/]p’(w)])(w-wo)w[wO,Wl]

2(,() ()
e[m+ax,,] (V/-p’(w))-

max,e[,o,,,]

-4 max
wE[wo,w]

which proves that u,() is bounded from below uniformly in e > 0, # E [0, 1], and
L>I.

Similarly, we can also prove that u() is bounded from above uniformly in e >
O, tt E [0, 1], and L > 1. [3

In the remainder of this paper, we adopt the following notation:

(3.30a) u. := sup{u()l e t. e (0. )}.

(3.30b) u, := inf{u()[ e R, e e (0, 1)}.

Once we established the a priori estimates for u(), we can proceed to prove the
following results for w() by using an argument similar to the one used in [2].

THEOREM 3.2. Assume w+ < a and u_ < u+. Let (ue(),we()) be a solution
of (2.1) satisfying (2.2) and (2.3). Then

(i) I[w()l[c([_,+t];R.) < C() where C() is independent of # e [0, 1],L > 1;
(ii) if Ip(w)[- oc, as ]w[ oc, and if # 1, then []w()]lc([_,+];R2 < C,

where C is independent of L > 1 and > O.
Proof. We only prove that w() is bounded from above uniformly. The other part

of the proof is similar and is omitted.
(i) Without loss of generality, we assume we() has a local maximum point Te.

Without loss of generality, we further assume that

(3.31) Te _< O.

By Lemmas 2.1 and 2.2,

(3.32) U’(T) > O.

We define

(3.33) r/:= inf{ < % : w’() > 0}.

It is clear that w() >_ 0. Integrating (2.1b), we obtain

(3.34) 0 > -ew(l) w()d + #(u(rl) u(%)).
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By the definition (3.33), we see that we() _< 0 on (y, ’), and hence

(3.35)

If <_ min(-1, Tn), then

,w()d < w()d we(y) we(O).

From the definition (3.33), we know that either y -L or y is a local minimum point
of ue(). In view of Lemmas 2.1 and 2.2, we(y) E [min(w_, w+),]. Then the above
inequality yields

(3.36) we(O) <- Cw()d-I-we(y) < u*-u, -t-1.

In other words, we() is bounded from above uniformly in e > 0, # E [0, 1], and L > 1
if _< min(-1, T). For e (-1, T], we have, from (2.1b), that

0 <_ -ew() -w()d + #(ue() Ue(Te)) >_ u. u*.

This implies that

We(Te) <_ we(-1)+ C1()

_
u*-u, --/ -C1().

Thus, the statement (i) is proved.
(ii) It remains to consider the case when Ts e (--1, 0] and # 1. For each e, we

can choose (-2,-1) such that ue(() _< u* -u.. By integrating (2.1a), with # 1,
on [0, Te], we obtain

(3.37)
p(We(Te)) eU(Ts) eU(O) + p(we(O)) Cu()d

< -e.u(O) + p(we(O)) Cu()d.

Every term on the right-hand side of (3.33) is bounded uniformly in e > 0 and L > 1.
Thus, by virtue of the assumption on p in the theorem, We(Ts) are bounded from below
uniformly in e > 0 and L > 1. [2

THEOREM 3.3. Assume w+ < a and u_ > u+. Let (ue(),w()) be a possible
solution of (2.1) satisfying we(() <_ a. Then

.(i) I[Ue()[IC([_L,+L];R.) <__ C, where C is a constant independent of n > 1,
#[0,1] ande > O;

(ii) Ilwe()IIC([_L,+LI;r.) < C(), where C() is independent of # [0, 1],L > 1;
(iii) if Ip(w)l --. cx3, as Iwl cx, and if # 1, then Ilwe()IIC([_L,+L];.) < C,

where C is independent of L > 1 and > O.
Proof. The proof is almost the same as that of Theorem 3.2. ]

4. The existence of solutions of the one-phase Riemann problem. Combining
Theorems 2.3, 2.4, 3.1, and 3.2, we obtain the following result.
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THEOREM 4.1. (i) Assume w+ < ( and u_ < u+. There is a solution
of (1.9) satisfying

(4.1)
(e(l),We(l)) # (?-$e(2), We(2)) for any 1,2 e (--(X),’4-(X)), 1 # 2,

W(I) > ’ := + min(w_, w+),

and

there are at most two disjoint open intervals (a, b) such that

(4.2a) w() e (@, c),

and

(4.2b) either we(a) ff, we(b) ( or we(a) , we(b) ff.

(ii) For the case w+ < a and u_ > u+, there is a solution of (1.9) satisfying
w() < .

(iii) There is a subsequence {n} n --* O+ as n oo, such that (u= (), w. ())
given in (i) and (ii) converges almost everywhere to a weak solution (u(), w()) of the
Riemann problem (1.3) and (1.4). Furthermore, the solutions we constructed have at
most two phase boundaries.

Proof. Parts (i) and (ii) of Theorems 2.6, 3.1, 3.2, and 3.3 provide the a priori
estimates needed by Theorem 2.3 and 2.7. Thus, parts (i) and (ii) are established.

(iii) From Corollary 2.5, we know that the solutions of (1.9) provided in (i),
ue(), and w() are piecewise monotone. Thus, (u(), w()) given in (i) has total
variation bounded uniformly in > 0. Now the same arguments used in the proof of
Theorem 3.2 of [1] or Theorem 4.1 of [27] prove the first part of our assertion. The
second statement follows directly from (4.1) and (4.2).

5. Structure of solutions of one-phase solutions. Before we proceed to
study wave interactions in our system (1.3a), (1.3b), we have to have a clear picture of
the structure of solutions of Riemann problems (1.3) we obtained in the last section.

DEFINITION 5.1. A solution of (1.3a), (1.3b) is said to be admissible according
to viscosity-capillarity traveling wave criterion (or traveling wave criterion for short)
if

(i) At each point o of discontinuity of (u(), w()), (u(o-), w(0-)) and (u(0+),
w(o+)) exist, and

(ii) There are Vk e R, k 1, 2,..., n e N, and Vl w(o-), v, w(o+) such
that the following boundary value problems have a solution:

-2o
d@()
de + p(0-) p(@()) o2(@() w(0-)),

(5.1b) (-oo) , (+oo) +, ,(+o) 0.
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THEOREM 5.1. If p(w) has the property that any straight line in (w,p)-plane
intersects the graph ofp(w) at finite many points, then the solutions of (1.3) given by
Theorem 3.9, which are admissible by the similarity viscosity criterion, are also admis-
sible by the traveling wave criterion. Hence, solutions of (1.3), which are admissible
by the traveling wave criterion, always exist.

This theorem was first proved in [8] for the case where w_ and w+ separated
by the elliptic region (a, ). Although the above theorem is for any initial data with
w+ (a, ), the proof is basically the same as in [8]. Thus, we omit the proof.

Using the same technique developed in [3] and generalized in [6], we can prove
the following theorem.

THEOREM 5.2. Let (u(), w()) be a solution of (1.3). Suppose o is a point of
discontinuity of (u(), w()). Then one of the following holds:

(.)
(5.2b)
(.ec)

,x((o+)) < o < ((o+)),
.x(.,.,.,(o+)) < o < (’,.,-,(o+)),
(’(o+)) < o < -(’(o+)).

THEOREM 5.3. Let (u(), w()) be a solution of (1.3) which satisfies the traveling
wave criterion. Then w() does not take value in (a, ), i.e., w() (a, ) for almost
all ER.

Proof. Assume, for contradiction, that w(0-) e (a,/) for some 0 e ll(. We
claim that w(+) w(0-) for e (0 5, 0) for some 5 > 0. Otherwise, one of the
following two cases will occur.

Case (i). w() is continuous on (0 -5, 0) for some 5 > 0 and there is a sequence
{n} C (o 5,o) such that n --* o- as n - cx and W(n+) # w(o-).

Case (ii). There is a sequence of points of discontinuity of (u(), w()) such that
n --0-- as n- .

Case (ii) cannot occur because w(n:k) (a,3) for large n and the Rankine-
Hugoniot conditions at n cannot hold.

We claim that Case (i) is also impossible. Indeed, we can integrate (1.9) over
(n, o) to get

Ann p(5.3a) O Anw (0)
1 o-(u()AnT +

nnU(5.3b) A,w
1 r/o-[(+) w()]d,AnT J,+

where AnT "= w(o-) W(n’-) > 0, Ant :-- t(0-) t(n--), and

O e (W(n--), W(0--)).

It follows that

Ant p’((o-))o nlim Anw
Ann

lim --0.
n---(:x) AnT
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Then we arrive at the contradiction

-p’((0-)) < 0.

It follows that there exist 1 and 2, which are points of discontinuity of (u(), w())
such that 1 < 0 < 2 and

() (0-) e (,Z) o e (6,.).

Therefore, according to the traveling wave criterion, both boundary value problems

(5.4a)
d2

--21 d(____)
de2 d 1(() (6+)) ((()) ((6+))),

(5.4b) (-) (6-), (+) (6+),

(.4c) ,(+) 0,

and

(5.5a)
d2

-2{2 d(__)
d de

(,() w(-)) (p(()) p(,(-))),

(5.5b) (-) (-), (+) (:+),

(.c) ,(+) 0

have solutions. A straightforward calculation shows that the eigenvalue for the lin-
earized (near () w(+)) problem of (5.4) is A -1 V/"’(W(l+)). It is clear
that w(+) w(2-) is a node of (5.4). Thus, in order for (5.4) to have a solution,
it is necessary that _> 0. On the other hand, however, the same analysis shows
that the solvability of (5.5) implies 0 _> 2 > 1 _> 0. This contradiction proves our
assertion.

6. Wave interactions in systems of mixed type. In this section, we study
wave interactions involving phase boundaries. The study of interactions between
waves, for instance phase boundaries and ordinary shocks, can be reduced to a study
of, just as in the case of hyperbolic systems, Riemann problems (1.3). We shall pro-
vide a mechanism to quickly determine, at least qualitatively, the outcome of wave
interactions in some situations.

For simplicity, we assume that

(6.1) p"(w)(w rl) < 0

for some
In the sequel, when we say solutions of (1.3), we mean weak solutions of (1.3)

satisfying the traveling wave criterion, unless stated differently.
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We first study the Riemann problem of (1.3) with initial value

(u_,w_) for x < 0,
(.) ((, o), (, o))

(+, +) fo x > o,
where

(6.3) w_ < c < f < w+.

We shall call the Riemann problem with (6.3) the two-phase Riemann problem.
For two-phase Riemann problem (1.3), (6.2), and (6.3), we know, from 2 of [7],

that the unique centered solution (u(), w()) of the Riemann (1.3), (6.2), and (6.3)
consists of a shock s2 such that wl := w(s2-) < ( < < w(s2+) --: w2, and
two constant states (u_, w_) and (u+, w+). (u_, w_) are joined to (u(s2-), w(s2-))
by either a backward shock sl < 0 if w(s2-) < w_ or a backward rarefaction
wave if w(s2-) > w_. (u+, w+) is connected to (u(s2+), w(s2+)) by either a forward
shock s3 > 0 if w(s2+) > w+ or a forward rarefaction wave if w(s2/) < w+.
Thus, we can denote a solution of (1.3), for simplicity, by (w, w2, s2. All the shocks
mentioned in this paragraph, except possibly the phase boundaries, satisfy the Lax’s
shock admissibility criterion (cf. [17], [18]).

The following lemma is Lemma 4.1 from [7].
LEMMA 6.1. (1.3) has a solution (wl, w2, s2 } if and only if the following condi-

tions hold:

F(wl, w2, s2) U+ U_,

where w - w2 is a connection with speed s2 and w <_ ( < <_ w2,

F(wl,w2, s2) :=- sl(wl-w_)H(w_-Wl)-l-H(wl-w_+) A(w)dw

(6.5) s2(w2 w) U(w2 w+)s3(w+ w2)

+ H(w+ w2+) )t(w)dw,
/

where H(w) is the heaviside function and

(6.6) := -v() (-)
Wk Wk-1

k 1, 2, 3, W0 "--’W-rW3 W+;

(6.7a) 81 < 0r 83 > 0r 81 < 82 < 83r

(6.7b) --(Wl) < 81 < --(W--), (WA- < 83 < )(W2),

(6.7c)

(6.7d) s: _< (w) iI w: # w+,

(6.7e) 82 __> --/(Wl) if Wl # W--.
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LEMMA 6.2. (see [22]). For each wl, there is at most one w2 such that Wl -- W2iS a saddle-saddle connection of speed s >_ O. As a consequence, the speed s is also
unique.

LEMMA 6.3.. (see [7]). Let wl --* w2 be a saddle-saddle connection of speed s >_ 0
andS1 --* 2 a connection of speed >_ O. If l < wl < ( or l > Wl > , then

LEMMA 6.4. For each fixed w+ with w_ < c < < w+, we define

(6.8)
A(w_,w+) :={{wl,w2,s2} {w1,w2,82} i8 a solution to the

Riemann problem of (1.3), (6.2), and (6.3) .for some u+ E JR}.

Then
(i) A(w_, w+ is a graph of a function (wl (s), w2(s), s). Furthermore, wl (s) is

a strictly decreasing function if s >_ 0 and w2 (s) is a strictly decreasing function of s

is < O;
(ii) F(wl, w2, s2) is a strictly decreasing function of s2.

Proof. (i) Since {wi, w2, s2} is a solution of the Riemann problem of (1.3), by
the definition of the notation of {wl, w2, s2 }, wl w2 must be a connection of speed
s2. We suppose s2 > 0. If Wl w2 is a saddle-saddle connection, then, by Lemmas
6.2 and 6.3, wl is uniquely determined by s2. If wl -. w2 is not a saddle-saddle
connection, then it has to be a saddle-node connection, since s2 > 0. In view of
(6.7d), w2 w+ in this case, and hence wl is uniquely determined by

w+ ?/)1

Thus, to prove that wl is a function of s2, it suffices to prove that for each 82

_
0,

there cannot be two solutions {Wl, w2, s2 }, (1, 2, s2} E A(w_, w+), where wl --* w2
and 1 --* 2 are connections of the same speed s2 and one of them is a saddle-saddle
connection while the other is a saddle-node connection. To this end, we, without loss
of generality, assume 1 < Wl < . Then, by Lemma 6.3, wl w2 must be a saddle-
node connection, inferring w2 w+, and 1 -- z02 is a saddle-saddle connection.
Inspecting the graph of p(w), noticing (6.1) and

> > s<(j), j=1,2,

we can see that
83 82 82

where $ -(p(2)- p(w))/(2 -w+), which cannot be true by (6.7a). This con-
tradiction shows that if s2 _> 0, the Wl in (Wl, w2, s2} A(w_, w+) is a function
of s2 and hence so is the w2. Similarly, we can prove that if s2 < 0, the w2 in
(w, w2, s2} A(w_, w+) is a function of s2 and hence so is the w. Thus, the first
statement of (i) is proved. The rest of the assertion (i) follows from Lemma 6.3.

(ii) The spirit of the proof for (ii) is similar to the proof of Lemma 4.4 of [7].
Thus we omit the proof. [:]

The above lemmas hold for the Riemann problems with

(6.9) w_ < c < < w+.
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For the Riemann problems with

(6.10) w_ > > a > w+,

we can use the transformation (u, w) --. (-u,-w) to convert the Riemann problem
with (6.10) to that of (6.9). This is because (u(x, t), w(x, t)) is an admissible solution
of

+ 0,
wt -uz O, x E ]R,t > O,

(u_,w_) for x < O,
(u(x, 0), w(x, 0))

(u+, w+) for x > O,

if and only if (f(x, t), @(x, t)) (-u(x, t),-w(x, t)) is an admissible solution of

+ 0,

t -fix O, x E lR, t > O,

f (-u_,-w_) for x < O,
((, 0) (x, 0))

(-u+,-w+) for x > 0.

Since -p(-w) satisfies all the assumptions we need on p(w), our results for the case
w_ < a < < w+ also hold for the admissible solutions of (6.10) with w_ > > a >
w+.

We state the results on the Riemann problem for the case w_ > fl > > w+
as follows. The unique centered solution (u(), w()) of the Riemann (1.3), (6.2), and
(6.9) has a shock s2 such that Wl := w(s2+) _< < _< w(s2-) =: w2 and two
constant states, (u_, w_) and (u+, w+). (u_, w_) is joined to (u(s2-), w(s2-)) by
either a backward shock Sl < 0 if w(s2-) < w_ or a backward rarefaction wave if
w(s2-) > w_. (u+, w+) is connected to (u(s2+), w(s2+)) by either a forward shock

s3 > 0 if w(s2+) > w+ or a forward rarefaction wave if w(s2+) < w+. Thus, we
can denote a solution of (1.3), for simplicity, by {wl, w2, s2}.

We can also define the function F(wl, w2, s2) as in Lemma 6.1 for the case w_ >
fl > > w+. We shall, however, use G(wt, w2, s2) to denote it, i.e., G(w, w2, s2)
F(wl, w2, s2), to make this case distinct to readers’ eyes. It is clear that (1.3), (6.2),
and (6.9) have an admissible solution {wl, w2, s2} if and only if G(w, w2, s2) u+

LEMMA 6.5. For each fixed w+/- with w+ < c < < w_, we define

B(w_, w+) "={{Wl, w2, s2} {wl, w2, s2} is a solution to the

Riemann problem of (1.3), (6.2), and (6.9) for some u+/- e ]}.

Then
(i) S(w_, w+) is a graph o] a ]unction (wi (s), w2(s), s). Furthermore, w (s) is

a strictly increasing function if s > O, and w2(s) is a strictly increasing function of s

if s
_

O;
(ii) G(w, W2, 82) G(82) is a strictly increasing function of s2.
The results in Lemmas 6.1-6.4 are for the case w_ and w+ are separated by the

spinodal region (a, /). Now, we concentrate on the case w+/- < a.
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LEMMA 6.6. Assume w+ < . Let (u(), w()) be a centered solution of the Rie-
mann problem satisfying the traveling wave criterion. If w() <_ (, then each point of
discontinuity of (u(), w()) satisfies A(w(0-)) > 0 > A(w(o+)) or-A(w(o-)) >
>
Proof. This assertion follows directly from the assumption (6.1) and Lemma 2.2

Remark. The above proposition generally does not hold without assumption (6.1).
As an application of the above analysis, we consider the wave interaction problem

of (1.3) with the initial data

(6.12) 0), 0))
for x < -1,
for l>x>-l,
for x > 1.

The outcome of the interaction of the two shock waves {(u_, w_), (u2, w2)) and
((u2, w2), (u+, w+)) is the solution of the Riemann problem of (1.3) with initial value

(6.13) (u(x, O) w(x, 0)) {
( (u+,w+) forx>0.

We are interested in the interactions between ordinary shocks and phase boundaries
and that between phase boundaries. To list all the possibilities of the interactions
would be lengthy and perhaps unnecessary. Here, we only study two examples.

Example 1. Let ((u_, w_, ), (u2, w2)} be a phase boundary such that w_ --. w2
is a saddle-saddle connection with speed s2 _> 0, i.e., 0 _< s2 < A(w_),A(w2). Let
{Ul, Wl), (u+, w+)} be an ordinary admissible shock solution of (1.3) with speed s3 < 0,
i.e., A(w2) > s3 > A(w+). We further assume w+ > .

In this case, the two shocks must interact. A calculation shows that

(6.14) u_ + F(w_, w2, s2; w_, w+) u_ / F(s2) < u+;

see Fig. 3. We know from Lemma 6.1 that {ll, 2, 2} is a solution of the Riemann
problem (1.3) and (6.12)if and only if

,_ + u+,

which infers that

By Lemma 6.4,

and hence, by the same lemma,

F(s2) < F($2).

2 < 82

We depict the result of the interaction {@1, @2, 2}, where @1 < w_ and 2 > s2 in
Fig. 4.
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u!

(W+,U+)

8--83

(w/’F(s2))

FIG. 3

\ s=2

-rarefacti on
2-wave

(u,w)=(u_, (u,w)=(u+ ,w+

FIC. 4

Example 2. We consider the case when two phase boundaries interact. Let
((u_, w_, ), (u2, w2) and { (u2, w2, ), (u+, w+)} be two phase boundaries with speed
Sl and s2, respectively. We further assume that w+ < c and w2 >/.

Above two phase boundaries interact if and only if sl > s2. The outcome of the
interaction is a solution of the Riemann problem (1.3), (6.11) with w+ < c.

Case (i). u_ _> u+.
In this case, the solution of (1.3) and (6.11) satisfies w() _< c and hence can be

constructed easily by the classical method.
Case (ii). u_ < u+.
Subcase (iia).

(6.15)

When (6.15) holds, there is no solution of (1.3), (6.13) satisfying w() _< ( and
the Lax criterion (6.10). Then the solutions of (1.3), (6.11) must take values in the
region w >/, i.e., w() >/ for some E R.

Subcase (iib). u_ < u+ but the second inequality of (6.15) is not satisfied.



864 HAITAO FAN

In this case, the Riemann problem (1.3), (6.13) always has a solution which is
confined in the region w _< c. Sometimes the Riemann problem also has another
solution which satisfies w() > f for some E R (cf. [22]). Although both of these
solutions satisfy the traveling wave criterion, there is an example in [10] showing
that, at least in that example, only the solution lying inside the region w() _< a is
admissible by the more "basic" vanishing viscosity criterion of the form

u + p(w)

from which the traveling wave criterion is derived.

Acknowledgment. I would like to thank Professor M. Slemrod for his valuable
suggestions and comments.
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SOLITARY WAVES IN A TWO-LAYER
FLUID WITH SURFACE TENSION*

S. M. SUN AND M. C. SHEN

Abstract. This paper deals with permanent gravity-capillary waves on the interface with sur-
face tension in a two-layer, inviscid, and incompressible fluid between two horizontal, rigid boundaries.
It is shown that, if the Bond number ’, a nondimensional surface tension coefficient, is greater than
some critical value r0, and the Froude number F is less than, but near some critical value F0, there
exists a solitary wave solution which decays to zero at infinity. When r is less than ’0, solitary waves
plus a small oscillation at infinity will appear, and the existence of such type of solutions will be
investigated in a subsequent paper. Discussions about several critical cases, such as v near v0 or a
density ratio near some critical value, are also given.

Key words, solitary waves, two-layer fluids, surface tension
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1. Introduction. This paper concerns the existence of an interface solitary wave
between two immiscible, inviscid, and incompressible fluids of different but constant
densities in the presence of surface tension. The upper and lower boundaries are
assumed to be horizontal and rigid. We choose a coordinate system moving with the
wave at a constant speed C so that in reference to this system the fluid motion is steady.
Let h-, h+ be the depths at infinity, and p-, p+ be the densities of the lower and upper
layers, respectively, T be the constant surface tension coefficient, and g be the constant
gravitational acceleration. Define h h+/h-, p- p+/p- < 1, the Froude number
F C2/((1-p)gh), and the Bond number T T/(h-C2p-). Let us briefly review the
existent results for a solitary wave on a layer of fluid over a bottom in the presence of
surface tension. This case corresponds to p+ 0. Apparently Korteweg and de Vries
[1] first derived a model equation under long wave approximation when F is near 1.
The equation is now called the K-dV equation, and for T 0 possesses a progressive
wave solution, the so-called solitary wave, which decays to zero at infinity for F > 1
but near 1. The existence of such a solution to the exact equations was proved by
Friedrichs and Hyers [2] among others half a century later. However, if the surface
tension is taken into account in the K-dV equation, there is another critical value
TO 1/2 of the Bond number T. When T is near 1/2, the K-dV equation is no longer valid
and a fifth-order model equation was derived by Hunter and Vanden-Broeck [3]. For
T > 1/2, F < 1 but near 1, the K-dV equation has a solitary wave of depression. The
existence of this type of solution to the exact equations was verified numerically in [3]

but near 1/2 andand proved by Amick and Kirchgiissner [4] and Sachs [5]. For T >
F < 1 but near 1, the existence of a new solitary wave of depression was proved by
Sun and Shen [6]. For 0 < T < 1/2, F > 1 but near 1, the solitary wave solution of the
K-dV equation represents a wave of elevation. The behavior of a solution to the exact
equations for this case is quite different. Hunter and Vanden-Broeck [3] also computed
the solution numerically and found that it consists of a solitary wave of elevation plus

*Received by the editors February 20, 1991; accepted for publication (in revised form) August
10, 1992. This research was partly supported by National Science Foundation grant CMS-8903083.

Present address: Virginia Polytechnic Institute and State University, Blacksburg, Virginia
24061.

:Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin 53706.
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small oscillations at infinity, which we will call a generalized solitary wave. Hunter
and Scheurle [7] studied a generalized solitary wave solution of the fifth-order equation
for T < 1/2 but near 1/2 and F > 1 but near 1. The existence of a generalized solitary
wave solution to the exact equations for 0 < T < 1/2, F > 1 but near 1 has been given
recently by Scale [8] and Sun [9] on the basis of different methods.

For the case of a two-layer fluid without surface tension, the first systematic
study is due to Peters and Stoker [10]. Amick and Turner [11] have recently used
the center manifold technique to study possible interface waves, and computational
results have been given by Turner and Vanden-Broeck [12]. An existence proof of
internal solitary waves has also been given by Bona and Sachs [13], which gives many
interesting properties of these solitary wave solutions as well. For a two-layer fluid in
the presence of surface tension, the critical values of F and T are, respectively, found
as F0 (1 + p/h) -1 and TO (1 + ph)/3. A K-dV equation can be derived for F
near F0 and possesses an approximate solitary wave solution if p h2 but not near
h2, and T T0 but not near TO. The main objectives of this paper are to prove that a
solitary wave solution of the K-dV equation indeed is an approximate solution to the
exact equations if T > TO but not near 0, P h2 but not near h2, and F < F0 but
near F0, and to consider the critical cases when T is near TO or .p is near h2.

The main result of this paper is the following existence result: If v F-1

1 + (p/h) + e, > 0 and T > TO, then for small e > 0 there exists an internal
solitary wave solution in the form

f+(x, ) + e( h)S(x) + e(( h)w(x) + O+(x, )) for 0 < < h,
f-(x, ) he( + 1)S(x) + e(-h( + 1)w(x) + e-(x, )) for 1 < < 0,

where f+, f- are the streamline functions for the upper and lower layers, respectively;
is the stream function

Ah sech2
(A/(T TO))I/2e/2XS(x) h2 P 2

and w,O+ are error terms with IIw(x)llxs <_ Ke and I]O(x,)llBs _< Ke for s >_ 4.
Here K is a constant independent of e and Xs, B8 are Banach spaces to be defined
later. The interface is given by y f+(x, O) f-(x, O) e(-h)S(x)+ O(e2). The
outline of our existence proof of the solitary wave solution is as follows: The fluid
domain with an unknown interface.is first transformed to a horizontal strip with a
fixed interface and boundaries. Then the exact equations are linearized about a given
constant state, and a solvability condition appears for the solution of the corresponding
inhomogeneous equations. Since the eigenvalue problem for the linearized equations
has no periodic eigenfunction, a Banach space of functions decaying to zero at infinity
can be defined. We can obtain an integro-differential equation from the solvability
condition and several a priori estimates for a solution in the Banach space. The
partial differential equations are now studied on the basis of a Hilbert space with an
inner product specially constructed for a two-layer problem in the presence of surface
tension. A solution of these equations is then expressed in terms of eigenfunctions of
an eigenvalue problem associated with the linearized equations and a priori estimates
for this solution in the Banach space are obtained. By these estimates and contraction
mapping theorem, the existence of a solitary wave decaying to zero at infinity is proved.
Our approach is based upon several ideas due to Friedrichs and Hyers [2], Beale [8],
and Ter-Krikorov [14]. For the case T < TO, the eigenvalue problem for the linearized
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FIG. 1. Configuration of a solitary wave.

equations possesses a positive eigenvalue, and the corresponding eigenfunction is a
periodic function. The main difficulty is to isolate the oscillatory part of a solution to
the exact equations. We shall defer the existence proof of a solution for this case in a
subsequent paper. Several critical cases also warrant consideration here. If T is near

TO or p is near h2, the present asymptotic theory is no longer valid and new asymptotic
schemes have to be developed. We shall derive different approximate equations for
the interface waves and obtain new solitary wave solutions to these equations. The
justification of the formal- derivation of a solitary wave solution for p near h2 and
T > TO but not near ’0 is also presented. The justifications for the other cases will be
deferred to subsequent investigation.

In 2, we formulate the problem in terms of nondimensional equations in a hori-
zontal strip with a fixed interface. A formal derivation of the stationary K-dV equation
and its solitary wave solution is presented in 3. An existence theorem of the approx-
imate solitary wave solution to the exact equations is proved in 4. In 5, we discuss
several critical cases for which the present asymptotic method fails, and we formally
derive new model equations and their solitary wave solutions. In 6 we justify the
formal method for p near h2 and T > TO but not near T0. In the Appendix it is shown
that there exists no positive eigenvalue of the linearized equations for T > TO.

2. Formulation. We consider the irrotational flow of two immiscible, inviscid,
and incompressible fluids of different but constant densities with surface tension at
the interface and bounded by two horizontal rigid boundaries. In reference to the
coordinate system moving at a speed C, the fluid flow becomes steady (Fig. 1), and
the governing equations in terms of the stream function * are

(1) V2*- 0, -h- < y* < y*(x*),
(2) V2*+ 0, r/*(x*) < y* < h+,

where the velocity (u, v) (;.,-.), and y* r/*(x*) is the interface. The
boundary conditions are the following: At y* r/*(x*),

(3) r/;. +; 0,

(4)
(p- p+)g,* +

Tr/;.x. (1 + (r/;. )2)-3/2 D;
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at y* h+,

(5) .+ o;

at y* =-h-,

(6) :: 0.

Here D is the Bernoulli constant on the interface. Now we use x*, * as independent
variables and the so-called streamline function f* as the dependent variable, where
*(x*, f*) constant defines a streamline. It is obtained that

By using the above relations, (1)-(6) become

2(1 + (f;.) )f.. + (ft.)2f;.x. 2f. fx* f** 0

for 0 < * < 2 and -1 < * < 0, where 1 and 2 are two constants and- < * < 0.

If on * 0, f* goes to zero as Ix*l cx), then 1 Ch- and 2 Ch+. At * 0,

(8)

(9)
(p- p+)gf* Tf.x. (1 + (f*.)2)-3/2 -t

p+ 1 + (f**+)2 D;

p- 1 + (f:-)2
2 (:)

at *----
(10) f*- -h-;

at , ,
(11) f*+ =h+.

To nondimensionalize (7)-(11), we measure * in units of 1 so that -1 at
bottom. Define

x* * f*
X-- h---_, "d2= ch_, f =-_,
u F-1 (1 p)gh-

C2

D
C2p-’
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Then we obtain from (7)-(11)

(12) (1 + f2)f + ffxx 2fCfxfz 0

for 0 < < h and -1 < < 0 with f defined as f+ and f-, respectively, in these
two regions. At 0,

(13) f/ f-,

1 1 + (f-)2 p 1 + (f+)2(14) v,f Tf(1 + f2)-3/2 + b;
2 (Z;) 2 ()

at -1,

(15) f- --1;

at =h,

(16) f+ h.

Now let f + w(x, ). The equations (12)-(16) become

(17)
2w + wzx 2wcwz + 2wwx wzw + 2wxwcwz

2w F()

in -1 < < 0 and 0 < < h, and w+, w- are defined in the same way as f+ and
f-. At -0,

(18) w+ w-,

(19) + 3
)2 + 2 (w--+.=(; () +F ),

where b (1 p)/2 and

at -1,

(20)
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3. Formal derivation. Assume that w and have asymptotic expansions of
the following form:

(22) w eWl + e2W2 +’’"
(23) v ,0 + el.

Substitution of (22) and (23) with x replaced by e-i/2x in (17) to (21) yields the
equations for the first approximation

wx=O in -1<<0, O<<h,
0 0,

w-=0 at=-l, w+=0 at=h.
By using these equations it is easy to get

Pw+ /(x)( h), W -h/(x)( + 1), A0 1 + .
For the second approximation from the equations,

w2=-Wlzx in -1<<0, 0<<h,

+ (w-)2 (w+)2 at 0,

w=0 at =-1; w2+=0 at =h.

By using the solvability condition for w2, we can have the following equation for

(l+ph) 3(p) /2 0.(24) T
3

T]zx 1] -- h- -The solution of (24), which decays at infinity, is

(Xlh) sech2 (( ,1
(25) /(x) h2 P T T0

if p # h2 but not near h2 and T TO (1 + ph)/3 but not near 0. In the following
we shall show that (25) indeed yields an asymptotic approximation to the solution of
(17)-(21) when is sufficiently close to 1 + (p/h), p # h2 but not near h2, and T > TO
but not near TO.

4. Existence theorem.

4.1. Preliminaries. In the following we always assume that p # h2 but not
near h2, and T > TO but not near TO unless specified otherwise. Let

u=Ao+Ae= (l+-)+Ae, A>O,

w+(x, ) e(r/(x)( h) + tO+(x, )) for 0 < < h,
w-(x, ) e(r/(x)( + 1)(-h) + t?-(x, )) for 1 < < 0.
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Substitute these expressions for w+ and w- in (17)-(21) and obtain

(26)

(27)

+ + _1
e

/9xx -yx(- h) + Fl(w+) F2+(x,),
1

0 / 9; hy( + 1) + -F(w-) F2- (x, ),

0<<h,

-1<<0;

at =0,

(28) o+(, o) o-(, o),

(29)

o; m oO- + -o -t,, + ,(-t,, + o-)

+ (-hn +o (, + o + Fr(-

=G();

at -1,

(30) - 0;

at h,

(31) 0+ =0.

Since

j() - h, 0 < < h,
(/1)(-h), -1<<0,

is the nontrivial solution of the homogeneous equations (26)-(31); to solve from
(26)-(31) we impose the following solvability condition:

(32) f /o
h

F2- (x, )(-h)( + 1)de + p F2+ (x, )( h)d + hG1 (x) O,

which was used in the formal derivation of (24). As we shall see later, this condition
excludes the function j() in the eigenfunction expansion of O(x, ). From (17), (26),
(27), (29), and (32), we obtain an equation for r],

(33)

(l+ph) 3h 3p

1( f foh )-5 -F:(V,O) 1Fx(w-)(-h)( + 1)de p Fl(w+)( h)d

,(, o).

Since

(34) \h2-p
sech2

T--T0
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is a solution of (33) with *(r/, ) 0, we write

() () + ().

Then from (33), we have

(35)

Also from (26), (27), and (29), we write

F+(,) F+(, 0), F- (,) F-(, 0),
Cl (x) C(w, 0).

Our goal is to find a small solution of (26)-(31) and (35) when e is small. Before we
prove the existence theorem, let us define some Banach spaces to be used later.

We denote Hs(R) as the usual Sobolev space on R with s > 0,

Xs ={f(x) e L2(R,R) lf(x)cosh(lel/2x) e Hs(R) with f even and

I]flix" ]]f(x)cosh(#el/2x)]lH’(t)},

where # is a small constant to be determined later, and

Y (f(x, y) e L2(R x ((-1, 0)U (0, h))) f(., y) e X for almost all

Define for s _> 2,

Omf(x’Y) Y-m,f+(x,O) 0),B f(x, y) e L2(R x ((-1, 0) U (0, h))) Oym
e f-(x,

for 0 _< m ,<20f=l=(X’oy_ Y) l.y=o E Xs-2, with norm

Ilfll Y’(IIDfII-, + IIDf(., O)llx.-,} + I1(o, O)llx- < +

where B D Xs. Now we study (26)-(31) and (35) separately.

4.2. Auxiliary condition. First we take up (35). Let

(36)
() = -+ 3

for 0 < x <
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wx=0 at x=0, where----T---0.
The homogeneous equation (w) -0 possesses two linearly independent solutions

)131 )
1/2

O(X) -- sech2t tanh t,

((3t3(sinht)cosht(x) -2(Ae/2)-l(sech2t)(tanh t) 5 . +

+l(sinh t)cosh3t)- (coshSt)sinh-lt)
where t 1/2()I1/)1/2x, 9(X) and (x) are, respectively, odd and even functions.
Assume f(x) is bounded and even. Then

(37) (w) f, 0 < x < +oc,
wx=0 at x=0,

has the solution

(38)
w(x) (x) (s)f(s)ds + (x) 99(s)f(s)ds for x > 0

k*(x,s)f(s)ds,

and
+

w(x) k*(-x, s)f(s)ds for x < 0.

In the following we prove two lemmas for the estimates of w(x).
LEMMA 1. If f(x) E Xs, 8 > 0 and # is small, then

where K is independent of e and f(x).
Proof. Here we only prove the case s 0. The proofs of other cases are the same.

From (38) we know that if f(x) is even; w(x) is also even; therefore,

where
k’(x, s) Ik*(x, s)lcosh(#ex/2x)cosh- (#ex/2s),

g(s) f(s)cosh(#el/2s),
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and

But

o+O o+O k’(x, t)dt k’(x, s)g2(s)dsdx

max sup k’ (x, s)dx, supx k’ (x, s)ds

if 0 < # < 1/2(,lJ)l. The same is true for f:o k’(x, s)ds. Thus

I[w(a)[[xo _< Ke-l[[f(x)[[xo

Also
[IW[[ _< K(IIw,(x)cosh(#e.1/2x) 2[[L(R) + [[W[[o),

and we only need to get the estimate for IIw’(x)cosh(#e/Ux) IIi-(rt)" But from (38)we
have

w’(x) ’(x) (s)f(s)ds + ’(x) (s)f(s)ds for x _> 0

k(x,s)/(s)ds,

where w’(x) is odd and k(x,s) has the same asymptotic behavior as k*(x,s), where
x or s is large. Therefore, by the same argument, we have

However, w(x) satisfies (37), and from (37) and the estimates of w(x) in X we have

if 0 < # < ()i/4fl) 1/2. Also we have the following lemma, the proof of which is
omitted.

LEMMA 2. If Ul E Hs(R), u2 E X8, s _> 1, then

Iluu211x, KlluxllH, Ilu211x,.

Then by checking term by term in @(w, 0) carefully and using Lemmas 1 and 2,
we have the following.
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THEOREM 1. Ifw, e B8 and [[WI[B. I[wl[X. <_ Kel/2, [[[[B.

_
Ke (or Kel/2)

with s > 3, then (w, 9) X-2

II(w,O)llx,-. <_ Ke (or Ke3/2),

and

where

llr-.-,I,(,.,,)llx. _< Ke (or Ke/2),

x>_O,

x<0.

4.3. Partial differential equations. Now we consider (26)-(31). First let us
discuss the following equations:

(39) - +u (, ), -oc<x<+x), -1<<0,

(40) + + v+(,)uxx q-u -oc<x<+oc, 0<<h;

at =0,

(41) u+(, 0) -(, 0),

(42) + A0u-) + u; =();-(u -u
at -1,

(43) u- 0;

at h,

(44) u+ 0.

Here o(x,) E Bs and 2(x) e Xs for s >_ 2. Following Beale [8], we make use of
the family of eigenfunctions of satisfying

(45)
(46)
(7)

v-av=O in -1<<0 and 0<<h,
+--OV---TffV-=O ate=0,v+ v-, v pv

v-=0 at=--l; v+=0 at=h.

To discuss the completeness of the eigenfunctions of (45)-(47), first let us set up
some nilbert space. Let (f(), q) e (L2(-1, h)) x R, where q is a constant and define

(48)

(49)

((f, q), (g, r)) f-g-de + p f+g+db Tqr,

I(f, q)12 ((f, q), (f, q)).
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Then define

( fH- (f, q) e (L2(-1, h)) x R f-()(-h)( + 1)de
1

+ p /+()( h)d + "rhq 0 and the norm is

defined by (49).

We show that ((f, q), (g, r)) is an inner product. Since the proofs of other condi-
tions are straightforward, the only thing that we need to prove is

((f,q), (f,q)) > 0,

if0(f,q) EH. Letu*--h(/l) for-l<<0, u*--p(-h) for0<<h.
Then if (f, q) E H,

L*q
--hT

So

q2

_
(hT)-2 (f-)2d)-F (ol/2f+)2db

fo(f_)2d -F p f:(f/T--2(1 - ph)
3

Therefore, by (48) and (49),

I(f, q)l 2 - (1 (3T)-1(1 / ph)) (f-)2d + p (f+)2d

Thus if T > TO, I(f, q)l > 0 unless (f, q) 0. Hence H is a Hilbert space in reference
to the inner product (48). Note that I(f,q)l is equivalent to the norm II(f,q)ll
(llfll: + Iql)x/ for (f, q) e U.

LEMMA 3. The space H is a Hilbert space.
The condition imposed on ny wo functions in H is he orhogonl condition

wih he eigenfuncion of (45)-(47) corresponding o a 0 under he inner produc
(., ), nd H is closed subspace in (L(-1, h)R). Hence H is a Hiber soace.

Next, we define an operaor in H:

(50) + ou-)t(, q) ,-(u

with
D(jt) ={(u, q) e H lu- e H2(-1, 0), u+ e H2(0, h),

u-(0) u+(0) q, u-(-1) 0 u+(h)}.
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Obviously the solutions of (45)-(47) correspond to the eigenfunctions of ,4 in H with
eigenvalue a and jt closed and densely defined. The equality
()

f /h + +de r + Aou- )v+(A(u, q), (v, r)) uv-d + p uv (u u
1 =0

+ +de + A0u- (0)v- (0)
0

uvd + p uv
1

for (u, q), (v, r) E D(J[), shows that 4 is symmetric with respect to (., ), and
implies that all eigenvalues of A, if they exist, must be real. By (51) and the Schwarz
inequality,

(jr(u, q), (u, q)> (u)2d + p (u)2d + Ao(u-(0))2 < 0,

if (u, q) e D(Jt) since

and A0 1 + (p/h), where the equalities hold if and only if u j() defined in (32),
which is not in H. This shows that all eigenvalues of J[ are nonpositive. From (51),
H is invariant under ,4. In order to show that the eigenfunctions of ,4 is a basis of
H, it suffices to show that (jr-a)-1 exists and is compact in H for some a > 0. But
(fit a)(u, u(0)) (f, q) is equivalent to solve

u-au=f in-1<<0 and 0<<h,
+ OU- TrU- Tq(0)

u-=O at=-l; u+=0 at=h.

at =0,

Then the solution of the above equations is easily obtained as follows:

h
/ sinh al/2( h) sinha/2 f+

aa( h)
deh

+ sinhal/2 sinhrl/2( h) f+
aa( h)

deh

(al/2 sinh al/2h),

u- =( + 1) + sinhal/ sinho’/( + 1)(f- +(+
1

+ sinhal/( + 1) sinho’l/(f + o’( + 1))d

(a/ sinh
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where

and

( fa F-i(a) Tq (sinhi/2)-i sinhal/2( + 1)f-d
1

)+p(sinhal/2h)-1 sinh (71/2( h)f+d

F(a) al/2(tanhal/2)-1 + pal/2(tanhal/2h)-1 o Ta # 0

for all a > 0 as shown in the Appendix. Obviously (u, u(0)) constructed in this way
is in H if (f, q) E H. By standard arguments it is not difficult to show that (,4-a)-1
on H is compact. Furthermore, it follows that there are countably infinitely many
eigenvalues, and the range of (A-a)-1 is D(A). Also in theAppendix the asymptotic
behavior of these eigenvalues is given.

We summarize the results as follows.
LEMMA 4. The system (45)-(47) has solutions v Vn, a an, n 1,2,...,

where (Vn(), Vn (0)) e H, an < O. The vectors (vn(), Vn (0)), n 1, 2,..., .form a
basis of H and are orthonormal with respect to the inner product (50). Here lanl
Kin2 .for large n where K1

_
c > 0 with c fixed.

Now we can deal with (39)-(44). Assume that (l(X, ), 2(x)) e H for all x e R.
By Lemma 4, we have

(1 (X, ), 2(X)) 2 an(x)(Vn(), vn(O)),

where the convergence is under the norm (49) and

(52) f /o
h

an(x) (x, )v(x)d + p + (x, )v+ (x)d T2(X)Vn(O).

Multiplying (39) and (40) on both sides by vn() and integrating by parts twice we
have

(53) c.() + .c.() a.(),

where

f /0Cn u-(x, )v()d + p u+ (x, )Vn+()d TU- (X, O)V (0).

If an (x) and Cn(x) are even, by finding the Green’s function of (53) and following the
same proof as in Lemma 1, we have the following.

LEMMA 5. /jr an (X) Xs and Cn(x) satisfies (53), then Cn(x) Xs+2,

llCnllx.+, <_ K[an[-(2-i)/2[[an(x)[[x for i= O, 1,2.

(54)

Therefore,

((, ),(, o)) c()((), v(0))
n=l
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is in the Hilbert space H, and

n--1 n--1

for i 0, 1, 2.

If (u(x, ), u(x, 0)) is defined by (54), by (55) we have

2

-(llDu(x, )llY. + IIDu(x, 0)llx.)
i=0

_< K(III (x, )llg" / 11’211x,).

Since (u(x, ), u(x, 0)) satisfies (39)-(44); so by (39) and (40)

I111Y. < K(lllllr. + IIllx.),

and by usual interpolation theorems, the same is true of u. Then by using u 0 on
-1 and h and u(x, O) E Xs, we can easily show that

and
Ilu(, ,)llx. < K(II,IIY. / II’llx.),

+(z,0)where 8 is fixed and when 8 -- O, u(x,) in the limit corresponds to u
and u(z, 0). So

I1%+/-(,o)11x" <_ K(II,IIY. / II’llx.).

If 991(x, ) and 792(x) have continuous derivatives at least up to 2s / 2 order with
respect to x and and (991,792) E H, then we may multiply (39) and (40) by uxx and
integrate by parts several times to obtain

(56) IIllY. -< K(II,IIY. / II,llx.).

For the general 791(x, ) Y and 792 Xs with (791,792) H we can construct a
sequence of smooth functions in H approaching (791,792), and by usual techniques in
elliptic operator theory we get the a priori estimate (56).

Now combining all estimates obtained we have

(57) IlulIB’+ --< K(II’ lit" / II’llx.),

if 791 ys and 792 E Xs with (791,792) H. Therefore we summarize the above results
as follows.

THEOREM 2. If 791 Y’, 2 X" and (791,792) H, then the solution u(x, )
of (39)-(44) exists in S+2, is unique in H, and satisfies (57).

Now we use the following notation to express the solution of (39)-(44) in terms
of ((, ), ()),

(5s) U(X, 3) 9--1 (791(X, /)),
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Let us go back to (26)-(31). Write

F2(x,) F*(w, ) M1(w) + 2(w, ),
Cl (x) G*(w, ) M2(w) + (1 (w, ),

where M1 (w) and M2(w) contain _only the terms with wxx, ew, and eSw, which appear
in F2 and G1, respectively, and F2 and 1 are the remainders. By the derivation of
(35) from (32), we can see that the left-hand side of (35) denoted as (T- T0)/2(W) in
(36) is from (M1, M2) only, and the right-hand side of (35) is from (F2, G1) and the
left-hand side of (32) is equal to (T- TO)((W) ). Since -1 exists, define

F(w, O) M1(-l((w, 0))) + F2(w,
a(w, O) M2(/2-1 ((w, 0))) + al(w, 0),

which is equivalent to (F2, G1) for this problem. If we use this (F, G) in (32), then
(F(w, 0), G(w, 0)) 6 H for all w, and t9 since by a similar derivation of (35) from (32)
and noting that/2-1 only appears in (M1, M2) we have

f /o
h

F-(w, O)(-h)( + 1)de / p F+(w, )( h)d + ThG(w, )

O" ’o)((-((, ))) (, )) o.

If we assume that 0(x, ) 6 Bs+2 and w 6 Xs+2, then by checking the terms in
F+, F- and G very carefully and using Lemma 2 and Theorem 1, we have F ys,
G6Xs and

(59)
(60)

By Theorem 2, we obtain the following.
THEOREM 3. If O(X, ) Bs+2 and w(x) X8+2 are bounded with respect to

their respective norms, then the solution of (26)-(3) with F2 and G1 replaced by F
and G, respectively, exists and satisfies

IIV-X(F, G)JlB.+

_
Ke(IIOIIB.+ +

4.4. The existence proof. Now we need to solve (26)-(31) and (35), which is
equivalent to (32). We know that

(F2 (x, ), G1 (x)) (F*(w, 0), G*(w, 0)) e H

since (32) implies that (F2, G1) satisfies the orthogonal condition defined for the space
H. Convert (35) to

(61) o/---- -l(lI/(a), )),

and (26) to (31) to

(62) o p-(F(, 0), a(, 0)).
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Then instead of solving (61) and (62) together, we solve the following equivalent
equations"

(63) 79-1(F(w,O),G(w,O))= (O,w),
w -((w,7-(F(w,O),G(w,O))))= T2(O,w),

since we need to use this substitution once to meet the condition in Theorem 1 and
(F, G) E H to satisfy the condition in Theorem 3. Now we need to prove that when
e is small, (63) and (64) possess a fixed point. First we define a closed convex set in
the Banach space Bs+2 Xs+2 for s _> 2,

Sb --{Z- (0, w) e B’+2 X+2 IIIZlll- IIOIIB,+- + IIllx,+

Let

Then we try to find a fixed point of the operator T in Sb. From Theorems 1 and 3 it
follows that T maps Sb into itself if Ke/2 < b, which is always possible if e is small.
Also by using similar proofs as in Theorem 1 and 3 we have

THEOREM 4. If Z(1) ((1), 2(1)) and Z(2) (0(2), w(2)) .b, then

[[[T(Z())- T(Z(2))[[[ < Kel/2ll[Z() Z(2) Ill.

Now we may choose Kel/2 <_ in Theorem 4 for smaller e so that T maps Sb into

Sb and is a contraction in Sb. By contraction mapping theorem, there exists a unique
point (00, w0) so that

00 P-I(F(wo, 0o), a(wo, 0o)),
MO .--1 (II/(d0, 00))

or equivalently,
Oo P-(F*(wo, 0o), G*(wo, 0o)),

Oo)).
Finally we have the following theorem.

THEOREM 5. /f v (1 + (p/h)) + )qe, )1 > O, then for small e > O, there exists
a solution of (12)-(16) in the form

f+(x, ) + e( h)S(x) + e(( h)w(x) + O+(x, )) for 0 < < h,

f-(x, ) he( + 1)S(x) + e(-h( + 1)w(x) + O-(x, )) for 1 < < O,

where

S(x) h2 P T TO

and w(x) Xs, 0 Bs with

II (x)llx Ke and II0(x,)IIB Ke

for s >_ 4, where K is a constant independent of e. The interface is given by

rl e(-h)S(x) + O(e2),
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and S(x) is indeed a first-order approximation to the exact solution.

5. Formal equations for the critical cases. In this section several critical
cases are considered when the parameters in the problem are near some critical values
so that (24) no longer holds. We shall only present the formal results here, and a
rigorous justification of case 2 in the following will be given in 6. Cases 1 and 3
are similar to the results in [6], and their justifications will be deferred to subsequent
investigation.

Case 1. T is near (1 + ph)/3 but h2 is not near p. In (17)-(21), we let

W 2Wl -- 3W2 -- 4W3 -- ’’’,

l/ph
3

and replace x with -1/2x. The equations for the first approximation are

w1=0 in -1<<0, 0<<h,

w- w+, wl- pw+ A0w- 0 at h,

w=O at =-1 and h.

It is easily found that

w+ y(x)(- h),

A0=l+-
p
h’

where rl(x) has to be determined.
The equations for the second-order approximation are

w- -hn(x)( + 1),

w22 --Wlxx in 1 < < 0, 0 < < h,
(1 + ph)wl

w2=O at=-I and h.

at =0,

Then

where a(x) is an unknown function. Finally we proceed to the equations for the third
approximation:

w3=-w2 in -1<<0, 0<<h,
+ OW lW- TlWlxxW3+ =W3 ,W3 --PW3

(1 + ph)w2x 3
3 + (h2 p)72 at 0,

w3=0 at =-1 and h.

To solve these equations, the following solvability condition on r](x) must hold

3(h-P (1 +
45

=0,
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where Wl+ y(x)( h), w- -h?(x)( + 1).
If A1 > 0, T1 > 0, and

A 169 l+oh
This equation has a solution [6]

= 13(i + ph)

sech4 (cx),

Case 2. p is near h2, but T is not near (1 + ph)/3. In this case we let

and substitute them for w, e, and h2 in (17)-(21). By the equations for the successive
approximations we obtain

T + + eh( + 0,

which also holds for a 0. A solitary wave solution of the above modified K-dV
equation is given by

(x)= (Alh(1Wo’/h)1/2+h)
sech

(T- (1 + h3))/3

1/2 x),
where I -" (a/h) > 0 and T > (1 + h3)/3.

Case 3. T is near (1 + ph)/3 and h2 is near p. Now we let

W 2Wl -- 3W2 -- 4W3 -- 5W4 -- ’’’,

l+h3

P h2 e4r, )0 -- 41, T
3

in (17)-(21) and replace x by e-x. As before, from the equations for the successive
approximations, we obtain

where Wl+ (x)( h), w; -h(x)( + 1). Using the methods in [15], [16], we
find that if T1 > 0 (T - Alh)(1 + h5) 90(8- a)(10- a)-2T21, then

ab2 -2 abx7(x) --secn 2
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where
-7 =t= (49 + 120t)t/2

a
t

t =(2/5)(1 + h)(1 + h5)
h(1 h2)2

b
(1- h)h(lO- )

=115(1 h)h
l+h

We note that here 8- a > 0 as can be easily shown, and rt > 0 and p < 1 implies
1 h2 > 0 for sufficiently small e.

6. Critical case for p near h2. In this section, we shall justify the asymptotic
method for the derivation of a solitary wave solution when p is near h2 and T >
(1 + ph)/3 but not near (1 + ph)/3. Since the existence proof is rather similar to the
one presented in 3, many detailed derivations will be omitted.

First we rewrite (17) in the following form:

(65) w + wxx (2wxw -w2w,, + 2www,:)(1 + we)-2

+ ww(2 + we)(1 + we)-2 Lt(w),

in -1 < < 0 and 0 < < h..If we let

p- h2 -ae2, v A0 -+- Ale2, 7" >

A0= l+h,
w+ e(r/(x)(- h) + 0+(x,
w- e(r(x)( + 1)(-h) + O-(x, ));

l+h3

3

in (65), (18)-(21), we obtain

(66) 0+ + 0:+ -rx(- h)+ L+(w+) L+2(x, ),

1L-(67) 0 + 0- hr/( + 1) + t (w-) n(x ),

at =0,

0<<h,

-1<<0,

(68) o+ o) o),

(69) O h20- 00- + TOxx Thr (Ath + a)ye2 + 2h2(1 + h)y3e2

+ P(r/, 0) G2(x),

where
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At =-1 and ho,

(,o) o o.

By the same reasoning as before, the solvability condition

f fohL(xi )(-h)( + 1)de + h2 L2+ (x,)( h)d + hG2(x) 0

implies

(71)

If #(r/, O) 0, then

T(ex)= (.kl+(a/h)h(1+ h) )1/2 .kl + (a/h)sech
(._ (1 + h3)/3)1/2

ex

is a solution of (71), provided that ,’1 + (a/h) > 0 and T > (1 + h3)/3 but not near
(1 + h3)/3. Now let

rl(x) T(ex) + w(x).

Then by (71), we have

(72)

/

(* *0) [ + ,) + a( + h)e2T2(ex)w(x)

-2h(1 + h)e2(3T(ex)w2(x)+ w3(x)) + (T(ex) + w(x), 9)
1 (Off,

where TO (1 + h3)/3. We need to prove that (66)-(70) and (72) possess a small
solution (w, 0).

We define Xs, ys, and Bs as before except that we need f(x)cosh(#ex) E Us(R)
in the definition of Xs instead of f(x)cosh(t.tel/2x) Hs(R). Since (x) T(e_x) is
a solution of (72) with I/1 ((.d, ) 0, it is not difficult to construct another linearly
independent solution (x) with (0) 0. Also we assume that Wronskian (,)
-1. Therefore, if we let all functions be even in x, the even solution in x of (72)-is

w(x) (x) (S)#l (w, 9)ds + (x) (S)#l (w, O)ds

k (x, s)q (w, O)ds for x > 0,
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and
+

w(x) k[ (-x, s)I (w, for x < 0.

We write w(x) -1((w, 0)). Similar to Lemmas 1 and 2, we have the following.
LEMMA 6. /f f(x) E Xs, 8 >_ 0 and # is small, then

LEMMA 7’. If Ul Hs(R), u2 X8, s >_ 1, then

IlUlU2[[x

_
Kllul[H, llu211x,.

The proofs are the same as before and omitted. Note that the functions in Xs

and Y here have the different decay rate with the functions of these spaces in 4
when x - cx). By a refinement of the proof of Lemma 6, we have the following.

LEMMA 8. If f(x) e Xs, s >_ 0 and # is small, then

XX (--l(f)) K-llf(x)llx,,
X

The proof is omitted. Note that to prove Lemma 8, differentiating o(x) and (x)
once will introduce an e-factor.

Now we can write 1(03, 0) as follows:

(03,0) h(1 h2)(03 + T(ex))2 + 2(03, 0)

I1 + 11/2(03, {9).

If 03,0 Bs and II llx. Ke/2, [10[IB" <- Ke2 with s >_ 3, then (03,0) Xs-2

and 112(03, O)llx.-. <_ Ke.3 by checking the terms in 2(03, 0) and I11(03, 9). NOW if

1103a:llxs-. <_ Ke.3/2, then 111111x.-2 <_ Ke3. Therefore, by Lemmas 6, 7, and 8, we have
the following.

THEOREM 6. If w,O e B, l1031[x" <- Ke/2, II0ilB. <_ Ke2, and [I03x[ix,-. <_
K3/2,, then

11-1(03, O)llx8 <_ ge

and

< Ke2.

For the partial differential equations (66)-(70), we have exactly the same theorems
as Theorems 2 and 3. Let

L2(x, ) L*(03, O) M1(03) + L2(03, 0),
G2(x) G*(03, 0) M2(03) + (2(w, 0),

where M(03) and M2(03) have the terms with wxx, 203, and 2T03 only in L2 and G2,
respectively, and ,2 and (2 are the remainders. Define

L(03, 0) M(--1(II/1(03, {9))) + 2(03, 0),
G(03, 0) M2(/-I (1(03, 0))) + G2(03, 9),
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where L:(w) @l(W, 0) is the same as (72). Then (L(w, 0), G(w, 0)) e H for all w and
0 by a similar proof as this for F and G in 4.3. If we use the same notation p-1 as
in (58), then we have the following theorem.

THEOREM 7. /f O(X,b) E Ss+2, 03 Xs+2 with [10]lB.+2 <_ ge, ]lw]lx.+2 _<
gel2, then the solution o.f (66)-(70) with (L2, G2) replaced by (L, G) exists and sat-
isfies

IIP-(L, G)llm,+= < ge2(ll811m,+= /

Now we need to solve

(73) O- 7)-1(L2, G) 7)-1 (L, G)

and

(74) -,((,))=

when e is small. Then we substitute (73) in (74) once to obtain

(5) n(z(0, ),) u(0, ),

and another substitution yields

(76) .03 T2(l (0, 03), 03) 2(0, 03).

Obviously (76) is equivalent to (74). Let us define a closed convex set in the Banach
space Bs+2 Xs+2 for s _> 2,

8b-- {Z (0, 03) C B’+2 X’+2 IIIZIII --IIllx’/

Let
(0,) ((0, ), (0, )).

Then by Theorems 6 and 7, we have that T maps Sb into itself if e is small. By
checking L and G term by term and using the proof of Theorem 7, we have that if
Z(), Z()

(77)
_

Ke(llO() O()ll,+- + /11()

Also by checking the terms in 1 and using Theorem 6, we have that if Z(1), Z(2) Sb,
then

Ilnu(oo), o(x)) n(o(), o(U))llx.+-
_

K(I[O() O(u)IIB.+ / e/2llo+(1) o() IIx.+-).

By the definition of 7 and (77), we have

I1(o(),o()) (o<:),o(:))llx:+: _< K/:(IIIZ() Z(:)lll).

Therefore if gel2

_
1/2, then T is a contraction and possesses a fixed point in ,95. So

(73) and (74) have a solution in 8b. Finally we summarize our results in thefollowing.
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THEOREM 8. Ifv (l+h)+Ale2, p h2-ffe2, 7" > (1+h3)/3 with ,1 +a/h > O,
then for small e > O, there exists a solution o] (12)-(16) in the ]orm

f+(x, ) + e(%b h)T(ex) + e(( h)w(x) + 8+(x, )),
f-(x, ) h( + 1)T(ex)e + e(-h( + 1)w(x) + -(x, )),

0<<h,

where

and

T(ex) ((Al +a/h)+ h)
sech(Al+(_a/h)

T--(l+h3)/3]

1/2

[[w(x)[[x. <_ Ke, [[O(x,)l[B. -< Ke2 and [[(J.}xl[xs-2

__
Ke2,

lots>_4.

Appendix. Let

cosh(x/h) )cosh v/ + P(A.1) F(x) -F(x) 0 + TX
sinh vf sinh(vh)

Obviously as x - O, F(x) O. We need to prove that F(x) t 0 for all x if T > T0

(1 / ph)/3. We differentiate (A. 1) to get

F’(x) --T
1 sinh(2xl/2) 2xl/2
4 x/2 sinh2 x/2

(phi4) sinh(2hxl/2) 2hx/2

hx1/2 sinh2(hx1/2)

and as x - 0, F’(x) --. T-- (l+ph)/3 T--To.
2y)/(y sinh2 y). Then

Now let I(y) (sinh(2y)-

lxl/2Iy(xl/2 xl/2Iy(hxl/2),F"(x) --Iy(y) (2y cosh(2y) sinh2 y sinh2 ysinh 2y ysinh2 2y + 2y2 sinh2 y)

x (y2 sinh4 y)-I I_
I"

Now we show that for y > 0, I1 < 0. By using some elementary identities, we have

11(y) -2y sinh2 y sinh(2y) sinh2 y / 2y2 sinh 2y

sinh y -2y sinh y cosh 3y + cosh y + 4y2 cosh y

1
sinh y(-4y sinh y cosh 3y / cosh y / 8y2 cosh y)

I
sinh E(-4(2n + 2)-+

2
n=0

+ 1 + 8(2n + 2)(2n + 1))y2n+2/(2n +
]
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It is easy to check that when y _> 3,

3 > y2 _+_ 3y + 1.

So 32n > (2n + 2)(2n + 1) for n >_ 2 and 32n+2 > 8(2n + 2)(2n + 1). But for n 0
and n= 1,

-4(2 + 2) + 1 + s(2 + 2)(2 + 1) o.
Therefore, I1 (y) < 0 for y > 0. So F"(x) > 0 for x > 0 and F"(x) - cl > 0 as x - 0
for some constant o. F’(x) is monotonically increase for x > 0. If T > TO, then
F’(x) > 0, which means F(x) is monotonically increase and so F(x) > 0 for all x > 0.

If a < 0 by (45)-(47) a should satisfy the equation
(A.2)
(o + Ta)sin v/7-h sin fL-7 sin v/-L-Th cos -+- p--sin cos v/77h.

If a is large, then (A.2) becomes

( 1 )rsin(v/E-h)sin 0
(_a)/2

Therefore, for larger a, there is always a solution near each of the solutions of

sin((-a)/2h) sin(-a)/2 O,

which means that the roots of (A.2) are infinite and an has order of n2 when n is
large.

Remark. When T < TO, we know that F(x) in (A.1) is zero at x 0, F"(x) > 0
for x _> 0, F’(0) T--TO < 0 and F(x) -+ +oo as x -+ +oo. From these facts, it is
easy to see that F(x) has one and only one positive number x0 > 0 so that F(xo) 0
and F’(xo) 0 since F(x) is a strictly convex function for x > 0.
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THE LINEAR SHALLOW WATER THEORY:
A MATHEMATICAL JUSTIFICATION*

JAMES A. DONALDSONt$ AND DANIEL A. WILLIAMSt

Abstract. The authors provide in the space of square integrable measurable functions a math-
ematical justification for the "shallow water" theory for time-dependent two-dimensional flows of an
inviscid, irrotational, incompressible fluid moving under the influence of gravity. A by-product of this
investigation is a new derivation of the "shallow water" equations.

Key words, shallow water equations, elliptic boundary-value problems, Cauchy problems,
generalized transforms
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1. Introduction. We are concerned with a problem from the theory of water
waves [15] which arises when one makes two basic assumptions: (i) the depth of the
water is small (relative to some other quantity associated with the problem) and (ii)
the amplitude of surface waves is small (relative to their wavelength). This leads to the
following mathematical model, when we assume also that the fluid is incompressible,
inviscid, and irrotational. Let the positive direction of the Y-axis be vertically upward;
let the X-axis be at the mean height of the surface of the water at time t 0; and let
B(X) be a function contained in C3(R). We are required to find a function (I)(X, Y, t)
such that (I) satisfies the b0undary-value problem

(i.I) (xx -- YY 0 in ’B X

(1.2) 0-- 0 on rs;
(1.3a) (I)y Tt, (I)t + 7 0 on F x IR+;

or equivalently,

(1.3b) (Y +Ott 0 on F x +;
(1.4a) (I)(X, 0, 0) Fo(X) on F;
(1.4b) (t(X, O, O) F1 (X) on F,

and where Y rI(X, t) is the equation of the free surface,

F {(X, 0)" X e R}, FB {(X, Y)" Y -eB(X)},
aB {(X,Y)’-eB(X) < Y < 0, X e R}, and

+ {r r > 0}.
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The initial conditions (1.da,b) result from specifying the initial surface elevation ?(X, 0)
and the initial velocity potential (I)(X, Y, 0). We assume (i) there exist positive con-
stants bl,b2, and 53 such that 51 <_ B(X) <_ b2 and B’(X) < 53, (iN) the param-
eter e is a small positive number, and (iii) the density of the fluid and the accel-
eration due to gravity are constants which we equate to one. Furthermore, when
we assume that B has bounded derivatives through order n in R, Bn will denote
s nupeR{’k=0 ]B(k)(x)l }.

For e fixed (but not necessarily small) and F0 and F1 sufficiently smooth, Fried-
man and Shinbrot [4] and Garipov [6] have proved the existence of smooth solutions
of (1.1)-(1.4) satisfying all conditions classically. Furthermore, they defined in L(r)
a self-adjoint (nonlocal) operator g with domain H(r) related to (1.1)-(1.4) by the
expression

u(X, O, t) K(X, O, t) KW(X, t),

where W(X, t) is the restriction to F of the unique solution (I)(X, Y, t) of (1.1)-(1.4)
in H1 ().

In the linear theory of "shallow water" (e small), the hyperbolic initial-value
problem

(1.6) W-e(BW)x-O, W(X,O)-Fo(X), W(X,O)=FI(X)

plays an essential role. The partial differential equation in this problem is called the
"shallow water" equation. Naturally, the replacement of the elliptic boundary value
problem (1.1)-(1.4) by the hyperbolic initial-value problem in (1.6) in the "shallow
water" theory requires justification.

Friedrichs [5] gave a derivation of the shallow water theory by a formal pertur-
bation procedure in powers of a small parameter a ah, where a is the curvature
of the surface at t 0 and h is the depth of the water. Friedrichs’ requirement that
a be small for the water to be considered "shallow" is equivalent to the small depth
assumption made in (1.1)-(1.43) since for this case a is small whenever e is. (Note:
0 < aebl _< a _< aeb2 and we assume the curvature is bounded.) Friedrichs stated that
a rigorous mathematical justification of the "shallow water" theory requires a proof
that the perturbation series is convergent, or asymptotically valid. For the case of sim-
ple harmonic motion of two-dimensional linear flows, this justification was provided
by Shinbrot [13].

For the case of two-dimensional nonlinear flows many authors have contributed.
In the space of analytic functions mathematical justifications for the theory have
been given by Ovsjannikov [11] valid for periodic solutions, and by Kano and Nishida
[8] valid for sufficiently small time t. In Sobolev space Nalimov [10] proved unique
solvability when the region of the fluid has infinite depth, and gave a justification for
the linear theory, Yosihara [16] proved unique solvability when the region of the fluid
has finite depth and the bottom is almost horizontal, and Craig [1] proved unique
solvability and provided mathematical justifications for the Boussinesq equations and
the Korteweg-deVries equations when the region of the fluid has finite depth and the
bottom is horizontal.

In a Sobolev space we provide a mathematical justification for the "shallow water"
theory in the case of time-dependent two-dimensional linear flows where the region of
the fluid has finite depth and the bottom is neither horizontal nor almost horizontal.
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We recall from (1.3a) that

0,

and define a function y0 by

,o(x, ,) -w o(x,

where W(X, t) is the solution of the initial-value problem in (1.6). A fundamental
problem in the "shallow water" theory is to determine in terms of e a bound for the
error which results when v] is used to approximate y. (This, of course, would provide
the mathematical justification.) It is the aim of this paper to obtain such a bound
valid for all t in [0, S], where S is an arbitrary fixed positive number. We prove the
following.

THEOREM 1.1. Let S be any positive number, and let Fo E H2(F) and
H(r). Then there exits a constant C, depending upon S, B3, []Fo]]H-(r), and
such that

II (x,  0(x, <

e [0, s].
A brief outline of the paper follows. In 2 we give definitions and notation,

introduce a generalization of the Fourier transform and study some of its properties,
and state an inequality arising from an abstract Cauchy problem.

In 3 the region ’B is mapped into a horizontal strip . Under this mapping
the Laplacian operator is sent into an elliptic operator L with variable coefficients,
and the problem (1.1)-(1.4) is transformed into an initial-boundary value problem
that is rewritten, after performing a separation of variables, as a well-posed time-
independent elliptic boundary-value problem and an initial-value problem. Introduced
then is a boundary-value problem involving an elliptic operator L related to L. The
boundary-value problems for L and L play a fundamental role in defining on L2(F)
two invertible, positive, self-adjoint operators T and T. The operator T is related to
the previously mentioned operator K by K B(T- -aI), and the operator T1 has
the virtue of having an explicit representation. The proof of a key inequality employed
in the demonstration of Theorem 1.1 is given.

In 4 an apparently new derivation of the "shallow water" equations is given. This
derivation depends heavily upon an explicit representation obtained for an operator K
defined by K B(T -I) and an implicit representation for the aforementioned
operator K. Introduced also is another operator K0, with domain H2(F), and an
associated abstract Cauchy problem for which certain estimates for its solution and
derivatives of its solutions are obtained.

In 5 the estimates obtained in 4 and the results of 3 are used to establish the
estimate needed to provide a rigorous justification of the "shallow water" theory.

2. Preliminary results and definitions. We lefine Hs(F) to be the collection
of tempered distributions u such that (1 + IAI2)s/2(A) is in L(F), normed by

where fi is the Fourier transform of u. We denote by H(Q) the collection of all
functions which, together with their first s distributional derivatives, are in L2(Q).
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This space is normed by

For f L2(]R) we define a transformation, a slight generalization of the Fourier
transformation, by the formula

f(a) 9vs[fl(a) f(x)eig()dH,

where

g() --]0 ds

S()
We shall call f the B-transform of f. One verifies easily the following properties of
this transform.

LEMMA 2.1. If f e C’(R) and B e Cm-(R), then

I (-a)[/] (a), o _< , _< .
LEMMA 2.2. Let J’ L(I). Then there eist constants 1 nd C uch that

LEMMA 2.3. Let B have bounded derivatives through order n- 1. Then there
exist constants M and M2 such that

l<_j<_n

and

l_j_n

LEMMA 2.4. Tho liB’, dd by

LEMMA 2.5. Let U satisfy the abstract Cauchy problem

v,,(t) + nv(t) V(t), t > O,
V(O) V’(O) o,

where L is a self-adjoint positive operator defined in a Hilbe space X, and G(t) is an
X-valued strongly continuous function of t, and let S be a fixed, but arbitraly selected
positive number. Then
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3. Two associated elliptic boundary-value problems. We introduce new
independent variables x and y and dependent variable , defined by

Y
x X, Y eB(X)

and (, u, ) (x, , ).

Introduction of these variables transforms the domain B into a horizontal strip
and sends (1.1)-(1.4) into the problem

(3.1) L--0 in R+,
(3.2) Me-0 on FbXR+,

(3.3) Cu/eBCtt-0 on FR+,
(3.4) (x, O, O) Fo(x), Ct(x, 0, 0) El (x)

where

L 4- e2[B(BCz)x 4- B2y2uu 2BBxyzu 4- (2B2 BB)yu],

Me 4- e2[Bx2 4- BB],
{(,):- < < 0, e }, r {(,-1)

and
r {(, 0): e }.

Let a > 0, and let f(x, t) E C(F) for each fixed t. We rewrite the condition
(3.3) in the form

{u + (aBe Bf)} + {-(aBe Bf) + eBCtt} 0

and note that this permits us to obtain the solution of (3.1)-(3.4) from a boundary-
value problem and an initial-value problem. More specifically, we associate with (3.1)-
(3.4) the boundary-value problem

(3.6)
L 0 in

Me 0 on Fb,

u+aB=Bf(x,t) on F, feC(Fx{t}),
e HI(),

and observe that its solution satisfies (3.1)-(3.4) if f is chosen so that the initial-
value problem

(3.9) -eCtt +( f(x, t) on F {0} R+,

(3.10) (x, 0, 0) Fo(x), Ct(x, O, O) F (x) on F,

is satisfied. Essentially what has happened here is a separation of variables.
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THEOREM 3.1. For each fixed e > 0 the boundary-value problem (3.5)-(3.8) has
a unique solution.

Proof. Rewriting (3.5)-(3.8) in the , X, Y variables and employing the invertible
transformation

) (x, Y,

defined by
X x, Y -eB(x)y, (X, Y) (x, y),

we obtain an elliptic boundary-value problem for which existence and uniqueness re-
suits have been given by Friedman and Shinbrot [3] and Garipov [6].

We consider also the related boundary-value problem

(3.11) L11 1 + e2S(B)x 0 in fl,

(3.12) M11 1 0 on Fb,

(3.13) 1 + aBl Bfl (x, t) on F, fl e C(F),

(3.14)

THEOREM 3.2. There exists one and only one solution of (3.11)-(3.14).
For f e C(F), let (x, y; f) and 1(x, y; f) be the unique solutions of (3.5)-(3.8)

and (3.11)-(3.14) corresponding to boundary datum f prescribed in (3.7) and (3.13).
We define operators 50 and 1 on C(F) by the formulas

(3.15) Tf (x, 0; f)

and

(3.16) T1f )1 (X, 0; f).

THEOREM 3.3. The operator T defined by (3.15) has an extension to a bounded
linear operator T on L2(F). The operator T is positive, self-adjoint, and has no
nontrivial null-space.

THEOREM 3.4. The same statement as Theorem 3.3, but with T1 and T1 replacing
T and T, respectively.

The proofs of Theorems 3.3 and 3.4 are essentially the same, and outside of
obvious modifications the arguments are the same as those appearing in the proof of
Lemma 3.1 of [3]. For completeness we provide here a proof of Theorem 3.4.

Proof. Let f e C(F). Upon multiplying each side of equation (3.11) by 1/B,
integrating the resulting expression over f and then applying the divergence theorem,
we obtain after using the boundary conditions (3.12)-(3.13),

(I) {(ul)2 q- e2B2()2}dxdy q- a (1)2dx fldx.

Since the first term on the left side of (I) is clearly nonnegative, it follows that
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It follows that

II’lfllL2(r) IIlllL2(r)

_
lllfll,

and we have that T is bounded. That T1 is a positive operator follows also from (I)
since

(’lf, f)L2(r) =1(’f)" fdx= fdx

a](1)2dx O.

To see that T1 is symmetric, let 2(x, y; g) be the solution of (3.11)-(3.14) satising
the boundy condition (3.13) with g replacing f. We have

(Tlf g)L2(r) lgdx

f2dx <f, Tlg>L2(F).

Now since T1 is a bounded, positive, symmetric operator defined on a dense subset of
L2(F), it h a self-adjoint extension T1 to L2(F) with the same bound. Also, T1 is a
positive operator.

To show that T1 h no nontrivial null-space, sume that Tlf 0 el(x, 0; f)
on F where we sume f C(F). Then

0 <L TII>L2(r)= <f,l>L2(r)

(,l)(r)+ {()+eB()}dd

b [(e + (g) + () aa.
Thus, 0 almos everywhere in . ha f 0 follows from the
equality

0= N{% +taa+(

=fd for all HI().

Consequences of the Theorems a.a and a.4 are that T and T1 have inverses T-and T, respectively, and they are also positive self-adjoin operators. We observe
also ha conditions (a.8) and (a.14) guarantee that the restriction
of the solutions of (aA)-(a.a) a (a.ll)-(a.14), respectively, are in

We consider he inhomogeneous boundary value problem

(3.17)

(a.s)

(3.19)

(a.e0)
and prove the following result.

Lu G in fl,

Mu g on Fb,

u--O on F,

u H2(fl),
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THEOREM 3.5. Let G, Gx 6 L2() and g HI(Fb), and let u satisfy (3.17)-
(3.20). Then there exist positive numbers eo and C such that

(3.21) 2 2 2

whenever e < co.
There are two cases: (i) B is a constant function, and (ii).B is a nonconstant

function. The proof of (i) is straightforward and will be omitted. We give a proof of
(ii) in a series of lemmas.

LEMMA 3.1. Let u 6 H2(). Then uu(x, 0) 6 L(F) and

and

Proof.

2

O

uu(x, O) uu(x, y) + uuu(x, y)dy

O

luv(x, O)l <- luv(x, Y)I + luvv(x, Y)IdY

{f_o }<- luu(x, Y)I + dy luuu(x, y)12dy]

It follows that

1/2

0)1 < u)l + u)l:du

Upon integrating both sides of the last inequality over F and over (y 0 _> y _> -1}
we obtain the inequality of Lemma 1.

LEMMA 3.2. Let u(x,y) be the solution of (3.17)-(3.20). Then there exists a
constant C such that

Iluul:(a) N C. P,

where P is the expression in (3.21) enclosed by braces.
Proof. Let u satisfy (3.17)-(3.20), and let p and be, respectively, the largest

and smallest of the three numbers b, b2, and b3. Now multiply each side of (3.17)
by u, integrate the resulting expression over , and apply the divergence theorem to
obtain the inequality

n{u
+ e2[(Bu Byu)2 Syuu + BBuu]}dxdy

ugdx uGdxdy.

Upon applying the elementary inequalities

simpliing, and then choosing e appropriately, we obtain

(3.23) {u + e2u2}dxdy D {Z ,G,2dxdy + l .g,2dx}
from which follows the conclusion of the lemma immediately.
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LEMMA 3.3. Let u(x, y) be the solution of (3.17)-(3.20). Then there exist positive
constants C1 and such that for e < we have

2IluuullL2(n) <_ Cl P

where P is the expression enclosed by braces in (3.21).
Proof. Differentiate the equations in (3.17)-(3.20) with respect to x, and set

W ux to obtain the boundary-value problem

(3.24)

(3.25)
(3.26)
(3.27)

LW + e2 [PlWx -}- P2Wy + P3W]
G= + e2[pauu + p5uuu] in ,

MW g + e2[psW + pguu] on Fb,
W=O on F,
W e

where the functions pl, p2, p3, p4, and p5 are bounded on f, the closure of f, and p8

and p9 are bounded in JR. Furthermore, we define P6 B2y and p7 -BB. (Here,
we have assumed that B and its derivatives through the third order are bounded in
]R.) The constant p, defined by

z_<< L(,u)ea =s,9 L(,u)er

is positive since B is a nonconstant function by assumption. We proceed as in the
proof of Lemma 3.2 to obtain

W(a + e2[pauu + p5u]}dxdy

W{g, + e2[psW + pguyl}dx.

Employing modifications of the inequalities in (3.22) and the inequality

fr U2Udx <- 2 fa(luul2 + luuu’2)dxdy,

we can find el greater than zero and determine constants D, C3, and A so that

n(Wu2 + e2W2x + W2)dxdy

< D {fa lGldxdy + fr lgldx}
+ V ./ e2(2 + e2) [u2 + uu]dxdy

<_ C3P + Ae2 f u2uudxdy P1
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whenever e < el. Thus for e < el each of the quantities Ilu, ll2(), Ilu,ll2() and

e211uxll2L() is equal to or less than P. From the differential equation (3.17) it is
eily shown that there exists a constant such that

Upon inteating the latter expression over and employing the inequalities
derived above, we obtain

()
2{ +c( +)}p +(+)11,

or equivalently,

[-(+)]11, { +C( + )}P.

For each fixed (0, 1) there exists an e2 > 2 such that

[1 -Aea(1 + 3e2)] > whenever 0 < e < e2.

Now set eo min(e, e2}. For 0 < e < e0 it follows that

I c. P,

where C2 (/)[1 + 4C3]. This completes the proof of the lemma.
The proof of the theorem is now immediate.
In a sequence of lemm we collect certain properties of the solution of the

boundary-value problem

(3.28) L y + e2B(B)x 0 in ,
(3.29) 0 on Fb,

(.0) (z, 0) h() on r,
(.) (,) e H(),

which will be of importance in the sequel.
LEMMA 3.4. For h e L2(F) the function , defined by

cosh(ll( + ))()(3.32) (A’ Y) cosh(e]A)

is the S transfo of the solution of (3.28)-(3.31).
Proof. Let h e C(F). Upon applying the B-transform to (3.28)-(3.30) we obtain

a boundary-value problem for an ordinary differential equation in y for (A, y). Its
solution is given by (3.32). It is clear that the one-parameter family of operators S(y),
-1 y 0, defined by

+()h()
cosh(i)

is bounded on C(F) with respect to the n2 norm. Since C(F) is dense in L(F),
S(y) can be extended by continuity to S(y) on n(r), where S(y) h the same bound

S(y).
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LEMMA 3.5. /f h E H*(r), then (x, 0) E H*-(r).
Proof. From (3.32) we obtain

5(A, 0) elA tanh(elAI)(A).

Thus we have

This inequality and the assumption that h Hk(F), together with Lemma 2.4, guar-
antee that y(x, 0)

LEMMA 3.6. ff h H(r), then Hk(fl).
Proof.

OYa @(’ y) dy dA

c1 I1 (,y) dA dy
lalk 6=1

0 k-a2

I j=o

k

C(1 + Il)l()ld

Cllhll(r)....,, <
and the conclusion is established.

The function T2 is defined by

cosh(ell(y + 1))
cosh(ell)T(’ Y) sinh(ell(y + 1))
cosh(ll)

if O2 is even,

if a2 is odd.

4. Derivation of the shallow water equations. In the last section it was
shown that the inverse of T is a positive self-adjoint operator in L2(F). Since the
restriction to F of the solution of (3.5)-(3.8) is in the range of T, we may solve the
equation

Tf(x, t) (x, O, t),

obtaining
f(x, t) T-l(x, O, t).

Upon making this substitution for f the equations (3.9)-(3.10) become

(4.1) tt(x, O, t) + (T-1 aI)(x, 0, t) 0, t > 0;
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(4.2) (, o, o) o(), (, o, o) vx(z),

a Cauchy problem for an abstract wave equation in L(r). From (3.7) we obtain

1
(4.3) -(x, O, t) (T- aI)(x, O, t) on F ll+.

In an analogous way we show that

(4.4) -1 u(x, O, t) (T -aI)(x, O, t) on F x 11+.

Employing (3.32) and (4.4) we can give the following explicit representation for
(T-I ai)l (x, O, t).

THEOREM 4.1. Let 1(x, y, t; f) be the solution of (3.11)-(3.14). Then

(4.5)
1

(T- X)(, 0, t) .",I.,,Xl tanh(ell)l(, 0, t).

This suggests that T-1 -aI is defined in L2(F) by the formula

1
aI)h(x) :{II tanh(elAI)h(A)}

for all h such that the L2-norm of the left side is bounded. It is readily seen that this
is obtained when h E Hi(F).

Circumstances are not so convenient for

(T-1 aI)(x, 0, t);

we are able to provide an implicit representation only.
THEOREM 4.2. Let (x, y, t; f) be the solution of (3.5)-(3.8). Then

(4.6)
1

(T-1 aI)b(x, O, t) -’{elAJ tanh(elAl)(A, 0, t)) + Gl(x,t),
D--

where
Gl(x,t) T[I(T1 T)f(x,t)

and1 is the inverse B-transform.
Proof. Let f e C(F). From 1(x, 0, t) (x, 0, t) + [1 (x, 0, t) (x, 0, t)] and

the definitions for T and T1 we obtain

Tlf(x, t) Tf(x, t) + (T1 T)f(x, t).

It follows that

f(x,t) Tl(Tlf(x,t)) Tl(Tf(x,t)) + TI(T1 T)f(x,t).

Thus
T-l(x, O, t) T-l(x, O, t) + TI(T1 T)f(x, t)

or
(T-1 aI)(x, O, t) (T-1 aI)(x, O, t) + TI (T1 T)f(x, t),
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and the proof is complete. D
Friedman and Shinbrot [4] have shown that the domain of (T-t -cI) is also

H(r). We now define two operators g and gt in L2(r) by the equations

e2gh (T- -aI)h for h e H(r),
e2gh (T aI)h for h e H (F),

respectively. Equations (4.1)-(4.2) then become

(4.7) wtt(x, t) + egw(x, t) 0, t > 0;

(4.8) (, 0) F0(), ,(, 0) f(),

where w(x, t) is the restriction to F, (x, 0, t), of the solution of (3.5)-(3.8).
The solution of this initial-value problem is given explicitly by the formula

o{ sin(vffit)dGFl(x)}(4.9) w(x, t) cos(v/-i-fit)dV,fo(x + vf_fi
where the family of projections G, -oc < # < oc, is a resolution of the identity with
respect to the operator K, and where F0 and Ft are in the domains of K and K1/2,
or equivalently in Ht(r) and H/(r), respectively.

Now employ (4.7) and the representation given in Theorem 4.1 to get

1

(4.10) -’sl_l[elAl(elA tanh(elA]))(A t)] Gl(x, t)

G(x, t, w),

or equivalently,

(4.11) wtt e(Sw) a2(x, t, w)
since the second term on the left side of (4.10) is -e(Bw). If the right side of (4.11)
is small, then solutions of (4.11) will be close to solutions of

0 (B0) 0.

The latter equations are the usual equations of the linear "shallow water" theory
for time-dependent, two-dimensional flows and are generally used in the applications
rather than those in (1.1)-(1.4) or (4.7). In the next section it is shown that this
derivation can be put on a rigorous basis.

We define an operator K0 on H2(F) by

.r-[(IAI) ,(,)] -(Bh):,(4.12) Koh(x) e2B S

and consider the abstract Cauchy problem in L2(F),

(4.13) wtt + egow(x, t) O, t e [0, S],

(4.14) w(x, O) Fo(x), wt (x, O) F (x),
where S is any positive number.

From the form of the solution of this problem, analogous to the formula in (4.9),
we obtain the following estimates.
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LEMMA 4.1. Let wO(x, t) satisfy the initial value problem (4.13) and (4.14). Then

(4.15a) IIDwO(x,011cr O(e(k/2)-(/2)), k O, 1,2,...

(4.15b) II(eKo)wO(x,t)]lL(r) O(ek-(1/2)), k O, 1,2,

Here the constant in the "O" symbol depends upon S, IIF0[IH2(r) and IIFllIH2(r)
for 0 _< k _< 2; and depends upon S, [[F0[[H(r) and ]lFllIH-l(r) for k > 2.

5. Establishment of error estimates. In this section we show that the deriva-
tion given above of the "shallow water" equations can be made rigorous by obtaining
an estimate for the error

(,) 0(, )

that results when (4.7)-(4.S) is replaced by the initial-value problem in (4.13)-(4.14).
This satisfies iedrichs’ requirement, and therefore provides a mathematical justifi-
cation for the "shallow water" theory.

THEOREM 5.1.
(i) Let w and wo be solutions, respectively, of the initial-value problems (4.7)-

(4.8) and (4.13)-(4.14)
(ii) Let Fo be an element of H2(F); and
(iii) Let F1 be an element of Hi(F).

Then for each S > 0 there exists a constant C (depending upon B3, S, [[F0[H(r), and
I[F [H(r)) such that

(5.1) I1o(=, t) o,(, t)I}L-W) --< Cvq yor t e [0,

Remark. The estimate in the theorem is sharp as can be seen from a consideration
of (1.1)-(1.4) for the special case when the bottom is horizontal (B(x) a constant
function). From its explicit solution one verifies directly that the estimate in (5.1) is
satisfied.

Proof. The function

z(, t) (, t) O(x, t)

satisfies the initial-value problem

Ztt(x, t) + eKZ(x, t) -e(K Ko)w(x, t),
Z(, O) Z(, O) O.

An application of Lemma 2.5 to the initial-value problem (5.2) and (5.3) yields the
inequality

S

IIZ,(=, t)ll=(r) < {lle(K Ko)wO(x, t) ll- (r) }dr

< {lte(gl Ko)w(x, t)llz(r)

+ II,(K- K)w(x,t)llL(r)}dt
Ix +I2.
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We first consider I1. Employ Lemma 2.2 to obtain

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)
()

From this last inequality follows the existence of C5 such that I1 <_ C5V. In the
above analysis (iv) is obtained from (iii) by employing the inequality tanh x <_ x, valid
for x _> 0; (vi) follows from (v) by applying Lemma 2.2; (vii) is obtained from (vi) by
using the definition of K0; and (ix) follows from (viii) by applying (4.15b). We turn
now to I2. From (4.3) and (4.4) we have

1
e(K K1)wO(x,t) -[u(x, 0, t) (x, 0, t)l

where (x, y, t) and el(x, y, t) are the solutions of (3.5)-(3.8) and (3.11)-(3.14), re-
spectively, which assume the value w(x, t) on F. The function u, defined by

(,, t) (,, t) (, , t),

satisfies the boundary-value problem

(5.4)
(5.)
(5.6)

Lu -(L L1)1 _e2L2l
Mu -(M M1)1 _e2M2l

u=O onF.

Bounds for 1 and its derivatives play a key role in establishing an estimate for
IluyllL2(r) where u satisfies (5.4)-(5.6). Calculation of these bounds are facilitated by
the explicit formula for 1, namely,

cosh(elAl(y + 1)) ’5(A, t) }.(x, y, t) - cosh(eliXl)

LEMMA 5.1. The following estimates are valid .for 1 and its derivatives.

(i)
(ii)

]lD,+(x, y, t)l]L(a) O(eU,-),

]lD,l(x,--1,t)[[i(r) 0(-1).
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Proof of (i). It is easily seen that

Da2l(x, y, t) ea2(x, y, t), where

(,,t)= f*[ll,X,(,,)(, t)].

Thus

(by definition of 1)

<- M2e2a
1

IIlk/’.w(, t)J2d; dy

(snce I-l 1)

O(x, ) dx

(by Lemm 2.1 and 2.2)

M4e’ [(BKo)(+’)/w(x,t)]dx

(by definition of K0)

M5e ]Kgw(x’t)2dx

(by a.lb)
MTe2a:-1

where the Mi’s are constants and [(k + c2)/2] is the greatest integer in (k + a2)/2.
More stringent conditions must be placed on F0 and F1 when I(1 al + a2 _> 2.
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Fo E D(KIo1/2) and F1 D(K(o11-1)/2) are sufficient. The second part of the lemma
can be established by following a similar procedure. Now from Theorem 3.5 we obtain

and from (4.3)and (4.4),

Thus,

lie(K-K1)w(x,t)llL2(r) <_ Clluu(x,O,t)llL2(r) <_ A3x/,

and there exists a constant C2 such that I2 _< C2x/. This completes the proof of
Theorem (5.1).

The proof of Theorem (1.1) follows immediately since

,(x, t) ,o(x, t) wo(x, t) w(x, t) o (, t) (, t) -z(, t).

The L2 estimate given for the error in approximating the surface wave r/(X, t)
with 7(X, t) is generally not good enough in the theory of water waves. A pointwise
estimate is needed. Such an estimate can be obtained if the initial functions Fo(X) and
FI(X) and the function B(X) are sufficiently smooth. The following result provides
such an estimate.

THEOREM 5.2. Let S be any positive number, let Fo H3(F) and F1 H2(F),
and let B have bounded derivatives through the fourth order. Then there exits a con-
stant C, depending upon B4, S, IIFollH3(r), and ]IFIlIH2(r) such that

(5.7) I,(x, t) 0(x, t)l _< C1/2

Ior t [0, s].
Proof (sketch). Under the conditions of the theorem we can establish the inequal-

ity

II(z, t) (z, t)llHl(r) _< Cf.
Because of the inequality in Theorem 5.1 we note that to establish the inequality in
(5.8) it is sufficient to show that

(5.9) I1o(, t) 0(, t)llL-(r) _< Cf
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for t e [0, S], where C depends upon S, B4, [[F0[[Ha(r), and [[FI[[H2(r). The demon-
stration of the inequality in (5.9) follows that employed in the proof of Theorem 5.1
with modifications caused by the fact that the occurring initial-value problems are
inhomogeneous. Now setting E(x, t) (x, t) (x, t) w(x, t) w (x, t), we
obtain

IE(x, t)l <_ . I(A’

.(1 + 2)-1/(1 + )1/l(, t)ldA

N (1 + A)-dA (1 + A)l(A,t)ldA

CIIEIIH(r)
6. Concluding remks. We return again to the operator K in (1.5) and o

serve that this operator returns the normal derivative Cy(X, 0, t) on F of the hmonic
function when it operates on (X, 0, t), the boundary value of on F. Therefore, K
is a Dirichlet-Neumann operator. Yosiha [6] and Craig [1], [2], while investigating
the nonlinear water wave problem, described Dirichlet-Neumn operators and esta
lished many of their properties. Although in their investigations the fluids had finite
depth, the bottoms were horizontal or deviated only slightly from the horizontal. For
the problem investigated here, for the ce B a constant (the bottom is horizontal)
we can give an explicit representation for K, namely,

(6.1) gh(x) -I(]A] tanh(e]A])(A))
for h e H(r). Here -(f) denotes the inverse Fourier transformation of f. For this
special ce the representation in (6.1) aees with the one given by Craig [2].

Largely due to the central role played by the generalized Fourier transform ,
and the requirement that the range of B be a finite closed interval contained in the
positive y-is in order to establish certain important estimates, the initial-bound
value problem (1.1)-(1.4) when the bottom F of the region intersects its surface
(the presence of beaches) does not lend itself to treatment using our approach. We
believe, however, our approach can be modified and extended to treat time-dependent
three-dimensional linear flows in regions without beaches.
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brot, Late Professor of Mathematics at the University of Victoria, to the early stages
of development of this work. It w he who pointed out that the existing justifications
of the "shallow water" theory for time-dependent motion were deficient, and suggested
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Abstract. The goal is to establish the nonlinear stability of discontinuous steady states, and
study the asymptotic behavior of solutions, for the initial-boundary value problem in one space
dimension governing incompressible, isothermal shear flow of a non-Newtonian fluid driven by a
constant pressure gradient. The fluid is assumed to be highly elastic and viscous; the non-Newtonian
contribution to the shear stress satisfies a differential constitutive law characterized by a nonmonotone
relation between the total steady shear stress and shear strain-rate that results in steady states having,
in general, discontinuities in the strain rate. In a regime where Reynolds number is small compared
to Deborah number, it is shown that every solution tends to a steady state as c, and steady
states that are nonlinearly stable, in a precise sense, are identified.

Key words, spurt, discontinuous steady states, delta-approximate solutions, gradient-like
flow, Morse decomposition
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1. Introduction. In this paper we study issues of stability and asymptotic be-
havior for pressure-driven shear flows of an incompressible non-Newtonian fluid under
isothermal conditions. We consider flow in the direction of the y-axis in the channel
-1 _< x _< 1, and symmetric about the centerline x 0; thus the flow variables are
functions of x and time t. In dimensionless units, the dynamic equations governing
the flow are

(JSO)
+ +

as -a + (Z + 1)vx,
Z -Z-ave,

for -1 _< x _< 0, t > 0, subject to the boundary conditions for t > 0:

(BC) v(-l, t) O, vx(O, t) O, a(O, t) O.

Here v represents fluid velocity, a the polymer contribution to the shear stress, and Z
is proportional to the first normal stress difference. The (constant) pressure gradient
driving the flow is f > 0, is the ratio of Newtonian viscosity to shear viscosity
(scaled by relaxation time), and c is the ratio of Reynolds number to Deborah number.
The second and third equations in (JSO) arise from the Johnson-Segalman-Oldroyd
differential constitutive equations with a single relaxation time, that are assumed to
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T (-_1)

FIG. 1. w vs. .
govern the class of fluids under study. We refer to [8] for a derivation of the system
(JSO) starting from balance laws and constitutive relations in three dimensions, and
for references to relevant literature.

Throughout this paper, it is convenient to study the system (JSO) in the equiv-
alent form:

& & +a,
(z + +

(JSO1) at -a T

Z -Z

where

(1.1) S :-- vx / a + f x,

The boundary conditions become

(BC1) Sx(-1, t) 0,

and the initial conditions are

T -Ix.

=o, =o,

(IC1) S(x, O) So(x), a(x, O) a0(x), Z(x, O) Zo(x).
The steady states (S(x), Y(x), Z(x)) of (JSOI) satisfy the following relations (see

1
(1.2) (x)

1 + v 1 + v-2, Z(x) + 1 -2,

_= -fx=_O.

Thus the steady strain rate z(x) satisfies the equation w(x) - -ix, where
is the total steady shear stress, and where

(1.4) w({)
1 + s’--- -t-s, -oo < sc < oo.

For e < , the function w is not monotone (see Fig. 1). In this case, if is sufficiently
large, there are multiple steady states (x) satisfying (1.a), which are discontinuous
in x. The resulting steady velocity profiles (x) have kinks at points where x is
discontinuous. (For an example with one kink, see Fig. 2.)
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V (x)

-1 x* 0
FIG. 2. Velocity profile with a kink; w(x(x))
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Such steady states play a key role in one possible explanation of experimentally
observed spurt and related phenomena that was proposed by Malkus, Nohel, and Plohr
in [8]. The experiments involve highly elastic and viscous fluids, for which c and are
both small, with 10-2 or 10-3, and a is 7 to 10 orders of magnitude smaller than. The explanation in [8] is based on analytical results for the approximation of the
governing system (JSO1) when 0; these results are summarized in Propositions
2.3 and 2.4 below. The results in [8] suggest that the spurt mechanism is a bulk
material property of the viscoelastic fluid, rather than an an adhesive property as
currently believed by many rheologists. As a consequence of the nonmonotone shear
stress/strain-rate relation in Fig. 1, the polymeric fluid changes state in a thin layer
near the boundary occuring whenever T > TM, and giving the appearance of a "wall
slip" layer; furthermore, this layer exhibits complicated dynamics.

The main focus of this paper is to show that in a regime where < is fixed and
c > 0 is sufficiently small, the dynamics of the full system (JSO1) is similar to that
generated by the approximate problem with 0. We do so by studying the nonlinear
stability of discontinuous steady states of (JSO1) with respect to perturbations of
initial data, and the large-time asymptotic behavior of solutions in general.

Precise statements of our main results appear in 3. But loosely speaking, we
prove three results.

1. On any fixed interval 0 <_ t _< T the solution (S, a, Z) of (JSO1) converges
as - 0 to the corresponding solution for 0, for which S 0 and the second
and third equations of (JSO1) reduce to a pair of quadratic, autonomous ordinary
differential equations (ODEs) in which x enters only as a parameter through T. (The
case c 0 is thoroughly analyzed in [8]; a summary of those results will be given in
2.)

2. If c is small (in particular -4 should be small), then any discontinuous
steady state, for which w() takes values only on the strictly increasing portions of the
graph of w() (excluding a neighborhood of the max and min), is nonlinearly stable,
in a sense made precise in 3. Stability holds when the perturbation from steady state
in S is small in Hi(-1, 0) and the perturbations in a, Z are small in LI(-1, 0), and
are bounded pointwise by some large constant. Hence, there are smooth initial data
in the basin of Lyapunov stability of any such discontinuous steady state. Figure 3
illustrates the effect of such a perturbation on the strain rate obtained from the
kinked velocity profile in Fig. 2.

3. If c is sufficiently small, every solution of (JSO1) converges as t -o c to
some steady state solution (possibly discontinuous, possibly unstable) with

(1.5) S---0 in HI(-1,0), t), t)) --+
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for each x. We can guarantee that for some smooth solutions, the corresponding
asymptotic state is discontinuous in x, and the convergence in (1.5) is not uniform; such
solutions contain "transition layers." In general, we are unable to precisely identify
the limiting steady solution for a given set of initial data.

(x)

(x)

0
x*+$

FIG. 3. Smooth perturbation of velocity gradient.

2. Summary of previous results. Global existence of solutions to (JSO1)
with the boundary conditions (BC1) and initial conditions (IC) for arbitrary a and
e > 0 follows from a general result established in [9]. Somewhat different existence
results have been obtained by Guillop and Shut [4], [5]. We have the following.

THEOREM 2.1. (a) Assume So E Hs, for some s > , and co, Zo C. Then
there exists a unique classical solution of (JSO), (BC), (IC1) on [-1,0] [0,x))
having the regularity

S e C([0, oc), C) N C((0, oc), H2),
e c((0,

(:r, Z ( C ([0, o), C1).

(b) Assume So H, and co, Zo L. Then there is a unique semiclassical
solution on [-1, 0] x [0, cx)) (possibly having discontinuities in the stress components)
with

S e C([0, cx)), H1) g) C((0, oc), W2,),
St e C((O, oc), H8) for all s < 2,

if, Z e Cl([0, cw),n).
Given any bounded measurable representatives co,, Zo, of the equivalence classes co,
Zo L, there exist unique bounded measurable functions a,(x, t), Z,(x, t), repre-
senting a(.,t), Z(.,t) for each t > O, such that the map t - a,(x,t), Z,(x,t) is C
for t >_ O, and (S,, a,, Z,) satisfy the second and third equations of (JSO1) .for t > O,
where S, is the unique continous representative of S.

Throughout this paper, function spaces such as H8, C1, W2,, L refer to the
interval [-1, 0]. The class of solutions in Theorem 2.1(5) includes the discontinuous
steady states mentioned in the introduction. In what follows, we will identify a solution
(S, a, Z) in case (b) with some representative (S,, a,, Z,) as described above; then the
second and third equations in (JSO1) are satisfied pointwise for all t > 0. We remark
that, as shown in [9], discontinuities in the stress components (a, Z) for such solutions
can neither be created nor destroyed in finite time. This is so because S is continuous,
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and solutions of the ODEs in (JSO1) depend continuously on parameters both forward
and backward in time.

Since (JSO1) is endowed with the identity

(L) - a2+(Z+l)2 =-2 a2+ Z+

it follows that a and Z are globally bounded in (x, t), and these bounds are independent
of a and . But although solutions of (JSO1) exist globally, it has not been shown
that S remains globally bounded in (x, t). Observe that identity (L) is independent
of a, , T.

Nohel, Pego, and Tzavaras [9] studied the nonlinear stability of discontinuous
steady states and asymptotic behavior as t --, oc, for a model problem obtained from
(JSO1) by freezing Z at its steady state value Z+ 1 1/(1 +v2). The resulting model
system has the form

(M)
O=at +a+g

e

where g() /(1 + 2). The steady states ((x), (x)) of (M) satisfy (x) 0, and,
with x -(T- V)/e,

+ T.

System (M) admits energy estimates which imply that S e L([-1, 0] x [0, oc)) and
S(x,t) -+ 0 as t - oo, uniformly in x. The analysis of stability and asymptotic
behavior reduces to studying invariant sets of the second equation in (M), a single
ODE with x as parameter, forced by S with S small.

The results of [9] offered evidence that the discontinuous steady states of (JSO1)
are relevant to the study of the asymptotic behavior of smooth solutions. For system
(M) with a 1 (though this is not an essential assumption), it was shown that:
(i) Every solution of (M) converges as t --, cx) to some steady state. (ii) Discontinuous
steady states satisfying e / g’(x) _> co > 0 for some co are nonlinearly stable in the
following sense: Restrict initial data (So, a0) such that the initial values are close to
(0, Y(x)) except on the union/ of small subintervals centered around points Xl,..., xn
at which x is discontinuous. Then we have the following.

THEOREM 2.2. Let (O,-(x)) be a steady state solution of (M) as described above,
with a finite number of discontinuities, and satisfying

+ g’(x(x)) >_ co > 0 for a.e. x e [-1, 0]

.for some positive constant co. If the measure of bl is sufficiently small, there is a
positive constant o depending on bl such that, if < o, then .for any initial data
(So  ai4ui a

2
sup ISo(x)l < , S0(x)2 dx < -,

0<x<l

< *, x e [0,1] \b/,



916 JOHN A. NOHEL AND ROBERT L. PEGO

the corresponding solution (S(x,t),a(x,t)) approaches the steady state (O,Y(x)) as
t --. oc, in the sense that

S(z, t) 0 uniIormly,

t) e [0,11 \ U.

The main results of this paper, Theorems 3.4 and 3.5 below, are generalizations
of Theorem 2.2 from the model problem (M) to the system (JSO1).

The limiting case ( 0 in (JSO1) was studied by Malkus, Nohel, and Plohr
in [8]. Their analysis of this case predicts spurt as well as latency, shape memory,
and hysteresis under cyclic loading and unloading. Putting a 0 in (JSO1), one has
S 0 and the second and third equations reduce to the system of quadratic ODEs
parametrized by x"

(z +
(Q)

Zt -Z

(Recall T -x.) The steady states of (Q) are identical with the steady states of
(JSO) for ( > 0, but the dynamics of solutions of (Q) can be studied independently
for each x in [-1, 0]. Considering T -.fx as a fixed parameter in (Q), we summarize
the results of [8] as follows.

1. For each T > 0, system (Q) has no periodic or homoclinic orbits, and every
solution converges as t --. cx to some critical point.

2. The critical points of (Q) lie in the fourth quadrant of the (a, Z)-phase plane,
at the intersections of the circle

r:= z+5
and the parabola Z a(a- T)/.

The character of the critical points is described as follows: In Fig. 1, denote the
coordinates of the local maximum M and the local minimum m by (M, TM) and
(m, m), respectively; , and M are the critical values of the function w(), with

Tm < TM. There are three cases.

(i) If 0 < T < T,, there is a single critical point A (CA, ZA) which is a
globally attracting node.

(ii) If T > TM, there is a single, globally attracting spiral point C (ac, Zc).
(iii) If Tm < T < TM, there are three critical points A, B, C (see Fig. 4). A is

an attracting node, B is a saddle point, and C is generally an attracting spiral point.
(But for T close to Tin, C is an attracting node.)

Two saddle-node bifurcations occur as T varies" As T Tm from above, points
B and C coalesce, and as T TM from below, points A and B coalesce. The. set
of critical points of (Q) in the full (a, Z, T) parameter space is a single smooth curve;
this set is visualized in Fig. 5.

3. The asymptotic behavior of the solutions of (Q) is completely characterized
as follows: For T < Tm or T > TM, every solution tends to the unique critical point,
A or C, respectively. For Tm < T < TM, the behavior of solutions is described by
Proposition 3.5 in [8], reproduced here as the following.
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0 T (

F

A

X=--I

Z=--I

FIG. 4. Critical points of (Q) in case (iii).

NODES

FIG. 5. Manifold of equilibria of (Q).

PROPOSITION 2.3. The basin of attraction of A; i.e., the set of points that flow
toward A as t oc, comprises those points on the same side of the stable manifold
of B as A; points on the other side are in the basin of attraction of C. Moreover,
the arc of the circle F, through the origin, between B (aB, ZB) and its reflection
B (--aB, ZB), is contained in the basin of attraction of A.

These results for (Q) have the following consequences for solutions (0, a, Z) of
(JSO1) with c 0, for (x,t)

PROPOSITION 2.4. Consider (JSO1) with O.
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(i) The asymptotic behavior o] any given solution may be completely character-
ized. For each x in [-1, 0], we have (a(x, t), Z(x, t)) -- A, B or C as t -- oo, according
as to whether (ao(x), Zo(x)) lies in the basin of attraction of A, on the stable manifold
of B, or in the basin of attraction of C.

(ii) The stable steady states (0,-5, Z) of (JSO1) with ( 0 are those .for which

(-5(x), Z(x)) A or C .for a.e. x in [-1, 0].

3. Statements of main results. Our main goal in this paper is to extend as
far as possible the results of Proposition 2.4 for c 0 to the case when c, > 0 is small.
Throughout this paper, e is fixed, 0 < < . First, we study taking the limit c --, 0
in a finite time interval 0 < t < T. It will be convenient to write (JSO11 in the more
compact form

(3.11
St -Szx + a(x, u)S + b(x, u),

ut G(x, u)+ H(x, u)S,

where u (a, Z) and the components of G- (G1, G21 and H- (H1, H21 are

G(x, u) -a +
(3.2 e

a2(x, u) -Z a(T a),

(Z + 1)(T a)
Hl(x,u) (Z + 11

H2(x, u) ----,

and

(3.3) a(x, u) Hi(x, u), b(x, u) G1 (X, U).

In what follows, what is important about system (3.11 is that an a priori bound
exists for lu(x, t)l independent of S, namely, for some constant Mu independent of a
(and e), depending only on the initial data u(x, O) uo(x),

(3.4) sup [u(x,t)l < M=.
--l<x<O
t>o

Moreover, system (3.11 is linear in S, and the functions a, b, G, H and their Lipschitz
constants with respect to u are bounded by some constant L/e, where L is independent
of a (and e).

Our first result, proved in 4, bounds the Hi-norm of S globally in time for
small .

PROPOSITION 3.1. Let (S, u) be a solution of (3.1) with the properties given by
Theorem 2.1. Put A r2/4 and let [ be the constant

l/2.X jlX(2et)-l/2eX/2 dt + A1/2e-Xt/2 dr.
Jo

thenIf ae-2LK < 5,

(3.5) supIlS(’, t)llH, < 2llSollH,-t/2 /
0<r<t
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Immediate consequences of estimate (3.5) are the following.
COROLLARY 3.2. Under the hypotheses above, there are constants Co, Ct, de-

pending only on initial data, such that

(3.6) IIS(., t)llgl < Coe-et/2a + Cla, t > O,

(3.7) IIS(.,t)ll. _< c, t > t0(),

where

to(a)
2a log a-t 4

eA C1 211SOIIHI + -MuLe-2, Co

THEOREM 3.3. Let (S, a, Z)(x, t, a) denote the solution of (JSO1), satisfying
(BC) and (ICI). Let (O,5(x,t),Z(x,t)) be the solution of (JSO) with a 0 and
initial data 5(x,O) ao(x), 2(x, O) Zo(x). Fix T > O. As a -- O, we have

s(, t,,)= 0 + o(,),
,(, t, ,) ,(, t) + o(,),
z(, t,,) 2(, t) + o(,),

to(a) <_ t <_ T,
O<t<T,
O<t<T,

uniformly with respect to x on [-1, 0].
The estimates for a, Z are proved at the end of 4.
Our next result, proved in 5, concerns the stability of discontinuous steady states

of (JSO) for small a. Recall that A, B, C are the critical points of (Q) in the (a, Z)-
phase plane, and depend on T.

THEOREM 3.4. Let ho > O. Then there exist positive constants ao, o, and K so
that the following holds for a < ao. Let (0, (x)) be a steady state solution of (3.1)
such that

(x) (Y(x), Z(x))= A or C
C

when 0 <_ T <_ T, + ho,
when Tm -F ho <_ T < TM ho,
when TM-ho < T

for-1 <_ x <_ O. For 0 < 6 < 6o, assume that

IISoIIH < a and luo(x) (x)l < for x e [-1,0] \//,

where H C [-1, 0] is a set with meas(H) _< 52. Then for all t > O, the solution of (3.1)
with these initial data satisfies

IIS(’,t)llH1 < K5 and lu(x,t)- (x)l < K5 for x e [-1,01 \H.

Remark 1. Theorem 3.4 permits the steady state stress components E(x) to ex-
hibit an arbitrary pattern of discontinuities in the x-interval, where E(x) A or C is
possible.

Remark 2. Theorems 3.4 and 2.1 guarantee that such steady states (0,E) are
stable in the space H x Loo. But if Ilu0 -llLoO < is small, the set H will be empty,
and u0 will be discontinuous wherever E is. So the question arises: Can discontinuous
steady states attract smooth, classical solutions?
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Remark 3. The answer to this question is yes. Regardless of the pattern of dis-
continuities of (x), clearly there are always smooth initial data (So, u0) satisfying the
hypotheses of Theorem 3.4 for arbitrary 5 > 0. It suffices that So be small in H and
that u0- be pointwise bounded, and small in L1, since by Chebyshev’s inequality,

IIt0 IIL
__
3 implies meas{x luo(x)- (x)l > } <_ 2.

For u0 smooth and discontinuous, the "transition set" L/will be nonempty; but the
conclusion of Theorem 3.4 guarantees that u(x, t) -(x) stays small for every fixed x
for which it was small initially.

Remark 4. Using Theorem 3.5 below, it is possible to guarantee that for smooth
initial data that satisfy the hypotheses of Theorem 3.4 with discontinuous , there
is pointwise, nonuniform, convergence as t --. oc to an asymptotic state (0, uo(x))
which is discontinuous, with uo(x) (x) for x e [-1, 0] \ L/.

Remark 5. When starting from rest with (So, no) (0,0), and f > TM, the
solution of (JSOt) with a 0 converges as t c to the "top jumping" steady state
(0, (x)) with

f
() ((),())= C

for x where 0 _< T < TM,
for x where TM ( T

(see [8]). Theorem 3.4 does not address the stability of this solution, nor that of
corresponding "bottom jumping" solutions with (x) C when T is near Tin; the
crucial estimate (5.3) in 5 is not valid for such solutions.

Remark 6. It is seen in the proof that we require Kce-4 < 1/2, where K is a fixed
constant independent of c and e.

The last issue we address for (JSOt) is the asymptotic behavior of arbitrary
solutions, when c > 0 is small. Our ultimate goal is to prove the following.

THEOREM 3.5. For any constant M > O, there exists co > 0 such that if 0 < c <
so, then any solution (S, a, Z) of (JSO), (BC1), (IC1), with initial values satisfying

converges as t --. cx3 to some steady state (0, Y(x), Z(x)), in the sense that as t cx3,

IIs(., t)ll, , --, o,
a(x, t) --+ (x) for each x e [-1, 0],
Z(x, t) --. -(x) for each x e [-1, 01.

The proof of this theorem requires several steps, which we now outline. The
main point of view underpinning the analysis is that for small a, the bound on S from
Proposition 3.1 allows us to consider the evolution of u (a, Z) as given approximately
by the ODEs in (Q) for each x E [-1, 0] independently.

DEFINITION 3.6. For 5 > 0, a 5-approximate solution of the system (Q), written

(3.9) G(x, u)

with x fixed, is a C-function w" [0, cx) - R2 such that

I- G(x, w)l _< , o _< t < ,
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where [. denotes a vector norm in R2.
Recall from 2 that in [8] it was shown that the system (Q) has no periodic Of

homoclinic orbits, and the critical points are always hyperbolic (except exactly when
T T, or TM, where the saddle-node bifurcations occur). We will see that for small
5, it follows that any 5-approximate solution of (3.9) must approximately stabilize as
t --. oc. One result we will use in this direction says that a 5-approximate solution w
must enter a region where IG(x, w)[ is small, within a finite time T independent of x
(although u may later leave this region).

PROPOSITION 3.7. Let denote the manifold of critical points of (Q), given by

((x, u) -1 <_ x <_ 0 and G(x, u) 0}.

Let Af be any neighborhood of in [-1, 0] R2, and let Mu > O. Then there exists

50 > 0 and T > 0 such that if 0 <_ 5 < 50, and if u(x, t) satisfies (3.4) and is such that
u(x, .) is a 5-approximate solution of (3.9) .for each x, then for each x e [-1, 0] there
exists t < T with

(3.11) u(x, t) e Af.

Since the proof is short and elementary, we give it here in order not to interrupt
the development that follows.

Proof of Proposition 3.7. Choose h > 0 so that, defining

Bh($) := {(y, w) e [--1, 0] R2 there exists (x, u) e $ with Ix- y{ + lu- w < h},

we have B2h() C Af. For any given (x, u0) e [-1, 0] R2, the (exact) solution u(t)
of (3.9) with u(to) uo enters Bh() at some finite time t, by Proposition 2.4. Define
the time of first entry by

T(x, uo) inf(t u(t) e Bh()).

It is well known, and easy to prove, that T(x, uo) is an upper semicontinuous function
of its arguments. Since an upper semicontinuous function defined on a compact set
attains its maximum, then by confining attention to those solutions of (3.9) satisfying
(3.4) we obtain that

To :-sup{T(x, u0) -1 <_ x <_ 0, luol Mu < oc}.

Now, there exists 50 > 0, independent of x, u0, such that for 5 < 50, any 5-approximate
solution w to (3.9) with w(0) u0, [u0[ < M, satisfies [w(t)-u(t)[ < h for 0 _< t <_ To
(to prove this, use Gronwall’s inequality). It follows that w(t) E B2h() CAf for some
t < To, and this completes the proof. 1

Our strategy for proving [[S[IH1 --. 0 as t --. oc involves a bootstrapping argument,
based on an estimate which we will derive from Proposition 3.1, namely,

(3.12) lira sup {{S(., t)}}H <_ Kc limsup {IG(., u(-,
t---+oo

The idea is that if a is small, then the right side of (3.12) is small, so S is small
and u(x, .) is a 5-approximate solution of (3.9) with 5 small. This should lead to



922 JOHN A. NOHEL AND ROBERT L. PEGO

G(x, u(x, t)) becoming small for large t, so that the right side of (3.12) is smaller, and
S is smaller, etc.

The proof of Theorem 3.5 in 6 depends crucially on the following characterization
of i-approximate solutions to (3.9). We say a point p E R2 is a recurrent point of a
i-approximate solution u(t) of (3.9) if there exists a sequence {tn}=l with tn -- oc
as n - oc, such that

u(tn -* p ash

DEFINITION 3.8. For x E [-1, 0] we define the set R(x, 6) of possible recurrent
points of 6-approximate solutions of (3.9) by

R(x, ) {p R2 P is a recurrent point of some 6-approximate solution of (3.9)}.

PROPOSITION 3.9. There is a constant K independent of x, such that for 6 > 0
sufficiently small,

(3.13) sup IG(z,p)l <_ K6 for all z [-1, 0].

This result is a quantitative improvement (for a flow with a parameter x) of a
remark of Conley [2, p. 17] asserting without proof that for a strongly gradient-like
flow, if the (persistent) error made in following solutions is smaller than e for time
1, then asymptotically the approximate solution will lie in any given neighborhood
of the set of rest points, if e is small enough. Also see Norton [10], who studies the
general structure of flows with persistent errors.

The proof of Proposition 3.9 is the most technical part of this paper, and is given
in 7-10. It requires exploiting the gradient-like structure of the system (Q), and
decomposing the phase space of (3.9) into a nested sequence of positively invariant
sets, in such a way that Proposition 3.9 can be deduced. Recalling that Conley [2]
defined a "Morse decomposition" of a flow to be a nested sequence of (positively and
negatively) invariant sets, we call the (one-sided) decomposition that we require a
"semi-Morse decomposition."

DEFINITION 3.10. A semi-Morse decomposition for the system (Q) is a finite
nested sequence {Mj}=0 of subsets of the phase space [-1, 0] R2, with M0 D Mi 3

Mi, such that each Mj is positively invariant for solutions of (Q).
In such a decomposition, if a solution u(t) leaves one of the sets Mj \ Mj+I, it can

do so only by entering Mj+. We remark that this definition is related to the concept
of an "index filtration" introduced by Franzosa [3] to study Morse decompositions via
the Conley index.

The use we make of a semi-Morse decomposition in proving Proposition 3.9 is as
a quantitative, rather than theoretical, tool (cf. [2], [3]). The result we seek to prove
is the following.

PROPOSITION 3.11. There exist positive constants o and K, such that for any
< o and x [-1, 0], there exist nested sets

Mo(x, ) M(x, ) Mi(x, ),

which are positively invariant for 5-approximate solutions of (3.9) and are such that
(a) lul <_ Mu implies u e Mo(x, i);
(b) For any given j 0,..., i, either every 5-approximate solution of (3.9) that

lies in Mj(x, 5) must enter Mj+(x,5), or

(3.14) IG(x, u)l <_ K for all u Mj(x, ) \ Mj+(x, ).
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Given this result, it is clear that for 6 < 0 and any x E [-1, 0], if p E R2 is a
recurrent point for some 6-approximate solution of (3.9), then for some j, the point
p e Mj(x,8)\ Mj+l(x,), which must be a set where (3.14) holds. This will finish the
proof of Proposition 3.9. We note that since the bounds available for 6 do not depend
on x, it will be necessary to study in particular detail the flow of (Q) for values of x
near to where T T, or TM and saddle-node bifurcations occur.

4. Bounds for small a. In this section we prove Proposition 3.1 and the esti-
mates for (a, Z) in Theorem 3.3. Our method.of obtaining estimates on S is to use the
parabolic smoothing properties of the heat operator, and the variation of constants
formula.

On the Hilbert space X L2(-1, 0), let A denote the operator with domain

D(A) {S e H2(-1, 0) Sx(-1) 0 S(0)}

given by AS -Sx. The operator A is self-adjoint and positive, and A := r2/4 is its
first eigenvalue. Parabolic smoothing estimates, for equations of the form St + AS
f(t, S) are well discussed in Henry’s book [6]; here we only need the following estimate,
which has an elementary proof via eigenfunction expansions (see [6, p. 17]). Define

H {v e HX(-1,0)[v(0)= 0}

and recall the elementary estimates

IIvlIL= --< IIvlIL --< IIv IIL 
For v e H, we define Ilvllz-z "-IIvllz=.

LEMMA 4.1. For t > 0 we have

for v E H.

II -A VlIH IIvlIH  V e H2,(4.1)
II -A vlIH’ IIvlIL K(t), V e L2,

where

(2et)-/2 for t <(4.2) K(t) A/2e_t fort > 1/2.
For later reference, we remark that

o 3 2
(4.3) K(t) dt

rx/_ < -.
Now, apply the variation of constants formula to the first equation in (3.1). Sup-

pressing the x-dependence, we obtain

(4.4) S(t) e-ht/aSo + e-eh(t-r)/a(aS + b)(T) dT.

Taking the norm and using the estimates of Lemma 4.1, we get

/0(4.5) IIS(t)IIH1 <_ e-eAt/a]]SO]]H + g (Ls-ll]S(T)]IL q-]]b(T)]]L2) dT.
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To prove Proposition 3.1, define

Ms(t) sup
O<’<t

M(t)- sup IIb(T)IIL.
O<’<t

Let T > 0. From (4.5) we obtain, for t _< T,

Using (4.3), and since fo K(t)et/2 dt =/, the right side is less than

[ 2 ]llSoll, +T/ a-2L[fMs(T) + a-IMb(T)
Hence

2a
(1 -ae-2LK)Ms(T) < IISolIH e-XT/= + --e Mb(T),

and Proposition 3.1 follows.
To prove the estimates for (a, Z) in Theorem 3.3, let t (, 2), so that (0, t) is

the solution of (JSO1) with a 0 having initial data (0, a0, Z0). We have

ut G(x, u) + HS, t G(z, ).

Then (u t)t G(x, u) G(x, t) + HS. Using the fact that u(x, 0) t(x, 0), we
obtain for 0 < t _< T,

lu(x, t) (x, t)l <_ -tL (lu(x, T) t(X, T)I + IS(x, T)I dT.

By the estimates in Corollary 3.2, for some constant K independent of a, depending
on T,

T

IS(x, T)I dT< ga, -1 < x < O.

Then as a --, 0, Gronwall’s inequality implies u(x,t)- t(x,t) O(a) on [0,T],
uniformly with respect to x on [-1,0].

5. Stability of discontinuous steady states. In this section we prove Theo-
rem 3.4. Our first step is to obtain another bound for S. Write the perturbation in u
as w(x, t) u(x, t) (x), and define

M,(t) sup I(, t)l, Ms(t) sup IIS(., t)l]H1.
O<’<t O<’<t

e[-1,o]\u

Using (3.4) and the fact that b(x, (x)) 0, we have, for 0 _< T < t,

lib(., u(., ))11. -< -=LII(., )11. -< -2L2(M(t)2 4" 62M2)
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Assuming ae-2L/ < 1/2 we may invoke Proposition 3.1 to conclude that

(5.1) Ms(t) g 25e-)’/2a + ae-2L(Mw(t) + 8Mu).

Next, since G(x, (x)) 0 we may write

G(x, u) 0 + J(x)w + E(x, w),

where the Jacobian matrix

J(x)
cOG

(x ) --u 1 (T- 2y)
:1 (T_I- ) )

and for some constant K, [E(x, w)l <_ e-:Klwl for x e [-1, 0], all w. Here and below
(in this section), K denotes a generic constant independent of a and e.

From the hypotheses of the theorem and the results of [8], it follows that the
matrix norm [J(x)[

_
K/e for all x and the eigenvalues of J(x) have real parts

bounded above by -/< 0, where - and K depend on h0 but not on a or e. Then
(replacing K by a larger K if necessary) we have that for each x E [-1, 0],

(5.3) letJ(x)

_
e-:Ke-.

For each x, the perturbation w satisfies

wt J(x)w + E(x, w) + H(x, u)S.

Applying the variation of constants formula, we have

w(x, t) etJw0 -[- e(t-r)J(E + HS)(T)dT,

which we may bound as follows for x E [-1, 0] \ H:

[w(x, t)l <_ e-:K5 + e-:K e-(--)(-:KIw(x, T)[2 + -:LIS(x, T)l) dT.

Using estimate (5.1) and the fact that

e-’r(t-’)lw(x, T)I2 dT <_ 7-:M(t)2,

we find, taking the supremum over x [-1, 0] \/X (and taking K larger if necessary),
that

Mw(t) <_ KS(e- + Oe-4) -- Kae-4Mw(t) + Ke-2Mw(t)2,

or

0 <_ Ko- K:M(t) / K2M(t)2,



926 JOHN A. NOHEL AND ROBERT L. PEGO

where
Ko=K(e-l+a-a), KI=I-Ka-4, K2=e-2K.

Suppose c is so small that Kae-4 < 1/2, and is sufficiently small. Then, since Mw(t)
is continuous in t and Mw(0) < 5, and since (5.5) is violated if Mo(t) 4Koh/K1, we
find

Mw(t) < 8K05 for all t > 0.

It then follows from (5.1) that for some K,

Ms(t)<K5 for allt>0

as well. This finishes the proof of Theorem 3.4.

6. Convergence as t -. x). Here we prove Theorem 3.5, assuming the validity
of Proposition 3.9, whose proof appears in 7-10. In this section, K denotes a generic
constant independent of a (but K may depend on and M).

Start with estimate (3.5) in Proposition 3.1, and translate from the interval [0, t]
to [to, to + t] for to > 0 to obtain for t > 0,

4,
up lib(., (., o + -,-))11,.,..IiS(.,o + t)llH’ <-- 211S(’,t0)IIH’-’/:’ +

0<-,-<

Letting t - c, then to -- c, we conclude that

So := limsup IIS(., t)llH < 4 limsup lib(., u(., t))ll.
t---c t-o

Since b G1, this yields (3.12).
Our goal is to show that S 0, then establish that limt-o u(x, t) exists for each

x by studying the ODE for u in (3.1). Recall that b(x, u(x, t)) is uniformly bounded
independent of x, t, and c. Applying the Lebesgue dominated convergence theorem,
we may easily infer that

(6.2) lim sup lib(-, u(., t))llL < limsup b(’, u(-, t))l IIz.

We know that Ib(x, )1 <_ IG(x, u)l, so that b may be replaced by G on the right-hand
side of (6.2). For large t we have the bound

IH(x, u(x, t))S(x, t)l < KIIS(., t)llH < 2KS.

Thus for x fixed and t large, we may consider u(x, t) as a -approximate solution of
(3.9) with

(6.3) 8 2KSo.

With R(x, ) defined (see Definition 3.8) as the set of possible recurrent points of such
8-approximate solutions, it is clear that

(6.4) lim dist(u(x, t) R(x, )) O,
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and hence, for all x E [-1, 0],

(6.5) limsup IG(x, u(x, t)) <_ sup

Invoking Proposition 3.9 and (6.1), (6.2), we obtain

Soo <_ Ka5 <_ 2K2aSoo.

Hence if a is sufficiently small, so that 2K2a < 1, it follows that So 0.
To show that limto u(x, t) exists, observe that since S 0, any recurrent

point of u(x, .) lies in R(x, 5) for all 5 > 0. By Proposition 3.9, such recurrent points
must be critical points of (Q). Since critical points of (Q) are isolated and u(x, t) is
bounded, it follows that u(x, t) must converge to some single critical point as t --.
This finishes the proof of Theorem 3.5, assuming the validity of Proposition 3.9.

7. Local coordinates and estimates near the manifold of equilibria. The
next three sections are devoted to the proof of Proposition 3.11, from which Propo-
sition 3.9 follows. The construction of the nested sets Mj(x, 5), which are positively
invariant for 5-approximate solutions of (3.9) with x fixed, must be done differently in
three cases. For some small h0 > 0, which will be fixed later, the cases correspond to:

(i) T <_ Tm- ho or T >_ TM+ ho. In this case system (Q) has a single uniformly
attracting critical point, A or C;

(ii) Tm/ho <_ T <_ TM ho. System (Q) has three uniformly hyperbolic critical
points, a saddle B, and two attracting points A and C;

(iii) I- Tml < ho or I- MI < h0. System (Q) undergoes a saddle-node
bifurcation.

To define the sets Mj(x, 5), we need to construct local coordinate systems near
the manifold $ of critical points defined in (3.10), using linear approximation of (Q)
and the unstable and center manifold theorems. The number h0 above, for example, is
determined by applying the center manifold theorem in a neighborhood of the saddle-
node bifurcation points.

In the rest of this section, we study the manifold of critical points $ and describe
local coordinate systems for (x, u) near the manifold $ in three regimes:

(a) near the curves of stable critical points (x, A(x)) and (x, C(x));
(b) near the curve of saddle points (x, B(x));
(c) near the saddle-node bifurcation points.
In each coordinate system, we derive the basic estimates for 5-approximate solu-

tions of (3.9) that will be used to construct the semi-Morse decomposition. Some of
the sets Mj(x, 5) will not depend on 5; in such cases, the second argument may be
omitted.

7.1. Critical points of (3.9). Without loss of generality, we may assume that
f > TM, so that as x ranges from zero to -1, T -fx ranges from zero to f > TM.
Then we may define XM < Xm in [-1,0] so that

(7.1) --fXM--TM, -fxm=Tm.

From (1.2)-(1.4), we have that the manifold of critical points $ is the union of three
curves:

{(x,A(x))[XM <_ x <_ 0} (2 {(x,B(x))[XM <_ x <_ xm}
{(x, C(x)) -1 <_ z <_ x.}.
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For P A, B, or C, the critical point P(x) has the form

P(x)=(ap(x),Zp(x))=
1+2’1+2

where p(x) is a root of w() T. Here

is the smallest root, defined for XM
is the middle root, defined for XM
is the largest root, defined for -1 _< x _< x,.

Let us recall now from [8] some properties of the linearization of (3.9) at the
critical points (x, P(x)). For P A, B, or C define

(7.3) 1(1)OG - e+
1+2JP(x)=-u(X’P(x))= 1 ( , )- e 1 +2

-1

We have etrJp(x) -2e- 1/(1 +,) < 0 always. Also, edetJp(x) (1 +2p)W’(p),
which is positive for P A, XM < x <_ O, and for P C, -1 _< x < x,, and is
negative for P B, XM < x < Xm. Correspondingly, we have the following (see [8]).

LEMMA 7.1.
(1) For XM < x <_ O, JA(x) has two negative eigenvalues.
(2) For-1 <_ x < xm, Jv(x) has two eigenvalues with negative real part.
(3) For XM < x < xm, JB(X) has one negative and one positive eigenvalue.
(4) For x XM, JA(x) JB(x) has one zero and one negative eigenvalue.
(5) For x Xm, Jv(x) JB(x) has one zero and one negative eigenvalue.
Note also since e _< w() T, we have elJp(x)l _< K independent of x, P, and

e, where I" is the matrix norm. For e fixed, Jp(x)l <_ Ko independent of x and P.

7.2. Local coordinates. For later reference, we note that if (x, P(x)) is a crit-
ical point of (3.9), then since G(x, P(x)) 0 and G is quadratic, we may write

(7.4) C(x, u) Jp(x)(u- P(x)) + E(x, u- P(x)), where IE(x, w)l <_ Klwl
for all w E R2, and some constant K1 independent of x.

Case (a). We study uniformly stable branches of the manifold of critical points.
For h > 0 given, put

$a(h) {(x,A(x)) XM + h <_ x <_ 0} U {(x, C(x)) -1 <_ x <_ Xm h}.

LEMMA 7.2. Let h > O. Then there exist positive constants K2 > 0 and "y > 0
such that whenever (x,P(x)) e $a(h), then with J JR(x) we have

(7.6) exp(Jt)[ <_ K2e-Tt, t >_ O,

and, with D Dp(x) defined by

(7.7) D exp(Jt)T exp(Jt)dr,
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we have DT D, jTD q- DJT -I, where I is the 2 2 identity matrix, and .for all
w E R2,

For the proof, see [1, Appendix 4].
Now suppose that u u(x, t) is a i-approximate solution of (3.9), with x fixed

so that (x,P(x)) e a(h) as above. That is,

(7.9) u, G(x, u) + f(t), where If(*)l-< *,

and ,f is continuous. Define w(t) u(x, t)- P(x). Using (7.4) we have, with J

w Jw + E(x, w) + f(t), If(t)l _< &

From this we derive, using the inequalities (7.8),

wTDw 2wTD(Jw + E + ,f) <_ -Iwl2 + --_. lwl(Klwl + ).d--

Thus we obtain

d wTDw < 1
(7.10) Iwl2 < 0,

provided

Using (7.8), we conclude that (7.10) also follows if

1
(7.11) K,5 <_ (wTDw)l/2 <_ -,
where K is a suitable constant (depending on h but not on x).

Case (b). We consider a uniformly hyperbolic branch of saddle points in the
manifold of critical points. For h > 0 given, put

(7.12) $b(h) {(x,B(x)) xM + h <_ x <_ x, h}.

Denote the eigenvalues of JB(x) by Al(x), A2(x), with A(x) < 0 < A2(x) for XM <
x < Xm. Let R(x) be a smooth matrix defined for x E (XM, Xm) whose columns r (x),
r2(x) are eigenvectors of JB(x) corresponding, respectively, to A(x) and A2(x). For
(x, u) (XM,Xm) R2, change variables to (x, ) by requiring

u B(x) R(x) rl (X)I -[- r2(x)i2.

Invoking the unstable manifold theorem, see [7], we have the following.
LEMMA 7.3. Let h > O. Then there exists ]o > 0 such that, for XM q- h <_ x <_

Xm- h, the unstable manifold of B(x) in (3.9) is parametrized locally, by

(7.14) ’tl (X, ’2) for -<
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where (x, y) is smooth, with (x, 0) 0 O/Oy(x, O) ]or all x.
We make a further change of variables to (x, w), putting

(7.15) wt @1 (x, @2), w2 @2.

Then, given h > 0, there exists v/1 > 0 such that the change of variables from (x, u)
to (x, w) is .smooth and defined for

(7.16) XM -}" h <_ x <_ xm h,

In terms of the variables (x, w), the system (3.9) may be written in the form

(7.17)
Wlt 1 (X)Wl -]- F1 (x, Wl, w2),
w2t ,2(x)w2 -- F2(;T, Wl, w2),

where, with F(x, w) (F1, F2), F is smooth, with F(x, O) 0 OF/Ow(x, 0),
and moreover, since Wl 0 is an invariant manifold of (7.17), Fl(x, O, w2) 0 for
[w2[ _< /1. Hence for some constant K0, we have the estimates

(7.18)

Suppose now u u(x, t) is a &approximate solution of (3.9), where (x,B(x)) e
$b(h) as above. For some /> 0 (depending on h but not on x), if Is(x, t) B(x)l < rl,
we may change variables from (x, u) to (x, w) as above, obtaining

(7.19)
Wlt 1 (X)Wl -- F1 (x, Wl, w2) -- fl ($),
w2t 2(x)w2 -]- F2(x, Wl, w2)-- f2(),

where for some K > 0 (depending on h but not on x), If(t)[o <_ KS. Then so long as

[w[o _< /1, we have

d
d- w2 2Wl()lWl -}- F1 -}- fl) 2lWl2 -" 2lWll(KolwlIwloo + K)

< )Wl <0,

provided that

(7.21) 2Kolwloo < 1/2lXll and 4K < Illwl,

Similarly,

d
d- w22 2w2(A2w2 + F2 + f2) _> 2A2w22 21  l(Kol l + K)

>w > 0,

provided that

(7.23) 2K01w21 < 1/21A21 and 2K01wll2 < 1/2A21w21 and 2K5 < 1/21A211w21.
Case (c). We study the branches of critical points close to the bifurcation points

(XM, A(XM)) and (x,, C(xm)). For h > 0, define

c(h) ={(x,P(x)) P A or B and XM (_ X

_
XM -}- h}

U {(x,P(x))IP C or B and Xm h <_ x <_ Xm}.
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Note that a(h) (J b(h) U :c(h) for any h > 0.
We study a neighborhood of the point (xo, Po), which denotes either saddle-

node bifurcation point (XM, A(XM)) or (Xm, C(xm)). From Lemma 7.1, The Jacobian
matrix Jo OG/Ou(xo, Po) at this point has eigenvalues A1 < 0, A2 0. We let rl, r2
denote corresponding right eigenvectors of J0, and let R be the matrix with columns
rl, r2.

Now, we wish to augment system (3.9) by regarding x as an unknown satisfying
the equation =0. Define

x 0 - 0 0

where U0 (_P0, x0) and G OG/Ox(xo, Po). System (3.9) becomes the augmented
system U G(U). The Jacobian matrix of this system at Uo is J, which has (gener-
alized) eigenvectors of the form

r 0 2 0 r3

satisfying A, 2 0, 3 a22, where al, a2 are determined by requiring

Gx --lalrl a2r2.

Thus, if/ is the matrix with columns , 2, 3, we have

AI 0 0 )A= 0 0 a2
0 0 0

Next, make a change of variables from U (u, x) to W (, y), where

U Uo RW, i.e., u Po rll -+- r2?2 + alrly, x xo y.

In these variables, the system becomes

(7.26) IfV AIfV +/(I),

where #(0) 0 and 0//0I(0) 0, and in fact, # 0.
We may now apply the center manifold theorem to system (7.26); see [7]. The

result is the following.
LEMMA 7.4. There exists hi > O, and a neighborhood Afh of ITV O, such that

(7.26) has a locally invariant manifold in Afh of the .form

(z02, y), with (0, 0) 0, 0(0, 0) 0,

where 0 is the gradient of . Here is defined for max(l21, lYl) < h and is Ck

(k is arbitrary, but Afh depends on k).
The center manifold need not be unique, but since A < 0, the center manifold

is a center-unstable manifold, so any solution I(t) that lies in Afh for all t < 0 must
lie in each such center-unstable manifold [7]. In particular, equilibria in Afh and their
local unstable manifolds lie in the center manifold above.
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We make a further change of variables, defining

(7.27) w: 1 (2, Y), W2 2.

For some h2 > 0, the change of variables from U (u, x) to W (w, y) is Ck (for
any fixed k) and is defined for IWIoo max(]w:l, Iw21, lY]) -< h2. In these variables,
the system becomes

Wlt ,lWl - Fl(Wl,W2, y),
w2t a2y + F2(wl, w2, y),
y =0,

or W AW + F(W), where

OF
(7.29) F(0) 0, OW (0) 0, and F (0, w2, y) 0;

the center manifold Wl 0 is locally invariant. For some K0 > 0 we have the estimates

IFx(w)l Kolw IIWI , IF2(W)I K01Wl for IWloo h2.

In what follows, we need to study a bit more closely the equation on the center
manifold. From the results so far, there exists a Ck function a(w2, y) such that on the
center manifold w 0 we have.

(7.31)

where a(O, O) a2 and b
LEMMA 7.5. With an appropriate choice of the null eigenvector r2, we have that

b 1. Moreover, we have

a2 < 0 at (XM, A(XM)), a2 > 0 at (Xm, C(xm)).

Proof. Provided we show b 0, we can arrange b 1 by replacing r2 by r2/b.
(The corresponding value of a2 is replaced by ba2.) To compute b and a2, let g be a
left null eigenvector of Jo, satisfying tJo 0. Then a2 is determined by a2 gGx/gr2.
From (7.3) we see that we may take, with p(xo),

e= (1, ).(7.32) r2= e+
Then from (3.2) we compute

--( ) --(1)f Zp+l f

Hence erz +w() > 0, and/G= (-f/e)(1-:)/(l+Z) f(1 +z) > 0, which
follows from 0 w’() + (1 2)/(1 + 2)2 at p(xo). So, with the choice of
r2 in (7.32), we have a2 > 0 at both saddle-node bifurcation points.
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To compute b, we use (7.29) and the fact that 0(0, 0) 0 from Lemma 7.4. We
have

02F2 02/22b Ow (0) 022 (0) g c02G(r2, r2),

where 02G is the Hessian of G. From (3.2) and (7.32) we compute b 1/2 02G(r2, r2)
((2 1) 1/(1 + 2)). Since w’() 0 we have (2 1)/(1 + 2)2, so we find
b 3(2 3)/(1 + 2)2. Now w’(V) < 0, so A(XM)2 < 3 < C(X,)2. Thus
we find that b < 0 at (XM, A(XM)), and b > 0 at (Xm, C(xm)). Replacing r2 by r2/b
as discussed previously, the Lemma follows.

Now suppose that u u(x, t) is a 5-approximate solution of (3.9), lying in a neigh-
borhood of one of the saddle-node bifurcation points, where the change of variables
from (u, x) to (w, y)is defined. In the (w, y)variables, we have

Wlt ,lWl "- F1 (Wl, w2, y) -+- fl
w2t w + a(w2, y)y + g2(wl, w2, y) -- f2(t),
Yt O,

where for some constant K > 0, If(t)lo <_ KS, and Ig2(wl,w2,y)]
Then, so long as IW]o < h2, we have the following estimates:

(7.34) Izoxlt (sgnwx)(),xwx+Fx+.fi)  xlZOll+KolzoxllWl +K 
_

1/2  lzoxl < 0,

provided that

(7.35) KolWl 1/41 xl and 4K5 _< I ,llwxl,

Also, we have

(7.36) sgn (w2 t) sgn (w + ay),

provided

(7.37) 2K max(5, h2lwl) _< Iw, +- ayl.

8. A semi-Morse decomposition: case (i). In this section we construct
nested, positively invariant sets

(8.1) Mo(x) D Ml(x) M2(x, )

in the case (i) mentioned at the start of 7, namely, the case when the system (3.9)
has a single uniformly attracting critical point. This is the simplest case.

We first mention that in all the cases (i), (ii), and (iii), the first positively invariant
set Mo(x) will be chosen, independently of both x and 5, in the form

Mo(x) {u (a,Z) la2 + (Z+ 1)2 _< K}

for K > 1 sufficiently large, so that lul < M implies u E Mo(x). For a 6-approximate
solution of (3.9), we may obtain

d
d-(a2 + (Z + 1)2) < -2(a2 + (Z + 1)Z)+ (a2 + (Z + 1)2)1/25.
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It follows that the set in (8.2) is positively invariant for 6-approximate solutions, if 6
is sufficiently small, independent of x.

Now let h > 0. (This number will be fixed in 10.) We employ the variables
introduced in 7, Case (a). For (x, P(x)) e .a(h), P- A or C, we select D DR(X)
and put

(8.3) Np(x, ) (u P(x) + w (wTDw)l/2 <_ KaS},

where Ka is the constant in (7.11). According to (7.10) we have the following.
LEMMA 8.1. The sets Np(x,) are positively invariant .for 5-approximate solu-

tions of (3.9) provided <_ <_ 1/K2.
Case (i) corresponds, by definition, to the cases

(s.4) xm+h<_x<_O and -1 _x_xM.--h.

Corresponding to these two subcases, the unique critical point of (3.9) is P A or C,
respectively. For x satisfying (8.4), we put

(8.5) Ml(x)-Yp x, M2(x, 6) Np(x,

assuming 6 _< 1/K2a. With these definitions, the sets in (8.1) now satisfy the following.
PROPOSITION 8.2. Let h > O. Then there exist constants 60 > O, K > 0 such

that, if 6 <_ 60 and x satisfies (8.4), then every 6-approximate solution of (3.9) that
lies in Mj(x, 6) must enter Mj+(x,6), for j 0 and 1. Hence, every recurrent point

of such a 6-approximate solution must lie in M2(x, 6). Moreover, we have

(8.6) sup ]G(x, u)l <_ KS.
uEM2(x,6)

Proof. Ifu E M2(x, 5), then by using Lemma 7.2 we have lu-P(x)l2 <_ 2KoK252,
so (8.6) follows. From (7.10), (7.11) it is clear that any &approximate solution lying
in M(x) must enter M2(x, ). To prove the analogous assertion for Mo(x), we apply
Proposition 3.7. Let

Jf {(x, u) e [-1, 0] x R2 u e Ml(x) if x satisfies (8.4)}.

Now Af is a neighborhood of t, the manifold of critical points; so by Proposition 3.7,
there exists 60 > 0 such that, if 6 < 60 and x satisfies (8.4), then any &approximate
solution of (3.9) lying in Mo(x) will enter M(x). This finishes the proof of Proposition
8.2. D

9. A semi-Morse decomposition: case (ii). Case (ii) corresponds to

(9.1) XM +h <_ x <_ xm-h.

Here h will be fixed in 10, as we have mentioned earlier. Because of the presence of
the saddle B in this case, the semi-Morse decomposition we require has more sets than
in the last section, seven in all: Mo(x, 5),..., M6(x, 5). A sketch of the decomposition
is given in Fig. 6; a detail of the neighborhood of the saddle B appears in Fig. 7. In
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FIG. 7. Detail near the saddle.

these figures, the numbers j 0,..., 6 indicate the location of the region Mj \ Mj+I;
the flow proceeds in increasing numerical order.

The smallest sets in the semi-Morse decomposition will be neighborhoods of the
stable critical points A and C. Using Lemma 8.1 and the definition in (8.3), we will
put

M6(x, ) NA(x, ) U Nc(x, ),

(1) (1)Mh x NA x, - U Yc x, -a
We note that from (7.10), (7.11) it is clear that for < 1/K2, any -approximate
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solution of (3.9) lying in Mh(x) must enter M6(x, ).
Now, to study the flow near the saddle point B, recall the results of 7, case (b).

In the notation of that section, for x satisfying (9.1), and r/< r/1 (r/1 is given in (7.16)),
we may define a neighborhood of B(x) by

(9.3) Ns(x, ) {u B(x) -F R(x)(wl -F (x, w2), w2)T lwlo < }.

From the estimates (7.20)-(7.23) we may infer the following.
LEMMA 9.1. There exist constants 2, Kb > 0 (depending on h but not on x) such

that if Kb6 < 12 and u u(x, t) is a 6-approximate solution lying in NB(X, r/2), then

implies Iwl is strictly decreasing;
implies IT21 is strictly increasing.

To define the next set M4(x, ) of the decomposition, we construct sets FA(X),
Fc(x) that serve as "funnels" to connect the neighborhood NB(x, r/2) to Mh(x). In
Ns(x, r/2), the points corresponding to (w, w2) (0, r/2) and (0,-r/2) lie on the un-
stable manifold of the saddle B(x), and the corresponding (exact) forward trajectories
of (3.9) from these points approach the stable critical points A(x) and C(x) as
respectively (upon a suitable choice of the orientation of the eigenvector r2 in 7).

To construct FA (x), let z(x, t) denote the exact solution of zt G(x, z), so that
z(x, O) corresponds to (w, w2) (0, r/2). Because solutions of (3.9) depend contin-
uously on x and initial data, and the fact that NA(X, 1/K2) is positively invariant,
there exist constants r > 0, T > 0 (depending on h but not on x) such that

(1)(u e R2 lu- z(x, T)] <_ rl} C NA x,-a
for x satisfying (9.1).

Let L be an upper bound for the Lipschitz constant of G in M0, and let > 2L.
Suppose u u(x, t) is a i-approximate solution of (3.9), and so satisfies (7.9). Then

J.
=lu-1TM 2-,(u- )(-(- ) + a( u)- a(,z) + y)
dt

_< 2e-2t((- / L)lu- zl 2 / lu- zlS) < O,

provided 25 < aim- z I. From this we deduce the following.
LEMMA 9.2. For x satisfying (9.1), define

FA(X) {u e R2 lu- z(x,t)l <_ e(t-T) for some t e [0, T]}.

Then, if < e;ye-T/2 and < 1/K2a, the set FA(X) U NA(X, 1/K2a) is positively
invariant for -approximate solutions of (3.9). Moreover, any - approximate solution

tia i FA() .ttNA(, 1/K).
In a similar manner, we construct the set Fc(x), and we may say that for 8

satisfying the conditions of Lemma 9.2, the set

M4(x) FA(X) U FC(X) U Mh(X)

is positively invariant for 5-approximate solutions, and any di-approximate solution
lying in M4(x) must enter M5(x).
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The remaining sets M1 (x, 5) through M3(x, ) will be defined by using the coor-
dinates (Wl, w2) in the neighborhood of the saddle point B. Let K > 0 be a uniform
bound for the Lipschitz constant of the change of variables from (wl, w2) to u in
NB(x, vl2). Define

e-T }N(x) u e N(x, rl2) lwl <_
K

By Lemma 9.1, if 5 < ye-T/KKb, then any &approximate solution of (3.9) which
leaves N(x) must do so at a point where w2 y2 or -/2 and Iw < le-T/g" Thus
this solution must enter one of the funnels in M4(x). We define

M1 (x) N(x) U M4(x).

Next, with reference to Lemma 9.1 we define

and put

M2(x, 5) M4(x) U N2(x, 5), M3(x, ) M2(x, ) \ N3(x, ).

For sufficiently small (independent of x), the sets M(x), M2(x, ), and M3(x, ) are
positively invariant for &approximate solutions. Note that we have

Ml(x) \ M2(x, ) C {u (F_ NI()I Ill _> K5},
M2(x, ) \ M3(x, 5) c {u E NI() Iloo <_ K 5} N(, ),
M3(x, 5) \ M4(x) C {u Nl(x) tWl

_
Kb5 and Iw2l > KbS}.

By Lemma 9.1, for 5 sufficiently small, if u(x, t) is any &approximate solution lying
in M(x) \ M2(x, 5), then Iwl is strictly decreasing, so u must enter M2(x, 5). If u
lies in M3(x, ) \ M4(x), then IT21 is strictly increasing, so u must enter M4(x).

PROPOSITION 9.3. Let h > O. Then there exist constants o > O, K > 0 such
that, if <_ o and x satisfies (9.1), then:

The sets Mj(x,5) are positively invariant .for 5-approximate solutions of
(3.9) .for j 0,..., 6.

For j O, 1, 3, 4, and 5, every 5-approximate solution that lies in Mj (x, 5)
must enter Mj+I (x, ).

Hence every recurrent point of a 5-approximate solution must lie either in N3(x, )
M2(x, ) \ .M3(x, ) or in M6(x, ), and there we have

(9.5) sup IG( ,u)l < Ka, sup Ia(x,u)l < K&
ueN3(x,5) uEMe(x,5)

Proof. The inequality (9.5) follows easily from the definitions of N3(x, 5) and
M6(x, 5) and Lemma 7.2. The only assertion remaining to be proved is, that for 5
sufficiently small (depending on h but not on x), if u(x, t) is a &approximate solution
lying in Mo(x), then u enters M(x). But this is proved exactly the same as in the
proof of Proposition 8.2, by using Proposition 3.7, this time taking

Ar e 0l I- e M (x) if x satisfies (9.1)}.
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10. A semi-Morse decomposition: case (iii). In this section we study the
behavior of i-approximate solutions of (3.9) for x near xm and XM, the points at
which saddle-node bifurcations occur in (3.9). In fact, it suffices to consider x near

xm (where the critical points B and C coalesce); the situation for x near XM (where
A and B coalesce) is entirely analogous. The constructions in this section are similar
to those in 9. The semi-Morse decomposition can consist of as many as nine sets,
Mo(x, ),..., Ms(x, 5). A sketch appears in Fig. 8, with details of the neighborhood
of the saddle-node pair in Figs. 9 and 10, corresponding to a fixed/f, for two different
values of x near xm with x < Xm. (Two other possibilities occur with x > xm, when
the critical points B and C do not exist.) As before, the numeral j 0,... ,8 in the
figures indicate the region Mj \ Mj+I.

Z o

\ C"

FIG. 8. Semi-Morse decomposition, case (iii).
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FIG. 9. Detail near bijurcation, subcase 2.
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FIG. 10. Detail near $ifurcation, subease 3.

To begin, we invoke all the analysis of 7, case (c). In terms of the variables
W (Wl, w2, y) (recall y x- x,.), the results in (7.33)-(7.37) have been obtained.
We may summarize these as follows.

LEMMA 10.1. There exist positive constants h2, gc, and h such that for Kc <
h2 and Ix Xml < h, if u u(x, t) is a 8-approximate solution of (3.9) satisfying
Iwlo max(Iwll, Iw21) <_ h2, then

{Wl{ ’ KaY
+ _> ma (Ko, ,

implies {Wl{ is strictly decreasing;
implies sgn (w2t) sgn (w22 + ay).

Moreover, if h is sufficiently small (independent of x) we have

(10.1)
0

+ > > 0,

h + a(h2, y)y > 0

2
Ow (w + ay) >_ 1

for {y{ < h.

for {y{ < h, {w2{ <_ h2,

The result of this lemma fixes the value of h to be used below and in previous
sections. Now, for [x- Xm[ < h, the smallest sets in the semi-Morse decomposition
will be neighborhoods of the stable critical point A(x). Using Lemma 8.1 we put

Ms(x, ) NA(x, ), (1)MT(x) NA X,-a
From (7.10), (7.11), for < 1/K2a, any -approximate solution lying in MT(x) must
enter Ms (x, 3).

For the next step, we introduce a funnel FA (x), constructed in a manner entirely
analogous to that in section 9, having the form in Lemma 9.2, where now z(x, O)
corresponds to the point (Wl, w2) (0, h2), whose (exact) forward trajectory under
(3.9) approaches A(x) as t - o. We define

M6(x) FA(X) A MT(x).
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Provided 5 < min(nye-’T/2,1/K2a), the set M6(x) is positively invariant for
approximate solutions, and any such solution lying in M6(x) must enter MT(x).

The remaining constructions are carried out in the local coordinates (Wl, w2, y)
defined near the bifurcation point. Let K > 0 be a uniform bound for the Lipschitz
constant of the change of variables from (u, x) to (w, y), and define, for Ix xm[ < h,

I 1oo h2 and

By Lemma 10.1, if Kc5 < e-aT/K, then any i-approximate solution which leaves
Nl(x) must do so at a point where w2 h2; thus this solution enters Me,(x). We
define

M1 (x) N1 (x) U M6(x).

Then Ml(x) is positively invariant for 5-approximate solutions, if 5 is sufficiently
small (independent of x). Moreover, by using Proposition 3.7 exactly as in the proof
of Propositions 8.2 and 9.3, it is clear that for 5 sufficiently small and Ix xml < h,
any i-approximate solution in Mo(x) must enter M1 (x).

Next, we define, for Ix Xml < h,

e <_ g**},
M2(x, ) N2(x, i) U M6(x).

By Lemma 10.1, it is clear that M2(x,5) is positively invariant for ti-approximate
solutions, and any such solution lying in Ml(x) must enter M2(x,i), since IWll is
strictly decreasing in M1 (x) \ M2(x, ).

Now, for a i-approximate solution lying in N2(x, ), Lemma 10.1 implies

(10.2) sgn (w2 t) sgn (w + ay) provided Iw + ay >_ Kch.

The remaining constructions subdivide into three cases (illustrated in Fig. 11).

W22 + a(w2,y)y

w2

FIG. 11. Flow on the center manifol& three subcases.

(1) In the simplest case, x Xm + y is such that

w22 + ay > Kc5 for all [w21 <_ h2.
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In this case, the critical points B and C are absent, and w2 is strictly increasing in
N2(x, ). Thus every &approximate solution lying in M2(x, ) must enter M6(x). We
define

Mj(x,) M6(x) for j 3, 4, and 5.

(2) In the next case (which includes x Xm) we have

for some interval [’1,’Y2] depending on x and 5. In this case, the critical points may
or may not be absent. We define

M3(x, 6)= M6(x)U {u e N2(x, 6) lw2 _> 71},
M4(x, ) M6(x)U {u e N2(x,)lw2 >_ 72},
Mh(x, ti) M6(x).

It is clear that for sufficiently small, each Mj(x, ) is positively invariant for 8-
approximate solutions and every -approximate solution lying in Mj(x, ) must enter
Mj+I (x, ;), for j 2, 4, and 5. Moreover, for u e M3(x, ) \ M4(x, ) we have
"Y1 _< w2 _< "Y2, so for some constant K we have

IG(x, u)l <_ K6 for u 6 M3(x, ) \ M4(x, ).

(3) In the last case, we have

+ _< [,y1, ,y2] U [")’3,

for some 71 _< 72 _< 73 _< 74 depending on x and . For a -approximate solution
lying in N2(x, ), w2 is strictly increasing if w2 _< 71 or w2 _> 74, and w2 is strictly
decreasing if 72 _< w2 _< 73. We put

M3(x, ) M6(x)U {u e N2(x, ) /1 _< w2},
M4(x, t) M6(x)U {u e N2(x, ) "Y1 _< w2 <_ "3 or "4 _< w2},
Mh(x,5) M6(x) U {u e Y2(x, 5) < , <_

It is clear that for 5 sufficiently small, each Mj(x, ) is positively invariant for 5-
approximate solutions, and every 5-approximate solution lying in Mj (x, 5) must enter
Mj+I (x, 5) for j 2 and 4. Moreover, for some constant K we clearly have

IC(x, u)l < K6 for u e Mj(x, 6) \ Mj+I (x, ) for j 3 and 5.

This finishes our analysis of case (iii), and concludes the proof of Proposition 3.11.
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ANTIPLANE SHEARING MOTIONS
OF A VISCO-PLASTIC SOLID*

J. M. GREENBERGt AND ANNE NOURIt

Abstract. The authors consider antiplane shearing motions of an incompressible isotropic
visco-plastic solid. The flow rule employed is a properly invariant generalization of Coulomb sliding
friction and assumes a constant yield stress or threshold above which plastic flow occurs. In this
model stresses above yield are possible; but when this condition obtains, the plastic flow rule forces
the plastic strain to change so as to lower the stress levels in the material and dissipate energy. On
the yield surface, the flow rule looks like the classical one for a rate independent elastic-perfectly
plastic material when the velocity gradients are small enough but differs from the classical model for
large gradients.

Key words, plastic waves, visco-plasticity, time-dependent problems

AMS subject classifications. 73E70, 73E60, 73E50

1. Introduction. In this note we consider antiplane shearing motions of an in-
compressible isotropic visco-plastic solid. This work generalizes and compliments
earlier work of Greenberg [1], [2], where he considered simple shearing flows for such
materials. The flow rule we employ is a properly invariant generalization of Coulomb
sliding friction and assumes a constant yield stress or threshold above which plastic
flow occurs. As with most such theories, we assume a multiplicative decomposition of
the deformation gradient into an elastic and plastic part, and we assume further that
the deviatoric part of the Cauchy Stress tensor depends only on the elastic portion of
the deformation gradient. For antiplane shearing motions this decomposition presents
no precedence problems; i.e., does the elastic deformation precede the plastic or vice
versa? One key feature of this model is that stresses above ,yield are possible. When
this condition obtains, the plastic flow rule forces the plastic strain to change so as
to lower the stress levels in the material and dissipate energy. The principal difficulty
in formulating this model occurs when the stress is at yield. Motivated by results of
Seidman [3], Vtkin [4], and Filippov [5] on sliding modes induced by discontinuous
vector fields, we are led to the flow rule advanced in (2.38). On the yield surface, this
flow rule looks like the classical one for a rate independent elastic-perfectly plastic
material when the velocity gradients are small enough but differs from the classical
model for large gradients. This rule differentiates between loading and unloading and
generates an energy identity which guarantees that uniqueness obtains for initial and
initial-boundary value problems.

The organization of this paper is as follows. In 2 we develop the appropriate
equations describing antiplane shearing flows in visco-plastic solids. Section 3 focuses
on the uniqueness issue. Our basic estimate is that the energy associated with the
difference between two solutions generated by the same data is nonincreasing. This
estimate relies in an essential way on the definition of the plastic flow rule. In 4 we
examine a one-dimensional signalling problem and discuss (1) the structure of this
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solution, and (2) a procedure to analytically obtain an approximate solution. We
also compare this solution with what obtains for the more studied model of a rate
independent elastic-perfectly plastic material where uniqueness fails. Section 5 deals
with a numerical experiment for a two-dimensional signalling problem in the corner
domain r > 0 and r/2 < 0 < 2r. Here the stresses are singular as one approaches the
corner and care must be taken in the implementation of the boundary conditions.

We note that in the last several years there have been a number of other efforts
aimed at capturing the essence of plastic flows. Antman and Szymczak [6], [7] have
advanced a finite deformation theory of such materials which is similar in spirit to ours
but differs in a number of essential ways. Their model is formally rate independent
where ours is not but their model also requires a history dependent strain hardening
mechanism. The predictions of the two theories are often qualitatively different; these
differences arise since in their model the imposition of large loads tends to elevate the
yield stress and create a temporally constant permanent plastic deformation, whereas
in our model such loading would generate a constant plastic deformation rate and thus
a plastic deformation which varies linearly in time. This may be seen by examining
the solution constructed in 4. Other efforts on elasto-plastic modelling may be found
in Coleman and Owen [8], Buhite and Owen [9], Coleman and nodgdon [10], and
Owen [11].

2. Model development. We say that a body is undergoing antiplane shear if
material points 1el 4- 2e2 4- 3ea move to x x el 4- x2e2 4- x3ea with

(2.1) Xl 1, X2 f2, and X3 3 + (1, 2, )

under the action of a Cauchy stress tensor of the form

T -Tr(el @ el 4- e2 (R) e2 4- ea (R) ea)
(2.2) 4-(Sllel ( el 4- $22e2 )e2 4- ’33e3 ()ea)

4-q31(el @ e3 4- e3 @ el) 4- S32(e2 @ e3 4- e3 (R) e2).

Here, 7r is the hydrostatic pressure and S is the deviatoric stress tensor and satisfies

(2.3) trace(S) $11 + $22 + $33 O.

Relative to the above basis, the matrix representation of the Cauchy stress is given
by

ff=-r 0 1 0 + 0 $22 $32
0 0 1 31 32 $33

and relative to the same basis the deformation gradient is given by

(2.5)
1 0 O).T’= 0 1 0

F31 F32 1

el 0 e2 1 and e3 0 are the standard basis elements for R3 and
0 0 1

e (R) ej eiej
3- are the standard basis elements for linear operators from R3 to R3.
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where

0 and F32-- 0(2.6) f31-- 0Xl 0x--"
Noting that matrices

1
.dog o

a

satisfy the commutation relation

oo)1 0
b 1

we feel justified in decomposing the deformation gradient " into its elastic and plastic
parts : and P by

def def(2.8) :-- 0 1 0 and :- 0 1 0
e31 e32 1 P31 P32 1

where

(2.9)
1 0 0)Y P P 0 1 0

e31 q- P31 e32 q- P32 1

For such antiplane shear flows one need not make any assumption about the prece-
dence of the elastic and plastic parts of the flow.

Our basic constitutive assumption is that under a change of reference frame E
transforms in the same way as F and that the deviatoric stress S is an isotropic, frame
indifferent, trace free function of the elastic deformation gradient E.2 The constraint
that S is an isotropic, frame indifferent function of E implies that must have the
functional form

(2.10) S aI +/3ET + .-T-1
or

(2.11)3

(1S=a 0
0

1 0 + 0 1 e32 +’ e31e32 l+e2 -e32
2 2 10 1 e31 e32 1+e31+e32 -e31 -e32

where a, , and are functions of the invariants of T, in this case the scalar

el + e322 Equation (2.4) implies that ,921 ,12 0 and this, in turn, implies that
? 0 while the condition that traces 0 implies that a -/(1 + ((el + e2)/3)).
Combining these identities with (2.11) yields

(2.12) 8=3 0
0 e31
+

+e32

2 E is the tensor whose matrix representation relative to the basis elements e (R) ej is given by

(z8).
3 For details see Gurtin [12].
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In the sequel we shall assume that f is a positive constant. Equation (2.12) implies
that we may regard the elements $31 and $32 as basic descriptors of our system. In
terms of these and : take the form

(2.13)

and

(2.14)

1 0 0 /0 1 0
$31 $32

1

We now turn to the equations of motion. Equation (2.1) implies that the Eulerian
velocity field u is of the form

(2.15)

where

(2.16) oU(Xl, X2, ll) _-7- (Xl, X2, ;I);

and (2.16), when combined with (2.6), implies that

(2.17) 0F31 (u
0

o1 (Xl

and

(2.18) 0F32 Ou
O.

Or1 Ox2

Additionally, (2.9)and (2.14)imply that

31(2.19) F31 -[- P31

and

32(2.20) F32 / P32-

Balance of momentum in the el and e2 directions implies that

(2.21)
0 (Tr + (S1-[-$322)) 6q ( (S1+S2))30Xl 3

71"+ ---0

or equivalently that

7l" 71"0(X3, t)- (SI -- S2) (Xl, X2, t)
3



ANTIPLANE SHEARING MOTIONS OF A VISCO-PLASTIC SOLID 947

whereas balance of momentum in the ea direction yields

0U (31 0S32 (71"0(2.23) P00 0Xl 0X2 --0X"
Here, P0 is the constant mass density of the material. Since 070/013 depends on X3
and tl, whereas all quantities on the left-hand side of (2.23) depend .only on 11, 12,
and tl, we conclude that for antiplane shearing flows Oro/Ox3 is independent of 13.
In what follows we shall assume this quantity is zero.

We now turn our attention to "yield condition" and the flow rule for the plastic
strain tensor :P of (2.8)2. We assume that yield is determined by whether the scalar
SI -- S2 exceeds a threshold S2 or not. This assumption relies on the special form
of , (see (2.13)) and is equivalent to a yield criteria determined by the norm of S,
where

(2.24) llSl12 def 2

or one based on the maximum shear stress

(2.25) S,2 def
max IISe-(Se,e)ell

{el.=l}

In the sequel we let H denote the Heaviside function

(2.26) H(x) :----def { 0,1, x>0X< 0

and define 1 and 2 by

"-$321 (S321
(2.27) /)1 - -o H(x S) dx

and

$31 --$322 U x S dx

where S > 0 is the "yield stress."
We shall confine our attention to the Coulomb type sliding law

(2.29) P31 1

1 /To 031
$31 H(S + S2 Sy2)ZT0

and

(2.30) 0P32_ 1 01
OI To 032

$32 H(S _+. S2/T0

though much of what we say applies equally well to the flow rule

(2.31) 0P31 Sy
01 flTo oqS31 flTo4S1 -1- S2
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and

The constant/3 is the shear modulus in (2.12), Su is the yield stress, and To > 0 is
a fixed relaxation time. The flow rule is defined for S1 + S2 S2 and the problem
remains to define it on the yield surface.

We first note that if $321 + $322 S2, we can combine (2.17)-(2.20) and (2.29) and
(2.30) to obtain the following system for $31, $32, and u:

1 0S31 OqZt -31H(l -- S322 Sy2)(2.33)
# Ot OXl- #To

1 0S32 Ou -$32H(S + S2 $2)(2.34) Otl Ox2 To
and

Ou OS3i(2.35) Po Otl OXl OX2
O.

Equations (2.33) and (2.34) imply that for $32 / $322 # S2,

(2.36)

Ou Ou )o (s + s)= 2# s- +

(s + S#)H(S# +S S)To
and (2.36), together with the results of [3], [4], [5], motivates our extension of the flow
rule on the yield surface Sl + S2 Su2. We extend (2.29) and (2.30) to the yield
surface S321 + S2 S2 by

(2.37)
Op3 aS31 and 0P32 aS32
Otx #To Ot #To

where

(2.38) a

1 ifSI+S2=S2 and
i)u Ous -f + s - >

if 1 - S2Ou Ou
0 < Sl +sb- <

0 ifSg +S2=S2 and
Ou Ou

S31 -Xl -’[-" S3222 <0.

2
4

and

4 The relations (2.37) and (2.38) transform in a frame indifferent fashion.
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In the sequel we shall confine our attention to the extended flow rule (2.29), (2.30),
(2.37) and (2.38). The relevant equations are

1 0S31 Ou c$31
(2.39)

/3 0tl OXl- To’

1 032 32(2.40)
/3 I 0X2- /3To’

0U 031 032(2.41) P00 0Xl 0X2
0,

where now

(2.42)
1 if321-}- 2 > Sy2,

To ( Ou
i irs+S2=S2 and S31

S31Xl -{-S32X2 if S1 -}- S2 Sy2

flTo ( Ou
+$32Ox) _< i,

and

0 if,_qgl q-Sg2=Sy2 and

0 ifSl +S2 <Su2,

and these are solved together with appropriate initial and boundary conditions. Hav-
ing solved the above system for $31, $32, and u we recover the deformation gradients
F31 and F32 by solving

(2.43) 0F31 Ou
0 and 0F32 Ou

0
01 OX (,1

together with appropriate initial conditions. The plastic strains P31 and P32 are then
given by

3231 and P31 F32(2.44) P31

These equations should be contrasted with what obtains in the more commonly stud-
ied theory of rate independent elastic-perfectly plastic materials. In that theory (2.37),
(2.39)-(2.41), (2.43) and (2.44) still hold but c is given by
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if S +S S2 and

To ( Ou
0 -- --y2 S31X

ZT0(0 ifSg+S2:S2 and S3-x+S32-x2 <0,

0 ifSl +$322 <Sy2.

The unboundedness of a on the yield surface $321 + $322 S2 presents difficulties
not encountered in our model. In particular, across nonstationary shocks where F31,
F32, u, $3, and $32 experience jump discontinuities, we must admit jumps in the
plastic strains P3 and p32. The reason for this is that in the classical rate indepen-
dent theory--a as in (2.45)--we must allow "dirac" type singularities in the terms
aS3/flTo and aS32/flTo and therefore, we cannot conclude that

Here, c is the normal velocity of the shock wave and n=(n, n2) is the unit normal to
the shock. In our model c is bounded, no "dirac" type singularities arise in the terms
o$31/T0 and oS32/flTo, and thus (2.46) holds. This implies that with our model all
nonstationary shocks satisfy c2 1; that is, they propagate with the speed of elastic
signals. With our model, the only surfaces across which the plastic strains can jump
are stationary, i.e., c- 0. Such jumps are also allowed in the classical theory.

We conclude this section by writing down a dimensionless version (2.39)-(2.44).
We let

x= -To’ Y=V flTo’ t=oo
v= u, va= fl, ra= fl,

and observe that (2.39)-(2.42) transform to

OT31 OV
Ot OX

(2.49) 0T32 OV
Ot Oy

where

(V CT31 0T32
Ot cox Oy =0,
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and

1( Ov Or)
1( Ov
y2 "r31 Xl -I- T32-x2 >1,

if T32 + r322 T
2 and

O 2y2 T31-Xl -I-T32-X2 < 1,

0 ifT" +r322=T2 and 1( Ov Or)
0 ifT"1+T2 <T2.

The transformed versions of (2.43) and (2.44) are

(2.52) OF31 Ov 0F32
Ot Ox

0 and
0t

and

v
=0

Oy

(2.53) P31 F31 T31 and p32 F32 r32.

3. Uniqueness results. Our task in this section is to establish the following
THEOREM 3.1. Let be an open domain in R2 with smooth boundary Of. Then,

there is at most one piecewise smooth,5 Lo( solution (T3:, T32, V) to (2.48)--(2.51)
satisfying

(3.1) lim (T3:, r32, v)(x, y, t) (Tgl T302 vO)(x y)
t__0+

(3.2) lim (nlT3 + n2T32)(X, y, t) f (X, y, t),
(,u)ea;(,u)oa

(3.3) lim v(x, y, t) f2(x, y, t).
(,u)ea;(,u)oa:

Here O 01 02, 0 02 is at worst a finite collection of points, n=(n, n2)
is the unit exteor nodal to 0, and the fi’s are smooth functions in Loc(0i
[0,)).

Proof. We first note that if (T, T2 Vb) and (T, T2 Va) are two solutions to
(2.48)-(2.51), then their differences satis

o (- 1)-
o

(a.4) o ( ) -( "2)’

(3.)
0 (b ) 0
0-- -y vb va b

T 2
aT2

0 (b_o)_ o (:_::)_ o (b_g) 0"0-
5 This formulation admits shocks which propagate with normal velocity c satisfying c2 1.
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Here, &b and &a represent the bounded function & defined in (2.51) evaluated at
(3bl, r3b2, Vb) and (’rl z’2 va), respectively. The last three identities imply that

(3.7)

We now claim that

def(3.8) p’--" (T3bl Tl b
Tb31 aaTl 4- (T2 T2 bT2 aT2

is nonnegative. In verifying this assertion there is no loss in generality in assuming
that

(3.9) 0 < &a <_ &b < 1.

We first note that p may be rewritten as

(.0) [(1 ) +( )]
4-(b a) [(T3bl)2 a b )2 a b+ ( T2T2

If & 0, then (TI)2 / (’2)2 < Ty2 and b a b, + < v/() + () a.d,T T
therefore, (3.10) implies that

(3.11) p > &bv/(T3bl)2 4- (T3b2)2 V/(T3bl)2 + (T352)2 TU

If &b 0, then (3.10) implies that p 0, whereas if 0 < &b < 1, (2.51) implies
that V/(T3bl)2 + (T3b2)2 > TU, and (3.11) then yields p > 0. We now turn to the case
where 0 < &a < &b < 1. If &b &a, the nonnegativity of p follows from (3.10),
and thus to complete the verification that p >_ 0 it suffices to consider the case where
0 < &a < &b < 1. Here we know that (Ttl)24-(Tt2)2 Ty2 and (T3bl)24-(T3b2) 2 > Ty2. The

a b V/(T3b)2 4- (T352)2, impliesformer identity, along with (3.10) and TxTb3 4-T2T2 <_ T
that

v > ao [( ,): +( ):]

+(-o)V/(,) + () (v/() + ()-),
and (3.12), 0 < &a < &b < 1, and (T3b)2 + (T3b2)2 > 2 complete the proof of the
assertion that p is nonnegative.

For any (xo, Yo) 2, ro > 0, T > 0, and 0 < t < T we let

(3.13) C(xo, Yo r0 t) def:= {(x,y)l(x x0)2 + (y y0)2 ( (r0 + T- t)2}.
The identity (3.7) implies that if (7"b3, Tb32, Vb) and (Tx, T2 Va) are two solutions

of (2.48)-(2.51) taking on the same data (3.1)-(3.3), then

1 fv ((T3b Ttl)2 4- (T3b2 Tt2)2 4- (vb va)2) dx dy(3.14)
(zo,o,ro,t)nf
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Here,

(3.15) OC(xo, Yo, ro, t) ((x, y)l(x xo)2 / (y yo)2 (ro / T

The vector ((x xo)/(ro + T- t), (y yo)/(ro + T t)) is the unit exterior normal
to OC(xo, yo, ro, t), and ds is arc length along OC(xo, Yo, ro, t). Since

--(Vb Va) ( (X Xo)(Tb31-- Tl) (Y Yo)(Tb32
(ro + T- t) + (ro + T- t)

> V/( Jl = +
1> ----((T3bl TI -- (T3b2 T2)2 -- (Vb va)2)
2

and since p >_ 0, we see that all three integrals in (3.15) are nonnegative and their
sum is zero. From this we obtain

(3.17) ; ((T3bl TI)2 -- (T3b2 T2)2 - (Vb va)2)dxdy O,
Jc(xo,Yo,ro,T)N

which is the desired uniqueness result.

4. A signalling problem. In this section we consider an elementary one-dimen-
sional signalling problem for the normalized system (2.48)-(2.53). The solution is of
the form

(4.1) (T31, T32, V) (T(X, t), O, V(X, t)), 0 < X < OC,

where T and v satisfy

(4.2)
OT OV
Ot Ox --&T, 0 < X < C,

(4.3)
Ov OT
Ot OX O, 0 < X <

and

(4.4)

1 if T2 > Ty2,
1 if r2 %2
r ov if T2 2

0 if r2 rv2
0 if T2 < Ty2,

and

and

and

r Ov
0-> 1,

rOv<lo_<_
<0,
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FIG. 1

(x#, x#)

and the initial and boundary conditions

(a.s) 0) (0, 0), 0 < < oo

and

(4.6) v(0, t) --To, where TO

We note that the results of the previous section guarantee there is at most one solution
to the above problem.

In the region 0 _< t < x, we have (T, v) _= (0, 0). Moreover, T / V is continuous
across the curve t x and thus satisfies T_(t, t) + v_(t, t) =-- O. The difficult part of
the problem is to show there is a curve t (x), 0 < x < x#, with -1 < d/dx <_ 0,
such that in the region x < t < (x) with 0 < x < x#, T and v satisfy

(4.7) T > Ty,

(4.8)
OT OV OV Ov
Ot Ox

--T and
Ot Ox =0’

the boundary condition (4.6) and T_(t,t)/ v_(t,t) 0. On the curve t if(x)
we have lim__,0+ T(X, ff(x) e) TU and )(x) def

:-- lim__.0+ v(x, if(x) e) satisfies
0 <_ d/dx <_ TU. In the region if(x) < t and 0 < x < x# we have T(x, t) TU and
v(x, t) 3(x), whereas in x# _< x < t, T T and v(x, t) )(x#) =.--Ty (see Fig. 1).

The existence of a curve t if(x) with the desired properties may be established
by converting the system (4.6), (4.8), and T_ (t, t) + v_ (t, t) 0 to integral equations
for T and v in x < t, verifying that for 0 < t- x << 1 the stress satisfies T > T,
and finally by obtaining qualitative information on the level line t J(x) defined by
lim,._.,o+ T(X, if(X) e.) Tu.
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Rather than perusing that approach we shall show how to obtain simple approx-
imate solutions satisfying (4.6)-(4.8) and T_(t, t)+ v_ (t, t) 0 as well as approxima-
tions to the level line t (x).

We note that for each integer N _> 1 the system (4.8) has solutions

N

(4.9) VN --TO +E )(k) (t)x2k-1
k--1

and
N

(4.10)6 TN Ao(t) + E (k)x2k/2k
k--1

where the coefficients satisfy

(4.11)

(4.12) k + k 2k(2k + 1)Ak+l, 1 _< k _< N- 1,

and

(4.13) g + N ----0.

These solutions satisfy the boundary condition VN(0/, t) --To and have 2N + 1 free
parameters which are determined by insisting that the equation

(4.14) t) + t) o

is satisfied to O(t2N) as t 0+. The approximate curve t ,g(X) is subsequently
determined by solving TN(X,N(X)) Ty. An easy calculation shows that N(X)
O((To --Ty)/To) and dg/dx < 0 which guarantees that the number x defined by

,N(X) x is O((To- Tu)/To), and thus on the boundary x t, TN(t, t)+VN(t, t) is

at worst O((To- Tu)/To)2N+ for 0 _< t _< x. We continue the approximate solutions
to the rest of the region described by Fig. 1 via the extensions procedure used for the
exact solution; that is, for 0 < t < x,

(4.15) (TN, VN) (0, 0),

for JN(X) < t and 0 < x < x
(4.16) VN(X, t) VN(X, JN(X)) and TN(X, t) T,

and for x# _< x < t,

(4.17) VN(X,t) VN(X#,ffN(X#)) and TN(X,t) T.

We are then guaranteed that the error made in failing to meet the boundary condition
TN(t, t) + VN(t, t) 0 is at worst O((To Ty)/To)2N+ for all t > 0. We shall present
the details of this procedure for the case N 1.

In this case,

(4.18)

6 Here denotes differentiation with respect to t.
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and

(4.19) T1 (,’1,0 "- 1,1te-t + 0,1e-t) )l’le-tx2
2

and the insistence that Tl(t, t) + Vl(t, t) O(t3) as t --+ 0+ implies that

1,0 4. 0,1 TO

(4.20) Al,O )o,1 / 2A1,1 0

,0,1 51,1 0

and hence that

(3 + 5e-t)x)(4.21) vl TO --1 + 8

and

(4.22) T1 -- 3 + te- + 5e- 2

The approximate curve t ,71 (x) is obtained by solving TI(X, ,71(X)) Ty or equiva-
lently the equation

x2e-31 1 8Ty(4.23) 3 / 1e-J1 + 5e-J1
2 TO

The fact that 0 < Ty/To < 1 guarantees the unique solvability of this equation for
0 _< x << 1 and that 71(0) O(2((T0 %)/To)). A quick calculation also shows that

(4.24) d71 -2x
dx (8 4- 271 x2)

The number x, where 1(x)-- x satisfies

(4.25)

and for 0 < T0 TU small enough we are guaranteed that x O((To Ty)/To). This

estimate, when combined with (4.24), implies that -1 < d,l/dx for 0 _< x _< x.
Our final task is to show that the function

(4.26) I)I(X) def/’-T0--1+ (3 + 5e-Y (X) )x

satisfies

dOl(4.27) 0 <_ --x (x) _< %,

The defining relation (4.26) implies that

O<_x<_x.

(4.28)
d?)l (3+5e-J(x)) 5TOe-:Z()X[(X)
dx

(x) TO 8 8
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and this relationship, when combined with (4.23) and (4.24), implies that

(4.29) d01
dx

(x) TU -+- Toe--:II((X2 25rl) (8 + 2rl X2) + 20X2)
16(8 + 2, X2)

The fact that (x) > x for 0 < x < x O((To -Tu)/To) implies that the second
term in (4.29) is negative and this provides the desired upper bound for d/dx. The
desired lower bound is an immediate consequence of (4.28) and the bounds for d/dx.

We conclude this section by contrasting the above solution with what obtains if
we replace our flow rule--- given by (4.4)--with the one generated by (2.31) and
(2.32) and also by the flow rule associated with a rate independent elastic-perfectly
plastic material. In the former case, (4.2) is replaced by

(4.30)
0" Ov
Ot Ox --aTe,

and (4.4) is unchanged.
In the region 0 _< t < x we have (T, V) (0, 0), and T + V is continuous across

x t. For 0 _< x _< t _< 2(T0 TU)/TU we have

.ux Tut(4.31) V=--T0+--- and T=T0 2

for 0 < x < 2(T0 --Tu)/Tu and t > 2(’0 -Tu)/Tu we have

7"yX(4.32) v --To / --- and T TU,

and finally for 2(T0 --Tv)/T <_ X < t we have

(4.33) V=--Ty and T=Tv.

With this flow rule the curve t J(.) is the constant function J(x) 2(T0-
Tv)/Tv, 0 <_ X <_ 2(T0- Tv)/T. Equations (2.52) and (2.53), the initial conditions
(F31,P3)(x, 0) (0, 0) for x > 0, and (4.31)-(4.33) allow us to determine (F31,P3).
The result is

(4.34) (F31, P31)

(0, 0), 0 _< t < x,
+ x), 0 _< < t <

x)) (o-- < t(TO -- Ty X T01 Ty -- Ty -0 < x < 2(ro=)
r

o), < < t.

and

It is worth noting that the above solution is unique. This can be established using
the arguments of 3 directly on the system (4.30) and (4.3)-(4.6).

We now examine the signaling problem for a rate independent elastic-perfectly
plastic material. Equations (4.1)-(4.3) and (4.5) and (4.6) still hold, except now & is
given by

0 if T2 < Ty2

" 0v
(4.35) &= 0 ifT2=T2 and 3- <0,

r ov if T2 2 "r i:9v
3- =T and 0< O-"
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We also have

i)F31 i)v OP3(4.36) cot Ox =0’ Ot =aT, and F31=T+P31,

and these satisfy the initial conditions

(4.37) (F31, P31)(x, 0) (0, 0), x > O.

We seek solutions wih structure similar to that obtained for the previous two models.
Speeifieally, a shoek eurve t {(z) sueh ha in the region 0 < t < {(z),

(4.38) (F31, p31, T, v) (0, 0, 0, 0),

and in the region t > (x) the shear stress T is at yield, i.e.,

(4.39) T(X, t)= TU, (X) < t.

We interpret (4.3) and (4.36) as eonservation laws, and this, together with (4.38)
and (4.39), implies that on t {(),

(A0) -(, ()) + 0

and

d
(4.41) F(x,(x)) + v-(x,(x))x O.

Here, (v-, F)(x, (x)) lime_.o+ (v, F31)(x-e, (x)). The identity (4.39) so implies
that in t > (x) the velocity v is a function of x only. Near x 0 we choose

We now let

(4.47) x# A

(4.42) v(x, t) --To + AX, A > O.

With this choice we obtain

(4.43) Pal A(t (x)) + p_ (x)

and

(4.44) F31 Ty + A(t- (X)) + p_(x).

Equation (4.40), together with (0) 0, then yields

(4.45) (x) -(to x)
2ATy

and (4.41), (4.44), and (4.45)imply that

(4.46) p_()
(o ) .
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and note that

(a.as) _() > 0, O<_x<x#,

(4.49) p_ (x#) O,

and

(4.50)
d{
d--(x#) 1.

In the region (T (To Ax)2)/2ATu < t and 0 _< x < x# (To -u)/A our solution
is given by

(4.51) F31-- Ty -I- A It -I-
T( To AX 2 )2ATu

(4.52) P31--A It,-f- T( (To AX)2 )2ATy

(4.53) v --To + AX,

(4.54) T Ty.

The shock curve is continued to x > x# by

and in the region ((T} --T2y)/2ATy)t-(X--((To--Ty)/A)) < t and (To--Ty)/A X# < X,

(4.56) F31 Ty, P31 O, V --Ty, and T TU.

The line x x# (T0 Tu)/A is a stationary contact discontinuity and across it P3
jumps while the other fields are continuous. The interesting fact about the signaling
problem for this model is the lack of uniqueness of solutions; we have a compatible
solution for every A > 0. This observation points out one of the weaknesses of the
clsical model.

5. Computational experiments. In this section we present the results of a
computational experiment performed on the normalized system (2.48)-(2.52) when
the pressure gradient is zero. The results reported deal with a twdimensional gen-
eralization of the signalling problem of the previous section.

The experiment deals with the system (2.48)-(2.51) solved in the region r > 0
and r/2 < < 2r, where r x2 + y2. At time t 0 we sume that

(5.1) (T31, T32, V) (0, 0, 0)

for r > 0 and /2 < 0 < 2, and for t > 0 we sume that

(.) v , v(, -) 0, > 0,
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(xy

FG. 2

where TO > Ty, and again Ty > 0 is the yield stress.
The elastic version of this problem, namely, the system

(5.3) 0T31 Ov
Ot OX O,

(5.4) 0T32 OV
O,Ot Oy

0V (T31 (T32
(5.5) cot OX coy O,

together with (5.1) and (5.2), was considered by Keller and Blank [13]. They obtained
exact solutions to this and a number of other problems with self similar structure.
Relevant to us here is the singular nature of TI / T322 as r 0+. Their results
demonstrate that

This singular behavior also obtains for the plastic flow problem and forces us to
treat the boundary conditions in our numerical simulation carefully. Our integration
scheme for (2.48)-(2.51) is based on a symmetrized operator splitting algorithm for
the governing differential equations. At time t nh, n 0, 1, 2,..., our approximate
solution consists of lattice data

(5.7) (T3, 32, V)(nk,,) (T3, T32 V) ((2k 1)
h,

(2m 1__) h, nh)2 2

For the problem under consideration the boundaries are not part of the computational
lattice but are offset from it by a distance of hi2. The computational lattice is

(5.8) , {(k,m) k <_ 0 and m--0,1,+/-2,...} (2 ((k,m) k >_ 1 and m <_ 0}.

To update the data (5.7) we successively solve

(5.9) 0T31 OV 0T32 OV 07"31
Ot OX =0’ 0t =0’ and

0t Ox =0’ 0_<t_<:h,
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07.31 0T32 OV OV COT32=0, and =0, 0<_t_<h,(5.0) & 0, & Oy & Oy

and

0T32 OV
(5.11) 07"310 -&T31,

0t
--&T32, and 0, 0 <_ t _< h,

where of course & is defined in (2.51). For (5.9) we use the approximate solution
defined by (5.7) as initial data and let (T3, T2 V)(k,m) denote the value of this
solution at t h on the lattice 8. We then solve (5.10) using the (T,
as initial data and let (T23, T2 V2)(k,m) denote value of the solution at t h on
Finally, we solve (5.11) with (T321, T2 V2)(k,m) as initial data and let (T33 3, v3)(,)
denote the value of this solution at t h on S.

We then repeat the process solving (5.10) first with the data (5.7), and, we let
(TI,T2, V4)(k,m) denote the lattice update at t h. We then solve (5.9) using
(T341,7"342, V4)(k,m) as initial data and let (T, T2 V5)(k,m) denote the lattice update.
Finally we solve (5.11) with data (7.t, T2 v5)(k,,) and let (TI %62, V6)(k,,) denote

(nq-1)the lattice update at t h. The desired approximate solution (T3, T32, vj(k,m is then
obtained by averaging (TI T332, V3)(k,m) and (7.21,7.2, V6)(k,m); that is,

Of course, all of the intermediate updates are solved subject to the boundary con-
ditions of the original problem. Here these boundary conditions manifest them-
selves as reflection conditions at those lattice points that are a distance h/2 away
form the actual boundary. Formal accuracy could be maintained if we used either
(T331,7’332, v3)(k,m) or (T361, T362, V6)(k,m) for the updated approximate solution but either
of these updates alone would, over time, tend to introduce asymmetries into the ap-
proximates not present in the actual solution. These asymmetries are removed with
the algorithm employed.

The results of our experiment are shown in Figs. 3-7. Each snapshot shows two
different representations of the velocity field and the total shear stress, namely the
quantity v/TI + T2. This simulation was run with h 1/50, % 1, and TO 1.3.
The contours on the velocity plots are spaced 0.1 apart and run from v 0 to v 1.3.
The stress contours run from 1 to 3.2 in increments of 0.2. In these snapshots one
sees not only the plane wave solutions of the previous section but also the effect of
the corner singularity which are confined to the region 0 _< r _< t and 7r/2 < < 2r.

For comparison we have run the elastic version of this problem with the same
boundary conditions and same values of h, Ty, and 7.0. These results are shown in
Figs. 8-12.

It should be noted that for both problems the velocity fields satisfy the additional
condition

(5.13) lim v(r, O, t) O, < 0 < 27r
r-- + -and that our numerical solutions meet this consistency condition automatically.
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A GEOMETRIC SINGULAR PERTURBATION ANALYSIS OF
DETONATION AND DEFLAGRATION WAVES*

I. GASSER AND P. SZMOLYANt

Abstract. The existence of steady plane wave solutions of the Navier-Stokes equations for a re-
acting gas is analyzed. Under the assumption of an ignition temperature the existence of detonation
and deflagration waves close to the corresponding waves of the ZND-model is proved in the limit of
small viscosity, heat conductivity, and diffusion. The method is constructive, since the classical solu-
tions of the ZND-model serve as singular solutions in the context of geometric singular perturbation
theory. The singular solutions consist of orbits on which the dynamics are slow-driven by chemical
reaction and of orbits on which the dynamics are fast-driven by gasdynamic shocks. The approach is
geometric and leads to a clear, complete picture of the existence, structure, and asymptotic behavior
of detonation and deflagration waves.

Key words, detonations, deflagrations, shock waves, traveling waves, singular perturbations
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1. Introduction. We study plane wave solutions of the Navier-Stokes equations
for a reacting gas in one space dimension. We consider the simplest possible chemical
reaction of one reactant that is converted to the product by a one-step exothermic
reaction. The equations governing the reacting flow are given by

(1.1)

(p), + (pu) o,
+ +

+ [pu (u___+ e)+pu]-(XTx)x+(qpDYx)x+(#uu)x,
(pY) + (puY) (pDYx). kpY(T).

In these equations the variables p, u, p, e, T, and Y are the density, velocity, pressure,
specific energy, temperature, and reactant mass fraction of the gas. The unburned gas
corresponds to Y 1; a totally burned gas corresponds to Y 0. All variables will be
made dimensionless later on. The constants , A, and D are, respectively, viscosity,
heat conductivity, and diffusion coefficients. We assume an ideal gas, i.e., the pressure
is given by p RpT, where R is the gas constant. The specific energy is given by
e cvT+qY, where cv is the specific heat at constant volume and q is the heat release
parameter. The assumption of an exothermic reaction implies that q is positive. For
the usual Arrhenius kinetics (T) e-E/RT holds, where E is an activation energy.
We will have to modify this later because of the cold boundary difficulty. The above
equations are standard; see, e.g., Fickett and Davis [3] or Williams [16].

Detonation and deflagration waves are traveling wave solutions, i.e., solutions
depending only on x- ct, of (1.1) connecting an unburned state at -cx) to
a burned state at . Due to Galilei invariance it suffices to consider the case
c 0, that is, the stationary problem corresponding to (1.1).
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3, 1992.
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(1.2)

(pu) O,
( +) (u),

+ e + (r) + (oDg) + (.),

(Y) (oDY) -oY(r).

Throughout this paper we denote by f_, respectively, f+, the value of any function

f at x -oc, respectively, x x. Neglecting all dissipative effects, i.e., setting
A # D 0, in (1.2) gives the ZND-model (named after Zeldovich, Neumann, and
DSring)"

(1,3)

(pu) 0,

(u +) 0,

(Y) -oY(r).

We briefly review the classical analysis of detonation and deflagration waves for
the ZND-model; see, e.g., Courant and Friedrichs [1] and Williams [16], since it will
be basic in our analysis of the corresponding waves of (1.2). The first equation in

(1.3) implies that the mass flUX pu has a constant value denoted by m p_u_. The
fluxes of momentum and energy are also constant; this gives the Rankine-Hugoniot
conditions for a shock wave, which describe possible burned states p and p for given
p_, p_, and Y_. By integrating the second and the third equation in (1.3) we obtain
the equation of the Raleigh line

(1.4) p_ p_ _m211p P-l)
and the equation of the Hugoniot curves

(1.5) e_-e=(p+p_) P P-

Due to the dependence of the internal energy on the mass fraction Y of the reactant,
the usual Hugoniot curve of gasdynamics is shifted for Y : Y_. For a given state on
the left there exist--depending on the value of m--two, one, or no completely burned
right state. The burned state for the critical value of m, for which there exists just one
burned state, is the Chapman-Jouget point. There are two fundamentally different
processes possible; those that are compressive are called detonations, the ones that are
expansive are called deflagrations. The burned state on the detonation branch closer
to the unburned state is called weak detonation point; the corresponding process is
called a weak detonation. The burned state on the detonation branch farther away
from the unburned state is called strong detonation point; the corresponding process is
called a strong detonation. A similar classification holds for deflagrations; see Fig. 1.
In a weak deflagration wave the variable Y is determined by a scalar differential
equation; the gasdynamic variables are in equilibrium following a curve parametrized
by Y. Strong deflagrations are ruled out because of entropy considerations. On the
other hand, the ZND-structure for a strong detonation is that of an inert gasdynamic
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p
Neumann spike

strong detonation point

weak detonation point

weak deflagration point

-"---’’- strong deflagration point
Y=Y_ = _--__ Y=O

FIG. 1. Chapman-Jouget diagram.

shock wave that compresses and heats the gas, followed by a weak deflagration in
which the reaction takes place. In Fig. 1 the ZND-structure of a strong detonation
corresponds to an instantaneous jump from the unburned state to the intersection
of the Raleigh line and the Hugoniot curve of the unburned state, followed by a
deflagration along the Raleigh line to the burned state.

Clearly, there is some arbitrariness in this construction and questions of unique-
ness arise; e.g., another possible structure of a strong detonation, starting at the
unburned state as a gasdynamic shock followed by a deflagration to an intermediate
partially burned state followed by another shock and another deflagration wave to the
burned state, cannot be ruled out by considering (1.3) alone.

A standard criterion to distinguish unphysical solutions of hyperbolic conserva-
tion laws--obtained by neglecting all dissipative effects--from physical solutions is to
accept only those solutions which are limits of solutions of the dissipative equations
as the dissipation coefficients go to zero. For initial value problems corresponding to
hyperbolic conservation laws this is one of the main open problems of the subject.
On the level of shock waves, however, the existence of viscous profiles, which con-
verge to the shock wave as the dissipation coefficients go to zero, is a well-established
admissibility criterion (see, e.g., Smoller [12]).

Thus, the question of admissibility of ZND-waves leads to the question of the
existence of solutions of (1.2) connecting an unburned state to a burned state. Ad-
ditionally, the convergence of solutions of (1.2) to solutions of (1.3) for (A,#, D) 0
has to be analysed. The first difficulty encountered is the well-known cold boundary
difficulty, i.e., the unburned state is no stationary point of (1.2) for the usual Arrhe-
nius kinetics (T) exp(-E/RT), unless T_ 0, holds. The usual remedy is to
modify the function (T), such that (T) vanishes identically for T below a certain
ignition temperature Ti. More precise assumptions will be made later. Under this
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assumption detonation and deflagration waves are heteroclinic orbits connecting fixed
points of (1.2).

The existence of detonation and deflagration waves of system (1.1) has been anal-
ysed by many authors, usually under the simplifying assumptions: Prandtl number
Pr and (or) Lewis number Le 1. We refer to Hirschfelder and Curtiss [9] and
Wood [17]. The activation energy E is typically very large, thus another frequently
used approach is to consider (1.2) in the limit E -o oc; see Lu and Ludford [11] and
Holmes and Stewart [10]. Gardner [4] used the Conley index to prove the existence of
detonation waves for the reactive Navier-Stokes equations in Lagrangian coordinates.
He made no assumptions on Lewis and Prandtl numbers, but omitted the species dif-
fusion term from the energy balance equation. The convergence of these solutions of
(1.2) to solutions of the ZND-model is not discussed by these authors. Recently, Wag-
ner [14], [15] obtained results on the ZND-limit for detonation and deflagration waves.
Under the assumption of Prandtl number 1/4 he proves existence of viscous profiles by
topological arguments. A priori estimates and a compactness argument allow him to
conclude that ZND-waves are (almost everywhere) limits of (certain subsequences of)
solutions of (1.2) for --* 0 and constant ratios #/ and Old.

In our approach we only assume the existence of an ignition temperature and that
the values of #, A, and D in a scaled version of (1.2) are small. No assumptions on
the Lewis number and the Prandtl number are made. We consider system (1.2) as a
singularly perturbed system of ordinary differential equations, which can be written
in the form

(1.6)

#ux m(u- u+) + mR (Tu T+ )
ATx mcp(T T+) mRu

T T+
/ mq(Z Z+) -u U=l=

DY u(Y Z),

Zx -kY--(T),
u

where the variable Z is defined, by the third equation (see 2). We prove the existence
of detonation and deflagration waves close to the corresponding waves of the ZND-
model. Our method is constructive since the classical solutions of the ZND-model
serve as singular solutions in the context of geometric singular perturbation theory.
The singular solutions consist of orbits on which the dynamics are slow-driven by the
chemical reaction and of orbits on which the dynamics are fast-driven by gasdynamic
shocks. Methods from dynamical systems theory allow us to conclude the existence of
solutions of system (1.6) close to these singular solutions. Our approach is geometric
and leads to a clear, complete picture of the existence, structure, and asymptotic be-
havior of detonation and deflagration waves. We obtain a complete characterization
of the global flow in a two-dimensional invariant manifold, which contains all fixed
points and all heteroclinic orbits of (1.6); from this point of view, the situation be-
comes particularly transparent. In the usual situation, that for a given unburned state
(p_, u_, T_, Y_) the temperature at the two corresponding burned states is above ig-
nition, our results can be summarized in the following theorem.

MAIN THEOREM. Assume that the function (T) is smooth, with ignition temper-
ature T. For # f, , D J with f, , J > 0 there exists o o(f, ,) >
0 such that the following assertions hold for 0 < < o.
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(i) Let (p_, u_,T_, Y_), with T_ < T, be an unburned state corresponding to
a detonation. Then there exists a unique strong detonation wave solution of (1.2).

(ii) Let (p_, u_, T_, Y_), with T_ T, be an unburned state corresponding to a
detonation. Then there exists a two-dimensional manifold (with boundary) .formed by
all strong detonation wave solution of (1.2). The boundary of the manifold of strong
detonation waves is formed by a strong detonation wave that has the appearance of a
gasdynamic shock followed by a weak deflagration and by a unique weak detonation
wave followed by a gasdynamic shock.

(iii) Let (p_, u_, T_, Y_) be an unburned state corresponding to a deflagration.
Then there exists a unique weak deflagration wave solution of (1.2) if and only if
T_ Ti holds. Strong deflagration wae solutions do not exist.

(iv) In suitable parametrizations all the detonation and de]agration waves con-
verge to the corresponding waves of the ZND-model, uniformly in Cl-norm away from
the location of gasdynamic shocks as -- O.

We remark that our method is not directly applicable in the case of Chapman-
Jouget processes because the Chapman-Jouget point is a nonhyperbolic fixed point
of (1.6) corresponding to a turning point in the context of singular perturbation theory.

We briefly outline the organization of the paper. In 2 we derive (1.6) and perform
the scaling to obtain the final form of the governing equations. The necessary results
from geometric singular perturbation theory are briefly explained in 3. In 4 we apply
our method to the simpler problem of viscous profiles for gasdynamic shocks. This
problem has been solved by Gilbarg [7]; however, we have included this example to
illustrate the method and because we need the results on the structure of gasdynamic
shocks in our analysis of detonation waves. The main result is proved in 5. Technical
difficulties due to the ignition temperature assumption require a slight extension of the
methods of 3. In 6 we discuss qualitative properties of detonation and deflagration
waves, and prove the existence of incompletely burned detonation and deflagration
waves.

2. Singularly perturbed scaled equations. By using pu m and integrating
the second and third equation in (1.2) we obtain

(2.1) #ux m(u u+) + mR ( Tu T+ )
(2.2)
ATx -t- #uu / qpDY m[cv(T- T+) / q(Y Y+) + (u2 u)/2 + R(T- T+/-)].

We define a new variable

(2.3) Z- Y- pDY Y- DY
m u

to obtain a first-order system. Since Y must vanish at x

(2.4) Z_ Y_, Z+ Y+
must hold. In the new variable the equation for Y in (1.2) has the form

(2.5) Z -kY--(T).
U

By substituting for #uux and qpDY from (2.1) and (2.3), and by using the relation

(2.6) + R
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for the specific heat at constant pressure cv and the specific heat at constant volume
cv, we obtain the final form of (2.2)"

ATz mcp(T- T+) mRu ( Tu ,.T+ + mq Y Y+ -u+/-

Equations (2.1), (2.7), (2.3), and (2.5) are system (1.6). We denote by M2 u2/9,RT
the square of the Mach number, where 7 cv/cv is the ratio of the specific heats.
For given P_ (u_,T_, Y_, Z_) we are interested in completely burned fixed points
of (1.6). A straightforward calculation yields the following lemma.

LEMMA 2.1. For a given unburned state P_, there exist fixed points corresponding
to completely burned states if and only if

(M2_ 1)2(2.8) 2(/+ 1)M2
_> qY_

holds; M2_ > 1 corresponds to a detonation, and M2 < 1 corresponds to a defla-
gration. Strict inequality in (2.8) implies the existence of a completely burned state
P* (u*,T*, O, 0), with M.2 < 1, corresponding to a strong detonation or a weak
deflagration, and of a state P, (u,, T,, O, 0), with M2, > 1, corresponding to a weak
detonation or a strong deflagration. Equality in (2.8) implies the existence of a unique
completely burned state--with Mach number one--corresponding to the Chapman-
Jouget detonation or de]tagration point.

In the following we set (u+, T+, Y+, Z+) (u*, T*, 0, 0) in (1.6) and use the scaling
in Table 1 to make the equations dimensionless.

TABLE 1
Scaling.

Quantity Unit Scaling factor

u
T
Z
Y

D
m

R C.v C.p
q
k

in

K
1
1
kgms-1

kgm3 S-3 K-1
m2 s-I
kg s-1

m2 s-2 K-1
m2 s-2
-1s

u*/k

T*

mu*/k
cpmu*/k
u*2/k

cpT*

The scaled quantity is obtained by dividing the unscaled quantity by its reference
value, and is denoted by superscript . If we define () (T*), we obtain the
scaled equations

(2.9) / - 1 + 7M.--------
(2.10) i’ - 1 9’ 1 (, ) +Z (7 1)M*2

9’ 2
(- 1)2’

(2.11) Y (Y- Z),
y~

(2.12) Z ---(T).
U
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System (2.9)-(2.12) is singularly perturbed, because the parameters/2, , and/
are typically very small. The actual size of these parameters in a given problem is

given by the scaling in Table 1. In this paper we consider the ZND-limit, i.e., the limit
of vanishing dissipation (see 1). In the limit process (/, A,D) -- 0 various singular
limits are possible depending on the ratios of the p_arameters. Typically, the Lewis
number Le / and the Prandtl number Pr fz/ satisfy Le 1 and Pr (see
[16]). Therefore, it is reasonable to consider the limit (/, ,/3) --. 0 with fixed ratios
Pr and Le. However, we do not make the common simplifying assumptions Le 1
and Pr . The analysis of the ZND-limit for the case of constant ratios Pr and Le
is carried out in 5, certain extensions to nonconstant ratios and other singular limits
are briefly discussed in 6.

From here on we use the scaled quantities, therefore, we drop the superscript ~.
The scaled fixed points are still denoted by P*, P,, and P_; obviously, P* (1, 1, 0, 0)
holds.

3. Geometric singular perturbation theory. The dynamical systems ap-
proach to singular perturbation problems origins--in its modern form--in the work
of Fenichel [2], but has only recently become more popular. In Szmolyan [13] a
method--based on this invariant manifold approachmis developed to prove the exis-
tence of transversal heteroclinic orbits of singularly perturbed differential equations.
In this section we briefly summarize the necessary results from [2], [13] to provide
the framework for our analysis of (2.9)-(2.12) in 4 and 5. We consider singularly
perturbed systems of differential equations in the standard form

f(x, y),
(3.1)

) g(x, y),

with (-o,o), eo > 0 small, and (x, y) R"+k. We assume that f e Rm and
g Rk are Cr functions of (x, y), with r _> 2. The independent variable is t. We
call (3.1) the slow problem. By transforming to the variable T tie we obtain the
equivalent fast problem

x’ cf(x, y),

By setting 0 in (3.1) and (3.2) we obtain the reduced problem

0

and the layer problem

(3.4) y’ g(x, y).

The basic idea is to obtain solutions of (3.1) as smooth perturbations of composite
orbits of the decoupled limiting equations (3.3) and (3.4). We make the following
assumptions.

(i) The equation g(x, y) 0 has a smooth manifold of solutions. Let C be a
compact submanifold of this manifold which is given as a graph of a Cr function
h: U c Rm --. Rk.
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(ii) There exist integers ks and ks, with k ks + ks, such that the matrix
Og(x, h(x))/Oy has ks eigenvalues with negative real part uniformly bounded away
from zero, and ku eigenvalues with positive real part uniformly bounded away from
zero for all x E U.

Interpret the following assertions in an appropriate neighbourhood V of. Under
the above assumptions the reduced problem (3.3) defines a flow on C. Additionally,
is an invariant manifold of fixed points for the flow defined by (3.4). We denote the
dimensional local stable manifold of q E ( by ]_-s (q) and, similarly, the k-dimensional
local unstable manifold by :FU(q). It is shown in [2, Thm. 9.1] that for sufficiently
small the manifold ( perturbs to a locally invariant center-like manifold (e with a

m+ks-dimensional center-stable manifold ( and a m+ku-dimensional center-unstable
manifold C. The flow on Ce is a regular perturbation of the reduced problem on (.

Furthermore, there exist invariant foliations ofC and ( by ks-dimensional manifolds
’(q) and ks-dimensional manifolds ’(q), q e Ca, respectively. The dependence of
these manifolds on is Cr-l, even at 0. For details we refer to Fenichel [2].
Background material can be found in Guckenheimer and Holmes [6] and Hirsch, Pugh,
and Shub [8].

In our analysis we encounter for a given flow compact invariant manifolds Az[ with
boundary 0Az[. In order to apply results from invariant manifold theory A/[ has to be
overflowing (inflowing) invariant. In the following we do not mention this condition
explicitly each time, but always assume that it has been achieved by a standard local
modification of the flow near

Let p e C be a hyperbolic fixed point of (3.3). Let r(p) and r(p) denote the local
stable and unstable manifold of p for the reduced problem. We define the singular
stable and unstable manifold, respectively, by

[.J [.J
qF’(p) qeF’(p)

It follows from [2, Thm. 12.2] that WS(p) perturbs smoothly to the stable manifold
W(p) of the hyperbolic fixed point p of (3.1) for small . Similarly, WU(p) perturbs
smoothly to the unstable manifold W(p).

Usually, the manifold of solutions of g(x, y) 0 has several branches. Let C1 and
C2 be two manifolds, which satisfy conditions (i) and (ii). Let Pi C1 be a hyperbolic
fixed point of (3.3) with unstable manifold F, and p2 2 be a hyperbolic fixed point
of (3.3) with stable manifold F. Assume that ql E F and q2 F are connected by a
heteroclinic orbit y of (3.4). Let 3’1 c F be the solution segment of (3.3) connecting

Pl and ql, similarly, 72 C F connects q2 and P2. Then, we call w "Yl [-J z] (.J "Y2 the
singular orbit connecting pl and p2. Note, that we allow pl ql or P2 q2. Clearly,
/c W (p) gl Ws (p2) holds.

THEOREM 3.1. Under the assumptions made in this section, assume that the
singular unstable manifold Wu (pi) and the singular stable manifold Ws (P2) intersect
transversally and locally unique along the orbit w. Then there exists a locally unique
transversal heteroclinic orbit we of (3.1) for small . The orbit we has a transition
layer and is uniformly close to w.

The theorem follows from the smooth dependence of the involved manifolds on, and from the stability of transversal intersection under small perturbations. If
the singular stable and unstable manifolds intersect transversally in an s-dimensional
manifold :D of singular heteroclinic orbits, we obtain the existence of a locally unique
s-dimensional manifold T)e of heteroclinic orbits of (3.1) for small . Details and



976 I. GASSER AND P. SZMOLYAN

examples are given in Szmolyan [13]. For suitable parametrizations w converges
uniformly to w in Cl-norm, away from the location of the transition layer.

LEMMA 3.2. Under the above assumptions we parametrize "71 and "72 by t E Ro
and t e I, respectively, such that "7(0) q and ’72(0) q2 hold. Let ]) be a

manifold which intersects transversally. We parametrize w such that w w(t),
t R, w(O) w N ) holds. Then

<0,
-,olimw(t)-- ’72(t), t > 0,

holds. The convergence is uniform in C((-oc,-i]) and C([i, x))) for > O.
The proof of this intuitive result, based on the estimates in Theorem 9.1, (iii),

[2], is straightforward and is omitted. We will also encounter the following simpler
situation, which is contained in Theorem 3.1, if C --2 holds.

COROLLARY 3.3. Assume that there exist two hyperbolic fixed points pl and
p2 in a manifold C, which satisfies conditions (i), (ii). Suppose that p and p2 are
connected by a transversal heteroclinic orbit w of (3.3). Then there exists a transversal
heteroclinic orbit w c C of (3.1) .for small . The orbit w has no transition layer
and is uniformly close to w in C(R)-norm.

In higher dimensions it is usually difficult to prove transversality of the inter-
section of the singular stable and unstable manifolds. An analytic method to prove
transversality based on an application of the Melnikov integral is given in [13]. How-
ever, we shall see that for detonation and deflagration waves the transversality con-
dition is trivially satisfied. In 5 we shall need some extensions of the above results
because (1.6) has a one-dimensional manifold of nonhyperbolic, fixed points due to
the ignition temperature assumption.

4. Structure of gasdynamic shocks. The Rankine-Hugoniot conditions for
gasdynamic shocks for an ideal gas are derived from the three conservation laws in
(1.3). Viscous profiles for a gasdynamic shock are heteroclinic orbits of the first two
equations in (1.6). In our scaling the equations are

1
#Ux--u-l/ 2 -1

(4.1) ’TM*

AT T- 1 ’7 1
(T- u) + qZ (’7 1)M*2 (u 1)2.

’7 2

Note, that the constant qZ vanishes in a nonreactive gas; however, we include this
term for later convenience. For Z 0, (4.1) are the equations for a viscous profile
connecting the states corresponding to the unscaled states (u,, T,) and (u*, T*). We
write (4.1) as

#i f(u, T),
(4.2)

g(u, T),

where the superscript "’" denotes differentiation with respect to x. The equations
f(u, T) 0 and g(u, T) 0 describe two parabolas in the u, T-plane, which we denote
by F and G, respectively. The strict inequality (2.8) implies that the two parabolas
intersect as shown in Fig..2 for Z _> 0. For increasing values of Z, the minimum of the
parabola G decreases. More specifically, the following properties are easily verified
for u > 0 and T > 0:



SINGULAR PERTURBATION ANALYSIS OF DETONATION WAVES 977

FIG. 2. Shock structure.

(a) fT
(b) there exist exactly two fixed points P1 (ul, T1) and P2 (u2, T2) with

Ul
(c) g > 0 on G for u2 _< u _< u;
(d) g/gT < f/fT at P1, and g/gT > fu/fT at P2;
(e) there exists u2 < u0 < u, such that fu < 0 for u < u0, f > 0 for u > u0

hold on F.
For sufficiently large Z, the values of T1 become negative, which makes the prob-

lem physically meaningless. Properties (a)-(d) imply that P1 is an unstable node and
that P2 is a saddle. Furthermore, all orbits cross the boundary of the region between
F and G in the outward direction. Since the stable manifold of P2 points into this
region, we obtain the following lemma.

LEMMA 4.1. In the above situation, there exists a transversal heteroclinic orbit w
connecting P and P2 .for all values of # and A. The variables T and u are monotone
along w.

This result is proved in Gilbarg [7] for general thermodynamics. If A, # --* 0
simultaneously, the viscous profile converges to the shock wave. Gilbarg also analysed
the limiting behavior of these viscous profiles as the ratios A/# - 0 and #/A --, 0,
respectively. We show how these limits fit into the framework developed in 3. In the
first case we rewrite (4.2) as

it f(u,T),
(4.3)

g(u, T),

where e A/# is small. Thus, (4.3) is of the form (3.1); property (a) implies that
conditions (i) and (ii) from 3 are satisfied on compact segments C c G. The corre-
sponding reduced problem is one-dimensional and has a (singular) heteroclinic orbit w
connecting P and P2 as shown in Fig. 3. In our graphics orbits of the reduced problem
are indicated by single arrrows, orbits of the layer problem are indicated by double
arrows. The transversality condition of Corollary 3.3 is trivially satisfied, and we
conclude the existence of a transversal heteroclinic orbit we of (4.3) uniformly close
to w for small e. This proves uniform convergence of the orbits given by Lemma 4.1
to w as the ratio A/# -- 0.

In the second case we rewrite (4.2) as

(4.4) eit f(u, T), g(u, T),
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FIG. 3. ,k/ 0.

F

! \

FIG. 4. #/) 0.

where e #/A is small. In this case the manifold of the reduced problem is the
parabola F, however, conditions (i), (ii) from 3 are only satisfied for u bounded
away from u0 due to property (e). Thus, the reduced problem is defined on compact
segments C1 and (:2 of the right and left branch of F (compare Fig. 4); P1 and P2
are both unstable fixed points of the one-dimensional reduced problem on (:1 and C2,
respectively. It is easy to see, that there exists a singular heteroclinic orbit w, because
each point in C1 is connected to a point C2 by a (horizontal) heteroclinic orbit of the
corresponding layer problem (3.4). The transversality condition of Theorem 3.1 is
trivially satisfied, and we conclude the existence of a transversal heteroclinic orbit w
of (4.4) uniformly close to w for small . This proves uniform convergence of the orbits
given by Lemma 4.1 to w as the ratio #/ --. 0.

5. Detonation and deflagration waves. In this section we consider (2.9)-
(2.12) for small #, A and D with fixed ratios Pr and Le, i.e., we set # e, A e
and D , where is small; f, , and are positive constants. We assume that
(T) is smooth, with ignition temperature Ti, i.e., (T) 0 for T _< Ti. Thus, we
obtain

(5.1) fu u- 1 -}- ,),M.----- --(5.2) eT T- 1 " 1
(T- u)+ qZ ( 1)M*2 (u- 1)2,, 2
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(5.3) bYx u(Y- Z),
Y

(5.4) Zx ---(T).
U

Obviously, (5.1)-(5.4) is of the form (3.1), with the slow variable Z, and the fast
variables u, T, and Y. Therefore, the methods from 3 are applicable. Mathematically,
the equations define a smooth dynamical system on the phase space R+ x R x R x R,
where we keep in mind that only T > 0 and Y E [0, 1] have physical meaning. By
setting 0, we obtain the reduced problem

1 (1),--(5.5) 0 u- 1 - 9’M*2 u

(5.6) 0 T- 1 ’), 1
(T u) + qZ ( 1)M*2 (u- 1)

2

(.7) 0 (Y- Z),
Y

(5.8) Z ---(T).
U

Equations (5.5)-(5.7) define the one-dimensional manifold C, on which (5.8) defines a
flow. Note that (5.5) does not depend on Y, Z, and (5.6) does not depend on Y. For
u > 0, (5.7) implies Y Z. Thus, we can visualize C in three-dimensional u, T, Z-
space. In the u, T-plane (5.5) describes the parabola F from 4, in u, T, Z-space (5.5)
is a cylinder :P with crossecti0n F for each Z E R. Note that the parabola F, and
hence P, correspond to the Raleigh line in Fig. 1. By using (5.5) to eliminate u2 in
(5.6) we obtain

(5.9) 0 T" + 1 -- 1 M,2 (-- 1)M.2(1+ )- 1-
2 2 2

This equation describes a plane E, on which the values of T decree for increing
u and Z. Thus, P and E intersect in the parabola C shown in Fig. 5. Clearly, all
fixed points of (5.1)-(5.4) must lie on C. Due to (2.8) the Z coordinate of the vertex
of C lies at Z Z0 < 0; for a Chapman-Jouget process Z0 0 holds. We choose
compact segments C and C2 on each branch of the smooth one-dimensional manifold
C, which can be parametrized by Z away from the vertex, i.e.,

z e k- 1,2.

The closed interval I has to be chosen, such that u2(Z) is bounded away from zero.
The layer equations with the fast independent variable x/e are

),(5.10) ftu u- 1 + 2 1
/y/,

(5.11) T T 1 / 1
(T u) + qZ ( 1)M*2 (u 1)2,

" 2

u(Y- z),
z =0.

The layer problem is the gasdynamic shock problem (4.1) coupled to the trivial equa-
tion (5.12), which adds one unstable dimension for u > 0. The discussion in 4 implies
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Z

FI(. 5. Phase space.

that all points P1 E C1 are unstable nodes of (5.10)-(5.12) with three-dimensional
unstable manifolds u(p). All points P2 E (2 are saddle points of (5.10)-(5.12)
with one-dimensional stable manifolds ’8(P2) and two-dimensional unstable mani-
folds ’u(P2). For Z I the real parts of the corresponding eigenvalues of the lin-
earization are uniformly bounded away from zero. Thus, conditions (i) and (ii) from
3 are satisfied on C1 and (:2, and the invariant manifold theory from 3 is applicable.

Lemma 3.2 implies that for Z I each point P(Z) C is connected to the point
P2(Z) e (:2 by a heteroclinic orbit w(Z) of (5.10)-(5.13). The u, T-component of the
orbit w(Z) is the viscous profile for the gasdynamic shock connecting (Ul(Z), T(Z))
and (u2(Z),T2(Z)), the coordinate Y- Z is constant. Thus, there exists a smooth,
two-dimensional manifold , of orbits connecting (1 and (:2 (see Fig. 6).

The next step in our construction of singular detonation and deflagration waves
is the analysis of the reduced problem (5.5)-(5.8), which is governed by the one-
dimensional equation

Z
(5.14) Zx (Tk(Z)), k 1, 2.

u (Z)

Fixed points of (5.14) have to satisfy Z 0 or (Tk(Z)) 0, k 1, 2. Clearly, Z 0
gives the fixed points P, E ( and P* (:2. The reaction rate (Tk(Z)) O, whenever
Tk(Z) <_ Ti, k- 1, 2, holds.

On (1 the temperature is a strictly decreasing function of Z; therefore, there
exists at most one solution Z of the equation T(Z) Ti, and (TI(Z)) 0 for
Z >_ Z. In this section we assume the existence of such Z > 0. The case that
C1 consists entirely of fixed points of (5.14) is less interesting and can be analysed
similarly. On 2 the temperature is a strictly decreasing function of Z if and only if
the point P* lies on the left side of the vertex of the parabola F in the u, T-plane;
this holds for /M.2 < 1. In the case /M.2 > 1 the temperature on (2 increases to
the maximum value (1 / /M.2 )2/(4"),M.2 at the top of 7 and decreases for larger
values of Z. Therefore, the equation T2(Z) Ti has either one or two solutions.
In this section we discuss the case of a unique solution Z2 > 0, the other case of
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Z

T

Cz

p*

FIG. 6. Singular invariant manifolds.

Z,

Z

FIG. 7. Sivggular orbits.

incompletely burned states is discussed in 6. Since T2(Z) > T1 (Z) holds, we conclude
Z2 > Z1. In this discussion we have implicitly assumed that the interval I has been
choosen large enough such that the interval [0, Z2] is contained in the interior of
I. Thus, we have the situation shown in Fig. 7. On C (5.14) has the hyperbolic
attracting fixed point P, and a continuum of (necessarily nonhyperbolic) fixed points
S (P(Z) Z E I, Z >_ Z}. Since there are no other fixed points on (1, the point
P (Z1) is connected to P, by a heteroclinic orbit of (5.5)-(5.8). The situation on
is similar. There exists a continuum of fixed points $2 (P2(Z) Z E I, Z _> Z2
and the point P2(Z2) is connected to the attracting hyperbolic fixed point P* by a
heteroclinic orbit of (5.5)-(5.8).

The given unburned state P_ lies in S for M_2 > 1, and in $2 for M2_ < 1. How-
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ever, it is clear that P_ is not a particularly distinguished fixed point of (5.1)-(5.4).
Thus, we prefer to think of P* as a given subsonic burned state, which determines P,,
$1, and $2. Then, all points in $1 are possible left states for detonation waves with
burned states P, or P*; all points in $2 are possible left states for deflagration waves
with burned states P, or P*. We summarize our discussion in the following theorem.

THEOREM 5.1. Under the assumptions made in this section, the following singu-
lar heteroclinic orbits connecting fixed points of (5.1)-(5.4) exist.

(i) The point P, is connected to P* by the heteroclinic orbit of (5.10)-(5.13).
(ii) The point PI (Z1) is connected to P, by the heteroclinic orbit of (5.5)-(5.8).
(iii) There exists a two-dimensional manifold I) (with boundary) of singular or-

bits from P(Z) to P*. These orbits consist of the solution segment of (5.5)-(5.8)
from P(Z) to PI(Z), the heteroclinic orbit of (5.10)-(5.13) from P(Z) to P2(Z),
and the solution segment of (5.5)-(5.8) from P2(Z) to P* for Z e (0, Z1]. The bound-
cry of 7) is .formed by the singular orbit corresponding to Z Z and by the singular
orbits from (i) and (ii).

(iv) For Z < Z < Z2 the point P1 (Z) is connected to P* by a heteroclinic orbit

of (5.10)-(5.13) from P(Z) to P2(Z) followed by the solution segment o.f (5.5)-(5.8)
P (Z) P*.
(v) For Z >_ Z2 the point P1 (Z) is connected to P2(Z) by the heteroclinic orbit

(vi) The point P2(Z2) is connected to P* by the heteroclinic orbit of (5.5)-(5.8).
All these singular orbits lie in the manifold ,. There are no other singular heteroclinic
orbits.

The situation is shown in Fig. 7. In cases (iv) and (v) it is possible, that T1 (Z)
is negative; then the singular orbit is physically meaningless and only included for
mathematical completeness. If we replace the heteroclinic orbits of the layer problem
(5.10)-(5.13) in Theorem 5.1 by jump discontinuities in the fast gasdynamic variables
u and T, then the theorem describes all solutions of the ZND-model (1.3) with right
states P* and P,. However, Fig. 7 reveals more details than the classical Chapman-
Jouget diagram in Fig. 1. Furthermore, as should be obvious by now, Theorem 5.1 is
the basis for the proof of the main theorem from 1, which follows, if we prove that
the singular heteroclinic orbits perturb to heteroclinic orbits of (5.1)-(5.4) for small. Theorem 3.1 does not apply directly because all fixed points of (5.5)-(5.8) in S
and $2 are nonhyperbolic. Clearly, this nongeneric situation, that could be destroyed
by small perturbations, is caused by the ignition temperature assumption.

THEOREM 5.2. Under the assumptions made in this section, there exists o
o(ft, , Jr)) > O, such that the following assertions hold .for (5.1)-(5.4) .for 0 < < o.

(i) P* and P, are hyperbolic fixed points, with two-dimensional and one-dimen-
sional stable manifolds, respectively. $1 and $2 are one-dimensional manifolds of.fixed
points.

(ii) The singular heteroclinic orbits from Theorem 5.1, (i)-(vi) perturb smoothly
to heteroclinic orbits of (5.1)-(5.4) connecting the corresponding fixed points.

(iii) All connecting orbits lie in a smooth, two-dimensional, invariant manifold,, which is a graph over the u, Z-plane. The flow in qe is as shown in Fig. 8.

Proof. The manifolds (:1 and (:2 satisfy conditions (i) and (ii) from 3, and we
conclude the existence of the center-like manifolds (:i,e, their stable and unstable
manifolds C. and C. and their invariant foliations . and .. respectively, for
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Z2

FIG. 8. Flow in

i 1, 2, and sufficiently small. ClU, and C, are smooth perturbations of

or= U U
PIECI P2EC2

We conclude from Theorem 5.1 that the four-dimensional manifold fJl and the two-
dimensional manifold fJ intersect transversally in the two-dimensional manifold q
(see Fig. 6). The stability of transversal intersection proves the existence a smooth,
invariant manifold

Cl-close to q for small e. The manifold S is a graph, i.e., T T(u, Z) and Y Z
on q; thus, qs is a graph over the u, Z-plane.

Next, we discuss the existence of heteroclinic orbits in qs. Since P, and P* are
stable hyperbolic fixed points of (5.5)-(5.8), they must lie in fJl,e and fJ2,e, respectively,
and satisfy assertion (i), which can be also verified by direct computation for arbitrary
e. The existence of a (purely gasdynamic) heteroclinic orbit connecting P, and P*
follows either from Theorem 3.1 or from Lemma 4.1 by restricting the flow to the
invariant subspace Y Z 0. The last argument implies also the existence of
(purely gasdynamic) heteroclinic orbits connecting PI(Z) and P2(Z) for Z _> Z2.

Since $1 and $2 are sets of fixed points for (5.1)-(5.4), they are invariant. Thus,
Theorem 9.1 in [2] implies $1 c fJl,s and $2 c C2,. Since there are no other fixed
points, the one-dimensional ttow on C1, must connect P1 (Z1) and P,. Similarly, there
exists an orbit from P2(Z2) to P* in C2,. This proves the persistence of the orbits
given by (ii) and (vi) in Theorem 5.1. Thus, the region on qs bounded by the orbits
from P, to P*, from PI(Z1) to P,, from P2(Z2) to P*, from P1 (Z2) to P2(Z2), and
by the curve of fixed points {PI(Z) Z1 G Z G Z2} is invariant (see Fig. 8). Since
there are no other fixed points, all points in this region belong to the stable manifold
of P* and assertion (ii) follows. This proves that the flow is as shown in Fig. 8, which
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shows the flow in the union of C, and the smooth extension of , in C1,, ’ is the
region between Cl,e and C2,.

For a given unburned state P_ the main result in 1 follows from Lemma 2.1,
Theorem 5.2, and Lemma 3.2. Weak detonation waves and weak deflagration waves
are heteroclinic orbits of the type described in Corollary 3.3; they have no internal
layers. Strong detonation waves are orbits of the type described in Theorem 3.1; the
gasdynamic shock corresponds to an internal layer.

6. Discussion and extensions. Our analysis proves the existence of weak det-
onation waves and weak deflagration waves for unburned temperatures exactly at
ignition. The process is driven by the chemical reaction; the gasdynamic variables
are close to equilibrium. Strong detonation waves with unburned temperature below
ignition are unique; the temperature is raised above ignition by the gasdynamic shock.
Then the reaction proceeds like a weak deflagration. There is a one-parameter family
of strong detonation waves with unburned temperature exactly at ignition. In one of
the two extreme cases the detonation wave has the usual structure of a gasdynamic
shock followed by a weak deflagration. The other limiting case is a weak detonation
followed by a nonreactive gasdynamic shock. In the intermediate cases the process
starts like a weak detonation; then the temperature is raised by a gasdynamic shock,
and the process is completed like a weak deflagration.

In the following we discuss the monotonicity properties of temperature and pres-
sure. The discussion is based on the fact that strict monotonicity of a variable along
a singular orbit is preserved for small . For yM.2 < 1, temperature is strictly in-
creasing along all singular orbits. Thus, temperature is strictly increasing along all
detonation and deflagration waves for yM.2 < 1 and small . For yM.2 > 1, tem-
perature is strictly increasing along weak detonations. However, on the deflagration
branch temperature is increasing for temperatures close to ignition but decreasing
near P*. Therefore, the temperature has a maximum in the interior of weak defla-
gration and strong detonation waves for "yM.2 > 1 and small . Pressure is strictly
increasing along weak detonation waves and strictly decreasing along weak deflagra-
tion waves for small . Hence, for a strong detonation wave the pressure attains
its maximum after the gasdynamic shock; this peak in pressure corresponds to the
familiar Neumannspike [16].

In 5 we mentioned the possibility of incompletely burned states. For yM.2 > 1
it is possible that the equation T2(Z) Ti has two solutions 0 < Z < Z2. In this
case T* < Ti holds, and, clearly, the temperature on C1 is below ignition. Thus,
complete combustion is impossible. However, in this case a weak deflagration and
strong detonations with a partial burned state exist for small . More precisely, there
exists a weak deflagration wave with unburned state P2(Z2) and burned state P2(Z).
There exists a family of strong detonation waves with unburned state P(Z) and
burned state P2(Z) for Z < Z < Z2. The existence of these waves follows from
the existence of the corresponding singular heteroclinic orbits similar to the proof of
Theorems 5.2. The existence of weak deflagration waves with an incomplete burned
state is discussed in Wagner [15]; the existence of strong detonation waves with a
partial burned state seems to be new.

In our analysis we have assumed that/2, , and /) in (5.1)-(5.4) are arbitrary
constants. Since the values of these parameters have no impact on the analysis of 5,
our results are uniformly valid as long as/, , and/) are bounded from below and from
above by some positive constants. More precisely, for fixed values 0 < c < < c
a constant 0(c,/) > 0 exists, such that the assertions of Theorem 5.2 hold for
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0<<0foralla</2<3, a<<,anda<D<.
The case that (#, A, D) 0 along a smooth curve in parameterspace with asymp-

totically bounded ratios can be treated in the following way. We set

in (2.9)-(2.12), where/2, i, b are smooth, positive functions on an interval [0, 1] with
1 > 0. This gives a system of the form (3.1), where the function g depends smoothly
on . The theory outlined in 3 applies also to the case that the right-hand side in
(3.1) depends smoothly on (see [2], [13]). The corresponding reduced problem is

just (5;5)-(5.8), and the layer problem is (5.10)-(5.13) with f-- f(0), - (0), and
D D(0), i.e., we have exactly the situation analysed in 5. The particular simple
dependence of the right-hand side g on , and the results in [13] imply that there exists

0 > 0, such that the assertions of the Main Theorem in 1 hold in this situation as
well for all

The methods used in this paper can be applied to various other possible (less
physical) singular limits, i.e., to cases where #, A, and D are of different orders
of magnitude. In Gasser [5] a similar analysis in the case # eft, A , and
D with positive constants , , , and small is given. For -0 this problem
decouples into a two-dimensional reduced problem describing chemistry and diffusion,
and a two-dimensional layer problem describing pure gasdynamics. By applying the
methods of 3 we obtain essentially the same results on the existence of detonation
and deflagration waves.

For strong shocks and may depend on the gasdynamic variables. If we consider
f f(u, T, Y), A(u, T, Y), and D /(u, T, Y) to be smooth functions, which
are bounded from below and from above by some positive constants, all our results
remain valid, since these positive factors in (5.1)-(5.4) do not change the geometry
and the analysis of the problem.
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TRAVELLING WAVES FOR MUTUALIST SPECIES*

KONSTANTIN MISCHAIKOW AND VIVIAN HUTSON

Abstract. A reaction-diffusion model for n mutalistic species is considered. The existence of a
travelling wave analogous to a bistable wave for a single species is proved. Stability and uniqueness
of the wave is considered, and the question of the "dominance" of the equilibria is discussed.

Key words, travelling waves, mutualism, symbiosis, reaction-diffusion, Conley index, con-
nected simple systems
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1. Introduction. Travelling wave problems for two interacting species whose
dynamics are governed by a pair of reaction-diffusion equations have been much stud-
ied recently. To quote two examples only, Dunbar [5] has considered this problem for
a predator-prey model, and Gardner [11] for a pair of competing species. It appears
that a third class of model, that of mutualistic (sometimes called symbiotic) interac-
tions, has not been considered from this point of view. However, it has been argued
(see Hutson [13] and Hutson, Law, and Lewis [14]) that perhaps somewhat in contrast
with the situation for the above types of interaction it is particularly important in
this case to include diffusion to avoid the somewhat paradoxical conclusions predicted
by ordinary differential equation models of mutualism when the mutualism is obligate
(that is neither species can exist on its own). Our first objective then is to show that
travelling waves exist for obligate mutualists, indeed even for a system of n obligate
mutualists, and to discuss some of the properties of these waves.

We consider a system of reaction-diffusion equations

OUi 02ti(1.1) Ot #i Ox2 + hi(u) (i 1,..., n),

where u (Ul,..., un), with spatial domain R, the #i (assumed > 0) being diffusion
coefficients. The phase plane (when n 2) for the reaction system is described in
Fig. 1, the detailed assumptions concerning the hi being given in assumption (H1)-
(Hh) in 2. The reaction phase plane suggests that there is a broad analogy with the
one species bistable case treated, for example, in Fife [6, pp. 106-109], based on the
equation

Ou 02u
+

where m has the zeros 0, u*, 1 with 0 < u* < 1, m(u) < 0 for 0 < u < u*, and
m(u) > 0 for u* < u < 1. We shall show that this is indeed the case, proving in 4
that for some velocity c and arbitrary n, there is a monotone travelling wave (which
we call a bistable wave) from a stable critical point A to another stable critical point
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B. In 5 we demonstrate that for c large enough there is a travelling wave from A to
C, and that a monotone such wave exists in the case n 2.

A variety of techniques have been used to prove the existence of travelling waves,
ranging from topological methods (Conley and Gardner [4], Gardner [10], [11]) to
shooting methods based on Wazewski’s principle (Dunbar [5]). Our second objective
is to further develop the first class of methods, with the aim of treating a considerably
wider class of systems, while at the same time reducing the technicalities to a mini-
mum. The approach here may be compared with the use of classical degree theory,
where the technicalities on which the theory rests do not appear in the results (such as
the Leray-Schauder fixed point theorem). The abstract results presented in the Ap-
pendix are based on a development of the Conley index theory, Conley’s connection
matrix, and transition matrices. We then deduce in 3 two abstract continuation the-
orems which allow us to prove our existence results by carrying out a homotopy of the
system to a simpler one. It is necessary here to construct "isolating neighborhoods"
in phase space (analogous to open sets in degree theory) and to show that no bounded
solution of interest can be internally tangent to the boundary of the neighborhood;
this is done in 4.

The techniques presented in this paper are not new in the sense that Conley pro-
moted the use of his index in proving existence of connecting orbits in the early 1970s
and numerous people have since successfully used his ideas. Within the context of the
types of travelling wave problems discussed here the most notable applications can be
found in the works of Conley [2], Conley and Gardner [4], and Gardner [11]. For the
single species problem one can find our approach sketched out in [2] (in particular,
see the example IV.2.6). That these ideas could be applied to two-species problems
was first demonstrated in [4] (competing species) and [11] (predator-prey). What we
claim to show in this paper is, that in fact, this is a very general technique and can
be straightforwardly applied to problems involving n-species. It is our contention that
this approach can also be applied to higher-dimensional problems of mixed type, i.e.,
systems involving mutualist, competitive, and predator-prey species simultaneously
(see [19] and [20]). It should also be remarked that whereas [4] and [11] apply a con-
nection index to find connecting orbits, we use the connected simple system associated
with the Conley index to obtain existence. Results of [17] seem to imply that these
two approaches are theoretically equivalent. Nevertheless, it is the authors’ opinion
that the connected simple system is the more basic concept, and thus, more natural
to work with it. Furthermore, the global bifurcation results of [17] are obtained in
the context of connected simple systems, and hence, they can be applied directly to
the results obtained by our approach. (For examples of how these theorems can be
applied to find nonmonotone bistable waves, the reader is referred to [20]).

2. Preliminaries. Consider the system of equations (1.1) and let hi(u)
ufi(u). Take R to be the open rectangle in R with opposite vertices A (0,..., 0)
and B (1,..., 1). We make the following hypothesis concerning the reaction system:

hi(u) uifi(u) (i 1 n)(2.1) u

corresponding to (1.1). It is assumed that the following assumptions hold in a neigh-
borhood of R where all indices run over 1,..., n.

1Gardner has informed us that Conley originally considered using connected simple systems in
their work, but then later formulated the connection index approach which first appeared in their
joint paper.
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(H1) f e C2(R,R).
(H2) Ofs/Ouj > 0 (i j), that is, the interactions are mutualistic, and Ofs/Ous <

0, that is, intraspecific competition holds.
(H3) A is a global attractor for the flow in any "face" us 0, that is, the mutu-

alism is obligate.
(n4) There are exactly three equilibria A (0,..., 0), B (1,..., 1) and C

(Cl,..., c) with 0 < c < 1 for all i. All three critical points are hyperbolic; A and B
are stable and C has a one-dimensional unstable manifold.

(H5) The region R1 {u fs(u) > 0 for all i 1,...,n} is connected and
B, C E/1. Also R2 {u" fs (u) < 0 for all i 1,..., n} is connected and A, C E/2.
Finally, R3 {ulus > 1, fi(u) < 0 for all i 1,..., n} is connected and B /3.

U fl =0

f=O

A ul

FIG. 1. The phase plane for the reaction system when n 2. The arrows give the vector field.
The stable and unstable manifolds of C are shown with lighter lines.

These assumptions yield simply the n-dimensional equivalent of the two-species
mutualist system with phase plane as in Fig. 1. The following explicit example may
help in visualising the type of model considered. For simplicity it is a three species case
with some symmetry, but there is no essential difficulty in giving a similar n-species
version or relaxing the symmetry. For any f (1/2,4) take

where

fs(u) -1 us + (1 + 2) 1 + (i)’

3

jyi,j--1

It is straightforward to show that there are exactly three equilibria A, C, B in R_
with coordinates (0, 0, 0), 1/(2f)(1, 1, 1), and (1, 1, 1), respectively. It is clear that on
the diagonal U u2 u3, starting from the origin, the sign of each fs is negative,
then changes to positive at C and then changes again to negative at B. On the other
hand, consider the two-dimensional subsystem in a "face" u3 0, for example. Then
one can check easily that for f in the range prescribed above, the only equilibrium is
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the origin A, and drawing the null isoclines one can readily convince oneself that A is
a global attractor. It follows rather easily that (H1)-(H5) hold.

There are several observations worth making at this point, the relevance of which
will appear later in the proofs.

Remark 2.1. If u E B(B) such that f(u) > 0 for all i 1,..., n, then u < 1.
This follows from (H2) which determines the direction of Vfi and then (H5) which
implies that ui < 1 rather than ui > 1.

Remark 2.2. Since the reaction system is a cooperative system it is a monotone
system, and hence, using [12] by (Hb) if u lies in the stable manifold of C, then it is
impossible for ui -c > 0 for all i 1,..., n.

Remark 2.3. There exist connecting orbits from C to A and C to B which lie
in the regions R1 and R2. To see why this is so, notice that a branch of the local
unstable manifold of C lies in R2. Assume for the moment that R2 is positively
invariant under the reaction flow. Since u E R2 implies fi(u) < 0 for all i 1,..., n,
ui(t) is decreasing. However, the faces defined by ui 0 are invariant, hence ui(t) > 0
for all t > 0. Since A is the only other critical point in R2, any point on this branch of
the local unstable manifold of C limits to A. Thus, it only needs to be shown that R2
is positively invariant. Let u OR2\(C}. If ui 0 for some i then limt-o u(t) A
by (H3). So assume ui > 0 for all i, in which case u OR2\{C} implies that there
exists j (1,..., n. such that fj(u) 0. On the other hand, since u C, there
exists fi such that fi(u) O. Of course, in this case fi(u) < 0. Thus the tangent

<0and =0. Note now thatu.Vfj(u)<0,vector to the flow at u is given by ui uj
i.e., fj(u(e)) < 0 for 0 < e << 1, and hence the point u is entering the region R2. A
similar argument holds for the existence of a C to B orbit.

We seek travelling wave solutions of (1.1), that is solutions of the form
(ul(x- ct),...,un(x- ct)) where c e R is the wave speed. Substitution into (1.1)
yields the system of equations

(2.2) ."#u + cu + hi(u) 0 (i 1,..., n),

where u (Ul,..., un), and "dash" denotes differentiation with respect to the argu-
ment x- ct which, in an abuse of notation, we continue to refer to as t to fit the
standard dynamical systems terminology. The corresponding first-order system is

(i 1(2.3a) ui =pi

(2.3b) #ip -cpi hi (i 1,..., n).

Notice that if A (al,..., an) is a critical point of the reaction system, then A0
(A, O) (al,..., an, 0,..., 0) is a critical point of (2.3).

Following the discussion in the introduction, we consider in particular two types of
travelling waves, which we describe as a Fisher wave and a bistable wave to emphasize
the relation to the classical one-species types of wave; see [1] for basic facts concerning
these waves, including existence proofs. A "connection" of two equilibria of the system
(2.3) is a heteroclinic orbit from one critical point to the other. It is said to be
monotone (here taken arbitrarily to be increasing always) if each ui(.) is increasing. A
Fisher wave is a monotone connection of A0 to Co, and a bistable wave is a connection
of A0 to B0, where A and B are stable critical points for the reaction system.

Finally, it is convenient, to note the following formulae derived from (2.3):

(2.4) #i dui
-c Pi 1hi(u),
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#i[p(uil) p(ui0)] -c pi(s)ds Hi(s)ds,
tiO tiO

which hold along a monotone section of an orbit which is parameterized by ui, where
Hi denotes hi in an obvious sense.

3. Two abstract continuation theorems. In this section we present a pair of
abstract theorems upon which the existence results for the bistable and Fisher waves
are based. The basic idea for the first theorem is quite simple:

1. Construct a homotopy of the 2n-dimensional system to a system with an
invariant two-dimensional subsystem on which the dynamics axe those of the standard
one species bistable problem.

2. Prove the existence of a wave speed for which the heteroclinic orbit occurs
in the two-dimensional subsystem.

3. Construct a homotopy back to the original problem and conclude that for
some wave speed the heteroclinic orbit, and hence the travelling wave exists for the
original problem.

Theorems in this spirit axe quite well known and axe the basis for most applications
of degree theory. In this latter setting a typical theorem goes as follows. Given a
parameterized family of functions f U R such that the zeros of the functions do
not lie on the boundary of U, then the degree of the function at one parameter value
is the same as the degree at any other parameter value. Furthermore, if the degree is
nonzero then for any a there exists x E U such that fa(x’) O. There are two key
ingredients to this theorem:

(i) The zeros do not occur on the boundary, and
(ii) At some parameter value one can compute the degree.
Though, as was indicated in the introduction, our approach is based on the Conley

index rather than degree theory, the spirit of the two methods have much in common.
Before stating the theorems let us establish some notation. Let R X --, X

be a flow on a locally compact space. Given a compact set N, let

NT {x e NI([-T, T], x) C N}.

N is called an isolating neighborhood if there exists T > 0 such that NT C int(N). Let
N T>0 NT" It is easy to check that N is an invaxiant set, i.e., (R, N)
N. Clearly, N is an isolating neighborhood if and only if x N implies x ON.
Notice that the role played by isolating neighborhoods in Conley index theory is
equivalent to that played by the above mentioned set U in degree theory. An invariant
set S is called isolated if there exists an isolating neighborhood N of S such that
S= N.

A simple, but we shall see, useful decomposition of an invariant set S is that
of an attractor-repeller (A-R) pair. Let w(V) and w*(V) denote the omega and alpha
limit sets of U, respectively. A c S is called an attractor in S if there exists a
neighborhood U of A such that w(U S) A. The dual repeller of A, denoted by
A* is defined by A* {x e Sw(x) A }. The pair (A,A*) make up an A-R
pair. Notice that given an A-R pair decomposition of S, if x S, then x A A*
or w(x).c A and w*(x) c A*, i.e., S is made up of the attractor A, its dual repeller
A*, and connecting orbits from A* to A. Thus, if one lets C(A*, A) denote the set of
connecting orbits from A* to A, then S = A A* C(A*, A).

Since the complicated 2n-dimensional problem will be mapped by a homotopy
to a simple twdimensional problem we need to discuss what is meant by continuing
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isolating neighborhoods and isolated invariant sets. Consider a parameterized family
of flows (t,x,a) (t,x), where a e [0, 1] is the parameter value. Define the
parameter flow to be " R x X x [0, 1] --, X x [0, 1] by

(t,

Let Na denote an isolating neighborhood for the flow Ca. One says that the isolating
neighborhood N1 continues to NO if there exists N an isolating neighborhood of , the
parameter flow, such that Nix {0} NO and Nix {1} N. Similarly, if S denotes
an isolated invariant set under Ca, then SO continues to S if there exist corresponding
isolating neighborhoods that continue.

We are now ready to present the hypotheses for the abstract theorem, and start
with the homotopy discussed in the previous paragraph. With this in mind we write
down the following two parameter set of equations:

(TWC’a)
M(a)p -cp H(u, a),

where u,p E Rn, M(a) is a diagonal matrix with positive entries #7, c E R is the
wave speed, a [0, 1] is the homotopy parameter, and H" Rn x [0, 1] R’. The
corresponding family of reaction systems is given by

(R) u’ H(u, a).

We shall adopt the convention that at a 0 we are at the original system we
wish to study, i.e., H(u, O) h(u) and #/0 #i, and at a 1 we have the simple two-
dimensional invariant subsystem for which we can prove the existence of a travelling
wave solution. We formalize this via the following assumption.

Assumption I. For the reaction system (R) there exists a one-dimensional at-
tracting invariant subspace L c Rn. Furthermore, the dynamics on L are as in Fig. 2,
i.e., the set of bounded solutions consist of the hyperbolic critical points {A, B, C}
and the heteroclinic connections C A and C --. B.

A C B

FIG. 2. The dynamics on L.

We now state the assumption concerning the homotopy from a 1 to a 0. Let
A (A, 0), B (S1, 0), and C (C, 0).

Assumption II. Aa and B continue as critical points for (Ra) and Na continue as
isolating neighborhoods for (TWc’a) such that (B, A) is an attractor-repeller pair
for (We,a), the invariant set isolated by N under the flow generated by (TWO’S).
Furthermore, for a 1, if there exists an A --. B solution to (TWc’) for some value
of c, then the connecting orbit belongs to (No,).

THEOREM 3.1. Given Assumptions I and II, there exists a bistable travelling wave
from Ao to Bo for some wave speed .

The reader is referred to the appendix for the technical aspects of the proof of
this theorem. The general idea, however, is quite simple. Assumption I is used to
guarantee that the Conley index (as a connected simple system) differs for c
and c -oo. Now Assumption II, along with an a priori bound guarantees that the
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index remains the same throughout the homotopy for Icl sufficiently large. Of course
this implies that the index at co +c and co -oc differ, and hence there exists
an A0 to BoO connection for some intermediate wave speed 5- 0.

With regard to the existence of a Fisher wave we have the following result.
THEOREM 3.2. Let A and C be hyperbolic critical points .for the reaction system

(2.2), where A is stable and C has a one-dimensional unstable manifold. If there exists
a C--,A heteroclinic orbit, a solution to (2.2), then there exists a such that .for all
c e (, (x)) there is an Ao -- Co connecting orbit .for the travelling wave system (2.3).

Again the proof of this theorem appears in the appendix; however, we remark at
this point that it follows directly from results of Conley and Fife [3] and McCord [16].

4. Existence of a bistable wave. We shall show that a straightforward ap-
plication of the abstract Theorem 3.1 yields the existence of a monotone A0 to B0
connection for the system (2.3), and so, a bistable travelling wave for the reaction-
diffusion system (1.1). In particular, we shall prove the following theorem.

THEOREM 4.1. Under hypotheses (H1)-(Hb), there exists a wave speed 5.for which
there is a monotone Ao - Bo connection for (2.3).

Of course, to apply Theorem 3.1, one needs to demonstrate that Assumptions I
and II are satisfied. This shall be done in several steps beginning with the construction
of the homotopy F. Let

{ulf,(u)
so that i represents the zero surface of fi. By the assumption (H4)

n

N ’ {B, C}.
i--1

Let L denote the diagonal of Rn. Since B E L, there exists an index j such that
intersects L transversally and such that this intersection contains at least two points.
By a reordering of the indices, we arrange that j 1, and from (H4) we may assume
without loss of generality that this intersection has exactly two points. For, if there
are more points in the intersection, then we may homotope 1 to eliminate the extra
points of intersection; in view of (H4) this can be done without changing the number
of critical points. Let p- fl, and define

+

For a E [0, 1] consider the system

(4.1a) u p,

(WW(c, a))
(4.15) # p -cp uF(u, a).

Obviously, this is a particular choice for the general system (TW,). As a varies, the
position of the intermediate critical point varies; let this be denoted by C for the
reaction system and C for the travelling wave system.

The second step in applying Theorem 3.1 is to construct an isolating neighbor-
hood. The fact that we are looking for monotone A---B connecting orbits strongly
suggests how the isolating neighborhood should be chosen. In particular, monotonic-
ity implies two things; 0 _< u(t) _< 1, and 0 _< pi(t) for t R. This suggests choosing
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a rectangular box, T-T x T, where :R -[0, 1]n R and :Rp [0, K]n for some
sufficiently large K. Clearly, if AB is monotone then Ao-Bo C T. On the other
hand, it is equally obvious that 7 is not an isolating neighborhood since the critical
points are elements of 07. This suggests defining

Na n U [(Ao) [2 [(Bo)\B(C),
where Be(P) and Be(P) denote the open and closed balls, respectively, with center P
and radius e. With this choice of Na we can now verify that Assumption I is satisfied.

LEMMA 4.2. Assumption I is satisfied by the equations (4.1).
Proof. It is clear from the symmetry in the construction of F(., 1) that L is an

invariant subspace of R under the reaction system R1, and that the zero sets of
Fi(., 1) intersect L transversally at exactly two points, B and Ca. It thus follows from
(H4) and (Hb) that Assumption I holds. D

The main burden of the proof is to show that Assumption II is satisfied, and
while not overwhelmingly difficult, does involve several rather technical steps. Recall
from the discussion at the beginning of 3, that N being an isolating neighborhood is
equivalent to showing that N N ON . In Lemma 4.3 we will show that (B0, A0)
form an attractor-repeller pair for (No,a), the invariant set in Na under the flow
induced by (WWC’a). Thus, (We,a) AoUSoUC(Ao, Bo). Since AoUBo c int(Na),
we only need to demonstrate that (Ao-Bo) NONa . This will be done via a series
of propositions and lemmas. To see what is involved notice that ONa is a subset of
the points in

and

(0n x n )u 0n,),
O(B (Ao) u

O(B(C))
Thinking of Na as a "box" and of the p’s as defining "vertical directions," we refer
to 07 TOp as the sides of Na, elements of T where pC 0 for 8ome i as lying on the
bottom of Na, and element8 of
Lemmas 4.4 and 4.5 assert that an Ao--Bo orbit cannot touch the top and bottom
of the box respectively. Next we prove Proposition 4.6 which guarantees that there i8
no tangency to the 8mall ball around the critical point Co. Finally, Proposition 4.7
implies that if u E A0--B0, then u E 7, i.e., Ao--+Bo doe8 not intersect the 8ides of
T nor O(B(C))

LEMMA 4.3. (Bo, Ao) forms an attractor repeller pair for (Nc,a) under the flow
generated by (TWC’a).

Proof. Sincepl _> 0 for all (u,p) e Na\(Be(Ao)UBe(Bo)), -u acts as a Lyapunov
function for the flow on this subset of Na. On the other hand, if e is sufficiently small,
then the fact that A0 and B0 are hyperbolic critical points insures, via the Hartman-
Grobman theorem, that the only bounded orbits in Be(Ao) Be(Bo) are the critical
points themselves.

LEMMA 4.4. There exists K such that on any orbit in (Nc,a), p < K/2 for
(a, c) e [0, 1] R and all i.

Proof. Since any such orbit has pi 0 at its endpoints, at a maximum of
pi, dp/dui O. Therefore, from (4.1b), pi -c-uiFi(u, a). This provides a bound
on pi for Icl _> 1.

Consider next Icl < 1, and with Hi(u, a) -uiFi(u, a), set

m max IH,(u,



TRAVELLING WAVES FOR MUTUALIST SPECIES 995

Suppose that pi > 0 for ui E [ui0, ul] and that it vanishes at these points. We
claim that

< 2gi- [Icl + + 2#m)1/2] pM,

say. For, ifthis is false for some i and u, then p(u) p,. Then from (2.5) and the
mean value theorem for integrals, since p(uo) O,

2
iPM, < ]C[PM, + m.

Hence

It is thus clear that a choice of K with the stated properties isa contradiction.
possible.

LEMMA 4.5. Suppose (u,p) B(Ao) U B(Bo). If pi --0 for some i, then
(u,p) (Nc,).

Proof. Under the stated conditions, if (u,p) e (No,a) then pi p 0 and
p’ _> 0. Differentiating (4.1b) we obtain

o_,, OF, =-uU <0,

unless pj u 0 for all j 1,..., n. In this case pj p 0 for all j 1,..., n, so
from (4. lb) the point is a critical point.

PROPOSITION 4.6. Orbits in (Nc,a) are not tangent to B(Co) f30N for small
enough e.

Proof. The proof follows from examining the linearized operations about the
critical point Cr. What needs to be shown is that a monotone orbit from A0 to
B0 cannot be tangent to a small enough ball centered at C. Observe that if all
the eigenvalues are complex then the solutions near C will oscillate, and hence, exit
N. Thus, if there is a tangency, both of the following must hold: there must be
a real nonnegative eigenvalue, and a real nonpositive eigenvalue with corresponding
eigenvectors, respectively, each of the form (u,p) with ui > 0 for all i 1,..., n (if
not, then the eigenvector points out of N). We shall rule out these possibilities by a
contradiction argument. So suppose there exist c > 0 and an eigenvalue > 0 with
associated eigenvector having ui > 0 for all i. Linearization leads to the system

(4.2) -Au +p O,

(4.3) -Ea,uk (c + A#i)pi O.

Substitution of the first equation in the second yields the relation

(4.4) Tiui + E aikuk O,

where T (c + #) + a. Of course from (H2), a < 0, aj > 0 (i # j) for any i.
It follows that T < 0 for each i, as the summation term in (4.4) is strictly positive.
Thus ai < T < 0. Note finally that for some i, Ea,uk > 0, as otherwise (H5) is
contradicted, the matrix [a] being nonsingular by (H4). Hence

--aiiui ff_ aik uk
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This contradicts the above inequality, and shows that if c _> 0, an eigenvector with
ui > 0 (for all i) cannot be associated with a nonnegative eigenvalue. When c _< 0, an
analogous argument holds for a nonpositive eigenvalue.

PROPOSITION 4.7. Let (u,p) E (Nc,a)\(Ao t2 Bo), then ui (0, 1).
The proof of this proposition entails checking the travelling wave near the critical

points A0 and B0 and along the sides of R. The following lemma will prove useful.
LEMMA 4.8. Let (u,p) be a solution to (TWc’a) and assume that ui(to) is a local

maximum (minimum) of u(t), then f(u,a) > 0 (< 0).
Proof. If ui(to) is a local maximum (minimum) of ui(t), then ui pi 0. Now

consider the second derivative

p #;l(-cpi uifi(u,

Thus u < 0 if and only if f(u, a) > O.
We shall now show that away from the critical points Ao-*Bo does not intersect

the sides of R.
LEMMA 4.9. /f (u,p) e (Nc,)\(B(Ao)t B(Bo)), then ui e (0, 1).
Proof. There are two cases to consider; uj 0 and uj 1 for some j 1,..., n.

So assume that u 0, then (u,p) e og\(S(Ao)U B(Bo)). (u,p) e (Yc,)
implies that p 0 (otherwise (u, p) leaves Na in forward or backward time). But, as
is easy to check, ((u,p)]uj pj O} is an invariant subspace. Thus (u,p) must lie on
a bounded orbit on this hyperplane contradicting the fact that (u, p) Ao-Bo.

Thus, we can assume that uj 1 and pj 0. Note that F (u, a) < 0, if u 7\B0
and uj 1. By Lemma 4.8, this implies that uj attains a local minimum at this point,
contradicting the monotonicity assumption.

Notice that we have reduced the problem to studying the trajectory Ao-*Bo in
the regions B(Ao) and B(Bo). The following lemma shows that as t--. oc, u(t)
remains positive for i 1,..., n.

LEMMA 4.10. /f (u,p) e (N,) B(Ao), then ui,pi > O, for i -,..., n.

Proof. We first show that pi > 0 for each i 1,..., n. Note first that from the
proof of Lemma 4.5 there cannot be a point on the orbit where pi p 0. From
(H1)-(Hh) there is a choice of e > 0 such that the p equation may be written in the
form

with ki > 0 and 15(u)l < 1/2 for lul _< e. Assume that an orbit in (Nc,) cuts the
boundary of B(Ao) I? at t 0. From the definition, it must necessarily converge
to A0 as t --. -c. Now suppose that as t decreases from zero on this orbit pi 0 first
at u. Then it follows from (4.5) that if u > 0 (u < 0, respectively), u has a strict
minimum (respectively, a strict maximum). In the first case, the orbit clearly cannot
approach A0 without another turning point. But such a turning point can only be
a minimum. So this possibility is ruled out. In the second case, a similar argument
shows that in fact, the orbit cannot cut the boundary of B(Ao)N 0R_. Hence, p
cannot vanish. Obviously, then ui > 0 also, for otherwise it must have a minimum at
which p -0, which was ruled out above. [:l

The proof of Proposition 4.7 will be complete once we show the following.
LEMMA 4.11. If (u,p) e (Nc,) B(Bo), then ui < 1, for i,... ,n.
The proof of Lemma 4.10 was made easy by the fact that the hyperplanes ui 0

define invariant subspaces for the travelling wave system. Of course, near the critical
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point B0 we do not have such nice control on the invariant subspaces, thus the proof
of Lemma 4.11 is more complicated. The assumption (H4) is important at this point.
Since B0 is a hyperbolic fixed point Hartman-Grobmann implies that we can reduce
the problem to a careful study of the flow of the linearized system about B0. To keep
the notation to a minimum we first translate the origin to (1,..., 1). With this in
mind we make the following definitions. For fixed a let H Rn’-}Rn be defined by
U(u) (ulFl(u,a),..., unFn(u,a)). The linearized version of (TWc’a) at the point
B0 is given by

u p,
(4.6)

Mp’ -cp- DH(Bo)u.

To further simplify the notation we shall write this system as

(4.7) ui pi,

# Pi -cp gi(u),

where gi(u) VFi(B, a).u. Define e e Rn by

e. VF:i(B a) 5.
Define p- (pl,..., Pn), where p, e {0, 4-1}. Now define the closed cones

K(p) cl {u E o,e’lo, p, =O or o,p, > 0},
Q(p) {l, p, Oor,,p, > 0}.

By Remark 2.1, K(-1,-1,...,-1) C Q(1,1,..., 1). Consider Fig. 3 which describes
the zero sets for gi and the cones K(p) and Q(p) for n 2. Using it and the linearized
system we shall now give a simple proof of Lemma 4.11 for the special case n 2.

K(1,-1)

K(1,1)

K(-1,-1)

K(-1,1)

u

FIG. 3

LEMMA 4.12. Let n 2, and let (u(t),p(t)) be a solution to (4.7) such that
u(0) E Q(-1,-1), p(0) E Q(1,1), and limt-o(u(t),p(t))= (0,0). Then u([0, c)) c
Q(-1,-1).
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Proof. Assume not, then there exists a first time to such that u(to) E
OQ(-1,...,-1) and p(to) Q(1,..., 1). Without loss of generality we can, there-
fore, assume that ul(to) 0 and p(to) > 0. Since lim--.oo u(t) 0, there exists
t > to such that u(t) is a local max of ul. Now by Lemma 4.8 and the fact that
u (t) > 0 we have that

u(t) e K(1, ,) Q(1, ,),

where should be replaced by either +1 or -1. From Fig. 3, it is clear that this
implies that

u(t) e K(1,-1) Q(1,1).

In turn this implies that there exists t2 > t0 such that U2(t2) is a local maximum of
u2. Since g(1, 1) c Q(-1,-1), it is clear that tl t2. So assume that t2 > t. Then
u(t2) e g(-1, 1) and for all t > t2, u(t) e g(-1, 1). This contradicts the existence of
tl. Assuming that t > t2 leads to a similar contradiction. [3

Notice that in the proof of Lemma 4.12 it was essential that K(-1, -1) c Q(1,1),
and thus, separated the cones K(1, 1) and K(-1,1) in Q(1,1). The proof of Lemma
4.11 will now follow by induction on n the number of species. But first we prove a
simple lemma.

LEMMA 4.13. Let t > 0 and define f (f,...,f) by gi(t) 0 for i
1,..., n- 1. Then ti > 0 for all i.

nProof. Notice that t Oen for some 0 E R. By Remark 2.1, ei < 0 for
i 1,..., n. Now fn > 0 implies 0 < 0, and hence, f > 0 for i 1,..., n. D

Proof ofLemma 4.11. The proof is by induction on n the dimension of the reaction
system. Lemma 4.12 guarantees that the result is true for n 2. So assume that the
result is true for n _< 5. We need to show that it holds for n 5 + 1.

Let " [>ou(t). There are two cases to consider. First, there exists i, such
that c [Jp=-lQ(p), and second, such an i does not exist. If we are in the first
case, then without loss of generality we can assume that i n. Now define
U>0(u (t),..., u-I (t), 0), i.e., the projection of- onto the subspace R-1 (0}. By
the induction hypothesis c Q(-1,...,-1) c R-1 and the lemma holds.

Now consider the second possibility. The argument which follows is probably
clearer if one keeps Fig. 4 in mind (this is the figure corresponding to n 3). In this
case there exists tl such that u(t) > 0, and hence there exists

fn max u(t) > O.
t>o

Let us choose tl such that us(t1)
onto the space Rn-i {fn}. For i 1,...,n- 1, define fi by gi(fi) 0 and
let f (fi,...,fin). Since we want to work on the subspace Rn- {f} define
i (eil,.. ,en_i,i 0). similarly, define/(p) as before but in terms of the i’s and
((p) as the orthants in Rn-i {fin} based at the point f. By the induction hypothesis,
it is clear that C ((-1,...,-1). Of course, this does not yet prove the lemma,
since by Lemma 4.13 fi > 0, and thus, (-1,...,-1) Q(-1,...,-1). However,
u(tl) f+w where wi _< 0fori 1,...,n-1, and w,=0. Now, f 0en where 0 < 0;
hence gn(ft) < O. Furthermore, w. en < 0, thus gn(u(ti)) gn(f + W) < gn(t) < O.
Therefore, u(tl) tig K(,,..., ,, 1). Of course, this contradicts the assumption that at
t, Un has a local maximum.

5. Existence of a Fisher wave. As an application of Theorem 3.2, we show
that for large c there is an A0 Co connection. Unfortunately, the argument does not
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2 /g=o
=o

FIG. 4. Zero sets for gi on the plane R2 X {n} where n > O.

show that this is a monotone connection. However, for two species we can establish
the occurence of a monotone A0 -- Co connection, i.e., a Fisher wave. The difficulty
in extending this result to n species is that we are not able to deal with the local
analysis near Co to show that there is no oscillation in B(Co).

THEOREM 5.1. For large enough c, there exists an Ao -- Co connection, and if
n 2, there exists a monotone Ao - Co connection (that is, there is a Fisher wave).

Proof. The first part of this theorem follows directly from (H4), Remark 2.3, and
the application of Theorem 3.2.

The stronger result for the case n 2 can be obtained as follows. In close analogy
with the proof of Theorem 4.1, define

N ((u,p) lO <_ ui <_ ci;0 <_ pi <_ K} LJ B(A)LJ B(C).

With the exception of the dynamics in B(Co), the relevant lemmas and proposi-
tions of the previous section are still applicable. Thus, to show that N is an isolating
neighborhood with attractor-repeller pair (Co, Ao), it is clearly enough to rule out tan-
gencies to B(Co). Furthermore, by Lemma 4.10 we have monotonicity in Be (Ao), and
hence, showing monotonicity in B(Co) will establish the result. As Co is hyperbolic,
the flow in B(Co) may be approximated by the flow generated by the linearization.
We shall show that all the associated eigenvalues are real, and that the eigenvec-
tor corresponding to the negative eigenvalue of smallest magnitude is of the form
(Ul, u2,pl,p2) (+, +,-,-). This is enough to prove the result.

With Aj cOf/Ouj, from assumption (n2) (see also Fig. 1), ai < 0, ay > 0
for (i = j), and A alia22 -a12a21 < 0. Linearization leads to the matrix

-A 0 1 0
0 -A 0 1

_all _a_ C’+1 0
_a_ _a_ 0 _c+
2 2 2

and the eigenvalues A are the solutions of

F()d----ef[(/Zl -t- C) + all] [)()#2 -t- c) -b a22] a12a21 0.
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We claim that for c large enough positive, there are three negative real roots A1, A2, ,3
with ,3

_
,2 < ,1, and one positive root. Also, -c/2# < A1 < 0 where #

max(#1, #2). In the following we assume without loss of generality that #1 > #2.
The existence of one positive root is obvious, for F(0) A < 0. We have

F(-c/) A ca( m)/# < O.

Also,

[c2 4ula11] [c2(2#1 #2) 4#2a22] 16#3a12a21 > 0

for large enough c. These inequalities establish the claim.
Finally, to find the direction of the eigenvector associated with A1, we note that

from the matrix it is of the form - (u1,u2, Alul,A1u2). Substitution in the third
equation then yields

Ul -- + all + a12u2 0,

and taking c large, we obtain the result.

6. Travelling waves of invasion and dominance. From the point of view of
applications it is important to discover whether a bistable wave with negative speed
can exist; such a wave may be described as a "wave of invasion" since the species
migrate into a spatial region where their initial density is low. Since the mutualism is
obligate, so that all species must be present for survival, it is not immediately clear
whether such a wave can exist. From another point of view, this question can be
phrased in terms of the relative dominance of the equilibria A and B; see [6] for a
discussion in the one species case, and [4]. It is natural to define B as dominant
(over A) if a monotone increasing travelling wave has negative wave speed, for then
the solution u of the reaction-diffusion system (1.1) will approach B on compact sets.
The following result gives a condition for dominance of B and also says something
about the basin of attraction; a complementary result for the dominance of A may
be obtained in a very similar manner. The result is weaker than the necessary and
sufficient condition that may be obtained for the one species case, but it seems likely
that such a condition may be very hard to find in the present case.

We start by defining a function which is used to construct a subsolution. Let
M e C([0, 1], R) with M(0) 0, and consider the equation

(6.1) " + M() 0

with ’(0) 0. Put V(u) f M(s)ds, and assume that V(1) > 0. A simple energy
argument shows that for some b e [0, 1], the solution of (6.1) with (0) b reaches
zero (obviously symmetrically) at some time to. Define (t) -0 for Itl > to.

LEMMA 6.1. Define

M(u) min #lhi(ul, u,),
lin

and suppose that V(1) > 0. Then (,..., ) is a subsolution .for the reaction-

diffusion system (1.1), and a solution u(x,t) with u(x, O) >_ _(x) tends to B uniformly
on compact sets. Furthermore, a bistable wave exists, and its speed c < O.
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Proof. The assertions concerning the subsolution follow directly from [13]. From
Theorem 4.1 a bistable wave exists. Necessarily, its speed c is less than zero, for
otherwise a contradiction would be obtained by translating the travelling wave so that
at t 0 it is above the subsolution.

The speed of travelling waves is also of practical importance. For two species, if
#1 << #2, there are formal arguments which suggest that invading waves are "slow" in

1/2the sense that Icl is proportional to 1 whereas "dying out" waves are fast with c
1/2proportional to 2 However, the following result is the only rigorous result known

to us.
LEMMA 6.2. Let Pl be positive with

(6.2) p 4 min maxh(u).
l<i<n

For a bistable wave with c < O, we have Ic[ <_ pl.

Proof. For convenience put p -c. We shall show that if p > pl, for a monotone
orbit in R, pi > 0. Assume contrary to the assertion that pi is the first of the p’s to
vanish and pi has its first zero at ui a E [0, bi]. On ui E [0, a] we may parameterize
the orbit with ui, and write H(u) h(u). Let L be the line p /2 in the
u-p plane. Near u 0, U(u) < 0, so from (2.3), (dp/du) > p, and p > /.
Thus the orbit lies initially above L. rthermore, since.pi(a) 0, the orbit must cut
L, first, say, at (fl, p/2). So from (2.3) again,

dpi 2iU()

m

2

from (6.2). However, the orbit cuts at , dpi/di < p/2i there. This is a
contradiction. S. Stability and uniqueness. We consider here the stability of a bistable
wave. Partial results on uniqueness are also obtained. he main tool in the in-
vestigation is a comparison principle for pseudomonotone systems analogous to that
commonly used for a scalar diffusion equation; its validity here rests on the mutualistic
sumption (H2).

Let U be an open neighborhood of R. A smooth function " N x [0, ) U is
said to be a subsolution of (1.1) if

02iOu < + h(u)Ox:

A supersolution fi is defined by reversing the inequality.
THEOREM 7.1 [24, 32]. Let and fi be a subsolution and a supersolution, re-

spectively, of (1.1) with (x, O) fi(x, 0). Then (x, t) fi(x, t) for x, t e R (0, ).
Note that it is a consequence of our sumptions (H1), (H2), (H4), and (Hh)

that there is y R with strictly positive components, such that the derivative in

2This type of result; generalizing the single species result in [7], seems first to have been con-
sidered in [15] and [10]. The version here is essentially due to Paul Fife.
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the direction r/of each fi at B is negative. This will be used in the discussion of a
subsolution which follows.

Let u*(x- ct) be a bistable travelling wave, and in (1.1) change to the travelling
wave coordinate z x- ct obtaining the system

Ou 02u cOU(7.1) Ot #i Oz2 + Oz + h(u)

for which u u*(z) is a stationary solution. Clearly Theorem 7.1 remains valid with
an obvious redefinition of sub- and supersolutions. We shall use comparison functions
of the form

z0 +
+ +

with e chosen so small that u, E U.
THEOREM 7.2. For sufficiently small e and a, su]ficiently large ,and any zo, zl,

the functions u, t are a sub- and supersolution, respectively, of (7.1).
Proof. This is a generalization of [7, Lem. 4.1]. Let

Ou 02u cOUNi(ui) Ot + #i Oz2 + Ot + hi(u).

With q tie-"t, the argument of the ui being z zo + aerlie-t,

d2u du duNi(ui) #i dz2 + c---z + hi(u* eq) aeqi + aeqi
dz

du-hi(u*) / hi(u* eq) aeqi / aeqi
dz

The above remark concerning the derivative in the direction together with C con-
tinuity shows that for small enough e0 and 5 there is a constant k such that

(7.3) h(u* -eq) h(u*) >_ keq, (O <_ e <_ eo, IB-u*l < 5).

However, du*/dz > 0 as the wave is monotone, so when (7.3) holds,

Ni(ui) > (k- a)qi > O, (a < k).

A similar argument is clearly valid for [u* A < 5 by choosing 5 and e0 smaller if
necessary.

The result will follow if we can show that a similar result holds also for u* in
neither of the above neighborhoods. Since the orbit is strictly monotone, there is a
number 5’ depending only on 5 such that in this region [u[> 5’ and [u 1[ > 5’ for
each i. Then, du/dz is positive and bounded away from zero. Thus from (7.2) for
a large enough, Ni(u__i) > 0. This proves that under the stated assumptions, u_ is a
subsolution, and a similar proof shows that is a supersolution. D

THEOREM 7.3. All bistable waves have the same wave speed.
Proof. In addition to the travelling wave u* with speed c considered above,

suppose there is a second travelling wave u** with speed Cl. It is clearly possible to
choose z0 and Zl such that

u(z, 0) < 0) < 0).
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Thus by Theorem 7.1, for all t _> 0,

t) <_ t) <_ t).

However, the left and right sides approach u*(z- zo) and u*(z + zl), respectively,
as t --. oo. If now Cl c, then u** could not be contained in this way between two
translates of the stationary solution u*. This contradiction therefore establishes the
theorem. []

This result leaves open the question of whether there can be two distinct travelling
waves for given wave speed. We are not able to resolve this in general, although the
result can be shown to hold for two species (that is n 2), by using an argument
based on a comparison of the projection of the orbits on R2. The argument does not
appear to generalize to more than two species.

THEOREM 7.4. Every monotone bistable travelling wave is Lo stable.
Proof. Let > 0 and let u(x, t) be an exact solution of (6.1) such that lu(z, O)-

u*(z)l < for all z. By the construction of the sub- and supersolutions, it is clear
that there are numbers K and K’ independent of such that e < K5 and

o) < u(z, o) < 0),

lu(z, t) u*(z)l + It(z, t) u*(z)l < g’5, ((z, t) e R R+).
By Theorem 7.1, u(z, t) <_ u(z, t) <_ t(z, t), and combining these inequalities we obtain
the relation

lu(z, t)- u*(z)l < L’5, (t >_ 0).
This completes the proof of stability.

Appendix. The proofs of Theorems 3.1 and 3.2 are presented here. It is assumed
that the reader is familiar with the Conley index theory (see [2], [22], [23]), Conley’s
connection matrix (see [8]) and transition matrices (see [9], [17], [18], [21]), however,
we begin by establishing some notation.

In what follows S .always denotes an isolated invariant set and N an isolating
neighborhood. Let (N, L) be an index pair for S, then the homotopy type of the
pointed space (N/L, [L]) is usually referred to as the Conley index. There exists,
however, a finer version of the index which will be used in the proof. First a definition.
A connected simple system consists of a collection Io of pointed spaces along with a
collection Im of homotopy classes of maps between these such that:

1. hom(Z,X’) {If] e [X,X’]I[f e Ira} is nonempty and consists of a single
element for each ordered pair X, X of spaces in Io;

2. if X, X’, X" e Io, If] e hom(X, X’), and If’]
hom(X, X");

3. hom(X,X) {[1x]} for all X e Ira.
Recall ([2], [20]) that the Conley index of S forms a connected simple system

where Io {(N/L, [L])[(N,L) is an index pair for S} and Im consists of the flow
defined maps between the elements of Io. The connected simple system of the Conley
index of S is denoted by I(S). The following result [2], [22] is crucial to our analysis.

FACT. If (Ac, Ac*) is an attractor repeller pair .for Sc which continues for c E R
and Sc* Ac, J A,* when i O, 1, but I(So) I(Scl), then for some c e (co, Cl)
there exists a connecting orbit from Ac* to Ac.

The Z2 homology Conley index of S is denoted and defined by

CH,(S) := H.(N/L, [L]; Z2).
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FIG. A. 1

Given a Morse decomposition of S, M(S) {M(i)li e (P, >)}, where P is the indexing
set for the Morse sets M(i) and > is a strict partial order on P, recall that the
connection matrix

A CH,(M(i)) -- CH,(M(i)).
iEP iEP

We shall always take the direct sum according to a nonincreasing order in P. This
has the effect of making A into a strictly upper triangular matrix.

The proof of Theorem 3.1 breaks down into three steps. The first is to study
the dynamics of the two-dimensional system defined over L. The second is to relate
these results with the the full travelling wave system (TWc’l), and the final step is
to homotope these results back to the complicated system (TWC’). As will become
obvious, this theorem is a triviality since most of the difficulties have been assumed
away.

Since L is an invariant line under the reaction system (R1) we can think of the
dynamics on L as being given by a scalar differential equation

(A.1) ’= g(),

where E R and g R - R. Assumption I implies that g() has exactly 3 zeros,
{a,b,}, and must have the form given in Fig. A.1. Now define G R --, R by
G() g(). Obviously G(a) > G(c) and G(b) > G(c). Without loss of generality
assume that G(a) > G(b). The corresponding travelling wave system can then be
written as

(A.2c) ’ r],

where c E R is the wave speed and y R. Clearly the fixed points of (A.2c) are
{a (a, 0), fl (b, 0), /= (c, 0)}. Now define

y2 +

then dV/dt -c2, i.e., for c > 0, Y is a Lyapunov function for (A.2). Let s(c)
denote the set of bounded solutions to (A.2c), then by Assumption I, s(c) is an isolated
invariant set.
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LEMMA A. 1. Let c > O, then:
(i) M(s(c))- (c, , /Ic >/ > } is a Morse decomposition of s(c).

ilk=l;0i) CH (Z) O,
ilk=0;CHk(/) " O, otherwise.

There exists ct such that .for all c E (0, ct) the connection matrix takes the

(iii)

(iv)
lorm

(v)
Iorm

O 1 O)0 0 0
0 0 0

There exists cr such that for all c (0, cr) the connection matrix takes the

0 1 1)0 0 0
0 0 0

Proof. (i) follows from dV/dt -cr/2 and the assumption that G(a) > G() >
G(’). (ii) and (iii) follow from the fact that the unstable manifolds of a and are
one-dimensional, while - is an attracting critical point. (iv) and (v) follow from a
simple phase portrait analysis. [:1

Since L is an attracting invariant line under (R1) one immediately obtains similar
results for Sc, the set of bounded solutions for (TWc’1), in a neighborhood of s(c) as
a subset of R2n.

LEMMA A.2. Let c > O, then:
(i) M(S) {A,B,C]A > B > C} is a Morse decomposition of Sc.

ilk=l;CH (S ) CH (A ) CH (B ) O,
/fk=0;(iii) CHk(C]).. O, otherwise.

(iv) There exists ct such that .for all c (0, ct] the connection matrix takes the
form defined above.

(v) There exists cr such that for all c [cr, oc) the connection matrix takes the
form defined above.

LEMMA A.3. The transition matrix between At and Ar is

1 0 O)0 1 1
0 0 1

Proof. Since A > B > C is an admissible ordering which continues over the
parameter range c (0, (x)), T must be an upper triangular matrix with respect to
this ordering. Furthermore, T is a degree 0 map of the form I + N where i is the
identity and N is strictly upper triangular [18]. Finally, T satisfies TAt ArT. The
only matrix which meets all these conditions is the desired matrix. D

COROLLARY A.4. There exists c [ct, cr] for which an A -- B travelling wave
occurs.

Let I((Nc,)) denote the connected simple system of the Conley index for
(g,l)o under the flow induced by (WWc’).
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1I r

0 c
FIG. A.2

COROLLARY A.5 [16, 6]. For c e (0, c], I((Nc,1)) I and for c e [cr, o),
I((Nc,1)) ilr. Furthermore, II 6 I.

It might be helpful to visualize the content of this last corollary. Let c+ :- inf{cr ),
and c- :- sup{c). Of course c- _< c+. To simplify the picture assume that c- Cl+.
Then Corollary 5 is summarized in Fig. A.2.

Recall that dV/dt -cr/2 and that G(a) > G(b). Thus it is impossible for an

A B to exist if c _< 0. Therefore, for the isolated invariant set N1, the connected
simple system I] continues over c _< 0, i.e., Fig. A.2 extends to Fig. A.3.

1I] Ir

FIG. A.3

Now consider the homotopy from a 1 back to the original system at a 0.
First, by [3] there exists an a priori bound F such that Icl > F implies that there does
not exist an Ag B solution to (TW’) for all a e [0, 1]. Therefore, I" 6 I where
the connected simple systems are computed for -c < -F and c > F, respectively. In
particular, I 6 I0 and therefore an A0 --+ B0 solution exists. This completes the
proof of Theorem 3.1. For a pictorial description of this argument see Fig. A.4.

CX:) +C o

FIG. A.4

Proof of Theorem 3.2. Let S A U C t2 C(C, A) which is obviously an isolated
invariant set. Let N be an isolating neighborhood of S under the reaction flow.
Since A is an attractor, the stable manifold of A intersects transversely with the
unstable manifold of C. By a result of [16], this implies that CHk(S) 0 for all
k 0, 1, Now by [3], there exists g > 0 such that given c < -g << -1, there exists
an isolating neighborhood in the travelling wave system such that (Ao t2 Co) c
and CHk+n(Noo) CHk(S) 0 for all k 0, 1, Of course the indices of A0 and
Co are not trivial, and hence there exists a connecting orbit from Co to A0. Now, by
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a symmetry argument, one has that for c > , there exists an A0 to Co connecting
orbit. D

A final remark is necessary. The introduction of connection matrices and tran-
sition matrices in the proof of Theorem 3.1 is not really necessary. Since (A.2c) is
two-dimensional, a phase portrait analysis is sufficient to convince oneself that the
connected simple systems are different at high and at low wave speeds. On the other
hand, it is clear that for some problems Assumption I is too restrictive (see [19]). A
weaker assumption would be the following:

Assumption I*. For the reaction system (R1) there exists a k-dimensional attract-
ing invariant subspace L c Rn. Furthermore, the dynamics on L under (R1) can be
described by a gradient flow, i.e.,

In this case under this assumption if one could determine the connection matrices
for c oo and for c 0 and they were related by an appropriate transition matrix
then the proof and hence the result of Theorem 3.1 is still valid.

Acknowledgments. Apart from the acknowledgment already made to Paul Fife
in 7 V. Hutson wishes particularly to thank him for sharing his exceptional insights
on travelling wave problems. V. Hutson wishes also to acknowledge generous support
from the Leverhulme Trust which made possible a visit to the Georgia Institute of
Technology in 1989 and also support from Sheffield University and Georgia Tech for
a short visit in 1990.

REFERENCES

[1] D. ARONSON AND H. WEINBERGER, Multidimensional nonlinear diSuNion arising in population
genetics, Adv. Math., 30 (1978), pp. 33-76.

[2] C.C. CONLEY, Isolated Invariant Sets and the Morse Index, CBMS Lecture Notes 38, American
Mathematical Society, Providence, RI, 1978.

[3] C. C. CONLEY AND P. FIFE, Critical manifolds, travelling waves and an example from popu-
lation genetics, J. Math. Bio., 14 (1982), pp. 159-176.

[4] C. C. CONLEY AND R. GARDNER, An application of the generalized Morse index to travelling
wave solutions of a competitive reaction diSuNion model, Indiana Univ. Math. J., 33 (1989),
pp. 319-343.

[5] S. DUNBAR, Travelling wave solutions of diusive Lotka-Volterra equations: a heteroclinic
connection in R4, Trans. Amer. Math. Sou., 286 (1984), pp. 557-594.

[6] P.C. FIFE, Mathematical Aspects of Reacting and DiSusing Systems, Lecture Notes in Biomath..
28, Springer-Verlag, New York, 1979.

[7] P. C. FIFE AND J. B. MCCLEOD, The approach of solutions of nonlinear diffusion equations
to travelling front solutions, Arch. Rational Mech. Anal., 65 (1977), pp. 335-361.

[8] R. FRANZOSA, The connection matrix theory for Morse decompositions, Trans. Amer. Math.
Sou., 311 (1989), pp. 781-803.

[9] R. FRANZOSA AND g. MISCHAIKOW, Algebraic Transition Matrices, in preparation.
[10] R. GARDNER, Existence and stability of travelling wave solutions of competition models: a

degree theoretical approach, J. Differential Equations, 44 (1982), pp. 363-364.
[11] , Existence of travelling wave solution of predator-prey systems via the Conley index,

SIAM J. Appl. Math., 44 (1984), pp. 56-76.
[12] M. HIRSCH, Systems of dierential equations which are competitive or cooperative. I: Limit

sets, SIAM J. Math. Anal., 13 (1982), pp. 167-179.
[13] V. HUTSON, Stability in a reaction diSuNion model of mutualism, SIAM J. Math. Anal., 17

(1986), pp. 58-66.
[14] V. HUTSON, R. LAW, AND D. LEWIS, Dynamics of ecologically obligate mutualisms-eects of

spatial di.usion on resilience of the interacting species, American Naturalist, 126 (1985),
pp. 465-469.



1008 KONSTANTIN MISCHAIKOW AND VIVIAN HUTSON

[15] G. KASSEN AND W. TROY, The stability of traveling wave front solutions of a reaction-diffusion
system, SIAM J. Appl. Math., 41 (1981), pp. 145-167.

[16] C. McCORD, The connection map for attractor-repeller pairs, Trans. Amer. Math. Soc., 307
(88), p. -20.

[17] C. McCoItD AND K. MISCHAIKOW, Connected Simple Systems, Transition Matrices, and Het-
eroclinic Bifurcations, Trans. Amer. Math. Soc., to appear.

[18] K. MISCHAIKOW, Transition Systems, Proc. Roy. Soc. Edinburgh, l12A (1989), pp. 155-175.
[19] , Travelling waves for a cooperative and a competitive-cooperative system, in Viscous

Profiles and Numerical Methods for Shock Waves, M. Shearer, ed., Society for Industrial
and Applied Mathematics, Philadelphia, 1991, pp. 125-141.

[20] K. MISCHAIKOW AND J. REINECK, Travelling waves in predator-prey systems, SIAM J. Math.
Anal., 24 (1993), to appear.

[21] J. REINECK, Connecting orbits in one-parameter families of flows, Ergodic Theory Dynamical
Systems, 8* (1988), pp. 359-374.

[22] D. SALAMON, Connected simple systems and the Conley index of isolated invariant sets, Trans.
Amer. Math. Soc., 291 (1985), pp. 1-41.

[23] J. SMOLLER, hock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.
[24] W. WALTER, Differential und Integral Ungleichungen, Springer-Verlag, Berlin, 1964.



SIAM J. MATH. ANAL.
Vol. 24, No. 4, pp. 1009-1029, July 1993

1993 Society for Industrial and Applied Mathematics
009

STABILITY OF EQUILIBRIA FOR A CLASS OF TIME-REVERSIBLE,
D. O(2)-SYMMETRIC HOMOGENEOUS VECTOR FIELDS*

I-HENG McCOMB? AND CHJAN C. LIM’

Abstract. First-order, time-reversible n-body problems in three-space whose velocity fields consist of
sums of identical two-body interactions are studied under a set of natural symmetry assumptions. Up to

linearization about maximally symmetric equilibria, the entire class is shown to be represented by a

two-parameter normal form. The symmetries of the class are used to find formulas for the eigenvalues of
the linearized problems. The class of problems is divided into two families, one in which vector field

components in the spatial directions act in concert, and one in which they act in opposition. When the

components act in concert, the equilibria are (i) unstable when interaction strength grows with distance,
(ii) stable when interaction strength decays and n 3, 4, and (iii) stable or unstable when interaction strength
decays and n >4, depending as the singularity of the vector field varies across a critical value. When

components act in opposition, stability and instability are interchanged. A nonlinear application of this

analysis is the establishment of symmetric near-equilibrium periodic solutions.

Key words, time reversibility, symmetry, normal modes, stability

AMS subject classifications. 34, 70K15

Introduction. We consider the first-order three-dimensional motion of n bodies
under a time-reversible vector field given by the sum of identical two-body interactions,
where the time reversal reverses one spatial direction while fixing the other two. We
impose a set of natural symmetry assumptions, and ask what can be said about the
linearizations of these vector fields about maximally symmetric equilibria entirely on
the basis of the symmetries.

First-order n-body problems have 3n-dimensional phase space (whereas second-
order problems such as Newtonian mechanical n-body problems have 6n-dimensional
phase space). In the notation we will use we have vector fields

dr
(0.1) - =f(r),

where r= (rl,... rn) with rj (xj, y, z) R and f: (fl,... ,f,) with fj (f,ff,ff).
Since the vector field consists of the sum of identical two-body interactions (and under
translational symmetry, of course), f(r) is of the form

(0.2) fj(r) Z F(r ik) + const,
j Irj- r

where F (Fx, Fy, Fz) and the constant is independent of j.

* Received by the editors April 6, 1992; accepted for publication (in revised form) October 30, 1992.
f Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180-3590.
t This author is supported by a Department of Education Fellowship.
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Time reversibility is a symmetry. A vector field problem is said to be time-reversible
when there exists a phase space reflection R which anticommutes with the vector field.
For a time-reversible vector field, whenever r(t) is a solution, so is Rr(-t). A time-
symmetric solution is one for which r(t) Rr(-t), or equivalently, any solution which
passes through the time-symmetry plane Fix R. More general reversible systems are
discussed in detail in Sevryuk IS]. Here we assume that f(r) is time-reversible with
respect to reflection across the (x, y)-plane, i.e.,

(H1) Rf(r) -f(Rr),

where

(0.3) Rr= (,, ,), (x;, y, -z).
It is natural to assume that the time-reversal direction (here the z-direction) is

the only distinguished direction. Hence we assume f(r) is O(2)-symmetric with respect
to the z-axis. Letting Ro denote rotation by 0 about the origin applied to each of the
n pairs (xj, y), and Ko denote reflection in the (x, y)-plane across the line obtained
when the x-axis is rotated by 0 about the origin, we have

(H2) Rof(r) f(Ror), Kof(r) f(Kor) V O.

Finally, we assume thatf(r) is homogeneous. To cast this assumption as a symmetry
of the problem, we write: there exists/3 such that

(H3) f(r)- 6-f(r)
for all positive real (where equality holds upto a constant corresponding to pure
translation). We will refer to/3 as the "singularity" of the vector field. Homogeneity
is a natural assumption if we consider the approximation of a problem by its leading
term.

We show that vector field problems of the form (0.1), (0.2) are D,-symmetric.
Under Dn symmetry and time reversibility (HI), regular horizontal n-gons are the only
maximally symmetric equilibria. In particular, we consider the equilibria given by r,
where

( 27rj 27rj )(0.4) r cos, sin, 0

Note that these equilibria are actually relative equilibria in the sense that

(0.5) f(r) const (independent ofj) Vj.

Any translation, rotation, or scaling of these equilibria are, of course, also equilibria
(corresponding to translational, O(2), and homogeneity symmetries of the problem).

When vertical and horizontal components of the vector field act in concert, we
obtain the following stability results:

(i) When interaction strength grows over distance, regular horizontal n-gons are
unstable;

(iia) For n=3,4, when interaction strength decays over distance, regular
horizontal n-gons are stable;

(iib) For n > 4, when interaction strength decays over distance, regular horizontal
n-gons are stable or unstable, depending as the singularity/3 passes through a "stability
threshold" /3*(n)<oe, where stability refers to ellipticity. (Hyperbolic stability is
disallowed by time reversibility, so ellipticity is the strongest stability obtainable by
linear analysis.) Numerical studies indicate that for problems of type (iib), /3*(n)
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decreases with increasing n, i.e., that less singular cases are more stable for decaying
interaction. When the components of the vector field act in opposition, stability and
instability are of course interchanged.

To obtain these results, we use the symmetry properties of the class of problems
to exhibit a normal form for linear analysis of the entire class. We show that up to
linearization about regular horizontal n-gons, our class of vector field problems reduces
to two 2-parameter families, parametrized by the relative magnitudes of the vertical
and horizontal components, and by the singularity strength/3. One physical example
which may be treated under this setting is the sedimentation under gravity of n small
clustered spheres in a highly viscous fluid, studied experimentally by [JMS], and
analytically under the Stokeslet model (infinite viscosity and point particle approxima-
tion) in [HI, [CLLS], [GKL], and [TK]. The Stokeslet interaction is given by

x_z yz x2 + y2 + 22’2 )F(x, y, z)= (x2+ yZz2)3/ (xZ+ yZ+z)3/2 (x-5-25i/2./
We obtain formulas for the eigenvalues, essentially as in [H], but for the whole class,
and in terms of the assumed symmetries. The (spectral) stability of the equilibria is
studied analytically and numerically. The Stokeslet problem falls under case (ii) above,
with/3 1. We have/3*(7) < 1 </3*(6) so that regular horizontal n-gons are stable for
n 3, 4, 5, 6 and unstable for n _-> 7, in agreement with [JMS] and [H]. Another example
is the dipole-type interaction given by

.3xz 3yz -(xZ+y)+Zz2]F(x, y,z)= (x2+ y+z2)5/2 (xZ+y+z)5/,-_-fS-Ti7].
Here vertical and horizontal components act in opposition and/3 3.

The linear analysis of this class of problems, besides providing stability informa-
tion, serves as a basis for nonlinear results and investigations. For example, for
0 </3 </3*(n), a time-reversible Lyapunov center type theorem for spatially symmetric
systems [GKL] applies, and we are able to establish the existence of families of
symmetric, near-equilibrium periodic solutions when a nonresonance condition holds.

1. D. symmetry. We have stated as assumptions the time reversibility and 0(2)
symmetry of our class. We now show that Dn symmetry is a consequence ofthe identical
two-body interaction form off(r) given by (0.2). Let

(1.1)
C(rl, r_,.. r,)=(r2,. rn, rl),

-(r,, r2,..., r,)= (r,..., r, r,),

and

(1.2a) R_/, c,
(1.2b) -=K/,,
with Ro and Ko as defined in (H2). From the form off(r) given by (0.2), we see that

(1.3) cf(r)=f(r) and -f(r)=f(-r).

By 0(2) symmetry (H2), we have

(1.4) f(r) =/(r) and -f(r)=f(-r).

Moreover,

(1.5) 0r -r r.
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Hence we find

(1.6) Tf(r)=f(Tr TrO=...o VTF=(C, -)-- D,.

2. Isotypie decomposition. In the eigenvalue analysis to follow, we will require
the F-isotypic decomposition for our space R3n (cf. [GSS]). Recall that each F-isotypic
component of a space is the direct sum of all F-isomorphic copies occurring in a
decomposition ofthe space into F-irreducible subspaces (i.e., into F-invariant subspaces
with no proper, nontrivial F-invariant subspaces). Every space has a unique F-isotypic
decomposition. We begin by listing the one- and two-dimensional irreducible rep-
resentations of Dn (up to isomorphism). When n is odd, the one-dimensional irreducible
representations are

(2.1a) W++, 1, -= 1,

(2.1b) W+_, 1, -=-1.
When n is even, there are in addition

(2.1c) W_+, =-1, -= 1,

(.d) w =-, -=-.
There are int ((n-1)/2) distinct two-dimensional irreducible representations"

(2.2) Wk C, z ei2’/"z, -z= ,
where z e C and (-) denotes complex conjugation.

We proceed with the isotypic decomposition of R3". We write

(2.3) R3"=H V,

where

(2.4a) H={r6R3"lzs=O Vj}

and

(2.4b) V={rR3"lx.=y=O j}.

We note that H and V are F-invariant, i.e., FH
_
H and F V V. We decompose H as

(2.5) H Ho@ H,@ H._,

where

(2.6) H {re HI rj+ R2.t/nrj}.

Identifying r H such that r =p with p (sc, 7, 0) R3, we have

t, R2(t-1/,p, -p K/nR-2t/,P.(2.7)

We see that

(2.8)

H v W++ W+_,

H, l" W/_, forl=2,.., int(n-1)+l2

Ht l Wn-(l-l) for/=int(n+2)+l
H(,/2+1 -i- W_+(R) W__ when n even,
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where mr denotes F-isomorphism. Next we decompose V as

V-- Vo( V ()" ( Vin (n/2),(2.9)
where Vk is the real space

(2.10a)
with

(2.10b)
( 2rk 2rk(n-1))Ok 1, cos ,..., cos

( 27rk 27rk(n-m))Vk= 0, sin,...,sin
n n

In the basis {v, v} for Vk, we have for any vk Vk,

(2.11)

We see that

2rk
COS

Dk 27rk
--sin

[ COS 2-
-Vk=l_sin2k

Vk

-cos 2_k]
Vk.

V0F W++

(2.12) Vk=rWk fork=l,...,int(n;),
Vn/2 =r W__ when n even.

We arrive at the isotypic decomposition of R3n that we want:

R3n 2
EI W++( W+_( W31( Wn_l)/2 (n odd),

(2.13) R3 2
i w++ w+_ w_+ w__ w... w_/ (n even).

3. Eigenvalue structure. On the basis of the isotypic decomposition (2.13) and
time reversibility (HI), we can make qualitative statements about the eigenvalues of
the linearization L of f at r. We have

Or,flit Orfllr
oqf2]r O rf21r(3.1) L=--df]ro= ...
Orfnlr Orfnlr

(0rfl,),

where the notation on the right means that the (i,j)th 3 x 3 block of L is given by

/of:/OXjlr of;/oyl Of/Oz]I(3.2) C3rlfilr--- Iof/OXjlrO ofYi /OYjlr ofY /OZlro
\of[/OXjlr of[/Oyj]r of[/oZj]i

Consider W any L-invariant subspace of R3n. On W, we have LR =-RL by time
reversibility (H1) so when Lu Au,

(3.3) L(Ru) -R(Lu) -A(Ru),
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i.e., A is an eigenvalue of LIw if and only if -A is. Now since f depends only on the
relative positions --rk (j k), Ho and Vo are clearly L-invariant, and moreover,
LIHo 0 and L Vo 0 (corresponding, respectively, to horizontal and vertical transla-
tional motion). Next, we observe that isotypic components are L-invariant. To see
this, let W be any isotypic component. Ker L is F-invariant since if u Ker L, we
have L(yu)= y(Lu)= 0. Then W f-)Ker L is a F-invariant subspaee of W and since
W is irreducible, either W f3 Ker L W or W f)Ker L 0. We see that either LW 0
or LW is isomorphic to W. Hence LW

_
Ws. Using the isotypic decomposition (2.13),

we are now in a position to perform our eigenvalue structure analysis.
2We see immediately that L 0 when restricted to W++ (L 0 when restricted to

Vo r W++), W+_, and W_+ (n even) since ,, an eigenvalue of any L-invariant
subspace, implies that -A is also an eigenvalue. Together with the two zero eigenvalues
corresponding to horizontal translation, we have so far counted five zero eigenvalues
when n is odd, and an additional zero eigenvalue when n is even.

Next we consider the components W2__ and W,. W__ is one-dimensional so it
is trivially absolutely irreducible. The action of F on Wk------C (given by (2.2)) is also
absolutely irreducible (in the sense that when Wk is viewed as a real space, the only
linear maps that commute with F are multiples of the identity). Hence in an appropriate
basis,

(3.4) LI,,= "..
\aslI asI /

where I= 1, s =2 for W= W__ and I ( o), s =3 for W= W,. We see that the
eigenvalues of L[w are exactly the eigenvalues of

(3.5) A

each with multiplicity dim W. Since A is an eigenvalue of A if and only if -A is, we
see that W2__ has eigenvalues +A, while W, has eigenvalues 0, +A each of multiplicity
two. Since there are int ((n- 1)/2) components W,, we have counted 2. int ((n- 1)/2)
zero eigenvalues and int ((n-1)/2) pairs +,X of multiplicity two. When n is even, W2

contributes an additional pair +h. However, the two zero eigenvalues from W3 corres-
pond to Ho so they have already been counted. We actually have 2. int ((n-3)/2)
additional zero eigenvalues.

In fact, we can say more. Noting that W__ arises (in the n even case) from V,,/2
and part of H,/2+1, we see that in some basis, Rlw__ =( _,o). Then if in this basis
A (aij), time reversibility (HI) implies

(3.6) ( 011 a12)--( -all a12),
--a21 -a22/ a21 a22/

i.e., a ll--a:z2--0. We see that the eigenvalues of A are real or pure imaginary. In ,the

case of W,, we have (in some basis)

(3.7) R[w I
0
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where I=( 1). If in this basis, A (aij), RL=-LR (H1) implies

al a12 a13 t -all --a12 a13(3.8) a21 a22 a23J -a21 -a22 a23,
--a31 --a32 --a33] -a31 --a32 a33]

i.e., a a12-- a2 a2_ a33--0. Hence the eigenvalues of A satisfy A(h2-a31ai3
a32a_3) 0. Again, all eigenvalues are real or pure imaginary.

In summary, we have the following.
THEOREM I (eigenvalue structure). Consider dr/dt=f(r), wheref(r) has theform

(0.2) and satisfies the symmetry relations (H1)-(H3). Then the linearization of f at
maximally symmetric equilibria has the following:

(i) 5 zero eigenvalues corresponding to three dimensions of translational motion, one
dimension of scale contraction or expansion, and one dimension of rotation about center
(average position );

(ii) 1 additional zero eigenvalue when n is even, corresponding to a type ofhorizontal
displacement which produces vertical translation onlymthe relevant subspace is that
spanned by re Hn/2+, where r (-sin (27r/n), cos (27r/n), 0);

(iii) int n 1 / 2) pairs ofreal orpure imaginary eigenvalues + h, each ofmultiplicity
two;

(iv) 2. int ((n-3)/2) more zero eigenvalues (forced by time reversibility);
(v) 1 additional pair of real or pure imaginary eigenvalues +h when n is even.

4. Relation between eigenvalues of L and L2. It turns out that it is convenient to
obtain the eigenvalues of L from the eigenvalues of L21v, so we exhibit the relation
between the two sets of eigenvalues. By time reversibility (H1) we have fR =-Rf so
that L2R RL2. We see that L2H H and L2V c__ V.

Consider (A, u) an eigenvalue/vector pair for L. From (3.3), Lu Au and L(Ru)
-A(Ru), so for A S0, u must have nonzero vertical part. Writing u= h+v where
h H, v V, we have L2h + L2v A2h + A2v. Since H and V are L2-invariant, we have
in particular,

(4.1) L2V--A2V.

Hence every nonzero eigenvalue of L is the square root of an eigenvalue of L2lv.
Conversely, let (/x, v) be an eigenvalue/vector pair for L=lv. Since LW c_c_ W for

any isotypic component W, each W is also L2-invariant. For some W, there exists
u W such that L2u txu. For tlw 0, we know LIw has exactly one pair of
eigenvalues +A (of some multiplicity but semisimple) and the rest zero. Letting E+
denote the eigenspaces corresponding to +A, we can write u--u+ + u_ + n such that
u/ E/, u_ E_, and n Ker L. Then

(4.2) L2u= L2(u++u_+ n)= L(.u+-.u_)= A2(u++u_)= lxu= tz(u+q-u_q-n).

From (4.2), we have

(4.3) (A2-1,1,)( u+ q- u_) tl,n;

so when /x # 0, we have n 0 and /x =/2. We see that every nonzero eigenvalue of
LZlv is the square of an eigenvalue of L. (In fact, the same would be true even in the
nonsemisimple case.)

Thus we can find the (nonzero) eigenvalues of L by finding the (nonzero) eigen-
values of LZlv and taking their square roots. We define

(4.4) LZlv
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and note that the eigenvalues of must be real (since the eigenvalues of L are real
or pure imaginary).

5. Eigenvalues of .. Since TL2: LyL L2T for all y F, we have

(5.1) q and - -.
This means that (in the basis (zl, z2,..., zn)) advancing the rows ofby 1 is equivalent
to advancing the columns by -1, and that exchanging the jth and (n-j)th rows of
for all j is equivalent to exchanging the jth and (n-j)th columns for all j. Hence

LL L L2 L

n-1 L,, L Ln_2

(5.2) IL-2 L,_I L, L,-3 with L L,_.

\L, L3
Direct calculation in this basis gives

Oyk

We see by (5.2) that is circulant. Hence can be diagonalized by

1 1 1 1

1

(5.4) U =-n 1.
1 ton-1 to2(n-l) to

(n-l) ]
as

(5.5a)

where

U*wU diag (p(1), p(to),..., p(to"-’)),

(5.5b) p(/x) L, + L1/x +" + L,_I/x

and U* is the conjugate transpose of U (and equal to U-l). (For diagonalization of
circulant matrices, cf. [O].) Hence the eigenvalues of are

(5.6) P(1), P(to), p(to "-1)

with p given by (5.5b).

6. Normal form for F =(Fx, gy, FZ). The calculations so far have depended only
on the time reversibility and Dn x 0(2) symmetry of the vector field f(r) and thus
apply to general problems with those symmetries. (We may replace the two-body
interaction form (0.2) for f with the assumption that f commutes with an action of
D fixing some horizontal equilibrium and then calculate eigenvalues exactly as
described.) Here we obtain the general form of vector fields in our class up to
linearization about r using the full information we have on f(r). We show that the
entire class of problems may be divided into two families, parametrized by the degree
of singularity/ associated with the homogeneity off(r) and by the relative magnitudes
of the vertical versus horizontal components of the vector field.
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First, f is time-reversible (H1) if and only if

l(x, y, -z)=-l(x, y, z),

(6.1) FY(x, y, -z)= -FY(x, y, z),

Z(x,y,-z)=FZ(x,y,z).

Since we are concerned with the linearization of f about r, we may take as rep-
resentative,

FX(x,y,z)=a(x,y)z,

(6.2) FY(x, y, z)= b(x, y)z,

Z(x,y,z)=c(x,y).

We must also incorporate the implications of 0(2) symmetry (H2) (cf. [GSS]). SO(2)
symmetry (commutation with rotations) implies (Fx, Fy) has length dependent only

on z and I(x, Y)I =/x2+Y2, and direction given by a rotation b of arg ((x, y)), where
b depends only on z. Moreover, F must depend only on z and I(x, Y)I. Hence we
have representative forms

a(x, y)= g(xZ+y2)(x cos b-y sin 4),

(6.3) b(x, y)= g(x+y2)(x sin b+y cos b),

c(x,y)=c(x2+y),
where b is a constant. In addition, we require flip symmetry in the (x, y)-plane. We
should, therefore, take sin 4 0. Finally, homogeneity (H3) forces the functions g and
e to take particular monomial (possibly fractional powered) forms depending on/3.

We have

(0.2) (r) F(r iIt)- rk

with F (F, Fy, Fz) given by

F(x, y, z) g. (x2+ y)"/-/:- xz,

(6.4) FY(x, y, z)= g. (x+ y),/2-/:--, yz,

F(x, y, z) c" (x + y2)O,/2-t/2,

where g and e are now constants. Although a appears in this form for f(r), it is not
a parameter since in linearization about r the effects of a factor out of the numerator
and denominator. Thus we arrive at our normal form for f:

(0.2’)

with F (Fx, Fy, Fz) given by

(6.5)

FX(x, y, z)= g" xz,

Fy (x, y, z)= g" yz,

FZ(x, y, z)= c" (x2+ y2).
We see that up to linearization, our class of vector field problems is parametrized by
g/c and/3. The class may be divided into two families according to the sign of g/c.
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When g/c > 0, we say that the vertical and horizontal components of the vector field
act "in concert"; when g c < 0, we say they act "in opposition." The Stokeslet problem
corresponds to g/c =/3 1, and the dipole example to g c =-3, 3.

7. Eigenvalue calculation. We are now in a position to obtain formulas for the
nonzero eigenvalues of the linearization of f(r) at r as functions of the singularity/3
and the constants g and c. Combining (5.3), (5.5b), and (6.5), and after much manipula-
tion (see Appendix), we arrive at

A=-gcfl Z l+cos 1-cos 1-cos
jn k#n

(7.1) (2(1 cos)/2+1(2(1 cos))/2+1] -’

[(2(1-cos2k))/2+l(2(1-cos2J))/2+l]-I
or

(7.1’)

A= gcfl
l+cos 1-cos l+cos

4 kn

"pl(cos2k)(l+cos-)pl(cos-)]

where Pl is a notational device referring to the polynomial given by

(7.2) sin (lt)= sin t. pl(cos t).

(It can be shown easily by induction on that sin (lt) always has the form (7.2).)
Hence up to sign and the scaling factor Igcl, the linearizations about r in our class
depend only on /3. Throughout the rest of our discussion, we will take gc 1. The
implications for other values of gc are obvious.

Noting that A =/2,-1 and A=0, we see that it is enough to compute A for
l=l,...,int(n/2). The double nature of these eigenvalues is as expected from
our eigenvalue structure analysis. Figure 1 shows the dependence of A on /3 for a
typical n.

8. Stability threshokls. Recall that by stability of a case in our vector field class
we mean that the linearization off(r) at r has only zero and pure imaginary eigenvalues,
i.e., that A is nonpositive for all I. When A is positive for some l, then r is clearly
unstable under f(r). We investigate the cases/3 < 0 and > 0 separately.

We begin with the case < 0. From (7.1’) we have for 1 (with gc 1),

1 jnkn[(l+cOS (1-2ffJ.)- (1+ cos (1 cos)]

=--fl ,F (l+cos)/((21-COS))/ COS2ffJ/((2 1-COS2 k jn
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’0.00 0.10 0..20 0.30 0.40 0.50 0.60
beta

FIG. 1. A as fl varies. The case n 12 is shown, with curves for 1,..., 6 appearingfrom top to bottom
(g=c=l).

Since the sum over k in (8.1) is always positive and /3 is negative, the sign of A
depends only on the sign of the sum over j in (8.1)"

(8.2)
cos 2 7rj/ n

s(, n) . (2(1 cos (27rj/n))) /2"

Keeping n fixed, we first observe that as /3 0-, s(/3, n)-1. Next, we note that all
terms of s(/3, n) are nondecreasing functions of/3 except when j is such that 7r/3 <
27rj/n < 7r/2 or 27r- r/2 < 27rj/n < 27r 7r/3. On the other hand, when 27rj/n falls
in one of these regions, we can consider the sum of the jth and 2jth (modulo n) terms.
If we define

cos (27rj/n) cos (27r2j/n)
(8.3) sj(fl, n)-- +

(2(1-cos (27rj/n))) t/2 (2(1-cos (2r2j/n)))/’

then differentiating with respect to/3 and rearranging, we obtain

(8.4) sj(fl, n) > 0
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if and only if

(8.5) /3<2.
ln ( COS (4rj/n) ln (2(1-cos (47rj/n))) )-cos (2rj/n) In (2(1-cos (2rj/n)))

In (2(1 +cos (2rj/n)))

But the right-hand side of (8.5) is always positive so when/3 < 0, (8.5) and hence (8.4)
holds. We see that s(/3, n) is nondecreasing and approaches -1 as/3- 0-, so s(/3, n)
is negative. Then we have , > 0 for all/3 < 0 (any n) so that the/3 < 0 case is always
unstable. (Note that by "any n" we mean n >= 3 since the cases n 1, 2 are static in
relative coordinates.)

Next we consider the/3 > 0 case. We will require the identities

E l=n-1,
kn

27rk
(8.6) Z cos 1,

kn Yl

l+cos Pl cos
k#n

The first is obvious, the second is clear when we consider that cos(27rk/n)=
Re (exp i(27rk/n)), and the third is easily proved by induction on n. From the formulas
for h (7.1’) and the identities (8.6), we have as/3 0/,

(8.7) A--[(n-l-1)(n-l+l)-(n-21)2]= n -l +l2

so that h- O- as /3- 0+. On the other hand, as /3- +c, the dominant terms in the
sum for At are those corresponding to j, k 1, n 1 so that

(8.8) ,2- 4/3
(1-cos (2.n-l/n)) cos (27r/n)

(2(1-cos (2zr/n))) t+l

as long as the right-hand side of (8.8) is nonzero (otherwise the next term must be
examined). We see that as/3- +, A is positive as long as n > 4 (and n/2 for n
even). Hence it is clear that for n > 4, the stability threshold /3*(n) exists. Studying
the h numerically for n_-<20, the first eigenvalue squared in each case to become
positive as/3 increases is A. It can be shown that A is zero for exactly one value of
positive/3 by studying the behavior of s(/3, n) defined in (8.2). Table 1 shows approxi-
mate values of/3*(n) for 4<n<=20. For n=5, we have, in fact, /3*(5)=2 exactly:

TABLE
Stability thresholds.

5 2.000 13 0.258
6 1.121 14 0.232
7 0.772 15 0.210
8 0.585 16 0.192
9 0.470 17 0.176
10 0.391 18 0.163
11 0.334 19 0.152
12 0.292 20 0.142

n t*(n) n *(n)
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writing s(2, 5) in terms of the golden number, r= 2 cos (7r/5)= (1 +x/)/2 (cf. [C]), it
is easily seen that s(2, 5)= 0.

The case for n <_-4 is somewhat different. The property which distinguishes the
cases n-< 4 from the cases n > 4 is that in the former, none of the 27rk/n have positive
cosine while all in the latter have at least cos (27r/n)>0. In fact, the cases n-<4 are
stable for all /3 > 0. To see this, we simply calculate the eigenvalues explicitly for
n 3, 4 (the cases n 1, 2 are static in relative coordinates). For n 3, A -fl/(2 3)
and for n =4, A=-fl/23/2, A -2fl/23t/2. Hence we have stability for, all/3 > 0.

In summary, we have the following.
THEOREM II (stability threshold). Consider dr/dr =f(r), where f(r) has the form

(0.2) and satisfies the symmetry relations (H1)-(H3). Then for gc > 0 (with g and c as
appearing in (6.5))"

(i) For all n >- 3, r is unstable when/3 < 0;
(iia) For n 3, 4, r is stable when/3 > 0;
(iib) For n > 4, there exists fl*(n) < such that r is stable for all 0</3 < fl*(n)

(take fl*(n) to be the largest such fl for which this is true).

9. Nonresonant periodic solutions. We begin by stating the time-reversible, spatially
symmetric version ofthe nonresonant Lyapunov center theorem essentially as it appears
in [GKL]. Consider a system of ODEs

(9.1)
dx- =f(x),

with an equilibrium at Xo. Assume there exists R" R" - R" such that

f(Rx) -Rf(x), Rxo Xo (time reversibility);

and a compact Lie group F which acts on R" and such that

f(yx)= yf(x), yXo=Xo lyF (spatialsymmetry).

Next, consider a subgroup of F S, where F S acts on the Banach space of
27r-periodic mappings R R" as

(y,O)’x(t)=yx(t+O) V(T,

A periodic solution x(t) of (9.1) is said to have symmetry when (y, 0). x(t)= x(t)
for all (y, 0) Z. From [GKL] we have the following.

THEOREM. Assume that the F-equivariant system (9.1) has a F-invariant equilibrium
Xo. Assume

+woi are nonzero eigenvalues of df)xo, and

kwoi is not an eigenvalue of df)o for k 2, 3,....

Assume that the generalized eigenspace V corresponding to the eigenvalues +woi has the

form
E=w(R)w,

where F acts absolutely irreducibly on W. Assume finally that (9.1) has time-reversal
symmetry R fixing Xo and that the subgroup

_
F x S satisfies

dim Fix () f3 V 2,

R(Fix (E) f-I V) Fix (E) f) V,

R[Fix (:) fq Ker (df) I.
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Then there exists an m + 1-parameter family of periodic solutions to (9.1), with period
near 27r/OOo and symmetry ,, where

rn dim Fix (E) fq Ker (df) xo.

To apply this theorem to our class ofproblems, we need to check several conditions.
First, for 0</3 </3*(n), we know all eigenvalues are pure imaginary, so we may take
Wo=[iAtl, with any from 1,... ,int (n/2). The nonresonance condition (kooi not an
eigenvalue for k 2, 3,...) must be checked but seems to hold generically in this class.
That V-- W W holds can be seen by taking the isotypic decomposition (2.13) and
arguing (by uniqueness of isotypic decompositions) that since the null part of any
component W, is F-isomorphic to Wk, V must be of the required form. (For n/2,
the relevant component is W2_, which is also of the required form.) We note finally
that, apart from the null direction corresponding to vertical translation which may
clearly be ignored, all zero eigenvalues of (df)ro correspond to horizontal null directions
so that RlFix (E)13 Ker (df)ro= I holds for any E we choose. Hence to apply the
theorem, it is sufficient to check noriresonance and to look for two-dimensional fixed
point subspaces which are R-invariant. We obtain the following.

TrzorzM III (nonresonant periodic solutions). Consider dr =f(r), wheref(r)
has the form (0.2) and satisfies the symmetry relations (H1)-(H3). Let gc>O (with g
and c as appearing in (6.5)) and let 0 < < *(n). Let h be any nonzero eigenvalue of
df)r and E+/- the eigenspace corresponding to +h. Assume the following nonresonance
condition holds:

kh is not an eigenvalue of (df)ro for k 2, 3,

Let E be any subgroup of F x S Dn x S such that
(i) dim Fix (E) f3 E+ 2;
(ii) Fix (E)(q E+ is left invariant by R;
(iii) dim Fix (E) fq Ker (df)o m.
Then there exists an m + 1-parameter family of periodic solutions to dr/dr =f(r)

with period near 2r/li;t[ and symmetry E.
The resulting symmetric families of periodic solutions are listed and described in

[GKL] for 3 <-n-<6 (there for the Stokeslet problem, but the results apply equally
here). The relevant subgroups of D, x S are listed in full in [GSS]. Independent
calculations for the period of small orbits in the Stokeslet problem when n =4
for synchronous rhombi (corresponding here to the eigenvalues +h2) are performed
in [TK].

10. Remarks. The focus here has been on exploiting symmetry properties to extract
information about our class of problems. Several related vector, field classes (e.g.,
inhomogeneous problems satisfying the other symmetry relations of our class, or
Z, SO(2) rather than Dn 0(2)) can be studied in essentially the same way. The
information obtained here about the linearized problem provides the basis for nonlinear
investigations such as the determination of families of near-equilibrium periodic
solutions performed above.

Since physical problems tend to have integer values of the singularity strength/3,
and since/3*(n) < 1 for n > 6, we do not expect to find clusters of more than 6 bodies
persisting in nature for problems of the type considered when vertical and horizontal
components act in concert (e.g., in the sedimentation problem). In fact, when/3 1,
under decay-type interaction, we expect only to find clusters of 3, 4, or 5 bodies. When
the components act in opposition (as in the dipole example), we do not expect to find
clusters of 3 or 4 bodies under decay-type interaction.
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The parameter/3 may also be viewed as a bifurcation parameter, for the family
of decay-type problems in the class considered above. It can be shown that the family
undergoes a time-reversible, equivariant pitchfork bifurcation as/3 passes through the
critical value fl*(n) (McComb, [M]).

Appendix: derivation of eigenvalue formulas. (Note: indices should be taken
modulo n where appropriate.) The nonzero eigenvalues of the linearization off(r) at
r are given by (5.6)"

(A.0) A/ p(to/),

where to exp i27r/n and

n--1(5.5b) p() L. + L. +... + L._.

with

k= kOx Oyk r]"
If we define

(A.1) of:A,3(i,J)= azj
A:3(i,j)o’ OZj

A3,(i,j) Of---’
r’ Oxj o’ A32(i,j)=-yj

we have

Lj [A3,(n, k)A13(k,j)+A32(n, k)A23(k,j)].
k=l

Taking the appropriate derivatives and substituting in r, we have, for k # n,

A3,(n,k)=
tic(1 -cos (2’k/ n))

(2(1-cos (2rk/ n))) t/2+l

(A.2)
A3,(n n)=- E A31(n, k),

A32(r/, k)
flc(-sin (2rk/ n))

(2(1-cos (2",rk/n))) /2+’’

A32(n, n) E A32(n, k),
kn

and for k #j,

A,3(k,j)
g(cos (2j/n)-cos (2,n’k/n))
(2(1- cos (2,rr(j- k)/n))) t3/+l’

(A.3)
A13(J,J) Z A,3(j,k)= E A,3(k,J),

kj kj

g(sin (27rj/n)-sin (2.rrk/n))
Az3(k’J)

(2(1-cos (27r(j-k)/n))) ’/:z+’’

A23(J,J) E A23(j, k) E A23(k,J).
kj kj
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We see that for j n, we have

(A.4)

Lj= [A31(n, k)A3(k,j)+A3(n, k)A23(k,j)]
k--1

We also have

Noting that

(A.6)

Y [A3(n, k)A3(k,j)+A3(n, k)A3(k,j)]
kj,n

+ [A31(n,j)A3(k,j)+A3_(n,j)Ag_3(k,j)]
kj

[A31(n k)A13(n,j)+A32(n, k)A23(n,j)]
kn

Y [A31(n, k)A3(k,j)+A32(n, k)A23(k,j)]
kj,n

d- [A31(n,j)A13(k,j)+A32(n,j)A23(k,j)]
kj,n

+[Aal(n,j)Ala(n,j)+ Aa2(n,j)A23(n,j)]

[Aal(n, k)Aa(n,j)+Aa2(n, k)A23(n,j)]
kj,n

[A31( n, j)Al3( n, j) + 332(n, j)A23(n, j)]

Y [Aa(n, k)Ala(k,j)+Aa2(n, k)A23(k,j)]
kj,n

+ [Aal(n,j)Aa(k,j)+Aa2(n,j)A23(k,j)]
kj,n

[Aa(n, k)Ala(n,j)+Aa2(n, k)A23(n,j)].
kj,n

L. [A3(n, k)A3(k, n)+A32(n, k)A23(k, n)]
k=l

[A31(n, k)A,3(k,n)+A32(n, k)A23(k, n)]
k#n

+ A31(n,k) , A13(n,j)+ A32(n,k) Az3(n,j)
kn jn kn jn

--kn A31(rl’ k) A13(k,/I)-t- A13(n,j)
jn

kn jk,n

jn kj,n

[A3(n, k)A,3(n,j)+A32(n, k)A23(n,j)]

[A31(n, k)A3(n,j)+A32(n, k)A23(n,j)].

E L= E E [A31(n, k)A13(k,j)+A32(n, k)A23(k,j)]
jn j#n kj,n

+ Z Z [A31(n,j)A3(k,j)+A32(n,j)A23(k,j)]-Ln
jn kj,n

E [A31(n, k)A13(k,j)+A32(n, k)A23(k,j)]
jn kj,n

[Aal(n,j)A13(j, k)+A32(n,j)A23(j, k)]-Ln
kn j#k,n

-Ln,
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we see that the eigenvalues we seek are

(A.7) h=p(w’)=- L; 1-cos +i L; sin
j=l j=l

But Lj L,_j so Im (A)=0 (as expected). Hence we have

(A.8) A:- L; 1-cos
j=l

where L; is given by (A.4). Note that A= 2A,_I and A 0.
Substituting (A.4) into (A.8) we obtain

(A.9)

E E [A31(n, k)A,3(k,j)+A32(n, k)A23(k,j)](1-cos
jan kj,n

(- Z [A31(n,j)A,3(k,j)+A32(n,j)A23(k,j)] 1-cos
jn kj,n

(+ Y Y [A3(n, k)A13(n,j)+A32(n, k)A23(n,j)] 1-cos
jan kj,n

(Y Y. [A3(n, k)A13(k,j)+A32(n, k)A23(k,j)] 1-cos
jan k#j,n

+ E E [A31(n, k)A13(k,j)+A32(n, k)A23(k,j)](1-cos
kn jk,n

(+ Z [A31(n, k)A13(n,j)+A32(n, k)A23(n,j)] 1-cos
j k#j,n

27rjl
Y, [A31(n, k)A13(k,j)+A32(n, k)A23(k,j)] COS--
jan kj,n n

COS

+ E E [A3,(n, k)A,3(n,j)+A32(,, k)Az3(n,j)] 1-cos
j# kj,n

Now substituting according to (A.2)-(A.3),

Ai=gcfl ., Y 1-cos cos-
jan k#j,n tl

cos -sin sin

(A.10) cos-cos
n

{[( 2k)(2j)gc/3 Y Y 1 cos 1 cos + sin
j#n k#j,n

2 7rk 2
sin

n
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Simplifying (A.10),

(A.11)

h gcfl Z Z cos-cos + 1-cos
j#n k#j,n n

( 2"n’(j- k)-gc E E cos
j#n k#j,n Yl

_ os

I(2(1-cos 2k))t/z+(2(1-cos -))t/2+]-I
( 2r[k-(k-j)]

gcfl _, E cos
k#n k-j tl

k,n

-cos + 1 cos

COS COS

( 2"n’(k-j)gc E E cos
k#n j#k,n Yl -cos2k) +(1-cos2J)l(1-cos--

I(2(1-cos2k))t/-+(2(1-cos--))t/2+]-a
( 2,rr(j- k)

gcfl E E cos
k#n j#k,n Yl

-cos 2k) + (1 -cos 2rj) ]
( 2r(j-k)l
COS

n

=gcfl ., ., cos -cos + 1-cos
k#n #n l

/3/2+1
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Defining

(A.12)

we have

(A.13)

C(k)

G(j)

C
(2(1 -cos (2"rrk/1"/)))/3/2+1’

(2(1-cos (27rj/n))) /2+1’

C(k)G(j)[(cos
jn kn

COS 2-k) _i_ (1 cos 2-j) ]
E E C(k)G(j)
j#n k#n

2,n’kl 2___coscos 7rjl+sin
n Y/

2"rrkl 2"rrjl 2"rrkl
sin cos

n n n

27rk
cos cos 27rj+ sin

n n
-cos+ 1-cos

t/ /’/ n

E E C(k)G(j)
jn kn

2"rrkl 2rrjl
COS COS COS

27rk
cos 2rrj+ cos 2"rrkl 2"rrjl 2"n’k

cos sin
n n n

sin

2"rrkl 2"rrjl
COS COS

2"rrk 2"rrkl
COS + COS COS

2 "rrj
1-cos

2 "rrk 2 rrj+ sin sin cos
t/ n

27rk
cos 27rj+ sin

n n

2,n’kl 2,a’jl 2rrk
sin sin sin

sin
2 rk__/sin 2 rrj_____/

tl n

2"rrk 2 "rrkl
cos+sin sin- 1 -cos

2"rrkl 2 7rk
COSCOSCOS--

r/ n

2 rrj 2 "rrk
cos

27rk 2rj
sin sin

n t/

2,rrkl 2"rrk
+ COS COS COS 1 -cos

1-cos cos cos- 1-cos2jl) sin 27rJ’nsin 27rkn
+ 1-cos cos- 1 -cos
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By eliminating terms which are odd in k (since they sum to zero over k # n) and
rearranging,

(A.14)

{ 2"rrkl 2"n’k ( 27rjl 2"n’j 27rjl 27rj )= Y C(k)G(j) coscos coscos-cos-cos+l
k 1’1 1’1 n FI n

+ COS
2 rkln (cs

+ COS cos+ 1-cos

27rkl 2 7rjl 2 7rk
+ sin sin sn sin

/ n /

C(k)G(j I+COS--COS----
j#n k#n n

COS
27rkl

2 7rk 2 7rj 2 7rk
sin sin sn

n n n

27rkl 2rk
-sin sin sin sin

r/

Hence the nonzero eigenvalues of the linearization of f at r are At such that

(7.1) 2

Ai=--gc E E
jn k#n

2k)(1-cos2jl)
27rkl 2 7rk

sin sin sin sin

/2+1
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UNCONDITIONAL BASES OF
WAVELETS FOR SOBOLEV SPACES*

GUSTAF GRIPENBERG?

Abstract. It is shown that an orthonormal wavelet basis for L2() associated with a multires-
olution is an unconditional basis for the Sobolev space 7t (1(), E I-s, s], provided the father wavelet
belongs to 78(]) and the square of its absolute value has finite moments. A criterion for when the
wavelet belongs to 78() is given.

Key words, basis, unconditional, Sobolev space, wavelet, multiresolution
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1. Introduction. The purpose of this paper is to extend some of the results
in [13] on unconditional bases for the Sobolev space T/s(R; C), which are of the form
{(2m*-k)}m,kez where is a mother wavelet, that is, {2m/2(2m --k)}m,keZ is an
orthonormal basis for L2(R; C). (Here denotes a generic argument.) The analysis in
this paper is restricted to the one-dimensional case, where there is also a father wavelet

such that Vm+l Vm @ Win, where Vm is the space spanned by ((2m
and Wm is the space spanned by {(2m --k)}keZ. In other words, the wavelets are
obtained from a multiresolution.

It is proved below that if and belong to 7-/8(I;C), where s >_ 0 and both
functions decay sufficiently rapidly (e.g., all moments of the square of the absolute
value are finite), then we get an unconditional basis for 7-/(R; C) for all t E I-s, s].
In order to obtain this result one has to extend a known criterion (see [6], [15]) for
when , E ?-/8(R; C), to the case where the functions are not necessarily compactly
supported. This criterion involves the spectral radius of an operator, and in the case
of compactly supported wavelets the problem is reduced to calculating the spectral
radius of a matrix. This means, for example, that one knows exactly for which positive
values of s the wavelets constructed in [3] give rise to unconditional bases in 7-/ (; C).

The main point of this paper is not that it is possible to construct an unconditional
wavelet basis, because this is well known and holds true, as can be seen from [13], for
a large number of other types of functional spaces too, but to find out exactly what
assumptions are needed on the wavelets. It turns out that the hypotheses one has
to use are quite natural, and this constitutes additionalevidence for the claim that
wavelets are an extremely useful tool.

2. Statement of results. First we have to define what we mean by a multires-
olution or a multiresolution analysis as it is often called. We say that ({Vm}mZ,
is a multiresolution of L2(; C) provided that the following four conditions hold.

(1) L2(R; C) and Vm is, for each m Z, the closed subspace
of L2(]; C) spanned by ((2m --k)}keZ,

*Received by the editors January 7, 1992; accepted for publication (in revised form) November
9, 1992.

tDepartment of Mathematics, University of Helsinki, Regeringsgatan 15, 00100 Helsingfors,
Finland (Gustaf.Gripenberg@Helsinki.Fi).
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(2) V. C V.+,, m e Z,

(3) limm-.oo Pmf f for every f E L2(]R;C), where Pm is the
orthogonal projection of L2(ll; C) onto V,,

(4) {o(. k)}kez is an orthonormal set in L2(R; C).

The function is then said to be the father wavelet or scaling function.
The definition of a multiresolution is often given in a slightly different form (but

with exactly the same content); see, e.g., [1], [4], and [11]-[13], so that the fact that
{99(2m * -k)}kez spans Vm is a consequence of the other assumptions. Condition (3)
is often formulated as the requirement that [,Jm=_oo Vm is dense in L2(]R; C) and it is
combined with the assumption that [,___oo Vm {0}, which follows from the other
conditions; see [1, p. 443] and note that the moment conditions assumed there are
not used in the proof of this statement. It is not really essential that {a(. k)}kez
is an orthonormal basis; it would suffice (as is often done) to require that it is an
unconditional basis in which case it is a Riesz basis (see [8, Thm. 2.2.2]), but from
such a basis one easily constructs an orthonormal one.

Since a E 1/ c V1 it follows that a can be expressed in terms of the functions
(a(2.--k)}kz which span V1, that is,

() v 2 .()v(2 -),
kZ

where

(k) JR ()(2- k)dx, k e Z.

We call this sequence a the filter associated with the multiresolution and it turns out
to be crucial for the analysis and in particular for computations involving the wavelets,
cf.

If we take Fourier transforms of both sides of (5), then we get

(6)

From this equation one sees the advantages of having the normalizing factor 2 in (5).
Here we have defined the Fourier transform of a to be 5- fa e-2i*xg9(x) dx and the
Fourier transform of a to be & -]keZ e-2ri*ka(k) Thus is periodic with period
1. It is possible to prove (see, e.g., [11, p. 31]) that

I(.)1 + I(o + 1/2)I = 1 a.e. on R.

Sequences a that satisfy (7) are called conjugate quadrature filters.
Having found the filter a we can define the mother wavelet as follows:

2 E(--1)ka(1 k)(2 -k).
kZ

For the Fourier transforms this implies that

(8)
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It follows from these definitions that the sets

{2m/2(2m * -k)}m,ez,
and

-k), *
where m0 Z is arbitrary, axe orthonormal bases for L2(ll; C); see, e.g., [4] or [13].

The Sobolev space 7-/(R; C) consists of all functions f (or tempered distributions
in the case where s < 0) such that

If s is a nonnegative integer N, then 7 (; C) consists of all square integrable func-
tions f that are N- 1 times continuously differentiable such that f(N-) is locally
absolutely continuous with a square integrable derivative. As an equivalent norm we
can then take

It follows from the definition of the mother wavelet that le(.)l >1(,-1
almost everywhere on (see [11, p. 31]), and it is then quite easy to see that if s >_ 0,
then 6 7(; C) if and only if 7/s(; C); cf. [15, Prop. 10.2].

In the case where the wavelets and , and then also the filter , have compact
support, the following theorem can essentially be found in [6] and [15]. The proof
given below is a modification of that in [15]. For related results, see also [2], [5], and

THEOPEM 1. Let ({Vm},nez, ) be a multiresolution of L2(]; C) with filter and
mother wavelet . Let M >_ 1 be an integer and assume that IlM+ @ L2(; C) and
that

(9) j( x(x) dx 0, j 0, 1, 2,..., M 1.

Let a be the function
a=

Then a is continuous and peodic and the operator A: C([0, 1];C) C([0, 1];C),
defined by

1),
has spectral radius p 1. In paicular, p > 1 ff & xM(x) dx O.

g s < M- log4(p) then e (;C) and ff p > 1 and e s(;C), then
s < M log4 (p).

It is proved below that it follows from the sumption I.[M+ e L2(; C) that
[.[M+ e L2(; C) too, and therefore the integrals in (9) e well defined. If there is
some closed subspace of C([0, 1]; C) invariam under A that contains all the constants,
then one sees from the fact that A is a positive operator that the spectral radius of
A restricted to this subspace is p well. This observation is important in the ce
where the parent wavelets have compact support because one can then find an invariant
subspace of trigonometric polynomials and p is the spectral radius of a matrix.

Concerning bes, we have the following result.
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THEOREM 2. Let s >_ 0 and assume that ((Vm}meZ, o) is a multiresolution o.f
L2(R; C) with mother wavelet such that o E T/8(IR; C), and I.INo L2(R; (2) .for
all N > O. Then the sets

{(2" * --k)},,kez,
and

-k),

where mo Z is arbitrary, are unconditional bases for ?-/t(]R; C), t 6 I-s, s].
In [13] the corresponding assumptions are that s is an integer and that for all

j _> 0 one has supxeR(1 + Ixl)Jl(8)(x)] < oc. In the case of wavelets with compact
support, one can calculate exactly for which values of s we have 6 ?-/s(]R; C); see [6],
and for these spaces we immediately get an unconditional basis as well.

As one sees from the proof, one could use a number of slightly different sets of
assumptions. The ones used here are not necessarily the weakest possible, but they
are reasonable and simple.

3. Proof of Theorem 1. First we give some auxiliary results. By I" we denote
JR/Z, i.e., functions defined on 1" are periodic functions on ]R with period 1.

LEMMA 3. Let N >_ 1 and let ({Vm},ez, ) be a multiresolution of L2(]R; C) with

filter and mother wavelet such that [..[g e L2(R;C). Then
and & ?-Ig (r; C). Moreover,

(10) Zl5(w / k)l 2 -l(w / k)l 2 1, w [0, 1],
kEZ kEZ

where the series converge uniformly.
Note that & 6 ?-/N (r; c) means that & is an N-1 times continuously differentiable

periodic function and &(N-l) is absolutely continuous with a locally square integrable
derivative.

Proof of Lemma 3. The fact that 6 ?-/N(]R; C) is a direct consequence of the
moment condition and the definition of ?-/N(R; C). But from now on we use the
equivalent characterization of -N(]1; C) in terms of square integrable derivatives.

It follows from the fact that {(.- k)}kz and {(. k)}kez are orthonormal
sets that (10) holds for almost every w e [0, 1]; see [11, p. 31]. Because

O(w) O(r/)+ ’() d, w,r/e [0, 1],

we have

]01 /oI(w + k)l 2 _< 2 I(r/+ k)l 2 dy + 2 I’( + k)l 2 d, w e [0, 1], keZ.

Since and ’ L2(R;C) we get the result that the first series in (10) converges
uniformly.

It follows that for each w E [0, 1] there exist numbers kw Z and ew > 0 such that
I(+k)l > 0 when I-wl < 2e. Since [0, 1] is compact we can choose finitely many

nof these points wj, j 1, 2,... n such that [0, 1] c (.Jj=l (wj -e, wj+e ). Therefore
I( + kw)l-> C for some constant C > 0 when I-wjl < e and j 1,..., n. But
&() 5(2( + k))/( + k) by (6) and by the periodicity of &, and therefore
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we deduce that & is N- 1 times continuously differentiable, and &(N-I) is absolutely
continuous with a square integrable derivative on the interval. (wj -e, wj + e).
Since [0, 1] c (.J=l(W -e,w +e we conclude that & e 7"N(T; C).

From (8) we get

N

(:.)
j=0

where 1(*) --e--2ri*(. -- 5)" Because supeR[&(J)(w)l < oo for j 0, 1,... ,N- 1,

fl&(N)(w)[2 dw < 00, and &(N) is periodic, these conclusions hold for/ as well. Since,
moreover, (10) holds and q5 E UN(]I,; C) we see that fR[b(N)(w)[ 2 dw < cx), and hence

e c).
Repeating the argument used above we now see that the second series in (10)

converges uniformly too.
We replace the function a defined above by &(.)(ei cos(r.))-M. This change

will not affect the operator A, but a will now be periodic with period 1, and this is in
some parts of the argument desirable (although not very essential).

We apply Lemma 3 with N M / 1, and then we note that assumption (9)
implies that ()(0) 0 for j 0, 1,... ,M- 1. By (8) and the fact that I(0)1 1
(see [11, p. 31]) it follows that we also have &(J)(1/2) 0 for j 0, 1,... ,M 1. Thus
we get by Taylor’s formula that

1 (M-F1) ()(. )U d.+’ /

From this formula we can deduce with the aid of Hblder’s inequality that a is absolutely
continuous and a’ Lp(T; C), 1 _< p < 2. Thus we can conclude that a is in fact Hblder
continuous, for example, with exponent 1/4, i.e.,

sup
.,,e[o,]

Next we study the operator A. By changing variables and using the periodicity
of lal we easily see that for all f, g C(V; C) we have

(11) (Af)(w)g(w) dw f(w)21a(w)l’g(2w) dw.

In particular, this implies that if we define numbers a, by

m--1

(12) a, 2" L lsin(r2,w)l2M H la(2aw)l dw,
k=O

m_>l,

then it follows from m applications of (11) that

(13) a (A’l)(w)lsin(rw)lM dw, m>l.
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Thus we have

(14) a

_
IIAll, m

_
1,

where II.ll denotes the operator norm.
Let

# inf la(w) / a

It is clear that (A’l)(w) >_ #’, w e [0, 1], hence IIA,II
_ , and it follows that the

spectral radius of A is at least #. Since Icos(rw)[ _< 1 for all w we conclude from (7)
and the definition of a that # _> 1.

If fRxM(x)dx O, then (M)(0) 0, and it follows that &(M)(1/2) 0 and
therefore a(1/2) 0. But a(0) 1 because &(0) lim-,0 (2w)/(w) 1 by (6), and
Icos(rw)l < 1 when w Z. Therefore it follows from (7) and the definition of a that
# > 1. Thus we have established the claims about the spectral radius.

If we replace a by the standard approximation

an
1 f (sin((n__+ 1)rt)2a(* t)dt

n + 1 J0 \ sin(rt) ]

then we see that the functions an are uniformly Hhlder continuous and bounded, and
an --* a uniformly as n oc. We define the operator An: C([0, 1]; C) C([0, 1]; C)
by

Because (k) max{O, 1- (11/ + 1)}a(k) i follows that n is a trigonometric
polynomial. (We have defined the Fourier transform of the periodic function to
be & f0 e-2i’a(w)dw.) But then la l is a trigonometric polynomial as well,
and the support of the Fourier transform of lanl 2 is contained in [-2n, 2hi. If now
f E C([0, 1]; C) is a trigonometric polynomial, then

2n

la(o)lf(o) e2rik* la,l’(j)](k j),
kEZ j---2n

where the sum is actually a finite one. Then

2n

Anf 2 e2rik* Z la’l"(J).f(2k J),
kEZ j---2n

because the odd terms cancel. Thus we see that if the support of the Fourier transform
of f is contained in [-2n + 1, 2n- 1], then the same holds true for the support of the
Fourier transform of Anf. Thus An maps a finite-dimensional space of trigonometric
polynomials into itself, and therefore there is an eigenvalue An of An such that An
pn, where Pn is the spectral radius of An restricted to this space. We denote the
corresponding eigenfunction by vn and we normalize it so that Ilvnllc([o,1]) 1. We
note that pn is also equal to the spectral radius of An in the space C([0, 1]; C), because

IIAnmll- IIAnmlllc([0,i]), where I1"11 is the operator norm in any one of these spaces.
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Define a new operator Bn" C([0, 1] x [0, 1]; C) --. C([0, 1] x [0,1]; C) by

(Bnh)(w, 7) an
2

2

e [0,1].

We can also define B in a similar way with an replaced by a. We note that Bn
applied to a function that does not depend on its second argument gives the same
result (as a function of its first argument) as An applied to the same function (with
only one argument). Since [[S[[ []B1[[c([0,112)and [[A[[ [[Al[[c([0,1]) we
therefore conclude that [[Bum[[ [[Anm[[ and these operators have the same spectral
radius. Moreover, Bn --. B as n oc. Define the function gn e C([0, 1] x [0, 1]; C) by

w,r/e [0, i].

Then we get
2-1/4Bngn pngn bn,

where

-lan()12)vn(2) + (lan(-2+)12- lan(2)12)Vn( +2 )

for all w, r/ E [0, 1]. Since an is uniformly Hhlder continuous with exponent 1/4,
supn[0,1] IVn()l 1, pn p, and Bn B as n oc, we conclude that

sup sup
n_>l w,r/[0,1]

But this means that the functions Vn are uniformly Hhlder continuous, in partic-
ular, equicontinuous, and we may pass to the limit and get a nontrivial function
v e C([0, 1]; C) such that Av-- Av, where IA[- p. But then we have by (13), because
supe[0,1llv(w)l 1,

Iv(w)lUlsin(w)lTM do; (Amv)(w)v(w)[sin(rw)[TM dw

<_ (Aml)(w)lsin(zrw)[TM dw a,.

Combining this result with (14) and the fact that lim._oollA’lll/" p, we conclude
that

(15) Z 4--Pmam < oc
m--I

if and only if p > log4 (p).

Let us define the function q by

(eri" sin(Tr.))Mb(0)
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Using the same kind of argument that was used when proving that a was continuous,
we can prove that q is continuous as well. The important point, however, is that
since Hkc__l COS(Tr2-ko)- sin(r*)/(Tr.)and @ @(0)Hk__l &(2-k*) (see [11, p. 34]),
it follows that

(16) q- H
k--1

(Recall that we introduced a factor eri" in the definition of a for technical reasons.)
J-1 12By Lemma 3 there exists an integer J such that ’j=_jl@(w + j) > 1/2 for all

w e [0, 1]. Since Iq(w)l > I@(w)l, w e JR, we have for some constant C,

J-1

(17) 1 <_ E Iq(w + J)12 < C, w e [0, 1].
j---J

Let p > 0. It follows from the definition of q that

0 C:. ,M-p(][; C) if and only if jf(1 + w2)-plq(w)121sin(Trw)lTM dw < x.

Because p > 0 we get after integrating by parts that

where equality holds in the case where one of the integrals diverges too. There are
1"2rag 2pw(1 -- (M2)TM dw < C2,positive constants C1 and C2 such that C1 < 4pm d2m-x g

and hence we see that

(18) qo C ]-[M--P(]I; C) if and only if E 4-P’ Isin(rw) TM lq(w)I dw < oc.
m--1 J -2mJ

Using (16), changing variables, and invoking the periodicity of lal we get

If we combine this result with (12), (15), (17), and (18), then we see that when p > 0
we have E 7"tM-p(R; C) if and only if p > loga(p). But this is exactly the claim of
the theorem, and the proof is completed:
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4. Proof of Theorem 2. We use the following result on projections onto spaces
spanned by translations of one function.

LEMMA 4. Let E L2(R;C) be such that {(*- k)}kez is an orthonormal set
in L2(R; E). Let m Z and denote by Pm the orthogonal projection onto the closed
subspace of L2(R;C) spanned by ((2" --k)}kez. Then, for every f e L2(R;C),

(19)

where

(20)

Moreover,

p." (2-m.)g(.),

g, ](* + 2"j)(2-’ +j).

2t--1

IIPmfll2L= f Igm@)l2 d,(R)
2m-t

and for every t JR,
2,-1

IIPmfl] 2 J_ -(1 + ]w + 2mk]2)t(2-mw + k)2gm(w)2 dw.t(R)
2-

Proof of Lemma 4. First we derive a formula for Pf. We have

Pmf 2re(f, (2m * -k))(2m * -k),
k6Z

where the series converges in L2(R; C) and (., .) denotes the inner product in L2(R; C).
Now the Fourier transform of (2 -k) is 2-e-2"i2-k*(2-*), and therefore we
have

Pm (2-m*) e-2i2-k* (f, (2m * -k)).
k6Z

Using Plancherel’s theorem we get

(f, (2m -k)) . ](W)2-me2ri2-kw(2-mw) dw

11
and we see hat if we define the function 9m by (20), then

(1) (I,( -)) (-)(-.

Now we combine this result with the Nourier inversion theorem for square integrable
periodic functions and conclude tha (19) holds.
w have IIPlll( ezl(I, (m._k))l because {2/(2

is an orthonormal set, and therefore it follows from (21) and Plancherel’s theorem that

lPfll=() 2m lg(2)(-k)l2

kZ

I()1 a I()1
-l/ -I
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The last claim is an immediate consequence of the fact that g,, is periodic with period
2m. This completes the proof. El

It follows from the assumptions and Lemma 3 that @, E C(R; C) and that
& E C(P; (2). If there is an integer M _> 1 such that (9) holds but fR xM)(X) dx O,
then it follows from Theorem 1 that s < M- loga(p). If no such integer M exists,
then (9) holds for every M _> 1 and we can fix M > s to be an arbitrary integer. But
then we have again s < M- loga (p) either because p > 1, and we can apply Theorem
1, or because p 1 and s < M M- loga(p). Thus we see that there exists a
number > 0 such that s + 25 < M- loga(p), that is, :Hs+2(R; C) by Theorem
1. Moreover, we get that

(22) ()(0) O, j O, 1,..., Is + 5J.
Next we show that

(23)

supE(1 + [w + k12)8+l(w + k)[ 2 < 0,

su, + + + <
wRkZ

Since supel(w)l < 1 by (7) and therefore [(2w)l < I(w)l, w e R, by (6), we see
that the second claim is a consequence of the first; so we will only prove that one.

Choose an integer m so large that m > 1 + s/(25). It follows from one of the
basic Sobolev inequalities (see, e.g., [7, p. 27]) that there is a constant C1 such that
for all e (0, 1) and all k Z,

]01sup I(w + k)l 2 _< Cle I(m)( + k)l d + 61-1/(2m-I) I( + k)l d.
oE[0,11

Choose e (1 + k2)-(+) and note that e-1/(2m-1)(1 - k2)s+5 <_ (1 + k2)+2. We
conclude that

sup (1 + k2)+el@(co -4- k)l 2
we[O,1] _

C1 I@(m)( if- k)] 2 d( + C1 (1 if- k2)s+25[@( if- k)] 2 d(.

Now we have Ezf0l()( + k)12d < oc because I-Img(*) e L2(R;C) and

ez f0 (1 + 15 + kle)+2e{(5 + k)l d( < because o e 7-/+2e(N; C), and therefore
we get the desired conclusion.

Denote the orthogonal projection onto the space spanned by {(2m *--k)}keZ by
P, and the one onto the space spanned by {(2m --k)}kez by Qm. We claim that
there exists a constant C2 such that for every m _> 0, f L2(R; C), and every t with

Itl <_ s + 5, we have

(24) IlPofll(m < C2]lPofl]L2(),

If t >_ 0 these inequalities follow immediately from Lemma 4 and (23). If t < 0 the
first inequality is trivially true, and in order to get the second one we note that by
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(22) there exists a constant C3 such that I(Y)I -< C31v/Is+ when Iv/I _< 1. Thus we see
from some easy estimates and (10) that

and the last claim follows from Lemma 4 as well.
The rest of the proof now follows that in [13]. Let f e L2(R; C) and t e I-s, s]

be arbitrary. Since f Pof + ,,’=o Qmf and
by Hhlder’s inequality, we get from (24) that

Next we observe that ,o 2-k < oc is an upper bound for the the norm of thek:l
-1 -(o-k) 2(N;R) and hence there exists amapping e 2(N;R)- ,k=o 2 rl(k) or_

constant C such that

(25) IIflI,(R) --< C IIPof t e I-s, s]II(n) + 4tIIQflIL.()
m---O

In order to get a lower bound for Ilfll,(a)._ we choose an arbitrary integer M > 0
and take

M

g Pof + Z
m=O

Then

M

(26) I($, g)L2(R)I IlPof
m--O
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But on the other hand we have by HSlder’s inequality and (25) that

< llfll,(R)/- llPof 2IIL2(R)+ Y 4-mt42mtllQmf[12L2(R)"
rrt-0

If we combine this result with (26) and let M --+ oc, then we get

1( )n--O

To complete the proof, let Po,k and Qm,k be the orthogonal (in L2(; C)) pro-
jections onto the spaces spanned by o(*- k) and b(2" -k), respectively. By the
orthogonality of the projections and the fact that Pm+l Pm / Qm (see [11, p. 31])
we have

(28) kEZ

IIq. fll 2  -’110 fl12L2

--1

m=-o k_Z

Since Po,kf (f, qo(.-k))qo(.-k) and Qm,kf 2re(f, (2m.-k))(2".-k), we get
the desired conclusion in the case m0 0 from (25), (27), (28), and [10, Whm. 7.1].

If m0 0, we can use essentially the same argument as in the case where m0 0.
This completes the .proof.
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LEAST SQUARES APPROXIMATION BY RADIAL FUNCTIONS*

E. QUAKe, N. SIVAKUMAR, AND J. D. WARD
This paper is dedicated to the memory of Professor Lothar Collatz.

Abstract. This paper is concerned with the study of continuous least squares approximation
on a bounded domain in s by certain classes of radial functions. The approximating subspace is
spanned by translates F(-- xj) of a given radial function F, where the (distinct) "centers" {xj }--1
are allowed to be scattered. The main result gives quantitative estimates for the Euclidean norms of
the inverses of these least squares matrices. In general, the estimates involve the dimension of the
ambient space, the minimal separation distance between the centers, the number of centers, and of
course the function itself. However, if F is the scaled Gaussian, it is possible to dispense with the
dependence on the number of centers. Also established along the way are results involving radial
interpolation matrices where the interpolation points are small perturbations of the centers. These
results are perhaps of independent interest as previous interpolation results had been obtained only
for interpolation at the centers.

Key words, conditionally negative definite, completely monotone, interpolation, least squares,
radial

AMS subject classifications. 41A05, 41A63

1. Introduction. The purpose of this paper is to investigate the problem of
continuous least squares approximation by translates of radial functions from certain
classes. Let F denote a radial function on ]R8 and X := {xi}N=l a set of distinct
points (called centers) in a bounded, closed domain f c ]R8. Define hi(x)"- F(x-
xi) and Sx := span{hi" 1 _< i _< N}. in recent years, considerable attention has
been paid to the problem of interpolation from the space Sx, i.e., finding suitable
classes of radial functions F, so that for given data dl,..., dN E , there exists
a unique function h Sx satisfying the interpolation conditions h(xi) di, i
1,..., N; or, equivalently, the interpolation matrix (hi(xj N))i,j= is nonsingular. If F is
a conditionally positive definite radial function of order zero or a conditionally negative
radial function of order one (see 2 for the appropriate definitions), then it is known
that the associated interpolation matrix is invertible [M], [MN], IS1]. Quantitative
estimates for the Euclidean norms of the inverses of these matrices have been derived
in [B], [NW1], [NW2], [Su2], [Ba].

One consequence of the invertibility of the aforementioned interpolation matrix is
the linear independence of the functions hi, i.e., the space Sx is N-dimensional. Our
aim in this paper is to study certain aspects of the problem of continuous least squares
approximation from the space Sx, where the underlying radial function F belongs to
either of the two classes mentioned above.

More precisely, we are interested in the following issue: let X {x,..., XN} be
a set of centers such that the minimal separation distance 2q := min Ilxj x > 0.
We call a closed and bounded domain fl C s admissible with respect to X, if for

*Received by the editors June 9, 1991; accepted for publication (in revised form) October 7,
1992.
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W(x)

w(x3)
llli

W(x4) W(x5)

FIG. 1

each xi, the s-dimensional cube W(xi) centered at xi, and with side length 2qs-1/2,
is contained in (see Fig. 1).

Suppose that f e C(12). The coefficients (with respect to the basis (hi}) of
the best least squares approximant to f from Sx are the components of the solution
vector c to the matrix equation Ax( z, where Ax is the N N matrix whose
(i,j)th entry is (hi, hi), with (,) being the standard inner product on L2(). The
components of the N-vector z are (hi, f), 1,..., N (see, for instance, [de B], [C]).
The primary intent of this paper (Theorem 4.6, Corollary 4.7, Propositions 4.8, and
4.10) is to give quantitative estimates for IIA1112, i.e., the Euclidean norm of the
inverse of the matrix Ax for continuous least squares approximation over admissible
domains and associated with conditionally positive definite radial functions of order
zero and conditionally negative definite radial functions of order one.

The present paper is restricted to the continuous least squares problem because its
theoretical aspects are more tractable than those of its discrete counterpart. Yet, it is
our belief that the basic principles of our arguments (notably the approach outlined in
the following paragraph) carry over to the case of discrete least squares approximation.
Thus, our paper could serve as a preliminary step towards the eventual treatment of
the discrete problem.

Our approach here is to relate the problem of continuous least squares approxima-
tion from Sx to that of interpolation from Sx. However, this interpolation problem is
not the standard one mentioned earlier (i.e., where the centers and the interpolation
points coincide), but rather one where the interpolation points are small perturba-
tions of the centers. Our results pertaining to this latter interpolation problem (e.g.,
Theorem 3.2, Theorem 3.6, and Proposition 3.11), though auxiliary for our purposes
here, are, in fact, new and may also be of some independent interest.

In general, the estimates we obtain for IIA1112 depend on the dimension s of
the underlying space, the minimal separation distance 2q between the centers, the
number of centers N, and of course the function F itself. The only restriction placed
on 12 is that it be admissible with respect to the given set X of centers. As is to be
expected, specific information regarding the roles of q and N can only be ascertained
by a case by case analysis of the various radial functions of interest. However, our
methods are sufficiently general in scope to allow readers to carry out such a careful
analysis for functions of their choice. For our part, we have chosen four functions
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for purposes of illustration: the "absolute value" function, the Hardy multiquadric,
the inverse multiquadric and the scaled Gaussian. It is shown (Proposition 4.8) that
for the first three functions, the influence of N on the estimates for IIAIlI. is of at
most polynomial growth, whereas the influence of the minimal separation distance
essentially stems from the role of q in the interpolation problem described in the
previous paragraph. On the other hand, the Gaussian differs from the other three
functions in that it is possible to bound the corresponding IIA1112 by a quantity
independent of N (Proposition 4.10).

With regard to the conditioning of the least squares matrices considered in this
paper, the crucial parameters that govern our estimates are the number of centers
N and the separation parameter q. Usually, in many applications of least squares
approximation, the number N is kept relatively small. Therefore, the negative impact
of N, if any, on the conditioning should not be too severe (in the case of the scaled
Gaussian, the number N plays no role at all). As we reduce questions concerning
least squares to those involving interpolation, it stands to reason that our estimates
for least squares reflect the good (or bad) behaviour of the corresponding interpola-
tion matrices. It turns out that these matrices are very sensitive to the separation
parameter q. However, the least squares problem allows us the freedom of choosing
the centers in an appropriate fashion; e.g., in certain instances, it may be possible
to keep the minimal separation distance quite large (especially when N is reasonably
small). Furthermore, there are also other ways of improving the conditioning of the
least squares problem. Often, the radial functions in question offer additional parame-
ters (whose influence can be clearly quantified) that can be used to counter the effects
of small separation distances, e.g., the constant c in the Hardy multiquadric or the
scaling parameter in the Gaussian. A judicious choice of these parameters effectively
leads to a new basis which, while being significantly better conditioned than the old
one, can still be analyzed along the same lines as the original basis itself (Remarks
4.9(ii) and 4.11).

Certain important aspects of least squares approximation are not addressed in this
paper. In particular, we do not discuss the rate of approximation as the dimension
N of the approximating subspace Sx increases. Results of this nature have been
obtained recently in [BDR].

We close this section with an outline of the paper: in 2, we discuss necessary pre-
liminaries concerning conditionally negative (positive) definite radial functions. The
third section, which is rather technical in nature, deals with the issue of obtaining es-
timates for certain interpolation matrices where the interpolation points and centers
do not coincide. The main results are presented in 4. The paper concludes with 5
where sharper results are obtained in some specific instances. The optimality of one
such estimate is also demonstrated therein.

2. Background and preliminaries. We begin with a discussion of a class
of functions which is well known for its multivariate interpolation properties [D],
[GV], [P].

DEFINITION 2.1. A continuous function F: ]R8 C is said to be conditionally
negative (positive) definite of order m if for every finite set (x:i}= of distinct points
in R8, and for every set of complex numbers (cj }Y=I satisfying

N

j--1
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for every q E Hm-1 (the space of s-variate polynomials of total degree at most m- 11,
we have

N

E 5jckF(xj -xk) < 0 (>_ 01.
j,k=l

This class of conditionally negative (positive) definite functions of order m (on ]R81
will be denoted by Nr(PS).

DEFINITION 2.2. A continuous function g: l+ --. R is said to be a conditionally
negative (positive) definite radial function of order m if g o ([1" II) is in NCn(PSm).
(Henceforth, I1" II will denote the standard Euclidean (g21 norm in Rs.) We denote
the set of all such functions by RN(RP). The class RN, includes those functions
g which are continuous on [0, cx) and for which (-1)m+Idm/damg(v/-) is completely
monotonic on (0, c); i.e.,

(_l)m+
dm fdamg(V/-) e-td#(t),

o

where dtt(t) is some nonnegative measure on [0, c). This latter class of functions is
denoted by RN. We also define the class RP by requiring that f belong to RP
precisely when -f belongs to RN. Now suppose that F: ]Rs -o ]R is continuous and
that it is radially symmetric, i.e., F(x) F(y) if Ilxll Ilyll, x, y . It is clear
that F may be identified with the following function ge: IR+ - R,. given by

gF(r)=F(x), wherellxll-r.
Consequently, we will indulge in a slight abuse of notation and say that a function
F: ]Rs - ]R belongs to RN(RPm) if F is continuous, radially symmetric, and its
associated function gF (as defined above) is in RNm(RP). Our emphasis in this
paper will be on functions F: Rs ] that belong to RP Or RN. Although this
may seem quite specialized, these two cases indeed cover many of the radial functions
of interest [P]. Functions in RP and RN possess useful representations which we
intend to exploit. Indeed, if F e RP, then [$2]

(2.11 F(x) e-IIlltd#(t), x e R,
where dtt(t) is a positive measure satisfying the conditions

o

On the other hand, if F G RNF, then F may be realized as [M], [NW2], [$2], [Sul]

1 e-IIll
(2.2 F(x) F(O) + t

o

where d#(t) is a positive measure such that

d#(t) <
o

d#(t), x e R,

d#(t)
t

1
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While the results obtained in this paper are quite general, we wish to intersperse
them with certain specific illustrations. For such purposes, we shall use the following
four functions: Fl(x) := Ilxll, F2(x) := (1 + IIx112)1/2, F3(x) := (1 + IIx112)-1/2, and
F4(x) := e-Pllxll (p > 0). It is known that F E RN, and is represented by the
measure d# (t) "= 1/2(rt)-/2dt. The Hardy multiquadric F2 belongs to RN and has
the representing measure d#2(t) :-- 1/2e-t(rt)-l/2dt. Both the inverse multiquadric F3
and the scaled Gaussian Fa belong to RP; while F3 is represented by the measure
2d#2(t), the measure d#a(t) := 5(t- p)dt (i.e., point evaluation at p) represents Fa.
The reader, if pressed to do so, will no doubt be able to carry out similar analyses for
other radial functions as well.

3. Concerning some quadratic forms. In the following, we assume that we
are given two sequences, {xj}=, (yj}=, of points in R8 such that

(i)
(3.1)

(ii)
xjxt, yjyt forjCg, l_<j, g<_N,
x-y =deS.\{0} for <j <g.

DEFINITION 3.1. Let F: R - R, F RP or RN, and set A(F) to be the
N N matrix given by

(3.2) A(F)" {F(yj xt) N}j,=l"

Furthermore, let

(3.3) A(F) + A(F)TA1 (F) :=
2

A(F) A(F)TA2(F) :-
2

and

{ }UN .’-- a (al, a2,..., aN) ]lN aj 0
j=l

The primary focus of interest in this section is the quadratic form (AI (F)a, a),
a RN, associated with F in RP and RN. (Throughout this paper, our matrices
will act on real vectors only.) We denote this quadratic form by Qo(F) if F RP,
and by Q (F) if F RN. The analysis of Q0(F) and Q1 (F)--which will supply us
with a useful tool--begins with the following.

THEOREM 3.2. Let F RP or RN, and let d# be its representing measure.
Suppose that a (al,..., aN) Rg and that Qo(F) and QI(F) are defined as above.
Then for m O, 1, the following holds:

N

Q.(F) Z a.iatF(x.i- xt)
j,--i

2(-1)mj0 1 jf-(- ts/2+m
e-llull/4t sin2

=:I(#) (-1)’J(#, d).

Z aJeiX’u dud#(t)
j=l
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Proof. Let m 0 or 1. From Definition 3.1,

(3.4)

where the last step follows from (2.1) and (2.2). Using now the fact that

e_llll.t 1

(2r)ts/2
e-11ll/4e-i’du, t > O, 6 R,

(3.1) and (3.4), we see that

N

Qm(F) ajatF(xj xt) (--1)m N CUCtZ 1 Zj,t=l
(2r)8 ts/2+m

x
2

Since the numbers Qm(F) and

N

Z jte-i(x-x)’u
j,t=l

2
N N

m’ mcos[. ( )1
#=1
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are real, it follows that

Re [ ajae_i(z_z).u{l eidu}

[l cos(d, u)] [j ajte_i(z_z).u

=2sin2() cueix’u

Consequently, we conclude from (3.5) that

N

Qm(F) E ajaF(xj xt)
j,--1

(270, t,/2+m e-Ilull/at sin2 ajei’u

2

dud#(t),

as claimed.
Remark 3.3. The expression I(/z) given in Theorem 3.2 has been studied in detail

in [NW2]. In particular, the following theorem was established there.
THEOREM 3.4. Let F E RP or RN, and let d# be its representing measure.

Let F(z) denote the standard gamma function, 2q min

71-p (s2-) ]
1/(s+1)

5:=12
9

and
8

C8 :=
28+1F ((s + 2)/2)"

Then

Cs e-52/q2t(-1)mI(#) > d#(t) =: I’(#),
I111 = q t/+m

o

where a (al,... ,aN) e RN\{0} is arbitrary if F e RP(m O) and belongs to
UN if F e RN(m 1).

Remark 3.5. (i) Suppose that J(#, d) is given by Theorem 3.2. Since

N

E Ojeiu’x
j--1

N

ycos[u. (x xe)] NIIII 2,
j,e=l

we see that
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(ii) In certain specific cases, it is possible to estimate J(#, d)lllll from above
by a quantity independent of N (see Proposition 3.11 and also 5).

THEOREM 3..6. Let F E RP’ or RN, and let d# be its representing measure.

Suppose that F(O) >_ 0 if F e RN and that P(#) > NJ(#, d). Then

IIAI(F)II _> [1’() NJ(#, d)]llll, a ( ]IN

Proof. If F RP, then on the one hand, Theorems 3.2 and 3.4 and Remark 3.5
show that

(A1 (F)a, a) _> [I’(#) NJ(#, d)]llall2., a e RN.

On the other hand, (AI(F)a, a) _< IIA (F)IIIIII by the Cauchy-Schwarz inequality.
The desired result is now immediate.

Suppose now that F RN and a E UN. Using Theorems 3.2 and 3.4 and
Remark 3.5 once again, we deduce that

-(A1 (F)a, a) -I(#) J(#, d)
_> [I’(#)- gJ(#,d)]llall 2 aUN.

This guarantees that AI(F) has N- 1 negative eigenvalues while the condition F(0)
0 and (2.2) ensure that the trace ofA(F) is nonnegative. Thus AI(F) is conditionally
negative definite and the required result now follows from [B].

We now turn to some specific illustrations involving the functions Fi, 1 _< i _< 4.
PROPOSITION 3.7. Let F be one of the functions Fi, i 1,2,3, 4, and denote

the corresponding expressions I(#) by I, 1 <_ <_ 4, respectively. Suppose that a
(hi,... ,aN) RN\{O) is subject to the restriction that a UN if i 1,2, but is
arbitrary if i 3, 4. Then the following estimates hold:

(i) -I/1111 > (Cr (( + 1)/2)/2s-t-lV/’)q --:
(ii) -I2/l[a[I 2 >_ (Cs/25(s+3)/2)(e-2/q/q(8-3)/2v/-) --: I;
(iii) /fq < 1, then I3/[la[[ 2 >_ (Cs/5(+l)/2x/-)a(-3)/2[1-e-a e-(x/a+a)/q(-l)/2

=: I’ where a is an absolute constant for which > 2a;3

(iv) X/llll > C-/()lqp/ --: I.
Proof. (i) Recall that d#(t) 1/2(rt)-x/2dt. Using this in Theorem 3.4, we obtain

-I > C / e-21q

[[a[[2 2q8/ t(s+3)/2
dt

o

q / e-2uu(S-1)/2du=c
o

( 1)where u

(ii) By Theorem 3.4, and the fact that d#2(t)= 1/2(rt)-I/2e-tdt,

--I2 > Cs / e-/q:te-t

I111 2qV t(+)/
0

dt
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/ (1)Csq e_2ue_l/q.uu(s_l)/2du by setting u

o

Csq f e_2ue_l/q.Uu(S_l)/2du

/

Cqe-/q />_
2(hq)(s_i)/2/

e- udu

1/

(as u H u(S-1)/2 and u - e-l/qgu are increasing functions)
Cs e-2/q

25(8+3)/2 q(-3)/2"

(iii) By Stirling’s formula, lim_ i/(s -4- 2) 6/e, so there exists a positive
absolute constant a such that i > 2a. Now, since d#3(t) (Trt)-/2e-tdt and m 0,
we get

13 > Cs [ e_52/q2 e

I1 112 o t(+l)/------ffdt
o

Csf e-l/q2u ( 1)v/-ffq e-uu(S-1)/2dUu u -o

As the function u - (e-i/qu)/u increases on [0, l/q2], and q < 1, we see that

2a/hq
13 > Cs f e_ue-1/qu,u(S-1)/2du

I1 11 u
a/hq

>_
qxl-aCs5qe_/(aq) (q) (s-l)/2 2a/q

e_udt

a/hq

C8 a(-a)/2 e-lq((lla)+a)
>-- ((s+l)/2 ----(1 e-

q(S-1)/2
Cs a(s-3)/2 e-/q((1/a)+a)> (1 e-a)((s-t-1)/2 q(S-1)/2

(iv) Recall that m 0 and d#a(t) 5(t- p)dt. So

Cs /o e-elqt Ce-el(qo)
q-T t,12+m d#a(t)= qspSI2

PROPOSITION 3.8. Let. F be one of the func_tions Fi, 1 < i < 3, and let the
corresponding expressions J(#, d) be denoted by Ji, 1 N N 3. Then the following
hold:

(i) g:, ga < gl;
(ii) J < (2r ((s + 1)12)Ws_llTr+/2)lldll =: J’lldll,

where w-i denotes the s- 1-dimensional volume of the unit sphere in .
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Proof. (i) J2 < J1 because d#2(t) < d#l (t).
Next, observe that

(ii) Employing the substitution w 1/4t in the expression for J1 above leads to

J (2rr)v/-
sin2 e-HuH"’w(-i)/2dw du

2 (S-t-l: (_fl_) du
:+/------zr k/at,--/2sin2

Ilull,+

2F((s-#-l)12) S iu’d’2du+ I du
71"s+1/ Ilull s+l Ilull

2r((s + 1)/2)

_
S du S du<

rS+/2 Ildll 2 +1111-1 I111+
I1,<11_< ,-r li,<ll> ,-r

by the Cauchy-Schwarz inequality. Computing each of the two integrals above using
polar coordinates, we see that

2/lldll

j 1< 2F((s+1)/2) 1 f dr
71.s+1/2 lldli2Ws_l dr 2_ (Ms-1

o /lldll

Theorem g.6, taken in conjunction with Propositions a.7 and .8, yields the fol’
lowing.

CoRollarY .9. Suppose that I, 1 , nd re 9iven b Propositions .7
nd a.8, respectively. If gmlldll < I, 1 i a, then

IIAI(F)II > [s- NJ’lldll]llll, 1 _< i < 3, a E ]1N.

Remark 3.10. (i) The function F(x):= IIllz, x e ., 0 </ < 1, belongs to
RN and is represented by the measure d#(t) -/3[F(1 -/3)]- t- dr. We can show
that the corresponding expressions I(#) and J(#, d) satisfy the following estimates:

c.zr (Z + (./))i(#) _>
It(1- )}+.

qn and J(#.d) <_ r ((s + 2)/2) W._llldll2z
r(1 )r(1 -)
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It is evident that the special case/ 1/2 corresponds exactly to the function F1.
(ii) Let J2 be given by Proposition 3.8. With a little more effort, we can show

that

gs-1 [4F(8+1)s ’2’ j, ]/ F(j+I) Ildll 2 ifs-2p/l;
j=O

J<
ws-1 [4F(s+i)’rs2 -P’(a,/ -F j/ I[dl] 2 ifs=2p.

For future reference, we abbreviate this estimate by J2 _< J"lldll 2.
The next result deals with the Gaussian Fa; it pursues a somewhat different tack

leading to a lower estimate for IIA(Fa)all that does not involve N.
PROPOSITION 3.11. Suppose that I is given by Proposition 3.7 and that E ]N.

If Ildll <_ q, then

where

that

Ds(p, q):- r-spq 1 + 6sZ(n + 3)se-p2q2

n--O

Proof. As before, in view of the Cauchy-Schwarz inequality, it suffices to prove

(A (Fa)c, c0 >_ [I Ds(p, q)l]d]l] ]lll 2

Since m 0 and d#a(t) 5(t p)dt, Theorem 3.2 implies

(3.6) (Al (F4)o, o) I4 (2r)p"/2
e-Ilull2/ sin

N

Z ojeix "u du

By Proposition 3.7 (iv),

(3.7)

So it remains to show that

IJ l D (p,q)[ldl] I1 11
To this end, we write

(3.9)
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Let
AdF4(x) ": F4(x T d)- 2F4(x) T F4(x- d).

It is quite straightforward to verify that

so from (3.9),

N

j,=l

N

27s
oljol(AdF4)(x Xj),

j,--i

27rs
1jl2(mdF4)(0) -I- ajae(mdF4)(xe xj)

j=l j,e--1

whence

(3.10)
IJl _< I(AdF4)(0)I +

j=l j,e:l

1
=:

27r8 IS1 --where -r in the penultimate line indicates that j g in that sum. In order to estimate
$1, note that

I(AdF4)(0)I 211- e-.lldll < 2Plldll,
so

(3.11) $1 <_ 2plldllZllll.
We now take up $2" observe that

(3.12)

< -’ I1 + Ie IAdF4(xe )1
2

j,e=l

_< max{q/N, %}11c11 u,

where

N N

9’N := max rl(AaFa)(x x.)l and N := max ’’l(AaFa)(xe z)l.
e=l j=l

Let jo and g0 be the indices where the maximum values of ")’N and ’N are attained,
respectively, and suppose that y e N8 with [lY[[ > [[d[[. Plainly,
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By the Mean Value Theorem,

and

Therefore,

N N

--1 =1
Jo Jo

Adapting at this stage an argument from [NWl, pp. 79-80] and noting that IIx -
Xjo II _> 2q > Ildll, we conclude from the above that

where

<_ [(n -+- 1)q -+-IId}l]e-p[nq-lldll]

_
(It + 2)qe-P(n-1)q.

Consequently,

"fN

__
12splldllq E(n + 2)se-p(n-1)2q2

n--1

12splldllqE(n + 3)se-Pnzq

The same argument also shows

(3.14) /N < 12splldliq -(n + 3)e-"q.
n---O

Thus, from (3.12), (3.13), and (3.14), it follows that

(3.15)
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Finally, from (3.10), (3.11), and (3.15), we may conclude that

1[ ]IJl < 2pql[dll + 12spqlldll -’(n + 3)e-p=q IIll 2
n--O

< D(p, q)lldll Ilall 2,

thereby completing the proof. El
It is natural to ask whether the procedure adopted in the preceding proposition

can be adapted to other comparable situations. It turns out that while the method
itself can be extended to certain other situations, it may not always yield better results.
To convey a general idea of the matter, let us suppose that a E UN, F RN,
and that its representing measure is d#. Then, under fairly mild conditions on F
conditions that do not preclude any of the c..ommonly used functions--it is shown in
[Ba] that the generalized Fourier transform F of F is given by

(u) =-K e_llll/,u d#(t)
ts/2+l e

(Hereafter, K8 will denote a generic constant that depends on s but whose actual
numerical value is likely to change from one appearance to another.) Consequently,

J(#,d)=-KsLssin2()
N

y Ozj eiu’xJ
j--1

2

F(u)du

2

where, as before, haF(z)= F(z + d)+ F(x- d)- 2F(x). Again, from [Ba] (noting
that if F satisfies the mild conditions mentioned above, then so does AdF), we see
that

N

J(#, d) K Z aJaeAdF(xj xt)
j,=l

Kllall2[F(d) F(0)] + K ajaeAdF(xj xe).

The packing argument from [NW1, p. 79] (as employed in Proposition 3.11) once again
leads to

IJ(#,d)l <_ g, llall IF(d)- F(0)I + y n-ltcn(d)
n--1

where a,,(d) := sup{IAdF(x)l: nq < Ilxll < (n / 1)q}. Now, the point is that if we
expect to get a good estimate for J(#, d) in terms of a quantity that is independent of
N and which approaches zero along with Ildll, then (d) should be very weU behaved.
Indeed, this does happen for the Gaussian and possibly other functions which decay
sufficiently rapidly at infinity. However, an(d) may not always exhibit such desirable
behaviour; in fact, even for s 2 and F F1, the rate of decay of an(d) is not rapid
enough to suit our purposes.
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4. Main results. Let X (x1,..., XN} be a set of distinct centers and 2q
minjct Ilxj -xtll. For each center xi, recall that W(xi) is the s-dimensional cube
centered at xi and with side length 2qs-i/2, i.e.,

W(x,) (x e I1 - x llo 

where II I1 denotes the supremum norm in ]Rs. Note that Ilx- x, ll _< q for all
x E W(x) and, therefore, the cubes W(x) are essentially disjoint. Recall also that for
the given set X of centers, a closed and bounded domain ft c ]R8 is called admissible
with respect to X, if W(xi) c ft for all i 1,..., N.

We are interested in the problem of finding the best L2 approximation to a given
f E C(ft), from a linear subspace of functions in C(f). The latter space will be the
span of the functions F(. xi), where F is an appropriate radial function.

DEFINITION 4.1. Let F RP or RN, and suppose that ft is an admissible do-
main with respect to the set X (x,..., XN} of distinct centers. The N-dimensional
linear space Sx c C(ft) is defined as

(4.1) Sx :- span {F (x xi)" 1 _< i _< N}.

DEFINITION 4.2. For a given function f C(f) and the space Sx as in Defini-
tion 4.1, the continuous least squares approximation problem is to find the best L2
approximant to f from Sx, i.e., to find a function s* Sx such that

Here Ilfll (f, f) 1/2 (f f(x)2dx) is the usual L2 norm and (f,g) is the corre-
sponding inner product.fn f(x)g(x)dx.

As is well known, the best L2 approximant to f C(ft) can be found by solving
the linear system of the so-called normal equations:

(4.2) Axa z,

where a (Ci)l<i<N RN, and Ax is an N N matrix with

Ax ((F (. xi) ,F (.- xj)))l<i,j<N and z ((F (.- xi), f))l<i<N"

Our aim is to estimate (Axa, a) from below. We begin with the following.
LEMMA 4.3.

(Ax,)

2 2
N N

j=l

dx.

Proof. From the definition of Ax, we obtain

(4.3)
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We want to express the integral over each cube W(xk) as the limit of certain
Riemann sums whose point evaluations are taken over an equally spaced grid of points
in W(xk). In view of Lemma 4.3, this will ultimately allow us to relate lower bounds
on the quadratic form of the least squares matrix to those of certain interpolation
matrices.

In what follows, let (il,... ,i8) E Z_ be an index vector, and define e
(1, 1,..., 1). By _<j, we mean it _< jt for - 1,...,s.

LEMMA 4.4. Let X and be as before. If a NN, then

where

2qSs-8/2
r8

IIA  )(F) II 2
0_(il_(r--1

1 (A(1) (F) + A(i)(F)T),Ai)(F) :=

A<i) (F) (F(y(ki) xj))l<_k,jgN,

y(ki) :-- Xk A- + -re
r e _<i_< (r-1)e.

Proof. Consider the following equally spaced grid of points"

q8-1/2
Xk + W(xk), --re _< _< re,

r

where 1 <_ k <_ N and r N.
As the function F is continuous, the integral (4.3) can be recovered as the limit

of Riemann sums. We choose as points of evaluation, the centers of the refined cubes
in W(xk), namely,

y(ki) :-- Xk - q8-1/2
+ re <_ _< 1)e.

As the side length of the refined cubes is qs-1/2r-1, we obtain

2
N -8/2 N

(Axa a} > Elimr_ qSs E EjF(Y(ki)--xj)rs
k=l -re<i<(r-1)e j=l

2

limqss-/2
N N

-re<i<(r-1)e k=l j=
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A closer inspection of this representation reveals that it involves the matrices

A(i)(F) (F(Y(ki) Xj))l<_k,j<_N,

which are N N interpolation matrices for radial interpolation at the points y(ki).
More precisely,

(Axa, a) >_ li__mr_+o
qSs-8/2

rs

qSs-s/2
rs

The interpolation matrices which are (in general) not.symmetric can be split up into
a symmetric and a skew symmetric part, i.e.,

A(i) (F) Ai) (F) + A(2i) (F), where

Ai) (El (A(1) (F) + A(i) (ElT)
2

and

Ai) (F) (A(1) (El A(i) (F)T).
2

Now the matrices Ai) (F) and A(2i) (F) warrant further scrutiny. For any with
-r e _< _< (r- 1)e, we have from the radiality of F,

In a similar manner, it can be shown that

A(i)(F) _A(-i-e)(F).
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Consequently,

IIA0) (F)ll / IIA(--)(F)[Iu IIA) (F)a / A(2i) (F)ll u / IIA) (F)a A(2i) (F)ll u

211A) (F)ll 2 / 2llA() (F)ll2,

where the last equality follows from the parallelogram identity.
Therefore, if * denotes the sum over the set of multi-indices -re _< <_ (r- 1)e,

0 _< il _< r- 1, and ** denotes the sum taken over the set -re _< _< (r- 1)e,
-r _< il _< -1, then

IIA0)(F)ll 2 *llA0)(F)llu + -** IIAO)(F)ll 2

and finally,

We shall now investigate a subset of the grid points y(ki) which are close to the
points xj. As a consequence, we shall obtain lower bounds on the quadratic form of
the least squares matrix in terms of lower bounds on the quadratic form of certain
interpolation matrices.

LEMMA 4.5. Suppose 0 < e <_ 1 is fixed. Let

P(r) :- {i" Ilill _< r- 1/2 and i _> 0} for r e N.

Then the following statements hold:
(i) There is an index ro(e) e N such that Pe(r) for all r >_ ro();
(ii) Pe(r) c{i’-re<_i_<(r-1)e and O_<i<_r-1};
(iii) The cardinality of Pe(r) is (2[r 1/2J + 1)8- ([er 1/2J + 1) for r >_ ro(e),

where [aJ denotes the integer part of a;
(iv) d(i) yi)_ xj, 1 <_ j <_ N, is independent of j and

IId(1)ll _< qe, e Pe(r), r >_ r0().

Proof. Assertions (i)-(iii) are straightforward to verify. To prove (iv), note that
from Lemma 4.4,

d(i) xj -- + e xj + e

which is clearly independent of j. Moreover, as E P(r), this also implies that

ild(1)ll
qs-1/21qs-1/2 ( 1 )--v--Ili + ell _<

r Ilill + llello 81/2 < q.
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Our primary result can now be stated.
THEOREM 4.6. Let F belong to RP orRN and let d# be its representing mea-

sure. Assume that f is an admissible domain with respect to a set X (Xl_,... ,xg}
of centers, and that 2q minj#t Ilxj xtll > 0. Suppose that I’(#) and J(#, d) are
given by Theorem 3.4 and Remark 3.5(i), respectively. If P(r) and d(i) are as in
Lemma 4.5, then the following hold:

(i) There exists 0 < e <_ 1, (s, q, #, N), and ro() E N such that P(r)
.for all r >_ ro(e) and

Nj(#, d(i)) < 1/2I’(#)
for Pe(r).

(ii) With as in (i) and a e RN, I]all 1, we have

(Axa, ) >_ 28-2s-S/2qsI’(#)2e8.

Proof. (i) It is clear from its definition that J(#, d) --. 0 with d. So there exists a
6 5(s, q, #, N) such that

(4.4) NY(#, d) < 1/2I’(#) for Ildll _< ,5,

Choose min(5/q, 1) and ro() as in Lemma 4.5 (i). By assertion (iv) of the same
lemma,

IId0)ll

_
qe <_ 6, P(r), r >_ ro(e).

So by (4.4),
NY(#,d(i)) < 1/2I’(#) for P(r).

(ii) By Lemma 4.4,

(Axa, a) >_ lirno
2qSs-S/2

r8
IIA) (F)all 2

Let e be chosen as in part (i) and r >_ r0(e). Using the results of part (i) of the present
theorem, along with Theorem 3.6 and Lemma 4.5 (ii) and (iii), we obtain

1 (/I)2

COROLLARY 4.7. Suppose that the assumptions of Theorem 4.6 hold, and let be
given by part (i) of that theorem. Then the least squares matrix Ax is invertible and
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Proof. If a E RN with Ilall 1, then the Cauchy-Schwarz inequality and Theo-
rem 4.6 imply that IIAxall >_ 28-28-8/2q8I’(#)28. The required result follows from
this because

( 1IIAlll- inf [[Axall" a e ]N, Iloll--- 1

Patently, the quantity , in terms of which the estimates in Theorem 4.6 and
Corollary 4.7 are given, is of little practical use if it cannot be quantified. Now it is
clear from the proof of Theorem 4.6 that the task of quantifying e is indeed that of
describing precisely the relationship between 2(#, d) and I[d[I. The next result serves
as an illustration in this regard. Even though it is confined to the three functions Fi,
1 _< i _< 3, the principle of the argument may be extended readily to other functions
of one’s choosing.

PROPOSITION 4.8. Suppose that F is one of the three functions Fi, 1 <_ <_ 3.
Let I, 1

_
i <_ 3, and J’ be given by Propositions 3.7 and 3.8, respectively. Then the

corresponding least squares matrix satisfies the following estimate:

4sS/2(J’)SN I
(I),+2 if < 1;

2J’Nq[[Ai[[- 22-SSS/2 I > 1.
q(I)2 if 2g’Nq

Proof. Note that for F F, 1 _< _< 3, we have from Proposition 3.8, (#, d)
J’[[d[[ (recall here that J’ depends only on s). Now let I/(2J’N) in (4.4), so that

in Part .(i) of Theorem 4.6 may be chosen to be min{I/(2J’Nq), 1}. The stated
result now follows from Corollary 4.7.

Remark 4.9. (i) It is important to note that in each of the three estimates (cor-
responding to Fi, 1 _< _< 3) given above, the influence of the number of centers N, if
present, manifests itself only by way of the factor N8. However, the influence of the
minimal separation distance of the centers varies with the function (as with interpo-
lation). For instance, in the case of F1, this is reflected in terms of the factor q-s-2,
whereas for F2, the corresponding term is q(3S-s)/2e+cnst/q.

(ii) It is clear from (i) that a small separation parameter q can wreak havoc on the
estimates involving the multiquadric. To counter this effect, it is recommended that
one use the function F(x):- V/C2 + [[xl[ 2 cv/1 + [[x/c[[ 2, 0 < c < 1. Note that
under this change of scale, the set of centers X with minimal separation distance 2q
is transformed to a new set Y of centers with minimal separation 2q/c. Our analysis
can now be carried out with respect to the set Y; of course, the new separation
parameter is q’ :- q/c > q. In other words, given a set of centers {x} with (perhaps
damagingly) small separation distance, we forgo the basis F2(.- xi) in favour of
the better conditioned basis F(.- xi) for an appropriate choice of c. Clearly, our
methods of analysis of F do not differ significantly from those of F2 (the transition
essentially involves a mere change in scale). Yet, this choice of a new basis will improve
considerably the overall stability of the least squares process.

To explain further this improvement in stability, let us draw attention to the fact
that the two limiting cases of F, viz., c 0 and c 1, correspond to the functions F1
and F2, respectively. Recalling the roles of the separation parameter q in the estimates
involving these limiting cases, we see that the exponential influence of q, felt in the
case of c 1, gets mitigated for smaller values of c as the respective bounds gradually
begin to mirror the estimate corresponding to c 0.
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(iii) It is possible to obtain an estimate for the least squares matrix associated
with the function F(x) Ilxl12, x e Rs, 0 < < 1, using Remark 3.10 (i) and
Corollary 4.7.

(iv) The estimate for F2 derived in Proposition 4.8 can be improved using Remark
3.10 (ii); this is because (#, d) can actually be estimated in terms of Ildll 2. Precisely,
the following upper bound may be obtained:

2_s/2+2s,/2 j,,)/2N,/2

IlA Xll <_
22_sS/2

if( I ) 1/2

2J"Nq2

if( 1 )/2J"Nq2

<1;

It is evident that the estimates in Theorem 4.6 (andhence those of Corollary 4.7
and Proposition 4.8) all involve the number of centers N. It is no less evident that
the entry of this factor was occasioned solely by the restriction NJ(#, d(1)) < 1’(#)/2-
an unavoidable consequence of the interpolation estimates of Theorem 3.6. However,
as the interpolation estimate for the Gaussian given in Proposition 3.11 avoids the
quantity N, it is not surprising that the following least squares estimate for Fa also
shares the same desirable feature.

PROPOSITION 4.10. Let I and D(p, q) be as in Propositions 3.7 and 3.11, re-
spectively. Suppose that Ax is the least squares matrix associated with F4. Then

4sS/2[Ds(p,q)] s

if 2D(p, q)q < 1;

if I >1.
2Ds(p,q)q

Proof. We proceed as in Theorem 4.6, also adhering to the notation therein. Let
RN, I111 1. As before, we have

(Axa, a) >_ lirnr_o
2qss-s/2

r8

--re<l<(r-- 1)e

We wish to bound IIA)(Fa)ll from below without involving N. To this end, we
invoke Proposition 3.11: If e- min{I/(2D(p,q)q),l} and E Pe(r), then IId(i)ll _<
qe <_ q and Ds(p,q)lld(1)ll < I/2. Therefore, as in the proof of part (ii) of Theorem
4.6, we have

(Axa, a) > 2s-2s-S/2qs(I)2s.

This implies
(I)+2 if I

4s/2[Ds(p, q)]s 2Ds(p, q)q < 1;
(Ax(,c) > 2s_2(i)2q I > 1,sS/2

if
2Ds(p, q)q

whence the required result follows as in Corollary 4.7. 0
Remark 4.11. Recall that Ds(p, q) r-pq [1 + 6s n=0(n + 3)e-p’q] and

I Cse-/(q2p)/(qsps/2). So it is obvious from the preceding proposition that the
number N plays no role whatsoever in determining the stability ofA1. On the other
hand, as in the case of the multiquadric, a small separation parameter q can have a
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severe impact on the estimate. The scaling parameter p can now be chosen judiciously
to alleviate this negative effect. For instance, if p is chosen to be of the order q-2,
then both I and the term e-pn q are rendered independent of q, and Ds(p, q) is of
the order q-1. Thus, the impact (on the least squares estimate) of the exponential
term involving q can be lessened significantly to that of q-8.

5. Some sharper estimates. If s 1, F F1, and the centers are equally
spaced (i.e., q const/N) in some admissible domain, then Proposition 4.8 and
Remark 4.9 (i) indicate that the norm of the inverse of the associated least squares
matrix is O(Na). We shall demonstrate that it is actually O(N3). To this end,
a careful scrutiny of the arguments leading up to Theorem 4.6, and consequently
Proposition 4.8, reveals that the quantity N3 in the estimate for (Axo, c)--and hence
for IIAlll---comes from (i)+2, whereas the extra factor N is a result of the restriction

NJ1 < I/2 in Theorem 4.6. If, however, we can somehow bypass J1, and, as with
the Gaussian, estimate J1/llll 2 (where J1 :- J(#l, d)) directly by a quantity that is
independent of N (but approaching zero with d, of course), then the desired sharper
estimate will obtain. So let us consider the expression J1 for s 1. Recalling that
F1 E RN, we find from Theorem 3.2 that for s-- 1,

jl= 1L 1 L /t ( )7
j=l

2

1 jf sin2 (ud)23/2 - N

E Olj eiuxj

j--1
e-U2/atl du,[/o

by the definition of dl (t) and Fubini’s theorem. Evaluating the inner integral using
the substitution w 1/4t, we see that

2

2 jf sin2 (ud/2) N

J1 r3/2 U2 E cuei’xJ du
j--1

d2 Csin(ud/2)2 12j--1

d2 N

L (sin (ud/2) )
2

2,n-3/2 E ojo. It, -u---12 eiU(X-x)du"
j,t--i

Let U(x) := (1-1xl)x[_l,ll (x) denote the centered second-order cardinal B-spline.

Recall that () (sin(/2)/(/2))2 , e R, so

j,--1

N

/-.=,1 cUcM
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Now, if d < 2q (remember that we are interested only in small d), then Ixj xtl > d
for j g, so M (xj xt/d) O, j =/= . Consequently,

which is an expression clearly free of N. (We also note in passing that since d#2(t) _<
d#i(t),

d
J2 := J(#2, d)_ J1 -llll2 provideds-1 and d<2q.

A similar statement also holds for J(#3, d). Consequently, the estimate for IIAIlI;
corresponding to F F2 and F3 for equally spaced centers, can be strengthened in
the univariate case.)

Having derived the estimate IIAlll- O(N3) for F- F1, s 1, and equally
spaced centers, we now wish to point out that it is optimal at least when the number
of centers is odd. Let the centers xi be given by xi :- i/(k+ 1) E [0,1],
i 1,..., k 2m + 1. We shall show that there exists a constant D such that

IIAlll >_ Dk3 for large k.
Firstly, a direct computation yields an exact expression for the entries of Ax:

1 (i + j) ij
Ax(i,j) (l"-xil, l"-xjl>

3 2(2m + 2) + (2m + 2)2
1

=: PJ 3(2m + 2)3 G(li

li-jl3

+ 3(2m +

where G(x) -Ixl3. Now we select suitable vectors which "annihilate" linear
polynomials, and use them to estimate IIAxll/llll from above, Indeed, let E R2m/1
be given by

If P denotes the matrix whose entries are Piy (as defined above), then P$ 0. Thus,

-1
Ax)

3(2m + 2)3
BA, where

Clearly, B corresponds to the radial interpolation matrix associated with G. An appeal
to Theorems 3.4 and 4.1 of [BSW] (taking q there to be 1) reveals that

0(1), m -- oc.

Thus,
IIAlll > D(2m + 2)3 for large m,

and the proof is complete.
(We do note that in [BSW], the aforesaid assertion was actually proved for the

function x - Ix12, 0 < < 1, which belongs to RN. The function G(x) -Ixl3,
however, belongs to RN, but the proof in [BSW] does extend to the case/ 2

3- and
m-- 2. The representing measure for G is given by ()(rt)-l/2 dr.)



1066 E. QUAK, N. SIVAKUMAR, AND J. D. WARD

Acknowledgment. We thank Phil Smith for a stimulating conversation con-
cerning least squares approximation.

REFERENCES

[B] K. BALL, Eigenvalues of Euclidean distance matrices, J. Approx. Theory, 68 (1992), pp.
74-82.

[de B] C. DE BOOR, A practical guide to splines, Springer-Verlag, Berlin, New York, 1978.
[Ba] B. J. C. BAXTER, Norm estimates for inverses of Toeplitz distance matrices, DAMTP

1991/NA16, J. Approx. Theory, to appear.
[BDR] C. DE BOOR, R. DEVORE, AND A. RON, Approximation from shift-invariant subspaces of

L2(]d), TSR#92-02, University of Wisconsin, Madison, WI, 1991, Trans. Amer Math.
Soc., to appear.

[BSW] K. BALL, N. SIVAKUMAR, AND J. D. WARD, On the sensitivity of radial basis interpolation
to minimal data separation distance, Constr. Approx., 8 (1992), pp. 401-426.

[C] E.W. CHENEY, Introduction to Approximation Theory, McGraw-Hill, New York, 1966.
[D] N. DYN, Interpolation and approximation by radial and related functions, Approximation

Theory VI, Vol. 1, C. K. Chui, L. L. Schumaker, and J. D. Ward, eds., Academic Press,
New York, 1989, pp. 211-234.

[GV] I.M. GELFAND AND i. YA. VILENKIN, Generalized Functions, Vol. 4, Academic Press, New
York, 1965.

[M] C. A. MICCHELLI, Interpolation of scattered data: distances, matrices, and conditionally
positive definite functions, Constr. Approx., 2 (1986), pp. 11-22.

[MN] W. R. MADYCH AND S. A. NELSON, Multivariate interpolation: a variational theory,
manuscript, 1983.

[NW1] F. J. NARCOWICH AND J. D. WARD, Norms of inverses and condition numbers for matrices

associated with scattered data, J. Approx. Theory, 64 (1991), pp. 69-94.
[NW2] , Norm estimates for the inverses of a general class of scattered-data radial-basis

interpolation matrices, J. Approx. Theory, 69 (1992), pp. 84-109.
[P] M. J. D. POWELL, The theory of radial basis function approximation, in Wavelets, Subdi-

vision, and Radial functions, W. Light, ed., Oxford University Press, London, 1990.
[S1] I. J. SCHOENBERG, On certain metric spaces arising from Euclidean space by a change of

metric and their imbedding in Hilbert space, Ann. Math., 38 (1937), pp. 787-793.
[$2] Metric spaces and completely monotone functions, Ann. Math., 39 (1938), pp. 811-

841.
[Sul] X. SUN, On the solvability of radial function interpolation, Approximation Theory VI, Vol. 2,

C.K. Chui, L.L. Schumaker, and J.D. Ward, eds., Academic Press, New York, 1989,
pp. 643-646.

[Su2] , Norm estimates for inverses of Euclidean distance matrices, J. Approx. Theory, 70
(), .



SIAM J. MATH. ANAL.
Vol. 24, No. 4, pp. 1067-1085, July 1993

()1993 Society for Industrial and Applied Mathematics
012

ESTIMATES FOR LARGE DEVIATIONS IN
RANDOM TRIGONOMETRIC POLYNOMIALS*

GEORGE BENKEt AND W. J. HENDRICKSt

Abstract. Let F(t) N-n--1 an exp (iXnt), where X1,X2,... ,XN are independent random
variables and the coefficients an are real or complex constants. Probabilistic estimates of the form

P [ sup ’F(t) E[F(t)] Cv/NIgN] <- e

are obtained where K is an interval on the real line, C may be chosen more or less arbitrarily, and
e is an explicit function of C, K, N, and the random variables. This method includes trigonmetric
interpolation and straightforward probabilistic techniques to obtain explicit numerical bounds that
are applicable in a variety of engineering applications, particularly in the study of maximal sidelobe
level for random arrays. Specific numerical examples are computed, and references to both the
engineering and mathematical literature are provided.

Key words, large deviations, random trigonometric polynomial, random array, maximum side-
lobe level

AMS subject classifications, primary 60F10, 60G17, 60G35; secondary 42A05

1. Introduction. In this paper we obtain probabilistic bounds for large devia-
tions for a particular class of random trigonometric polynomials and show that these
estimates are associated in a natural way with what is known in the engineering liter-
ature as the maximal sidelobe level problem for random phased arrays. These arrays
have been studied extensively in the engineering community through simulations and
various approximations, but a mathematically rigorous presentation of their proba-
bilistic properties has not been given in either the mathematical or the engineering
literature. Since the problem embraces both the engineering and mathematical disci-
plines, the subsequent paragraphs of this introductory section provide an explanation
of the relevant terminology and of the mathematical and physical setting for the prob-
lem. In 2 we develop the means for deriving the probabilistic estimates through a
sequence of lemmas, after which we are able to state our main theorem and ensuing
corollaries. Section 3 gives specific examples of these results.

A phased array consists of a finite collection of transmitting or receiving elements
distributed in space. These elements transmit or receive energy from some field such as
an acoustic, electromagnetic, or seismic field. By adjusting the phases of the signals at
the individual sensing elements of the array the contribution from each element can be
added coherently with those of the other array elements, resulting in a more sensitive
array response to an incoming signal. The array elements, along with the inter-element
connections required to coherently add the elemental responses, constitute a phased
array antenna. Antennas of this type have been used for many years in areas such
as radar, sonar, seismology, and radio astronomy. The books by Steinberg [15] and
Haykin [5] give a more detailed overview of these application areas. One advantage of
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phased array antennas derives from the fact that array elements can be located over a
large region in space. This gives the antenna a large effective aperture, and therefore
the ability to form very narrowly focused beams. By adjusting the phases of the signals
at the individual elements, the beam of the antenna can be steered quickly in different
directions without the motion of any physical components. Another advantage results
from the fact that the signals from each sensor are accessible, thereby allowing for
sophisticated processing algorithms that can mitigate the effects of correlated noise,
multipath, and other undesirable phenomena.

In order to describe more fully the notion of a phased array, consider an array
of omnidirectional receiving elements located at positions xl, XN in Euclidean
space R3, and let S be a propagating scalar plane wave with waveform s. That is,
let s be a complex-valued function defined on the real line R and define S at position
x ( R3 and time T E R by

S(x,r)=s r
c

where n is a unit vector indicating the direction of propagation and c is the propagation
velocity of the wave. The element at position xn receives the signal

_= S(x , +

where r/n is a sample function of a stochastic process that models the noise at time T

and position xn. Since the array elements are located at different positions, radiation
from a given direction will typically arrive at different sensors at different times. As
a result, a delay must be applied at each sensor if the elemental signal responses are
to add coherently. In "delay and sum" processing, the functions gn are combined in
this way by forming

N N N

o.xo) +
n--1 n--1

C
n--1

where T1,..., "IN represent a set of delays. If we choose r, --(n- Xn)/C, then

D(T) NS(T) + H(T),

where H gives the combined noise output of the array, and we say that we have steered
the beam of the array in the direction n. Note that this choice of the Tn gives an array
signal response of N times that of each of the elemental signal responses. By adjusting
the delays we thus observe that the maximal array response can be made to point in
any prescribed direction--hence the notion of steering the beam.

Without being overly concerned about the existence of limits, let us define

1
(g,h) lim ]_ g(t)h(t)dt and Ilhll (h, h)l/2.

T--oo - T

Assume that the noise components and signal are uncorrelated, that is, assume that

(r/k,r/j)----0 fork=j and (r/n,s)-0 forn--1,...,N.
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Assume also that ]]r/ is the same for all n, and, therefore, denote ]]r/n by ]Iv/[[. Then:

]]H]]/
-N +1;

therefore, the (power) signal to noise ratio for the array is approximately N times
the signal to noise ratio at each receiving element. Thus, arrays with arbitrarily high
sensitivity can be created by using sufficiently many sensors.

In order to examine the directional sensitivity of an .array it is convenient to
consider a monochromatic signal of (radian) frequency w:

S(T) exp(iw T ),

and to neglect noise. Thus if n gives the direction of a propagating plane wave

S(X, T) exp (iw (T nx))
and delays T, are chosen to maximize sensitivity in a direction no, the delay and sum
array output is

N

2 ((o0.x.o.xo))D(T)-- exp iw T 4-
n--1

C C

N

--e’Zexp(iW--(no-n).xn)c
n-1

c

where F is the trigonometric polynomial on R3 given by

N

F() Z exp (i’l" x,).
n--1

Note that the array output D can be expressed as the product of a time factor s

(the signal) and a space factor F, and that F(0) N. Infinite spatial resolution would
be obtained if F() 0 for all 0--i.e., if F were a delta function. The directional
characteristics of the array are, therefore, embodied in the trigonometric polynomial F.
The question then becomes "How closely does F resemble a delta function?" Being a
trigonometric polynomial, F is almost periodic, so that, strictly speaking, F is globally
never very close to a delta function. However, since In- n01

_
2, the array directivity

is determined for all directions by F(’) for 1 -< 2w/c. This ball is called the visible
region. Recall that the Fourier transform of the delta function is a constant and the
trigonometric polynomial F is (up to normalization) the inverse Fourier transform of
the discrete measure # with unit masses at Xl,..., XN. The problem of approximating
the delta function by F is, therefore, equivalent to approximating (in some sense)
Lebesgue measure by the discrete measure #. It seems reasonable, therefore, to space
the x, evenly over some region of space (the aperture). However, with uniform spacing
of array elements F becomes periodic with a period that varies linearly with N/L,
where L is the size of the aperture. Hence, if N is fixed, for sufficiently large apertures
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there will exist 0 0 in the visible region for which F(0) N, and the graph of IF[
will have a large peak at 70. Such peaks are called grating lobes. These are undesirable
since they give the antenna a multiple beam characteristic. On the other hand, large
apertures cause [F(7)[ to fall rapidly from peaks where F(7) N. This is a desirable
feature, since it gives the antenna array a narrow main beam, thereby providing good
spatial resolution. It is also desirable to keep N, the number of array sensors, small
relative to the aperture size L since the cost of an array is largely determined by the
number of sensor elements.

In the 1960s Lo, in a series of papers [11].-[13], introduced an approach for over-
coming the grating lobe problem while keeping the element density NIL small. Lo’s
method was to space the array elements randomly, thereby destroying the periodicities
that occur when array elements are spaced uniformly. The array is then characterized
by the random trigonometric polynomial

N

F(7) exp (i. Xn),
n--1

where Xl,... ,XN are independent random variables. The maximal sidelobe level
problem in random array theory is to determine the distribution of the random variable

sup

for a given compact set K. This is an extremely difficult problem. However, for
most practical scenarios the probability density functions of the Xn are such that the
expectation E[F(7)] can be explicity computed for each 7. It is, therefore, of interest
to estimate probabilities of the following type:

LTEK

for various (nonnegative) values of A.
The particular problem considered in this paper is the one-dimensional problem

of estimating the supremum of the modulus of expressions of the form

N

(1.1) a(t) an eiXt E [eixt]),
n--1

where X1, X2,..., XN are independent real-valued random variables that assume val-
ues in the interval I-L, L], a, a2,..., aN are real or complex constants, and t is a real
number. In the context of one-dimensional line arrays, the variable t corresponds to
the direction variable (w/c)cos0 (not time), where 0 is the angle between the propa-
gation direction and the line containing the array elements. Consequently, the set K
can be regarded as representing an interval of arrival angles, and the problem being
considered is that of estimating the peak response to signals emanating from this set of
arrival angles. The engineering literature (e.g., Donvito and Kassam [3], Lo [11]-[13],
Steinberg [15], [16]) contains several interesting studies of this problem, along with ac-
companying computer simulations of random sums of the form (1.1). Frequently there
are simplifying assumptions such as process stationarity or an omission of a rigorous
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analysis of the effects of Central Limit Theorem approximations. Such simplifications
are understandable, due to the difficulty of obtaining precise probabilistic estimates
for these sums.

A different type of random trigonometric polynomial has been the object of math,
ematical investigation by Kahane [8], who considers the supremum problem for series
of the form

N

(1.2) F(t) E X fn (t)
n---1

where the f are complex trigonometric polynomials and the X, are various types of
random variables. In engineering terminology, Kahane considers signals having ran-
dom amplitudes and deterministic frequencies, while we consider signals having de-
terministic amplitudes and random frequencies. Kahane (Chapter 6) traces the study
of random trigonometric polynomials of the form (1.2) back to Zygmund [18], who
considers convergence properties of such series (N ), and to Salem and Zygmund
[14]. Observe that in the work of Kahane and his predecessors the frequencies in the
trigonometric polynomials are integral, resulting in periodic functions. By contrast,
the frequencies Xn that we consider are nonintegral, so that our random functions are
not periodic. This creates a significant problem in the subsequent analysis.

For G(t) given by (1.1), we will obtain estimates of the form

P [ sup lG(t)l Cv/NIgNI <- e’

where K is some interval on the real line. The constant C may be chosen more
or less arbitrarily, and the e depends on the values of C, K, N, and the properties
of the random variables that specify the frequencies. In Kahane’s analysis of the
bounds for. the distribution of the supremum over the set K, any dependency upon the
measure of the set K is absorbed in unspecified constants occurring in his estimates.
Our formulation, which is oriented toward explicit estimates that might occur in an
application, exhibits the specific role that the measure of K and the other parameters
play in the estimates.

In the analysis of the probability of lrge deviations of IG(t)[ it is tempting to use
Central Limit Theorem approximations because the resulting quantities lend them-
selves to relatively straightforward analysis. It should be observed, however, that
unless there is a careful error anMysis when Central Limit Theorem approximations
are invoked there may be probabilistic terms on the order of 1/v/ that must be
included in whatever estimates are proposed. For example, see the discussion on the
Berry-Esseen error estimate that is presented in detail in Chung [2, 7.1], Breiman [1,
p. 184], or Feller [4, p. 515]. In particular, it should be noted that Chung [2, exercise

3, p. 231] gives an example of a 1/v/- lower bound for the Central Limit Theorem
error approximation. As a consequence, when the probabilities we seek to estimate
are less than 1/x/, a more sensitive analysis is required.

It should be emphasized at the outset that we are especially interested in ob-
taining probabilistic estimates for large deviations of IG(t)l when N, the number of
summands, is large, perhaps on the order of 10,000. Hence, the probabilities being
estimated are quite small. We make no assumptions about stationarity of the process
G(t), and do not use any Central Limit Theorem approximations to estimate the prob-
abilities of interest. Any approximations made during the course of our analysis are



1072 GEORGE BENKE AND W. J. HENDPdCKS

incorporated explicitly in the estimates that we provide. Despite the mathematical
rigors that this approach imposes, we are able to provide reasonable bounds that are
useful in applications when the number of summands is large, along with the assurance
that there are no terms unaccounted for that might dominate the probabilities being
estimated.

2. Main results. In this section we present our main theorem and several simple
corollaries. While the theorem is fairly general in its statement, the corollaries are
sufficiently specific to lead directly to applications. We illustrate the use of these
corollaries and the main theorem in the following section. The proof of the main
theorem is broken down into a sequence of lemmas, the first of which is of some
interest in its own right. It is a Shannon-Whittaker type of sampling theorem where
the interpolation formula involves an absolutely convergent series whose convergence
rate is governed by a parameter R. This same parameter also governs the degree of
oversampling required as compared to the usual Nyquist rate.

We begin with some notation and definitions (see [9]). Let K denote the function

1 (sin t/2’g(t) - tie )

Then the Fourier transform K is given by

K(-I) K(t) e-i dt max { 1 I’l, 0}.

The Fourier inversion theorem also applies, giving

K(t) K(7) eiTt dT.

For R > 1 denote by Vn the function

1
VR(t) R- 1

(R2K(Rt) K(t)).

Then
R (’)’) 1

(/).VR(’y)
R-1 R-1

Thus, V is real valued and has a graph that is a trapezoid extending from -R to R
with a flat section of height 1 extending from -1 to +1.

LEMMA 1. Let z be a bounded measure supported in the interval I-L, L], and let

i Ff(t) e’ d(’y)

denote the inverse Fourier transform of . Then for any R > 1 and all real t

r (nrt) (nr)f(t)= E V Lt-- f
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where the series converges absolutely for all t and

1 (R2(sinRt/2)2 (sin t/2 2)VR(t)= 2r(R-1) Rt/2 k t/2 ]

Proof. Let VR,L(t) L Va(Lt); then

(1 forl <_L,
VR’L(Y)

0 forl7 >_RL,

and is continuous and piecewise linear. For fixed t E R, let Ct(’Y) VR,L(/)e.
Expressing Ct in a Fourier series relative to the interval [-RL, RL] gives

(2.1) Ct(’Y) E c(t) exp (i rn/-), where

When this expression is substituted into (2.1) we obtain

.
Ct()=- E V Lt--- exp--

where the series converges absolutely.
Now consider f(t) (1/2r)fL_L ei d(/). Since is supported in [-L,L], we

may write

Ct (’) d(/).f(t)
nL

VI’L(/) eit d(/)
nL

Using the absolute convergence of the series (2.1) gives

r E (nr) (nr)=- VR nt-- f -R-
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LEMMA 2. For all y E R,

where

1 (R2(sinRt/2)2 (sin t/2)
2)Vn(t) 2r(R- 1) Rt/2 t/2

Proof. We use the Poisson summation formula, which is

2 z2rA f(2rAn) " where

f/) f_ f(t)e-’ dt and A is any positive constant. This formula is valid for
j e/(a), if is also of bounded variation (Zygmund [18, p. 68]).

Let f(x) K(x y), so that f() e-ivy K(). Since K is in LI(R) and is also
of bounded variation, so is f. Using the Poisson summation formula with A 1/2R
gives

2 2K y- 2 f(2rn)

Since K(/) 0 for I1 >- 1, the right-hand sum has only one nonzero term, correspond-
ing to n 0. Inasmuch as K(0) 1, this term evaluates to 1. The same argument
applied to RK (Rx) instead of K(x) gives

(RKRy- =1 for all y,

whence

7 n7

l (R2K(R(y-nr))TK(y-nr).)R-1 -- --R-1

R+I
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LEMMA 3. Let f(t) (1/27r)fL_L e’;tdv(’y), where u is a bounded measure
supported on [-L,L]. Suppose that K is an interval on the real line of the .form
g [n17r/RL, n27r/RL], where R > 1 and nl and n2 are integers. Let M be a
positive integer. Then

tEK 1 nl--M<n<n2-t-M "- + 7r2M

Proof. For t E K, use the interpolation result of Lemma 1 to write

r (nTr) (nTr)
7 (nl-in2-t-M ) ( nT

\ n----cx) n=nl-M n--nzh-Mh-1

S +S+S.
Now let jt be the set of integers n such that nl M < n < n2 q- M, and by Lemma 2,

IS21 <max If (nTr)l 7r

Next, consider $3.

-< Ilfll
We have the same estimate for ISll, so that for t E K,

if(t)l < R +1
max f +R-1 .e R-1 M

Remark. In the proof of the main theorem, we will apply this lemma to functions
that are linear combinations of functions of the form

for random variables X taking values X(w) in the interval I-L, L]. Since

where Fx is the cumulative distribution Nnction of X, it is clear that for each in
the probability space f (t) is the inverse ourier gransform of a meure supported on
[-, 1.
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LEMMA 4. Let (f, P) be a probability space, and suppose Zn .for n 1, 2,..., N
are real-valued measurable functions defined on f R. Suppose further that .for all
real t,

(1) E[Zn(., t)] O for n 1,2,... ,g;
(2) Z1 (., t), ZN(., t) are independent random variables;
(3) There exist functions/31,..., 3N such that .for n- 1,..., N and all real /:

E [eTZ-(’,O] _< e’a-(t).

Let F(.,t) En=lZn( t). Then if > 0 and a > O, and tl,.. ,tq are real
numbers,

P IF(.,t)l -> for some k 1,..., q < 2 exp A2 n(tk) a
k=l n=l

Proof. Let a > 0 and A > 0 be given. To simplify notation we will write F(t) for
F(., t) and Z(t) for Z(., t). Then for each fixed real number tk,

H E[exp(AZn(tk))] <_ H exp(A2n(tk))
n--1 n--1

-exp AE3.(t)
n=l

For any nonnegative random variable X and any real number y, y P[X > y] < E[X].
(This is one form of Markov’s inequality.) Consequently,

or

P [e:g(t) >_ ea]
_

e-aE [eg(t)]
_

exp A2En(tk)-a
n----1

( N )P[ F(tk) >_ a/A <_ exp A2Efln(tk)-a
n=l

To estimate P[ F(tk) <_ --a/A], apply the same argument to the random variable
--F(tk), giving

P[lF(tk)l >_ a/A] P[F(tk) >_ a/A] + P[F(tk) <_

_<
n--’l

Hence

P[ IF(t)l _> a/,X for some k E {1,..., q}] _< 2E exp A2 E fln(tk) a
k--1 n--1
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THEOREM. Let X1,..., XN be independent random variables taking values in the
interval I-L, L]. For real al, aN and, Cg consider the function F(t) defined
by

N

f(t)
n--1

and let #n(t) E[sin(Xnt + Cn)]. Define G(t) by G(t) F(t) ElF(t)]. Suppose
that there exist functions ,...,N such that for each integer n 1,..., N and .for
all real numbers " and real values of t,

E[exp(an(sin(Xnt + Cn) n(t)))] _< exp(/2n(t)).
Then for a > O, > O, R > 1, integerM > 1 and an interval K [ur/RL n2v/RL],
where n and n2 are integers, we have

(2.3) P [teKSUp IG(t)l >_ R-R-+- T 811Gllr2M _< 2 exp A2 Z n(tk) a
k:l n--1

where t1,..., tq is the set of points of the form rk/RL for k n M,..., n2 - Mand q In2 n + 2M + 1.
Remark. Note that by taking Cn 0 for each n gives F(t) as the sum of sin Xnt

terms, and Cn r/2 for all n gives F(t) as a sum of cos Xnt terms, while other values
of Cn give F(t) as a sum of a mixture of sine and cosine terms. This observation will
be used without further comment.

Proof. By definition,
N

G(t) f(t) E[f(t)] an(sin(Xnt + Cn) #n(t)),
n--1

where #n(t) E[sin(Xnt + Cn)]. Let

Zn(t) an(sin(Xnt + n) #n(t)).
Let a > 0, > 0, M > 1 and an interval K-- [nlT/RL, u27/RL] be given. Then by
hypothesis, Lemma 4 applies, giving

(2.4) P[lG(tk)l >_ a/A for some k 1,..., q] _< 2 exp A2 Z/n(tk) a
k=l n=l

where t,..., tq is the set of points of the form kr/RL for k nl M,..., n2. + M.
By Lemma 3 we have the following inclusion of events:

sup
teg 1 $ T r2M IG(tk)l < for all k-- 1,... ,q

Therefore, by (2.4),

eKSUp [G(t)l < +_ 11 a / 811GI12M >_ P [G(tk)l < for all k 1, ..., q

1 P a(t)l _> N for some k 1,...,

1 2 exp 2 n(tk) a
k:l n=l

We now present two useful corollaries of the main theorem. In the next section
we will give some specific examples that apply these corollaries.
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COROLLARY 1. Suppose that in the main theorem lanl <_ 1 for n 1,..., N and
[n(t)l <_ S for n- 1,... ,N and all t. Then for any 1 > 0 andS2 E (0, 1.6R],

P sup IG(t)l ( + )CNlogN 2 IKIL +
LtEK

B b ]] . Udo thoo hothoo, (2.8)

(2.5) PFsuplG(t),> (R T:) ( 81,G,,)] < 2qexp(A2NB-a)
[eK R- + r2M

In order to rewrite the event given in the le side of (2.5), select a and A so that
a

(2.6) p NlogN.

Next, let n N/log N, p (R + 1)/(R- 1) and U [16pR/(,22)] + 1.
The use of the eatest integer function in the definition of M and the condition that
2 (0, 1.6R] ensure that M is an integer larger than 1, required in the hypotheses
of the theorem. Upon substitution and using the fact that lal 1 implies that
IIGII 2N, we have

a p16N2a 811Gll < P + (1 + 2)NlogN.P + P 2M 16pR
We have, therefore, the following event inclusion:

[sup la(t) > ( +)Nog c [sup la(t) > N +ktK ktK M
It follows from (2.g)

(.

This bound holds for all positive values of and , so we will minimize i, subject
o the constraint given by (2.6) that / (Nlogg/p. If we substigue in for
in (2.7) and simply consider the exponent, we must select to minimize the function
I() given by

I(a) a a 2og.
he minimum occurs at he following values for and :

= and a= logN.

When these values are substituted in (2.7) the resulting bound is

(2.8) 2q exp logN- logN 2q N-(/)((/o).
inally, observe tha q In n I+ 2M + 1 and Igl I 11/, and use

he bound from (2.8) along wih his value of q in (2.7) to obtain he result.
Remark. In Examples (a)-(b) of the next section Corollary 1 is used, wih

ypical value of B being 0.g. In Example (c), where Corollary 2 is used, we will use
a fairly modest restriction on IKI o give small enough values of B o significangly
improve the resulting esimages.
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COROLLARY 2. Suppose that in the main theorem we have lal 1, lx l
L, nl O, and that for some O > O,

In(t)l <_ 0t2 for alln= l,2,...,N and all real t.

Assume that the set K [0, n2r/RL] is selected so that tq =_ (n2 + M)r/RL satisfies
the inequality 0 t2q <_ B. Then, with , 2, R, p, andM defined in the same manner
as in Corollary 1,

+ 3 N-(1/4B)(I/P)P [teKSUp IG(t) >_ ( + 2)v/N log N _< 2 IKIL + 2] r

Proof. Let , 2, and N be given, and assume that for some 0 > 0, I/n(t)l _<
t2 for each t, for n 1,..., N. Then, under the remaining hypotheses of the Corol-
lary, for each tk of the form kr/RL, k -M,..., n2 + M, and for each n 1,..., N
we have

(2.9) IZ(t)l _< ot <_ ot <_ B.

The inequalities given by (2.9) allow us to use (2.3) to derive the bound corresponding
to (2.5) in the proof of Corollary 1. Now follow the same proof as in the rest of
Corollary 1, using the same definitions of R, p, M, a, and . D

3. Examples. In this section we give several examples that apply the two corol-
laries of the preceding section. The main task in applying our results is to obtain good
estimates for the functions/n(t). We provide two examples to illustrate Corollary 1,
in which/n(t) _< 1/2 for n 1, 2,..., N for each t. Our third example, illustrating
Corollary 2, leads to the estimate /n(t) <_ Ot2 for some positive 0 and shows that
the bound for the probability being estimated can be lowered significantly, depending
upon how the set K and the random variables Xn are chosen.

In each of the examples to follow we define Zn(t) by

Zn(t) an(sin(Xnt + Cn) #n(t)),

where #n(t) E[sin(Xnt +Ca)f, and an is real. In any application of our results there
are a number of tradeoffs possible between the various parameters involved. Specifi-
cally, these parameters are N, the number of array elements; ( + 2)v/NlogN, the
desired level for the supremum; IKI, the Lebesgue measure of the set K; the location
of the set K; the aperture width 2L; the manner in which the Xn are distributed in
I-L, L]; and the desired upper bound on the probability being estimated. We do not
explore all the possibilities, but will illustrate the effects of some of the parameters.
In particular, we will see the dramatic effect that changes in the desired supremum
level have upon the resulting probabilities.

Before proceeding to the details of the examples to illustrate Corollary 1, we
prove a proposition that has independent interest and application beyond the present
setting and which leads to a value of B 1/2 in Corollary 1. Letac [10] and Vogt [17],
working independently of each other, both suggested proofs for this interesting result.
The proof given herein contains elements from each of these proofs. In addition, a
proof can be found in Hoeffding [7].
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PROPOSITION 1. Let Y be a random variable taking values in the interval [-1, 1]
and .for which E[Y] #. Then

E[e’r(Y-)] <_ e’/2 for all real values of /.

Proof. It suffices to prove the result for -y > 0, since the proposition is trivially
true for - 0, and for - < 0 the following proof can be applied to the random variable
Z -Y. Hence, for -y > 0 define the function k(’) by

k(’y) log(E[eTY]).

Next, calculate k’(’y) and k"(-),)

’()

k"()

E [YeY] and

E [eY] E [y2eY] (E [YeY])2

E [y2e’Y]

_< 1 -(k’(-))
<1.

(E[eY])2

-(k,())"

(since IYI _< 1)

Observe that the definition of k gives k(0) 0 and k’(0) #.
Now we apply the fundamental theorem of calculus to both k and k’. Since 7 > 0

and k"(t) A 1 for t > 0 we can write

k’(7) k’ (0) + k"(t)dt <_ # + 7 and

k(/) k(O) + k’(t)dt < ( + t)dt / +

Therefore, for 0 < 7 < oo we have, from the definition of k(-y),

y2
log (E [eTY]) <_ #7 + --, or

E [e(Y-")] N e’/2.

Kahane [8, p. 67] defines a random variable X to be a subnormal variable if

E[ex] <_ e2/2 for all real

Hence, Propositon 1 asserts that if Y is any random variable assuming values only in
the interval [-1, 1], then Y- E[Y] is a subnormal variable. In particular, the random
variables

Zn(t) an(sin(Xnt -t- Cn)
are subnormal whenever lanl <_ 1.



EXTREMA FOR RANDOM TRIGONOMETRIC POLYNOMIALS 1081

Example. (a) Consider

N N

G(t) E an (sin(Xnt + Cn) #n (t)) E zn(t)
n--1 n--1

with only the assumptions that the Xn are independent, IXnI
_

L, la,l _< 1, and Cn
arbitrary. According to Proposition 1,

E[eZ(t)] < e/2 for all n, 7, and t,

so that for such functions G(t) we can apply Corollary 1 with B .
Before proceeding to calculation of the bounds for the probabilities in Example

(a), we simplify our notation and calculations. In Corollary 1 the supremum level is
being compared to the quantity (1 + 2)v/NlogN, with the bound for the probability
being a function of1 and 2. Let 1+2. With held constant and 1 varying in the
interval (0,1), there can be significant changes in the bound, depending upon how 1
and 2 are chosen. This can be seen simply by noting that 1, as part of the exponent
in the bound, has a more profound effect than does 2. In fact, a straightforward
but somewhat tedious analysis of the bound for the probability in Corollary 1 shows
that 2 should be chosen as a small positive number, and 1 chosen very close to its
upper limit of 1. We do not seek the value of 2 that minimizes the bound, since
the calculations are cumbersome. However, for our examples, which are taken for
N 10,000, a convenient and good choice is to select 2 SO that

32p 100v/logN, whereby
r2
2 0.102

and

_
p vqogN p p

0.102
v/logN

If N 10,000, then R- v/N/logN 32.95, p (R + 1)/(R- 1) 1.063, and
l/p- lip- 0.0336. With K,L, 1, and the Xn still unspecified, Corollary 1 can thus
be formulated as

P [sup IG(t)l >_/v/N log N]LtEK
2 (]K]L + 100vqogN + 0.288)<

Try/log N
X N1/2-(1/4B)(0"941/-0"0336)

In the example being considered we can take B 1/2 and v/NlogN 303.5.
Choosing 1 and2 as indicated above and a "time-bandwidth" product of IKIL 1000
yields

(3.1)

P [sup
LtEK

10,000

n=l 303.51] _< 2(1,000 + 303.5 + 0.288) x 102-2(0.941/-.336)
3.035 r

for all collections of N phase angles Cn and coefficients an, lanl <_ 1, and N indepen-
dent random variables Xn assuming values in [-L, L]. In particular, if each an 1
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and Cn 0 we have a sum of N sin(Xnt) #n(t) terms, and if each Cn r/2 we have
a sum of N cos(Xnt)-#n(t) terms. The bound is given below for 1.75, 2, and a. As
can be seen from Table 1, the probability bounds are extremely sensitive to changes
in I.

TABLE 1

Upper bound
1.75 1.71 x 10-1

2 4.02 x 10-3

3 7.51 10-12

Example. (b) For t real consider the complex-valued function G(t) defined by

N

G(t) E an (eix-t E[eiX-t]),
n=l

where for each n, lanl _< 1 and the Xn are independent random variables for which

IXnl <_ L. Then, for any nonnegative number a and for each fixed t 6 K we have the
following set inclusion in the probability space D:

[w. IG(w,t)l >_ av] c [w. IG(w,t)l >_ a] [w" lG(w,t)l >_ a].
Consequently, we can apply the result of Example (a) to both the real and imaginary
parts of G(t) to bound the right-hand side of:

Lt6K Lt6K Lt6K

Before proceeding to our third example, we state and prove two propositions that
are used to specify the functions ,(t) that are needed in order to use Corollary 2.

PROPOSITION 2. If o
_

0.5575, then

ex -x <_ e2 for all real numbers x.

Proof. For real x and y let

z(x, y) ev e + x.

Note that for a fixed x, z(x, y) is an increasing function of y. Hence z(x, y) is positive
for all points above the curve z(x, y) 0. That is,

{(x, y) lz(x, y) > O} {(x, ) I >- Y, where z(x, y) 0}.

Therefore, the inequality (3.2) is valid if and only if the horizontal line y c lies
above the curve z(x, y) 0. Thus, the best lower bound for ( is y0, where (x0, y0) is
a global maximum for the curve z(x, y) 0, which can be written as

1
log(e x)y=75

An analysis of this curve shows it to have only one critical point, which occurs
at the maximum. Using Newton’s method to solve y’ 0 gives the maximum at
x0 0.6400... and y0 0.5574
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PROPOSITION 3. Let X be a random variable assuming values only in the inter-
val I-L, L], and suppose that .for each real t the random variable Z(t) sin(Xt)-
E[sin(Xt)]. Suppose that .for some constant w > 0 (independent of t and j) the fol-
lowing condition holds .for every real t"

IE[ZJ(t)]l <_ IwtlJ for j- 1,2,3,

Then for each real t we have the following bound:

E [eZ(t)] < e2a(t) for all real /,

where c is given by Proposition 2.

Proof. The conditions on Z and its moments allow us to write

[ ]E [eZ(t)] E 1 + /Z(t)+ Z (/Z(t))J

= J!

j!

By Proposition 2, the last expression is bounded above by exp (c/2(wt)2).
Remark. In Proposition 3 we always have E [eZ()] _< e2/2, by Proposition 1.

By suitably restricting the set K from which the t values are chosen so that, for some
B, c(wt)2 < B < 1/2 it is possible to improve upon the estimates given by Corollary 1.
In this way we exploit the bounds given by Corollary 2 in our concluding example.

Example. (c) Our final example illustrates an application of Corollary 2. For
even, positive integers N define N random variables X, by

-N N
Xn-Yn+nw for integers n-

2 2
1,

where the Y, are uniformly distributed on the interval (0, w). Now let w 2L/N,
so that the interval I-L, L] is divided into N bins of width w with X, uniformly
distributed on the nth bin. Let

Zn (t) sin Xnt #n (t).

By the integral mean value theorem, for each real t and each integer n, we have

#n(t) --wl fo
TM

sin(nw + y)t dy sin

for some e (nwt, (n + 1)wt ). Hence

E[Zn(t)] --wl fo
TM

(sin(nw + y)t sin )J dy.
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By the derivative mean value theorem

sin(nw + y)t sin 1 -< Iwtl, so that

E[Z(t)] <_ I1.
According to Proposition 3 we have

E [eZ(t)] _< exp

which gives n(t) aw2t2. Thus in Corollary 2, w2 (2L/N)2 for this
example. We are interested in sets K of the form K [0, n2 r/RL], where the
integer n2, which essentially determines the extent of the set K, is selected so that
tq (n2 + M)r/RL. The restriction in Corollary 2 that t2 <_ B becomes

NVa(2L/N)2t2q <_ B, or tq _< .
In terms of n2, with R v/N/logN, this gives

Nx/ Lx/ 0.214 v/N3/2
n2 / M < 2-" rv/logN -< v/logN

To compare Examples (a) and (c) we use the same substitutions for N, M, 1, and2
as in Example (a) and Corollary 1. Therefore,

p v/logN
N=10,000, = 0.102

R=32.95, and 16Rp]M=
r22j

+1=1592,

giving

n2 _< 0.0706x/- 106 M _<. 7.06 v/ 104 1,592.

Then any n2 < 33,708 gives a set K satisfying the hypothesesTo illustrate, let B .
of Corollary 2. In Example (c), let n2 32,000, so that g--[0, 3.2 104 LL]" Thus,
IKIL 32,000 3051, and the estimate in Corollary 2 corresponding to (3.1) is

P [sup sin(Xnt)
LeK

(t)

2(3051 + 303.5 + 0.288)
3.035r

_> 303.5 l]
102-4(0.941/-0.0336)

We now tabulate the bounds for the two Corollaries using the above set K, but
and IKIL 3051different Bs. (See Table 2.) The estimate for Corollary 1 uses B

Theto obtain the analogue of (3.1). The estimate for Corollary 2 uses B .
Corollary 1 estimate applies to any collection of Xn distributed independently on
[-L,L], while the Corollary 2 estimate is valid for Xn distributed according to the
bin approach as described in Example (c).
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TABLE 2

Cor. 1 Upper bound
1.50 1.13 x 10-1.75 4.39 10-1
2.00 1.03 10-2

Cor. 2 Upper bound
1.80 10-3

2.75 10-6

1.52 x 10-9

In the case of the Corollary 1 upper bound, the value of 1.5 gives a bound
larger than 1, so a larger value of needs to be chosen. A comparison of the bounds
derived from the two Corollaries shows that in the bin example for t near zero, the
bounds for the probabilities of deviation from the mean are lowered significantly. An
explanation for this lies in the fact that the bin approach provides more control in the
manner in which the Xn are distributed, resulting in less chance of a large deviation
when t is small. Plots of the variance of G(t), as a function of t, also show that when
t is near zero the variance under the bin approach is considerably smaller than, for
example, when the Xn are distributed independently and uniformly across the entire
aperture [-L,L], though for larger t the two variances approach the same limiting
value of N/2 as t increases. Further details and plots of these phenomena can be
found in Hendricks [6].
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Abstract. A new class of hypergeometric functions of several variables is introduced by using Jack
polynomials and a multivariate generalization of Aomoto’s result is given [SIAM J. Math. Anal., 18 (1987),
pp. 545-549].
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1. Introduction. Let Dx,,x2,x(xl,... xn) be the Selberg density:

x’(1-x,) H [xi-xjl a, AI,A2>-I A>O,
i=1 li<jn

and put

S,,m(A1, A2, A, Ix" t,, tin) (Sn,m(t) for short)

H (X tk)IXDA1,A2,A(X1, Xn) dXl" dx..
[o,1] l<<-i<--_n

l<_km

We assume for simplicity that ti, 1 -< <- m, lies in C [0, 1 if Ix is not a nonnegative
integer.

The celebrated formula of Selberg [Se] is

(1) Sn,o(/ /2,/) II 1-’(i(/2) + 1)F(Xl + 1 +(i- 1)(A/2))F(A+ 1 +(i- 1)(A/2))
i:1 F((A/Z+I)F(AI+A.+2+(n+i-2)(A/2))

Selberg’s evaluation had come to light around 1980 from a dormancy of nearly forty
years. Since then this type of integral with Selberg density and its generalizations have
been studied intensively by many authors, e.g., [Aol], [Ao2], [Ao3], [As], [Kad], and
[Ma2]. Among them we must mention a result of Aomoto [Aol]:

n!
Sml(AI’A2’A’I’t)=S(AI’A2’A)H (a++n+i)

(1 -2t),
i=1

where P"’t)(x) denotes the Jacobi polynomial of degree n and a =-1 +2(A1 + 1)/A,
/3 -1 + 2(A2 + 1)/3,. The purpose ofthe present paper is to give a multivariate generaliz-
ation of this result. Namely, we show that S,,(t) with Ix 1 or Ix =-A/2 can be
expressed by the hypergeometric function constructed from Jack polynomials which
will be defined in 3.2. (For the precise form of the expression see Theorem 5 in 6.1.)
The rough idea of proof is as follows. First we calculate a holonomic system for S,,,,(t)
(Theorem 1). Also, it can be verified that the hypergeometric function
2F])(a, b; c; tl,..., t,,) referred to above satisfies a holonomic system of the same
form (Theorem 4 in 4.3). Then we can adjust the parameters a, a, b, c to make these
two systems identical. Therefore, the desired expression follows from the uniqueness
property of the solution (Theorem 2 in 4.1). As a by-product we give a new proof
of the integration formula of Jack polynomials conjectured by Macdonald [Ma3] and

* Received by the editors March 13, 1991" accepted for publication (in revised form) October 19, 1992.
? Department of Mathematics, College of General Education, Kyushu University, Fukuoka 810, Japan.
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proved by Kadell [Kad]. In 7 we show that S,.m(t) with Ix 1 is a special case of
generalized Jacobi polynomials defined and studied by Koornwinder [Ko], Vretare
IV], and Debiard [D].

While preparing this paper, the author was notified by A. Korfinyi that he had
introduced the same hypergeometric functions 2F)(a, b; c; tl,..., t,) in [Kor] and
that his student Z. Yan also had proved our Theorem 4 by a similar method in his
thesis (see [Y]).

2. Holonomic system for Sn,m(t).
2.1. Holonomic system. We denote by the function Dx,2,a(x Hl<_i_<_n,l<_k<_ (X

tk), and by to the logarithmic 1-form d log . Let V be the covariant differentiation
defined by V=d+w for an (n- 1)-form . Since d()=V, the Stokes
formula gives

P

(2) [ v 0
0,1]"

as long as the left-hand side exists. Let us denote by *dx the (n 1)-form (-1)-1 dx
dX_l dx+ . dx,, and put

(90"--" 2 *dxi,
i=1

q91 X dxi,
i:1

(x t)- *dx,
i=1

The covariant differentiation of these forms are

(3)

(4)

l<_k<_m.

Vog(,O___ IA i:1

X71--/’2
i=1

(1--Xi)-l-lt-]Z l<--k<<-ml<<-i<<-n2 (xi--tk)
-1 O,

n- 1 tk
V,oql n l+Al+A2+mix+ 2 - (1-&)-1+IX 0,

i=1 l<i<--n ’7

V,o4’=[(IX-1) (xi-tk)-2-A ((xi-tk)(xj-tk))-l+A,t-
i=1 l<-i<j<-n

"( i=lXT’)--l2(1--’k)--’( i=1

+ x (tk- t,)- (Xi- tk)-’-- (Xi- t,)-’ O,
/-=1 i=1 i=1
l#k

n-1 A) IX
1--tk O,

2 l<i<_n X k
l<__km

where 0 denotes the volume n-form: 0 dx ^...^ dxn. For n-forms :, r, we write
:--- r if :-r/= V,,q for some (n- 1)-form q. It follows from (3) and (4) that
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Substituting these into (5), we obtain

V,oqtk [ (/X 1) (xi- tk)-2- A
i=l

((xi- t)(xj- t))-
(6)

+(Altl-A2(1- tk)-l)( ,: (x’-- tk)-)
--t n I+AI+A2+m/+

2
A -/

l<_i<_n Xi
l<_l<:m

On the other hand, one can easily show that

Ot--------: --t P (Xi- tk) -1 O,
[0,1] i----1

(8)
02Sn’m(t)--Ot2k If01]" [(2-/) : (x, tk)-2

d-2/2

l<_i<j<_n
((x,- tk)(Xj-- tk))-l]o.

Suppose now that the ratio (/.2-/.)/2/.2 equals (/.-1)/(-A), i.e.,/.= 1 or =-A/2.
Then by (8) the first two sums of the right-hand side of (6) add up to a constant
multiple of 02S.."(t)/0t2k. Hence, by virtue of (7) and (8), taking @k for q of (2) yields
a partial differential equation of S..m(t) for each k. Moreover, its principal part contains
only 02S.."(t)/Ot2k. Thus we have proved the following.

THEOREM 1. Assume tx 1 or tz -A/2. Then S,."(A,, A2, A, tx; t) satisfies the
following holonomic system:

(9)
t,(1-t,)-S.2+ c---(m-1)- a+b+l---(m-1)t,---abF

O c c O

1 { ti(1-ti)OF tj(1-t)O}=O+--
t) j=l ti tj O ti j= ti tj

ji ji

wherea=a/2, a=-n,b=(2/A)(al+a2+m+l)+n+l,c=(2/a)(a,+m) iflx=l, and
c =2/A, a=(a/2)n, b=-(al+a2+l)+a/2(m-n+l), c=-Al+(a/2)m iflx=-a/2.

Remark. The rank of the holonomic system (9) is 2". This and related matters
will be treated in a forthcoming paper.

2.2. Cases of m 1, 2. In case m 1, (9) is nothing but the Gauss hypergeometric
equation. Hence if/z 1 the result of Aomoto [Aol] mentioned above follows at once
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from (9). In case m =2, (9) is related with the holonomic system (F4) of Appell’s
hypergeometric function F4 [A-K] in the following way. The system (F4) is

x(1- x)
02F y2 02F 2xy

02F
+(Cl-(a+b+l)x)

OF
OX2 Oy2- OX Oy OX

O___F_ abF O,-(a+b+l)yoy

y(1 y)
o2F

x202F 2xy
o2F OF

+(c2-(a+b+l)y)yOy- Ox2 Ox Oy

-(a+b+ 1)x OF-abF=O.
Ox

Let b C2- C2 be defined by b(tl, t)=(tt, (1-tl)(1-t2))=(x, y). Then b*(F4), the
pull back of the system (F4) by b, is [Kat]

02F OF
abF + e t2-1) t t2 O,(tl- t2)

oti
+(cl-(a+b+l)tl)

Otl otl ot2

02F O--F- abF +e(tl--1) t2 tl --0,(t2-- tl)
Ot

+ cl a + b +
Ot2 Ot Otl

where e=Cl+C-a-b-1. Putting c=c-(1/a) and c=a+b-c+l we see that
b*(F4) reduces to the system (9). It is known that if c and c2 are not integers, then
(F4) has the following four linearly independent solutions near the origin [A-K, p. 52]:

xmy
F4(a, b, el, cz; x, y)= Y (a).,+.(b)m+.

,,,,,,=o (Cl).,(c2),, re!n!’

xl-F4(a --C + 1, b-c + 1, 2-Cl, c2; x, y),
(lO)

y-%F4(a c+ 1, b c. + 1, c, 2- c x, y),

xl-C’yl-C2F4( a c C2 -Jr- 2, b c C2 -JI- 2, 2 Cl 2 C2 X, y),

where (a), F(a+ n)/F(a). Hence when/x= 1 we get

S,,(A1, A, A, 1; tl, t)= (-1) "" S,.o(AI+ 1, A2+ 1, A)

F4(a, b, c, c; tl t, (1 t)(1 t)),

where a=-n, b=(2/A)(A+A2+3)+n-1, c=(2/A)(A+I), c2= (2/A)(A2+l).
The case of =-A/2 will be treated in 6.2.

3. Hypergeometric function.
3.1. Jack symmetric functions. We recall here the basic properties of Jack sym-

metric functions. Our reference is the fundamental [St].
Let (1, ,...) be a partition and ’= (, ,...) be the conjugate partition.

The number of parts of is denoted by l() and called the length of . We write
I]=d if 1++ d. If , is another partition, then write ,-< if I,]=11 and
1} - 1)2 "31-" "[- 1,1 14,1 -[’- !2 "" "-[- Ki for all i. If has mi mi() parts equal to i, then
write

Z, (lm2m2" .)ma! m2!" ".
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Let (tl, t2,...) be an infinite set of indeterminates. We define the minomial symmetric
function mK- mK(t) indexed by partition K- (K1, 2,...) by

m:tlt2...,

where the summation sign indicates that we are to form all distinct monomials in t
with exponent u, 2,... The power sum symmetric function p is defined by

P P,P Pa t ma),

where (d) denotes the paition (d, 0, 0,...).
Let a be a parameter, and let O(a) denote the field of all rational functions of

a with rational coefficients. We define a scalar product (,) on the vector space of all
symmetric functions of of bounded degree over the field O(a) by the condition

(P, P)= 8za),

where 0 if v and 1. The Jack symmetricfunction J J)(t) are defined
to be the unique symmetric function satisfying the following three conditions.

(P1) (onhogonality). (J, J)= 0 if v.
(P2) (triangularity). If we write J in terms of the monomial symmetric functions

Z v()m, then v() 0 unless v .
(P3) (normalization). If It] d, then the coecient ,d of tt2. td in J is equal

to d!.
Setting all but finitely many variables equal to 0 (say t+ t+ 0) in J,

we obtain a polynomial J(tl,..., t) which we call the Jack polynomial. Note that
the Jack polynomials J(tl,..., t) vanish for r<l() and are linearly independent
otherwise [St, Prop. 2.5]. We will write J for J. Clearly we have J tl+ t+. -.
Define the differential operator D(a) by

02 2a 2(11) D(): Ot+ --.
i:1 li,jm ti- tj Ot

ij

Then the Jack polynomials J)(tl,..., t) with l() m are eigenfunctions of D(a)
[St, Thm. 3.1]:

(12) D(a)J)(tl,..., t)= e(a)J(tl,..., t),

where the eigenvalue e(a) is given by

(Ki-- 1)
(13) e(a)=a E Ki--E (i-1)i+(m-1)[].

i=1 2 i=1

By [St, Prop. 2.3] we have

(14) (tl+"’+t)a=aad E LJ,
where j (J, J). The value ofj is given by [St, Thm. 5.8]

j h(s)h(s),

(15) h(s) - i+ (i-j+ 1),

’-i+l+cr(i-j)h.(s) K
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where a partition K is identified with its diagram: K {s =(i, j): 1 <- i_< 1(), 1 -<j_< i}.
We change the normalization by defining

() .--1(16) C()(tl,..., t)= ll!J
to get

(17) (ta+’’ "+t,,)d E C(y)(t)
IKI=d

We will also need the explicit formula of C()(t) evaluated at tl t2 tr 1,
tr+ tr+2 tm =0, which we denote by C)(1 r) [St, Thin. 5.4]"

(8) c(r) lltj; H (r-(i- )+ (j- )).
(i,j)

3.2. Hypergeometric function. We assume from now on that a > 0. We define a
generalized factorial function [a] by

(19) [a](= a---(i-1)

DEFINITION. Let a,..., %, b,..., bq be complex numbers such that b-(1/)x
(i-1), 1 j q, 1i m, are neither negative integers nor zero. The hypergeometric
function F(a,..., a; b,..., bq; q,..., t) is defined by the series

()(
(20)

=o =e [b](2 [bq](2 d
( for =2 was first introduced byRemark. The hypergeometric function pFq

Herz [H] by means of Laplace transforms. The zonal polynomial expansion as in (20)
was found by Constantine [C].

Next we consider the convergence of the series (20). It is necessary to estimate
C(t). For this we content ourselves with the following lemma.
LA 1. Let I111 =max {q,..., tm[} and =max {1, 1/}. en

(21) Ic2>(t)l
where C denotes a constant depending only on m.

Proof Write

J)( t) 2 ap, d I
Il=a

so that

j,, y g2 zvogl(v)

By Cauchy’s inequality we have

(22)

It ,follows from (15) that

[j)( t)[ <_jl/2{ p2 }1/21’ =d ZuOgl(’)

(i,j)

where hij is the hook-length of n at (i, j):

’-i-j+1
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LetfK denote the number of standard tableau of shape K [Mal, p. 5]. The hook formula
gives

d!

H(i,j)K hij

The asymptotic behavior off has been determined by Regev [R], which implies

f<_Cme,
where C is a constant depending only on m. Hence

C?lm-dd !<-- I-I hij,
(i,j)

so that we have

(23) j >-- C72(flm)-2d (d !)2.
Let hd denote the dth complete symmetric function" ha =ll=d row. Then we have
hd =l,!=d zp, (see [Mal, p. 171]). Hence

(24)
p ,,(m+ d-1)).I =d z.a ’( lit d

(tim

Stirling’s formula gives (-) C. dm, C2 a constant depending only on m. There-
fore, (21) is a consequence of (22), (23), and (24).

PROOSIIO 1. (1) Ifp q, then the series (20) converges absolutelyfor all C.
(2) If p q + 1, then (20) converges absolutely for I[tll < 0 for some positive

constant p.
(3) Ifp > q+ 1, then (20) diverges unless it terminates.

Proof We compare the series (20) with the generalized hypergeometric series

(al)d" "(ap)d Z
d

(25) vFq(al, av bl, bq z)=
which is known to have radius of convergence p if p q, p 1 if p q + 1, p 0
if p > q + 1 unless it terminates. Put

1 1
asi=a---(i-1), bk=bk----(i--1), ljp, lkq, lim.

It follows from Lemma 1 that

for some R. Note also that

Ic)(t)l c, Ra Iltll a

/(1 K2 ’" "m l<d! d=ll
These inequalities imply

<-c. 2
d--O IKl----d

i= <i=0

Thus parts (1) and (2) of the theorem are clear (put p R-1 in Case (2)).
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For the proof of divergence in the case of (3), note first that if K (d) (d, 0,..., 0)
and t= 1 r, then (15) and (18) give

C(dC)(1 r) (1 + a(i- 1)) (r+ c(i- 1))
i= i=1

where Cd")(t) is sho for C(t). Suppose (0,..., 0) and put min,,,,o {It, I},
r the number of nonzero t. Then we have

E E
[al]()’" "[aP]()C)(t)

d=O Il=d [bl]’’ "[bq] d.

(a)...(a)

Since Ca’)(l")-> 1, we get the divergence.

4. Holonomic system for the hypergeometric function.
4.1. Uniqueness theorem. The following uniqueness property was first proved in

the case a 2 by Muirhead [Mu]. His proof can be easily generalized for general a.
THEOREM 2. Assume that c-(1/a)(i-1) is not a negative integer or zero for

1 <- <- m. Then each of the m differential equations in the system (9) has the same unique
formal power series solution F( t) subject to the following conditions:

(a) F(t) is a symmetric function of tl,..., tm; and
(b) F( t) has a formal power series expansion at (0,..., O) with F(0)= 1.

Proof. Since we assume that F(t) is symmetric, it is sufficient to consider the first
differential equation of (9) (i 1)

tl(1-tl)-7-.2+ c---(m-1)- a+b+l---(m-1) -abF
Ot a O Ot

(26)

1{ , 1(1 -)OFtl tj(1-tj) O}=O"+--
a j=2 tl- tj Ot j=2 tj

As in James [J] we transform (26) to a partial differential equation in terms of the
elementary symmetric function rl,..., rm of q,..., tin. Let rJ i) for j= 1,..., m-1
denote the jth elementary symmetric function formed from the variables tl,..., tm
omitting ti. Then clearly

(27) r trJi)_ + rJ ’), j 2,..., m- 1.

Introducing dummy variables

ro r(oi) O,

(j=-l,-2,...and m+l,m+2,...),

(j=-l,-2,... and m, m+l,...),

we may extend the relations (27) to hold for -<j< c. As
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the differential equation (26) becomes. tl(1 tl (1). (1). 02F
r_,rv_,

,= Or Or

(28) +2 (c-(a+b+l)t)rP+-

OF
abF O.

It follows from (27) that

t’(1--t’)r}m)l
i=2 tl- ti

and that

ti(1--t.i) ri)= )t ti i=2 tl- ti
Fl)l ri)__l -- rl) Fi))

E (rl)l --tJ-1-(i) +_(1)r.) rJ i)) m(r_) + rl))--(m--j+ 1)rj_l (m --j)t).
i=2

Denoting by r}’ i) the jth elementary symmetric function in the variables t2,...,
omitting ti (i 1), we have

t, (rJ)l r +rJ’)

i2 tl- ti
r) i))

(1,i) _(1 i)2 (},+_ ._, (,-_i 01
i=2

-((m-j+ 1)(_l-rP)+(m-j)(-r})).
Hence

(c-(a + b+ 1)tl)rl) -+--- ’j-1 ,j-1
O i=2 tl- ti tl- ti

1 ( 1)_(1)_(a+b+l)rj.=c---(j-1)r[),+ a+b+l---j r)

On the other hand, we see that
(1) (1) (1) (1) (1)

tl._lrv_l lv_l rl rv-1
(1)-r.-r(1)._, r.(1) r_ tire_e)

r(1). (1) r) (1)_r v-- rtz rv-1 + tl rv-2.

Iterating this relation we have
(1)_ ,.(1) _...tr,_r_). ) rr

_
r_r) + r+ir_2- r_2.+

+ r#+v_lr(o1) (1) + tl (1) ,(1)ror+v_ rtx+v-1--1
and --1
( =0. Therefore the differential equation (28) becomes

E (j) ,.(1) rj(. 1))
O2F

a( -r+’j--1
,v=l j=l Or Orv

(29) + E c (j 1) .(1),j_l+ a+b+l---j rJ-(a+b+l)rj
j=l Ol

OF
abF O,

Or
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where a{ a and for _< v,

r,+_ for 1 -<j-< tz
0 for ix<j<_v

-r+_ for v<j<_tz+v

0 for/x+ v<j

In (29) we can equate coefficients of r1)1 to zero for j 1,..., m according to [J,
Lemma, p. 371] to obtain the system of partial differential equations (a()= 0)

Now we put

(31) F(rl,...,rm)-- 2
Jl Jm =0

c(j.1, j r’ rJm

with c(0,..., 0)= 1. Order the coefficients c(jl,..., j,) in lexicographic ordering,
counting jm as the first letter and jl as the last. Substituting (31) in the differential
equation (30) with j k and putting rk+l rm 0, we obtain a recurrence relation
which expresses jk(jk--l+c--(1/Ct)(k--1))C(jl,’’’,jk, O,..’,O) in terms of
coefficients of lower order. Since jk--1 +c-(1/a)(k-1) is not zero by assumption,
one can iterate this reduction until one reaches c(0,..., 0) which we put equal to one.
Hence all the coefficients c(jl,..., j,) of (31) are uniquely determined by the recur-
rence relations. This completes the proof of Theorem 2.

Remark. As a matter of fact the series (31) is absolutely convergent in a neighbor-
hood of the origin. We will show that the series (31) is nothing but the hypergeometric
series 2F)(a, b; c; t) (Theorem 4 in 4.3).

As was noted by Muirhead [Mu, p. 995], the coefficients c(jl,..., jm) are functions
of a, b, c, a, and ji and are independent of the dimension m in the sense that
c(jl,..., jk, 0,..., O) c(jl,..., jk). In fact the coefficients in the system (30) do not
involve m explicitly, so that the recurrence relations determining c(jl,..., jk, 0,..., O)
and those of c(jl,..., jk) are the same. We rearrange the series (31) as a series of
Jack polynomials:

(32) F(t) 2 E aKC(2(t).
d=0 IKI----d

The expressions ofpower products ofthe elementary symmetric functions by monomial
symmetric functions m and those of m by the Jack polynomials do not explicitly
depend on m by virtue of [Mal, (2.3), p. 13] and the definition of Jack symmetric
functions. Hence aK are independent of m, i.e., a(,......h.o o a,......h.

COROLLARY 1. The solution F( t) in Theorem 2 can be obtained as a series ofJack
polynomials F(t) d=O lKl=d aKC()( t) with coefficients a independent of m.

4.2. Properties of Jack polynomials. For later use, we prepare some properties of
Jack polynomials following [Mu] closely in the case a 2.
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The generalized binomial coefficient () is defined as the coefficient of
C)(t)/C)(1 m) in the binomial expansion

(33)
C()(I+tl,..K l+t,,)IKI () C)(t)

C(a)( lm) E E C(a)=o I1= (1)

Denote tr

_
K if tri -< Ki for any i. We first state crucial properties of generalized binomial

coefficients whose proofs were not given in [Mu].
THEOREM 3. (a) () 0 unless tr

_ .
(b) The generalized binomial coefficients () are independent of the dimension m.
We leave the proof to 5. As in [Mu] we introduce the following differential

operators:

0
E-E ti--

i=1 Oti i=10ti’

i=1 Oti l--i,j--m ti-t Oti
ij

First, by Euler’s identity,

(34) EC(’*)( t) t).

For the partition , we put ()=(1,,...,i+1,...,,) and
(/1, /2,’’-, Ki--1,..., /(m) and call them admissible if the parts are in nonincreasing
order. Observe that if I[ I1 / 1, then ()= 0 unless o-= r) for some i. We have

eC)( t) ( ) C%( t)
(35) C)(1) i=l K

(i) C))(1 m)

(36) 6(a)C()(t)_ ( )( 1 ) C(t)
C)(1) =1 )

( 1)+(m i) C7(1
The summations in (35) and (36) are over all such that ) is admissible. This
convention will be used in all future summations involving ) and ). Equation (35)
can be proved in the following way:

ct)__ oc cl, mC )(1) = ot

c(tl+X,..., tm+X)--Cy(t)
lim
o XC ) 1)

=lim
C()

o ( C%(1
k terms of higher degree in I

Equation (36) follows by noting that ()=(eD()-D()e) and by applying the
operators e and D() to C(t)/C(2(I).

Next we show that

(37) p exp (t +" + tm 2=0 211= dC)
d
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(38)

(39)

where Pi til+’’" + t and pK(a) :Ei=l [Ki((/2)Ki-- i)]"
p.(a)+(m--(a/2))lu[. Equation (37) follows from (17) since

p,+’ dp
Pl exp (tl +’’" + t)=

a=o d! d=O d!

E E
dC((t)

d--O IKl=a d!

d!

Applying D(a) to both sides of

(40) exp (tl+’"+ tin)= E E
d=0 Il--d

Note that e(a)=

and equating coefficients of C(fl)(t) using (12) and (13) gives (38). Applying E to both
sides of (38) and equating coefficients of C(fl using (38) gives (39). Using these
formulas we obtain

(41) , i) C(,)(lm)= m(ll/ 1)C()(lm),K(i)\
i=I

(42) E K(i) ri---(i-1) C()(1 =1 1(1 1+ 1)C)(l),
=1 K

(2)( 1 ) K(i)
i=l

(43)

=([K]+a 1) p(a)+(m+ 1)l C(f)(1 ).

Applying e to both sides of (40) and equating coecients of C(t) gives (41). Applying
(a) to both sides of (37) and collecting coecients of C(t) using (37) gives (42).
Applying (a) to both sides of (38) and collecting coecients of C(t) using (37),
(38), (39), (41), and (42) gives (43).

4.3. Holonomic system. We want to show that the hypergeometric function
:F(a, b; c; t) satisfies the holonomic system (9). For this, as in [Mu], we will deal
with the differential equation formed by summing the differential equations in the
system (9):

t(1-t)+ c---(m-1)- a+b+l---(m-1) t
(44)

OF
mabF+-- 0.

2 t(1 t) OF
0 a i,j tj 0

ij

LEMMA 2. Assume that c -(1/a)(i 1) is not a negative integer or zerofor 1 m.
Then the solution F(t) of (44) of the form

(45) F(t) E E YKC((t),
d--O Il:d

is unique if the coefficients are independent of m.

)%) 1
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Proof. Substituting (45) in (44) and using (12), (34), (35), and (36), we obtain the
following recurrence relations for

CK,(1(c-i-Ki) (i-1) (o)

i=1

(46)

{ a mab + p’(a) +a(a + b)lK[ +l }- 2
(m+l)ll C()(1 )y.

Put fl alll[!jZ[c])3,. Then, in virtue of (18), (46) becomes

(47)
i=l

0 o 1
mab+p(ce)+(a+b)lcl+-(m+ l)l[ 13.

Now assume that y and hence fl are independent of m. For an arbitrary partition r
we take m > l() so that K(,+I) is not admissible. Then, on replacing m in (47) with
m + 1, we have

(48)
,1: ( (’)(m -l- aci i-i-

a a 1 )(m+l)ab+p()+(a+b)ll+-(m+2)ll [3,,.

Subtracting each side of (46) from that of (48) yields

(49) /(/Ki))fl(i)__ ( ab+-)flK,
and equating constant terms of (47) gives

(50) i" l’(i)K (aKi--i+ 1)fl,(i) p(a)+ll(a+b)+
As runs over all partitions of d, (49) and (50) give equations in all the unknown/3
corresponding to partitions of d + 1, since any partition of d + 1 can be expressed as

n(i for some and some partition K of d. For partitions and u with I 1-I 1, write
u _<R (reverse lexicographic order) if u or the first nonvanishing difference ni- ui
is positive. We prove that (49) and (50) determine/3 uniquely (flo)= 1) by induction
on _<R of indices K. Suppose that the/3v with I1 <11 or have been determined
and that nl rr> nr+l- Put r r) and replace K in (49) and (50) by . Then, as

it is readily verified that (49) and (50) afford an explicit formula of fl in terms of
lower-order ones ((49) alone will do in case r 1). Thus fl are uniquely determined.

LEMMA 3. 2F)(a, b; c; t) is a solution of the differential equation (44).
Proof. It suffices to show that

[a] )[b](
(51) ’y,=
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satisfies the recurrence relations (46). Substituting (51) into (46), the problem reduces
to showing that

,1
K(i)

K
a+Ki---(i-1)

a
b+Ki--- (i-1)

a
C(")(1")K(,,,

---2 (lt+l) mab+pK(a)+-(a+b)ll+-(m+l)l[ C(")(1).

But this follows at once from (41), (42), and (43).
As the coefficients y given by (51) are clearly independent of m, it follows from

Lemmas 2 and 3 that the hypergeometric function 2F)(a, b; c; t) is the unique solution
of (44) among the formal series of form (45) with y being independent of m. On the
other-hand, the unique formal series solution F(t) of (9) given by Theorem 2 also
satisfies (44) and is of the form (45) with y being independent of m. Therefore, we
get the desired equality F(t)=2F)(a, b; c; t).

We summarize our results in the following theorem.
THEOREM 4. F)(a, b; c; q, tin) is the unique solution ofeach ofthe rn differen-

tial equations in the system (9) subject to the following conditions:
(a) F( t) is a symmetric function of q,..., tin’, and
(b) F( t) is analytic at the origin with F(O)-- 1.

5. Proof of Theorem 3.
5.1. Preliminaries. Define rational functions g g(a) by

Jo( t)J( t) E J-lgai(a)Ja( t).
A

Note that g, 0 unless I1 I,1 / I1, , and v h [St, Corollary 6.4]. If/z , then
the skew shape h//x (regarded as a difference h-/z of diagrams) is called a horizontal
strip if no two different points of h//z lie in the same column. Call a horizontal strip
h/tx an n-strip if [h//x[ n. Then g,n=g,(n)0 if and only if/z_h and h//x is a
horizontal n-strip [St, Prop. 5.3]. Moreover, g,n has the explicit evaluation [St, Thm.

g,, n a I-I Ax,(s) 1-I Bx,(s)
stx sea

where

Ax.(s) h*(s),

Ba,(s) { h* (s)’
h(s),

if h//x does not contain a square in the same column as s,
otherwise,

if h//x does not contain a square in the same column as s,
otherwise.

We will use only the case n 1 of this formula.
Let x (xl, x2,...) be other variables. Then we have [St, Prop. 4.2]"

(53) Ja(t, x): E g(a)J,(t)j’J(x)j-’.

We will also need some explicit formulas. Let l(h)= m and write h- I h- Im
(h--1, h2--1,..., h,,--1). Then there holds [St, Props. 5.1 and 5.5]

(54) Jx(tl,..., tin)= [I h(i, 1)tl""" tmJx_i(tl,... tin).
i=1



1100 JYOICHI KANEKO

Consequently, van(a) is given by [St, Thm. 5.6]"

(55) vxx(a)= I-I h(s).
sEA

In this section we will denote the generalized binomial coefficient by ()m to
express its apparent dimensional dependence in the definition (33).

We proceed via a sequence of lemmas.
LEMMA 4. For fixed d with trl-< d-< [KI, we have

Proo Let s be an indeterminate. By definition of (2) we have

J(lm) J,(1 m)

while we see that

Z(l+s+t,,...,l+s+t) X(l+s)ll-Il()
J(1 ") J(1 m)

Hence equating the coefficients of sd-IlJ(t) of each ofthe right sides ofthese equalities
gives the desired result.

LEMMA 5. Let and be partitions with 1[ ]el and of lengths m. en

.1 =J.(lm)-lJu(lm)-lju
(56)

"Jo(lm)jlgl(:) -mJ(lm)-l(:)p

Proo Multiplying both sides of (33) (in which we replace r and A with and
e, respectively) by p yields

(57) PlJ#(l+tl’’"’l+tm)-(7) J’(lm)-l{ "-1
J grlJu(t)

As Pl 1 + t +. + 1 + t m we see that

pJ(l + tl,. l + t)
J(1

J,(lm)-l{Z j;lg:lJp(l+tl,...,l+ tm)-mJ,(l+t,,...,l+ tm)}p

(58,

{ (:) J(t) (:) J.(t)J"(lm)-I Ej;lglJ(lm)o ]g).j -m L(lm

Then equating the coefficients of J(t) in (57) and (58) gives (56).
Note that if I1 =11 and , then () =0 and that (,)m 1.
By Lemma 4, for the proof of Theorem 3, it will suffice to prove the case [1 I1 + 1

of the theorem, which we assume hencefoh. For a paition (, 2,...), write

-= (1, ,..., -).
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LEMMA 6. Suppose that (a) holds in the dimensions <m- 1 and that tr_ - K. Then
(r)m --0.

Proof. Since jslJa(tm)=(aad!)-ltdm by (15) and (18), (53) implies that

J(l+ t,,..., 1+ t,)= E (add !)-lgdjlJ,(1 + tl,..., 1+ t,,_)(l+ t,,) d
tx,d

(add!)-ljlj,(l’-l)jx(lm-1)-I
/x,A,d
A

g,, L(t,..., -(+t",
--1

dL(tl,... t)= (add[)-lgdj;J(tl,... tm-)tm.
,d

Substituting these into (33), we get

(add)-lj,J(1-1)jx( 1 1)-lgd Jx(tl t_l)(1 + t)d

,A,d Am--1
A

(59)

Put
_

and tm 1 in (59). Then comparing the coecients of J_(fi,..., t_) to
both sides gives

Suppose first that 0. Then must be identical with , so that () 0. The general
case follows using induction on .

LEMMA 7. For a partition , p m, we have

( pl.

Proo As the proof of the case p m is clear, we assume p < m. By putting
tp+l t =0 in (33) and using (53), we have

,J,( + q,..., + J;’L(m-J; L( 2 L(

Equating the coecients of m((q,..., tp) of both sides yields

Thus the desired result follows at once if we substitute the explicit formulas of g"
j, J,(l), and v.
LMa 8. We have

,=ot3=o s-j+a(;21) s-i+a(r-1)

V(rP-l,r_l,lS-i),(rP-l,r_l,lS-i)o

Proof. Equation (53) implies that

J(rP, l’)(tl tp+s+l) E (odd’)-l’(rp’l
Xd s)j-ljx(tl,.. tp+s tp+s+ld
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From this one can easily deduce that
--1 _(r s) .--1

1)(rP, lS),(rP-l,r_l,1 s+l) Ol. g(rp’-’l,r_l,lS),lJ(rP-l,r_l,lS)1)(rP-l,r_l,lS),(rP-l,r_l,1 s)

Af_ Ol--l"(rP’lS) .--1
(rP,lS- ),lJ (rP, lS-1) )(rP,lS-1),(rp-l,r-l,1 s)

where we see by (15) and (52) that

s+ars) .-1
(rp-l,r_l,lS),lJ(rp-,r_l,1) otp( r-- 1

s+a(r-1)

grP,1 s) ..-1 p/s/a(r-1)
rP,lS-1),lJ(rP,lS-1) OS

s+a(r-1)

Using this formula recursively, we arrive at the desired formula.
Proof of Theorem 3(a). We shall prove (a) of Theorem 3 by induction on the

dimension m, the proof being clear for the case m 1. We assume that l()= m. By
Lemma 6 we may also assume

__
and tr u. We proceed by induction on d

r,_- r,., d >-0" Suppose that (a)holds in the cases Km_ --K d- 1. The proof of
the case .,-1 m is clear because tr implies r_ . Suppose trm- .-> 2 and put
/x rm- and u tr in (56). Then one can easily verify by induction on d that all the
terms of both sides of (56) except the one with (). vanish, so that ().-0. Hence
it suces to consider the case rm + 1. Since 1] ]]+ 1, it follows that -l--
m--1 2.

Case rm-1 -1. Put, r-) and u in (56). Then by using Lemma 6 one
can easily show that () 0 if d 1. Similarly if d 2, one can deduce that () is
propoional to

(m--1)

so that () =0 by induction on d.
Case -1 =-1+ 1. It necessarily follows that m3 and d 2. Note that

g(m(ml) (p) for some p_< m- 2. Putting K
(m-l) and v g in (56), we have

J(m,(

Obsee that (18) implies

(60) J (1 )J()(1)-J_((1)J( )(1 )-1 1
(i)

Hence the proof of () 0 is equivalent to show that

(61) (m)/m"
Note first that by (15) and (52) we have

hp -1 p--1

jl h h(v) h
ga(;) h, (p,j)h,(p, j)- H h()(i, hp)h(i, hp)-1

(62)
1

;- (a5-p+1+(a-j-1)) (p-i-1+(,-+1))-
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mlm-l( t)Jp_,.,(t) 1 tl" t,J-,.i.(t) + C2J’)-(m-1)I(t),
which implies that

(65)

(tr(crp)) J( lm)JP)(lm)-I H h’p(i,j)h(i,j)-1

<-j

1 )J-o-,(1 )-l(O’(p)--O’mI] }
__

O.mC
\cr-tr,.I /.,
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Suppose d _> 3, so that r,,_l > r,,. Then by induction on d we see that

(63) ’-’(p) ---1 --1 .--1 o.(m-1) O(p)

(m--1 (J)- (P)
Jfm-1)g(m-’m)l (m-l,m)]1)-l.m)

where -’) (, ,..., -1 1, m 1). Observe that the coefficients of

(p) (p)

(m)] and (m-,)

(-) (respectively, (p)are the same in view of (62). Put () and v (-’)

= ()) in (56). Then by (60) we have

u(p) , -1 - (p(m-1)/m=j(5’ 11 J(p);-1)

(m-l’m)k ((m--l,m)] O(p) O(p)

Again by (62) the coecients of

and

are the same. Hence substituting these into (63) yields (61).
The case d 2 must be treated separately. Note that

_ . Using (56), one
can easily show that () is propoional to (,) for i p, m-1, m. Iterating this,
for the proof of (61), we may assume that

_
=_ p+l, p + 1 =p+l

(m) and. Suppose pm-3. Then (61) is a consequence of (56) with
u . Hence assume p m-2. We shall calculate (,) explicitly. It follows from
(54) that

g,(1 + q,..., 1+ t)

(64) H h,p( i, j){(1 + tl)""" (1 + tm)}J,p,_,(1 + t,..., 1 + in)
lim
j m

1, r --mL(I)
j

where p)-I ( ,...,_ m, 0). We compute the coefficient of J in the
right-hand side of (64). For this it suffices to consider only the terms of r -I
or p L Since x m-1g_,am- 1 # 0 only if p-mI A and 1 A, we see that
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Write [m(t)]f(t) as the coefficient of mx when the symmetric functionf(t) is expanded
in terms of the monomial symmetric functions. Put

dl tl t’m-m,( t)] ml’-( t)m(p)-ri( t)

d2 [tl"’t’m_m,(t)]ml-,(t)m,p+,_m,(t).

Observe that dl 1, d2 m-p 2 (respectively, dl m-p+ 1 3, d2--0) when 0.(p/l)
0.(’_) is admissible, i.e., 0.’_ < 0.’-2 (respectively, 0.’_ o-’_2). Thus we get

(66)
-1

Cl 1) r_ri.,r_rml{d )O’(p)--O’ml,O’(p)--O’mI + d21)Cr(p)-Cr.d.cr(_l)_%d

C21)crr))_(O.m_l)l,cr_(Crm_l)i},

in which (55) implies that

-1
C2 )O-(p)-O-mLCr(p)--O-mI (m) (m)

O’(p --O’mI,O’(p -O’mI

"-1

H (i+ a(0.p + 1- 0.’))-.
i=2

By using (55) and Lemma 8 we have

vSO-mt,tT__o.m, )O-(p,__o-mlt(p)_O-mI p(1 + a(0.p 0.’)),

-1
V o--O-mI,o--O-mI Vo’’))-(Crm-1)I,o’-(Crm-1)I

p(0.p + 1- 0.’)
1+ a (0. + 2- 0..,)
1 + a(0. + 1 0.m)

"-1

(2+a(0.p-0.’)) H (i+a(0.p+l-0.’))
i=3

+p(0.p + 2- 0.’)
m- 1 + ce(0. + 1 0.’)

1 + a(0.p + 1 o"’)

m--2

(l+a(0.p-0.’)) H (i+a(0.p+l-0.’)).
i=2

Substituting these to (66) yields (whether 0.(’_1) is admissible or not)

Cl ap(crp + 1 -o-’)(3 + a(0.p-o’.,))(2 + tx (0.p + 1-o"’)) -1.

Hence substituting this into (65) and using (15) and Lemma 7, we finally obtain

0.;P)) p(0.p + 1-o"’)(2+ ce(0"p + 1))(2+ a(0"p + 1 0.m)) -1.

This also gives

0"(.,-1,.,) P(0"P + 2-0"’)(2 + a (0., + 1))(2 + a(0.p + 2-0.’t) -1.

On the other hand, by virtue of (56), we have

m) (re,I,. (p)

0.(’)] --J’Cm’gAm-" 1JO-(p,’l,,o.((-l.m, 1)-- 0"(m--l.’)]
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Hence it remains only to prove
---1 _tr(p)

kJ o.n)), o-((pn]-l,m)

=(rp + 1-o’,.)(2+ a(o"e + 2-- O’m)

{(o-t, + 2- o’)(2 + a(o"v + 1 O’m)}-a,
provided p m-2. But this follows at once from (62).

Case K,,,-1 trm-1 +2. In this case we see K1 try,..., Kin_2 Crm-2. Putting /x
K<m-1) and v cr in (56), one can easily show that ()m =0 when cr is equivalent
to (61) with p m- 1. But the latter can be proved in the same way as in the case of
m-1 cr,,_ + 1 using (56). So we omit the details of the proof.

Proof of (b). Induction on I1, the case I1-1 being clear. Suppose o-(p) and
that Cr<r) are admissible for some r p. Put/x u and v r<r) in (56). Then by (a) we
have

J(r)g f |
tr(r)/

The coefficient of (), is independent of the dimension m by definition, and the proof
follows by induction

5.3. Expression of () by g/2t
PROPOSITION 2. We have

Proof Suppose first that [[ ]tr[ + 1. Since ()’s are independent of the dimension,
we see

J(1 re+l) x___ Jx(1 ’+)
(67)

x_ x J(lm)

On the other hand it follows from (53) that

(68) J(1, t)= E gJ(1)j-lj(t)jS1.

As () 1, equating the coecients of L(t) with Il Il- 1 in (67) and (68) gives

{J(lm+l)J( lm+l)-l J(lm)J(lm)-l}() Jl(1)jljlg1,

Clearly Jl(1) 1 and (60) imply that the coefficient of () is 1, which completes the
proof in the case Il Il + 1.

Suppose now that Inl-Il r (r 2) and that the proposition holds in the cases
[l-wl < r. It follows from Lemma 4 (with d lwl + 1) that
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Since jl c, it remains only to prove that

r,v tx

Let m>_l(K). Since Jl(t)=Jl(tl,... tin) tl+’’’+tm, it follows from (14) that

J( t)( +...-t- tm) Jr( t)Jl( t)( tl +’’’ + tm) r-1

(69) E J-lg;1J,(t)(Z or-l(r 1)!j-lj(t))
r--1a (r- 1)! Y (jaj.j,)-lglg,Ja(t).

A,

On the other hand, we see that

(70)

J( t)( tl + + tm)r= J(t)( otrr! jlJ( t))

Comparing the coefficients of JK(t) in (69) and (70) completes the proof.
Remark. Theorem 3 and Proposition 2 have been announced also by Lassalle [L].

The full proofs have not yet appeared as of July 1992. Our proof of Theorem 3 is a
rather messy case-by-case check. It would be interesting to find an intrinsic proof. (Of
course, it will be better to give a direct proof of Proposition 2.)

6. Consequences.
6.1. Main result. The following transformation formula of solutions of the system

(9) can be proved in the exact same way as in the case of the Gaussian hypergeometric
equation and we omit the proof.

PROPOSITION 3. If F(tl,...,tm) is a solution of the system (9), then
(q" "tm)-aF(1/tl,..., 1/tm) is also a solution of the system obtained from (9) by
replacing b by a-c+l+(1/a)(m-1) and c by a,b+l+(1/a)(m-1).

Note that the integral

(71)

(--1)m"/2(tl "’’tm)-"/2S A A2, A,n,m 1,
2 tl

xi,(1-xi)
0,1] i=1

II Ix,-x l II
l<_i<j<_n 1.<_i<_n

l<_k<_m

(1 xitk )-’W2 dXl din

is analytic at the origin. Combining Theorems 1, 4, and Proposition 3 gives our main
result in the following.

THEOREM 5. We have

(72)
0,1]

(Xi- tk)O;t,,x2,x(X1, In) dxl" dxn

( 2 2 )C1" .F/ -n,- (A14r A2-t- m + l)-t- ll -1;-(Al + m)’, tl, tm
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1 Xitk)--A/2DA1,Az,A(XI Xn) dXl dx.
0,1]

(73)
=C. F/ n,(n-1)++l;(n-1)+++2; q,...,t,

where C S,o( + m, , ) and C S,o(, , ).
This theorem gives a rather sho proof of Macdonald’s conjecture (C5) [Ma3,

p. 197]. Namely, the following.
COROLLARY 2. Let (, 2, ") be a partition of length n. en

J x,)D,,(x,..., x,) dXl.., dx,J/(x
o,1]"

(74) J/a(1, ,1)

F(i(a/2)+l)F(,+Al+(A/2)(n-i)+l)F(A+(A/2)(n i)+1)
,:1 r((A/2)+l)r(,+Al+A+(A/)(n-i-1)+)

Proof Let m n. We notice the Cauchy identity [St, Prop. 2.1, p. 79]"

(75) J)(Xl,...,x,)J)(t,...,t)j1= (1--Xitk) -1/,
lin
lkm

where the summation is over all paitions u. Put a 2/A and substitute the left-hand
side of (75) into that of (73). Equating the coefficients of J/)(fi,.. , t) of both
sides gives

f x,),,,(x,..., x,) dx.., dx,J/(Xl,
0,1]

Now the desired equality (75) follows at once from (1), (15), (18), and (19)... Cse of m l, . In case m 1, putting a (I/2) n, b (I/2) (n 1) + I + 1,
c 1(n 1)+ I +I+ 2 in (73) yields the following integral representation ofthe Gauss
hypergeometric function"

[F(a, b; c; t)= C x (1 --Xi) b+(a/n)-I

0,1] i=1 li<jn

(1-xt)-/ dx...dx
i=1

C3=S,o b-a+--l, c-a-b+--l,

In case m 2, one can easily deduce from (10) that

F(a,b; c; t,t)=C4. F4 a,b,c---,a+b-c+l, ht,(1-q)(1-t)

(7 + c. (( ( --F4 c b, c a, c ---, c a b + 1, q t, (1 q)(1 t)
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Putting t2 0 in (76) yields

2Fl(a,b; c; tl) C4 2Fl(a,b; a+b-c+l; 1--tl)

+Cs(1-q)--b2Fl(c-b, c-a; c-a-b-t-l; 1- tl).

The connection formula of solutions of the Gauss hypergeometric equation [W-W,
p. 291] then gives the values of C4 and

c4=r(c)r(c-a-b)
r(c-a)r(c-b)

Combining (73) and (76), we get

F(c)F(a+b-c)
r(a)r(b)

1-[ (1 --Xitk)-X/2Dx,x,x(Xl,..., Xn) dXl" dxn
o,1]

k=l,2

n,(n-1)+AI+I,-(2n-3)+A+A2+2,--A.; tlt,(1--tl)(1--t2)

+CCs((l_tl)(l_t2))x_(x/)+lF4 A(n_I)+A2+I,_(n_2)+AI+A2+2,
-A (2n-3) +,t+ A+2,
2

)A2--+2; tlt2,(1--t1)(1--t2)

put
7. Relation with generalized Jacobi polynomials. For a >-1,/3 >-1, and y->-

w(x)= w’’/3"/(x) H (1-xi)’( 1 +xi)t
i=1

H (Xi--Xj) 23+1,

where f is the region

As a total ordering of partitions we still use the reverse lexicographic order R. For
partitions K and v, denote v RK if v or the first nonvanishing difference i-vi
is positive (we do not assume I1 =11). Hereafter we will restrict partitions to have
length <-m. A symmetric polynomial p(x) is said to have degree r with leading term

cKmK if

p(x) E c,,m,,, cK 0.
p_R

DEFINITION [Ko], IV], [D]. The generalized Jacobi polynomials p’’V(x) are
defined by

(1) P(o) 1;
(2) p’’V(x) is a symmetric polynomial with leading term m;
(3) p’’V(x)q(x)w’’r(x) dx =0 if q(x) is a symmetric polynomial and degree
Rq--< K.
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THEOREM 6. We have

Sn.m(.l,/2, , 1; tl,. tin)= 2-n" Sn,o(l, ,2, A)P?;,a’(1 --2tl,. 1-2t.),

where a=(2/A)(Al+l)-l, fl=(2/A)(A2+I)-I, y=(A/2)-(1/2), and (n"*) is the
partition n, n ).

Proof Note first that the leading term of

Sn,m(ll,/2,/, 1; (1 t)/2,..., (1 t,.)/2) is 2-"S.,o(A, A2, A)(tl""" t,.) ".

Hence it remains to prove

(77) J IO, 1]
S,,m(A1, A2, A; t)q(t)D,d3,2v+l(t) dt=0,

where q(t) is a symmetric polynomial with degree <R (nm). Clearly it will be sufficient
to consider the case q(t)= J/2)(t) with K <R (rim). Put

A<’’O’v)= Y. ti(1-ti) ot--i+ a+l-(a+fl+2)ti+(2y+l) 2
ti(1-ti) 0

i=1 j=l ti tj
ji

Then for polynomials f and g we have IV, Thm. 4.3]

(A<’o’v)f)gD.,.zv+( t) dt f(A’3"V)g)D,o,2v+l( t) dt.

One can easily deduce from (44) that

A<"’t’v)S,.,,(A, A2, A, 1; t) Al+A+m+l+-(n-1) Snm(A1,A2, A,I" t).
A

Now suppose that (77) holds for any symmetric polynomial with degree <RK and
that r <R (n =). We prove

(79) l’ S.,,,,(A, A2, A, 1; t)JX/2(t)D,13,2+l(t) dt=O.
[o,]"

It is readily verified by using (11), (12), and (37) that

A<’"v)J/2(t)=-- 2e +(AI+A2+2)II Ja/2(t)+q(t),

where q(t) is a symmetric polynomial with degree <R . On using (13), we observe that

A,+A+m+l+-(n-1) # 2e + (AI+ A2-+-2)[
A 2

provided h>0 and hi+A2>0. Hence (79) follows from (78) for such A, /1, and /2"
For other values of hi and h2, (79) holds by analytic continuation. This completes the
proof of the theorem.
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THE INITIAL VALUE PROBLEM FOR A SYSTEM MODELLING
UNIDIRECTIONAL LONGITUDINAL ELASTIC-PLASTIC WAVES*

MICHAEL SHEARER? AND DAVID G. SCHAEFFER$

Abstract. The authors analyze initial value problems for a hyperbolic system of equations
that is a simplification of models of dynamic longitudinal elastoplastic deformations in a rod with
hardening. The simplified system has a positive characteristic speed associated with stress waves,
and a zero speed associated with the time independence of hardening during elastic deformation.
The equations are piecewise linear in stress derivatives, and thus fully nonlinear. The main result
is that for bounded uniformly continuous initial data, the Cauchy problem has a unique continuous
solution that can be approximated by piecewise linear solutions of the equations.

Key words, elastoplasticity, hyperbolic equations, fully nonlinear partial differential equations,
initial value problem, weak solutions

AMS subject classifications. 35L45, 35L60 73E50, 73K05

1. Introduction. In this paper we analyze initial value problems for a hyper-
bolic system of equations that is a simplification of models of longitudinal elastoplastic
deformations in a rod. In longitudinal deformation there is only one nontrivial com-
ponent of stress, which we label a, and one component of velocity, w. We consider
models with hardening, in which the yield stress (the threshold beyond which the
material deforms plastically) depends on the stress history. This dependence is in-
corporated into the hardening variable , which is the maximum previous stress at
a material point. The longitudinal elastoplasticity models, studied by many authors
[1], [4], [6], [7], are given in [5] in the form

(i.i)

(a) Ow 0,
(b) 0o" + KOt7 Oxw,

(c) 0/= 0 if a<
(Oa)+ if a=

(elastic),
(plastic if Oa >_ 0).

Here,-K K() > -1 is a given nonzero function, 0, 0x are contractions of O/Ot, O/Ox,
and

Oa if0,a >_ O,(1.2) (Ota)+ 0 if Ota <_ O.

System (1.1) has elastic wave speeds +/-1 and 0, and plastic wave speeds +/-(1 +K)-1/2.
In [5], we simplified the model by taking g() constant. Here, we not only take

K to be constant, but we also reduce the dimension of the system, eliminating one
characteristic variable, corresponding to waves with negative speed. Specifically, we
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write a system of two equations relating stress and hardening, dropping the velocity:

(a) Ou + kOv + Ou O,
(1.3) (b) Ov- ( 0 if u < v (elastic),

(Ou)+ if u v (plastic if Ou >_ 0).

For simplicity, we have relabelled the stress as u, and the hardening as v. The pa-
rameter k > -1 is related to K by k (1 + K)1/2 1. We call system (1.3) the
unidirectional model.

The material deforms elastically when u < v or u v and Ou <_ O. Then (1.3)
reduces to the system

(1.4) Ou / Oxu O,
Ov =0,

which has wave speeds co 0 and CE 1. We have normalized the elastic wave speed
cE to be one. Note that the variable v is constant in time in elastic deformation.

When u v and Otu >_ O, the material deforms plastically, and (1.3) reduces to
a scalar equation:

1
(1.5) Otu - 1 + k

O,u O,

with (plastic) wave speed cp (1 / k) -1. By imposing the additional restriction
k > -1, we ensure that both elastic and plastic waves have positive wave speed. Note
that for -1 < k < 0, the plastic wave speed is greater than the elastic wave speed,
whereas for k > 0, the elastic wave speed is larger. For longitudinal motion, the
range -1 < k < 0 is, therefore, unphysical. However, in reducing the equations for
multidimensional deformation with a nonassociative flow rule to a one-dimensional
model, the entire range k > -1 assumes physical significance. This point is discussed
further in [5].

Since solutions of elastoplasticity problems appear to have no spontaneous ten-
dency to form shocks in finite time, we shall be concerned only with continuous
solutions in this paper. In particular, for system (1.3) with k constant, the equations
are piecewise linear, so that the only shocks expected in solutions of initial bound-
ary value problems are those propagating from initial or boundary conditions. The
restriction to continuous solutions also helps to justify the simplification of taking
k to be constant. The objective in studying the simplified system is to understand
the behavior of solutions locally in space and time, so that the solution is close to a
constant, making k close to constant. The principal nonlinearity involved is, there-
fore, the switch between (1.4) and (1.5). Dropping the quasilinear dependence of the
equations through the function k enables us to focus on the nonlinearity due to the
switch.

To see how solutions of (1.1) are related to those of (1.3), consider a solution of
(1.1) which is unidirectional in the sense that w, a in each elastic or plastic region are
functions of x-ct, with c 1 (for elastic deformation), or c (1 -K)-/2 (for plastic
deformation). Correspondingly, 0 0, or a (respectively). Then in particular,
we have the equation

c-Oa + Oa O.

This equation may be written in the form (1.3), setting u a, v /, k (l+K)/2-1.
Conversely, if (a,-y) is a piecewise smooth solution of (1.3), then a is a function of x-ct
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in each elastic or plastic region. If w is defined in an elastic or plastic region up to a
constant by (1.1a,b), then the triple (w,a, /) satisfies (1.1) in that region. However,
solutions of (1.1) typically are not unidirectional, and therefore do not satisfy (1.3).
Moreover, it is generally not possible to construct the additional variable w in (1.1)
so that a solution of (1.3) corresponds to a unidirectional solution of (1.1).

The purpose of the simplified model is to isolate the role of fully nonlinear wave
interactions in the global behavior of solutions, while retaining sufficient structure
in the equations to preserve the main phenomena. This paper may be viewed as a
step toward proving existence results for initial boundary value problems for the full
equations (1.1). We show some of the analytical difficulties inherent in dynamic elasto-
plasticity models, and demonstrate how they are resolved for the simplified system.
The additional complication of having waves propagating in both directions (left and
right) is an obstacle to extending the results of this paper to the larger system (1.1),
because of the possibility of sustained wave interactions through repeated reflections.

The main result is that for bounded uniformly continuous initial data, the Cauchy
problem for system (1.3) has a unique solution within a suitable class of bounded con-
tinuous functions. The proof of this result is based in part upon ideas related to those
of Glimm in his treatment of the Cauchy problem for systems of hyperbolic conser-
vation laws [2]. In particular, we approximate the solution by continuous piecewise
linear solutions. Discontinuities in the first derivatives of the approximate solutions
are treated as waves that propagate and interact. We use a functional of the piecewise
linear approximate solutions that bounds the total spatial variation, is decreasing in
time, and estimates the number of discontinuities. To show that this functional is
decreasing, we rely heavily on the unidirectional property of the simplified system
(.).

It is instructive to consider the evolution of initial data shown in Fig. 1.1(a).
Initially, u < v everywhere, so that according to (1.4), the graph of v remains fixed
while the graph of u moves to the right with speed CE 1. At some time t tl, the
graph of u first touches the graph of v. At this moment plastic deformation begins
and the graph of v is pushed up where it is in contact with the graph of u (i.e., the
maximum-stress v(x, t) increases). The subsequent motion is shown as a succession of
pictures in Fig. 1.1. (The times ti shown in Fig. 1.1 are defined in Fig. 1.2.) Figure
1.2 shows the (x, t)-plane for this solution, in which a region of plastic deformation
(where (1.5) is satisfied) is surrounded by a region of elastic deformation (where (1.4)
is satisfied). The solution shown in Fig. 1.1 may be obtained using the method of
characteristics, but it is not clear how to use the method of characteristics to prove
a general existence result for the Cauchy problem because the boundary between
regions of elastic and plastic deformation must be found as part of the solution.

Our analysis of continuous solutions is based upon a detailed treatment of the
scale invariant initial value problem (SI problem for short), which is the initial value
problem for (1.3) with piecewise linear initial conditions:

(1.6)
f aLx if X<0,(a) u(x O)

aRx if x > 0.

bLx if x<0,(b) v(x O) bnx if x > 0.

To ensure that u _< v everywhere, we require that

(1.7) aL >_ bL, aR <_ bn.



1114 MICHAEL SHEARER AND DAVID G. SCHAEFFER

v

t=O t=t

t<t<t t=t

t=t

2

t3<t<t

v

t=t t>t

FIG. 1.1. Labels refer to the classification of waves in 2.

The initial value problem (1.3), (1.6) is called scale invariant because (1.3) and the
initial conditions (1.6) are unchanged by the scaling

(1.8) x x, t st,
U o--lu, V o--lv

for any c > 0.
In a companion paper [5], we solve the corresponding SI problem for the larger

system (1.1). In this paper, we prove the existence of a solution of the Cauchy problem,
with general initial data, but only for the simpler system of (1.3). In the proof, we use
detailed information about solutions of SI problems for (1.3). We treat the SI problem
for (1.3) in 2 for k > 0. The solution is continuous and piecewise linear. Jumps
in derivatives of the solution propagate along characteristics, or along boundaries
between regions of elastic and plastic deformation, which we call fronts or elastic-
plastic boundaries. In 2, we classify the fronts into four types. An interesting point
here is that one of the types of front has negative speed, even though all characteristic
speeds are nonnegative.



ELASTIC-PLASTIC WAVES

elastic

t
t

FI(. 1.2. Elastic and plastic regions.
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In 3, we solve the Cauchy problem for bounded continuous initial data. The
solution is continuous globally in time, and it is unique within the class of solutions we
seek, namely those that can be approximated by continuous piecewise linear solutions
of initial value problems having piecewise linear initial conditions.

In Appendix A, we consider the SI problem when k < 0 in (1.3). We demonstrate
nonuniqueness of solutions of the SI problem for certain initial data, and nonexistence
of continuous solutions for other initial data. Nonuniqueness can be resolved by
imposing an entropy condition analogous to the Lax entropy condition for shock
waves. We conjecture that nonexistence may be overcome by introducing a class of
discontinuous solutions.

2. Solution of the scale invariant problem for k > 0. For a given solution
of (1.3), the (x, t)-plane is divided into regions in which either (1.4) is satisfied or (1.5)
is satisfied. We refer to these regions as elastic regions or plastic regions, respectively.
Within an elastic region there are characteristics with speed Cs 1, which we call
elastic characteristics, and characteristics with speed Co 0, which we call contact
characteristics. Within a plastic region, there is just one family of characteristics, the
plastic characteristics, which have speed cp (1 / k) -1.

We seek a continuous piecewise differentiable solution of the SI problem (1.3),
(1.6) when k > 0. If the solution is unique, then it must be invariant under the
scaling (1.8). Therefore, we suppose that

x x
(2.1) (u,v)(x,t) t (f (-) ,g (-))
for some functions f and g. For such a solution, the conditions for plastic or elastic
deformation are invariant under the scalings x ax, t --, at for any a > 0. Therefore
the elastic and plastic regions for a solution of the SI problem form wedges in the
(x, t)-plane with vertices at the origin. The following lemma establishes the property
that solutions of the SI problem are piecewise linear.
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LEMMA 2.1. Within a plastic region not containing the plastic characteristic
x -cpt, or within an elastic region not containing the elastic characteristic x cEt
or the contact characteristic x O, a solution o] (1.3) of the ]orm (2.1) is linear.

Proof. In a plastic region, u v, so that f g in (2.1). Substituting into (1.5)
we obtain

f f’ + (1 + k)-lf O,

where x/t. By hypothesis, # cp (1 + k) -1. Therefore, (2.2) has the general
solution f() a(- (1 + k)-l), where a is an arbitrary constant. In this case,

(2.3) u(x, t) v(x, t) ax a(1 + k)-lt.

In an elastic region, substituting (2.1) into (1.4) gives the pair of equations

(2.4) f f’ + f’=O,
g g’ =0.

Since 1 and 0 by hypothesis, we obtain

f(,) a( 1), g() b,,

for which

t) t), t)

This completes the proof.
Note that solution (2.3) in a plastic region has one free parameter a, whereas

solution (2.5) in an elastic region has two free parameters, a and b. The structure of
solutions of the SI problem is a fan of adjacent wedges in the (x, t)-plane. In each
wedge the solution is linear and specified by a point (a, b) in the plane, with a b if
the wedge lies in a plastic region. The boundaries x/t constant between adjacent
wedges are rays across which the solution is continuous but its derivative has a jump
corresponding to a jump in the pair (a, b). We call such a ray a single wave. Therefore,
we may represent the solution of the SI problem as a sequence of points in the (a, b)
plane. To start with, we classify all the different types of single waves.

2.1. Single waves. Consider a single wave x/t s with speed s across which
(u, v) is continuous but the first derivative of (u, v) may jump. We use the notation
(UE, vs) for (u, v) if the material is deforming elastically, and the notation (up, Vp)
at points of plastic deformation. For a function w(x, t), the notation [w] means the
jump in w across the wave:

t) t).

From Lemma 2.1, we know that within an elastic region or a plastic region, the
only possible single waves are characteristics. We classify these in the usual Way
for hyperbolic equations, giving the corresponding changes across the waves in the
parameters a and b, which are the spatial derivatives of the variables u, v. The time
derivatives are determined from the differential equations by the spatial derivatives.

Elastic waves. Elastic on both sides.

[a] O, [b] O, s 1.
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Contact waves. Elastic on both sides.

[a] o, [,] # o, o.

Plastic waves. Plastic on both sides.

[a] [b] # 0, s (1 + k) -1.

Elastic-plastic boundaries. These axe single waves x st. On one side the mate-
rial deforms elastically, and on the other side the material deforms plastically. Com-
patibility conditions for these waves axe derived [4] using continuity of the functions
u, v across the wave, and the appropriate differential equation from (1.3) on each side
of the boundary.

Continuity at x st yields the conditions

,(t, t) ,(t, t),
,,(t, t) ,,,(t, t) =,,(t, t).

We use one equation to discard Vp as an unknown, and differentiate the remaining
equations, recalling OtVE 0, to obtain

(0 + so)=, (0 + sO)=e,
solve, (or + sO)ue,

From (1.3),

OratE --OxUE,
OtUp -(1 + k)-lOxup.

Eliminating Ozup and OzuE from (2.6), (2.7), we get

OtUE 1 S(1 + k)
OtUP 1 s

For future use, we record the result of solving (2.6), (2.7) for s and for ap --OzUp in
terms of a OUE and b OVE"

(2.9) s

(2.10) 0 > OxUp ap
ab(1 + k)
b+ka

From (2.10) we see that the elastic state (a, b) lies on a hyperbola determined by ap:

(2.11) (a cl)(b c2) c3,

where

ap apk
c2 kcl,cl 1 +k’ 1 +k c3 (1 :)2 0c2.

To classify and understand the elastic-plastic boundaries, we use the following ob-
servations repeatedly, relying on (2.7) to express time derivatives in terms of spatial
derivatives.
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(i) For plastic deformations, 0Up > 0, which implies

(2.12) ap < 0,

as in (2.10).
(ii) In an elastic-to-plastic boundary x st, the deformation is elastic before the

boundary has passed (i.e., for smaller t), and plastic after the boundary has passed
(i.e., for larger t). Consequently, in order that the material achieve plastic yield u v
at the boundary, it must be loading elastically: OtUE > 0, which implies a < 0.

(iii) In a plastic-to-elastic boundary x st, the deformation is plastic before the
boundary has passed (i.e., for smaller t), and elastic after the boundary has passed
(i.e., for larger t). Consequently, the material must be unloading elastically: OtuE < O,
which implies a > 0.

There are significant differences in the description of elastic-plastic boundaries,
and in the solution of the SI problem, between the cases k > 0 and k < 0. For the
remainder of this section, we restrict our attention to the case k > 0. In Appendix A,
we return to the case k < 0.

From (2.8), (2.12) we draw the following conclusions:
1. OtUE a > 0 implies s < (1 q- k) -1 or s > 1;
2. OtUE a < 0 implies (1 q- k) -1 < s < 1.
We use Fig. 2.1 to distinguish four types of elastic-plastic boundaries, shown

in Fig. 2.2. Figure 2.1 shows the (a, b) plane when k > 0, with the shaded areas
corresponding to constraints on elastic states in each type of elastic-plastic boundary,
as explained below. The hyperbola of (2.11) for a fixed value of ap intersects each of
the four shaded regions of Fig. 2.1, as shown.

Type 1. s > 1. Fast elastic-to-plastic boundary. The speed and the plastic state
are determined by the elastic state (a, b) through relations (2.9), (2.10). From (i),
(ii), and s > 1 we deduce that a < b < 0, shown as region 1 in Fig. 2.2. There is
exactly one hyperbola (2.11) through (a, b), and the plastic state (ap, ap), ap < 0 is
determined by the intersection of the hyperbola with the line a b, a < 0.

Type 2. (1 q- k)- < s < 1. Plastic-to-elastic boundary. Here, the plastic state
determines a curve of elastic states (a, b). But now the material unloads elastically, so
a > 0, from (iii) above. The inequalities on s and ap further imply that -ka < b < O.
The corresponding region is labelled 2 in Fig. 2.2. Note that the possible elastic states
(a, b) and the corresponding plastic state lie on different arms of the same hyperbola

Type 3. 0 < s < (1 + k) -1. Slow elastic-to-plastic boundarY. Elastic loading and
inequalities on s lead to 0 < -ka < b and a < 0, shown as region 3 in Fig. 2.2.

Type 4. s < 0. Backwards elastic-to-plastic boundary. Elastic loading and in-
equalities on s lead to b < a < 0, shown as region 4 in Fig. 2.2.

In each of the pictures of Fig. 2.1 we have shown the characteristics when k >
0. Note that for each boundary exactly two characteristics enter the boundary and
one characteristic leaves the boundary. In Fig. 2.3, we show graphs of u, v adjacent
to an elastic-plastic boundaries of each of the four types. Note that elastic-plastic
boundaries of types 2 and 3 carry a maximum of u and a minimum of v, respectively,
whereas u and v are monotonically decreasing across elastic-plastic boundaries of
types 1 and 4.

2.2. Solution of the SI problem for k > 0. The solution of the SI problem
is represented in three ways in Figs. 2.5-2.8.
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T

1. Fast elastic-plastic
s>l.

2. Plastic-elastic

(l+k) < s < 1.

’r 1’t

3. Slow elastic-plastic 4. Backwards elastic-plastic

O<s<(l+k). s<O.
FIG. 2.1. Elastic-plastic boundaries x st.

b

ap a

b=-ka

FIG. 2.2. Location of elastic state (a, b) in elastic-plastic boundaries.
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V

U

v u

u

FI(. 2.3. Graphs of u, v across elastic-plastic boundaries.

R

L

a

a=b

FIG. 2.4. Location of left and right states.

(i) Graphs of u and v as functions of x for fixed t > 0. Corners in these
graphs represent single waves, labelled according to the conventions established above,
namely, e for elastic waves, p for plastic waves, and c for contact waves, and a number
1 to 4 to label the type of elastic-plastic boundaries.

(ii) A picture of the (x, t)-plane to show the location of waves and plastic and
elastic regions.

(iii) A picture of the (a, b)-plane representing the sequence of values of Oxu and
Ov between waves. This picture is augmented in the discussion below by formulae
for the sequence of points (a, b) between waves.

Since the solution of the SI problem is piecewise linear and scale invariant, it
consists of a sequence of single waves joining wedges ((x, t): c < x/t < f, t > O} in
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v

(i) Graphs of u, v. O. > O.

, T
E

UR

(ii) Waves in the (x,t)- plane, x

U R "-.
".Up

R1 "’-. ".

L

(iii) States in the (a,b)- plane.

FIG. 2.5. Solution o] the SI problem. Case L1Rz.

the (x, t)-plane. In each wedge the derivatives O=u, O=v, Ou, Ov are all constant. In
each wedge we can use the differential equation (1.3) to find the time derivatives in
terms of the spatial derivatives, and across each wave, jumps in the time derivatives
are determined by jumps in the spatial derivatives, as we have seen. Therefore, the
solution may be expressed as a sequence of points in the (a, b)-plane (representing
spatial derivatives (Ou,Ov)), together with an explanation of the type of single
wave separating adjacent wedges in the (x, t)-plane. We refer to each point (a, b) in
the sequence as a state, since it corresponds to a uniform state (2.3) or .(2.5), and we
use the notation U (a, b).

The initial data (1.6) correspond to two points (aL, bL), (aR, bR) that are the first
and last points in the sequence. The types of waves in the sequence vary with the
initial data. Because of the restrictions (1.7) on the initial data, UL (aL, bL), U
(a, b) lie in nonoverlapping regions in the (a, b)-plane, specifically,

a _> b for left states UL (aL, bL),
a _< b for right states UR (aR, bR).
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V

(i) Graphs of u, v. 0 > 0. \ u

3

(ii) Waves in the (x,t)- plane.

3..
b

R L

a=b b=-ka

(iii) States in the (a,b)- plane.

FIG. 2.6. Solution of the SI problem. Case LIR2.

Each of these regions is further divided into two sectors (see Fig. 2.4).

L b _< a _< 0,
L2 b<_a and a_>0,
R1 a _< b _< 0,
R2 a<_b and a_<0.

Given the partition of left and right regions into two sectors, there are four possible
combinations of left and right states in different sectors. For each 1 or 2, j 1 or
2, the solution of the SI problem involves the same sequence of single waves for every
UL Li, Un Rj.

Case LR: UL (aL, bL) L, UR- (a.,b) R.
Since (an, bn) R, the right state is loading elastically, and reaches plastic yield

u---v at a type 1 elastic-plastic boundary

aR(2.13) x 81t, 81 > 1.
an bR
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(i) Graphs of u, v. 0. > 0.

U

T 2

(ii) Waves in the (x,t)- plane.

R

U

(iii) States in the (a,b)- plane.

X

FIG. 2.7. Solution of the SI problem. Case L2Rz.

The plastic state Up (ap, bp) to the left of this boundary in the (x, t)-plane is also
determined by the right state, through (2.10)"

(2.14) ap bp
aRbR(1 / k)
bR + kan

Similarly, since (aL, bL) E Lz, the left state loads elastically until it reaches plastic
yield at a type 4 elastic-plastic boundary

aL(2.15) X s4t, s4 < O.
aL bL

The plastic state Ux (ai, bi) to the right of this boundary in the (x, t)-plane is also
determined by the left state, through (2.10)"

(2.16) ai bi
aLbL (1 + k)
bL + kaL
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(i) Graphs of u, v. O. > O.

U

C

UE

(ii) Waves in the (x,t)- plane.

b

U R UE

R

L
U

(iii) States in the (a,b)- plane.

FIe:. 2.8. Solution of the SI problem. Case L2R2.

Finally, there is a plastic wave x (1 + k)-Zt across which a b jumps from ax
to ap.

The solution for t > 0 and the corresponding pictures of the (x, t)-plane and (a, b)-
plane are shown in Fig. 2.5 for representative choices of UL (aL, bL) E L1, UR -=
(aR, bR) E Rz. In Fig. 2.5(i) we show the solution itself with corners (i.e., waves)
marked by dots, labelled according to the classification of single waves. The material
is deforming plastically where the two graphs coincide, indicated by double lines. Note
that the slopes of the different line segments, while all negative, need not be in the
relations suggested by the figure. For example, the slope at P may jump down or
up, depending on the location of UL and U. This is most easily seen in Fig. 2.5(iii):
clearly in this figure, UL and U may be chosen in L1 and R, respectively, so that
UI lies closer to the origin than Up, in which case the slope at P would jump down.
Letting x/t --. cp (1 + k)- in (2.2), we see that the plastic corner labelled p
necessarily lies on the x axis.

Case LzR2: UL (aL, bL) E Lz, UR (aR, bR) E R2.
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Since (aL, bL) . L1, the left state loads elastically until it reaches plastic yield at
a type 4 elastic-plastic boundary given by (2.15), with the plastic state UI (ai, bi)
on the right given by (2.16).

The right state UR (aR, bn) may or may not be loading elastically (depending
on the sign of aR), but in any case, it remains elastic and uniform up until x t, i.e.,
in the wedge 0 < t < x. The ray x t is then an elastic wave, and UR can jump to a
new state UE (aE, bR). (Recall that b does not change across an elastic wave.)

We now have to reconcile a determined plastic state Up to the left in the (x, t)-
plane of an elastic state UE depending on a free parameter aE. The only available
wave is a plastic-to-elastic boundary of type 2. Indeed, UE must lie in the region
labelled 3 in Fig. 2.4, and be such that UE lies on the hyperbola of (2.11), with
ap aI"

(2.17) ab(1 + k)
b+ ka =aI.

Setting b bR, and solving (2.17) for a a, with ai given by (2.16), we get

( (1 1)(2.18) aE= k
bL b. +

Case L2R" UL (aL, bL) L2, U (a, bR) R.
As in case LR, the right .state is loading elastically, and reaches plastic yield

u v at a type 1 elastic-plastic boundary given by (2.13), with the corresponding
plastic state Up (ap, ap) given by (2.14).

The left state has aL > O. Therefore, the left state is unloading elastically and
remains uniform for all t > 0. The line t 0 is a contact wave across which b Oxv
jumps. The elastic state immediately to the right of this wave in the (x, t)-plane is
UE (aL, bE). The parameter bE is determined by compatibility with the plastic
state Up. The only available elastic-plastic boundary is of type 2. From equation
(2.10), with (a, b) UE (aL, bE), and equation (2.14), we obtain

(k 1 1)
-1

(2.19) bE k - - a. aL

Case L2R2" UL (aL, bL) e L2, U (aR, b) e R2.
Here, the solution is purely elastic. There is a contact wave on the t-axis and an

elastic wave x t. The intermediate elastic state is Us (an, bR).
Finally, it is easy to check that the solution is continuous with respect to the

data. In particular, if UL or U lies on the boundary of one of the regions, then
the solution can be obtained as a limit of solutions with initial data from any of the
adjacent regions.

3. Solution of the Cauchy problem. In this section we prove existence and
uniqueness results for the pure initial value problem (Cauchy problem)"

Ou+kOv+Ou=O, -oo<x<oo, t>0,
(3.1) Ov= Ou if u=v and Ou>_O,

0 otherwise,

with continuous initial data (Uo, Co)"

(3.2) (u, v)(x, O) (Uo, Vo)(X), -cx) < x < cx.
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A continuous function (u, v)(x, t) is a solution (more precisely, a weak solution) of
the Cauchy problem (3.1), (3.2) if

(3.3) ]JR2 {(u(x, t) + kv(x, t))(x, t) + u(x, t)x} dx dt 0

for each Cz function (x, t) with compact support in the upper half plane t > 0, if

(3.4) v(x, t) max Vo(X), max u(x, s) -o < x < o, t > 0,
O<s<t JL

and if

(u, 0) < <

We remark that if a piecewise C continuous function (u, v) satisfies (3.1) almost
everywhere, and satisfies (3.2), then it is a solution.

The proofs of existence and uniqueness depend upon a careful analysis of so-
lutions of initial value problems in which the initial data are piecewise linear and
continuous. In particular, we study the propagation and interaction of discontinuities
in the derivatives 0xu, 0xv of the solution. Much of this section is devoted to studying
piecewise linear continuous solutions of (3.1).

3.1. Piecewise linear solutions. For our purposes a function f R"> -- Rwill be called piecewise linear on a subset fl of R’> if it is continuous on f, and there
are a finite number of disjoint open sets flj c f, j 1,..., k, with f U_lfj such
that f is affine on each fj. (Note that each fj has polygonal boundary.) )ur main
goal in this subsection (3.1) is to prove the following existence result for piecewise
linear initial data. This is the main step in proving the general existence theorem for
general continuous bounded initial data (see Theorem 3.11).

THEOREM 3.1. /f Uo(X) <_ Vo(X) are piecewise linear and continuous, and are
constant outside a bounded interval, then there is a global solution of the initial value
problem (3.1), (3.2) that is piecewise linear and continuous in the upper half plane.

The proof of this result depends on an analysis of functionals that describe the
propagation of discontinuities in derivatives of the solution. We begin by introducing
some terminology in 3.1.1. In 3.1.2, we define and analyze the functionals, in a pro-
cess we call corner counting. In 3.1.3, we describe the detailed structure of piecewise
linear solutions of system (3.1), and in 3.1.4, we complete the proof of Theorem 3.1.
Section 3.1.5 is concerned with properties of the solution operator, which takes given
piecewise linear initial data to the solution given in Theorem 3.1. These properties
are used in 3.2, in which it is shown that the piecewise linear solutions converge to
a continuous solution of (3.1), (3.2).

3.1.1. Terminology. Let V (u(x, t), v(x, t)) be a solution of (3.1) for (x, t) e
R x [0, To] for some To > 0. Assume that U is piecewise linear and continuous on
ll x [0, To]. Consider a fixed value to of t in [0, To]. An open interval J (x,x2)
(which may be unbounded) is called an elastic interval if (u, v)(x, to) represents an
elastic deformation for all x E J. That is, J is an elastic interval if u(x, to) < v(x, to)
or Ou(X, to) < 0 for all x in J. Similarly, J (x,x2) is called a plastic interval if
(u, v)(x, to) represents a plastic deformation for all x e J: i.e., u(x, to) v(x, to) and
Otu(x, to) >_ 0 for all x in J. (Equality is allowed in the latter inequality to include the
degenerate case of neutral loading, in which u and v are equal to the same constant
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elastic plastic elastic plastic elastic

FIG. 3.1(a). Graphs of piecewise linear u, v illustrating regular points, elastic intervals and
plastic intervals. F(t) 9.

in the interval J.) We shall always assume that elastic intervals and plastic intervals
are maximal in the sense that they are not contained in larger intervals of the same
type.

The solution (u, v) has a corner at x Xo (we also say Xo is a corner) if either
Oxu(x, to) or Oxv(x, to) is discontinuous at x Xo. A corner xo is called an elastic-
plastic boundary if xo is an endpoint of an elastic interval. As in 2, we shall often
refer to a curve in the (x, t)-plane as an elastic-plastic boundary if it is the union of
points (Xo, to), where Xo is an elastic-plastic boundary at time to. A characteristic
curve x -),(t) is called a corner characteristic if there is a corner at x (t) for each
t. We shall often speak of corner characteristics at a fixed time, meaning the corner
at that time, which lies on a corner characteristic. A corner characteristic is called
monotone if both u(x, t) and v(x, t) are monotone in x across the corner for each t.
If the corner is a local extremum for u or v, then the corner characteristic is called
nonmonotone.

In Fig. 3.1(a), we show examples of graphs of u(x, to), v(x, to) at fixed to, with
regular corners of various types defined in 2. We also show the elastic intervals
and plastic intervals. The only nonmonotone corner characteristics in these examples
involve a minimum of u at one of the corner characteristics labelled e.

Since (u(x, t), v(x, t)) is assumed to be piecewise linear, there are a finite number
of corners at each time t [0, To], and each corner lies on a corner characteristic, or
is an elastic-plastic boundary or is the origin of a local SI problem. (Here we use
the term local to indicate that the solution is scale invariant only locally in space and
time.) A point (xo, to), with to < To, is called a regular corner point if there is exactly
one corner characteristic or elastic-plastic boundary containing (Xo, to). If there is a
corner at x xo, t to that is not a.regular corner point, then it is .the origin of
a nontrivial local SI problem; such a point will be called an intersection point. We
shall occasionally refer to intersection points as collision points (because they involve
the collision of two or more corners or of the graph of u with the graph of v) or
as interaction points (because, thinking of corners as acceleration waves, intersection
points give rise to wave interactions).

3.1.2. Corner counting. We proceed to construct a global solution of the initial
value problem for piecewise linear continuous and bounded initial data (no(X), Vo(X))
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satisfying Uo(X) <_ Vo(X) for all x.
Initially, there may be some finite number of SI problems to solve. Then over some

time interval, there are no interactions. That is, the solution has corner characteristics
and elastic-plastic boundaries, but these curves do not intersect, and moreover, u < v
in each elastic interval. Let T > 0 be the maximum time for which there are no
interactions for 0 < t < T.

At time T, there are interactions, which form centers for SI problems. The solution
proceeds by solving these SI problems.

The proof of Theorem 3.1 depends upon an analysis of functionals that at each
time measure the number of corners, corner characteristics, and extrema in the so-
lution. We define these functionals as follows. Our definitions are guided by the
functionals used by Glimm in the context of the Cauchy problem for hyperbolic sys-
tems of conservation laws [2].

Let n(t) be the number of corners at time t, and let L(t) denote the number of
corner characteristics. If both 0xu and 0xv jump at a corner characteristic in an elastic
interval, then count each separately (i.e., such a corner characteristic contributes 2 to
L(t)).

Finally, we count the number of approaching pairs. First define an approaching
pair at time t to be a pair of corners xo, xl such that xo < xl and u have a local
maximum at xo while v has a local minimum at x. Let Q(t) be the number of
approaching pairs at time t. Define

F(t) L(t) + 2Q(t).

We illustrate these quantities and their relationship to each other and the struc-
ture of solutions by appealing to Fig. 3.1. In Fig. 3.1(a), we have n(t) 9, L(t)
5, Q(t) 2, F(t) 9. (The points labelled c, e, p each contribute 1 to L(t); each
point labelled 3 contributes 1 to Q(t); each of the nine corners contributes 1 to n(t).)
In Fig. 3.1(b), we have taken the same sequence of elastic and plastic intervals, but
have perturbed the graphs of u and v to show a solution with fewer corners. Specif-
ically, in Fig. 3.1(a), one of the corners in the left-hand semi-infinite elastic interval
labelled c or e may be removed (in Fig. 3.1(b), we retained only e), and the plas-
tic corner p may be removed. Then n(t) 7, L(t) 3, Q(t) 2,F(t) 7. In an
extreme case, we could have neutral loading (i.e., u v) in both semi-infinite elas-
tic intervals. This would reduce the number of corner characteristics by two, giving
n(t) 5, L(t) 1, Q(t) 2, F(t) 5. We illustrate the extreme case in Fig. 3.1(c).

This discussion suggests that we can estimate the number of corners n(t) in the
solution by 3L(t) + 2, which involves only the number of corner characteristics. But
this latter number generally increases with time. However, we may obtain a nonin-
creasing upper bound for this estimate by including the term Q(t) that counts the
number of approaching pairs. This term is analogous to the term measuring the po-
tential for future interaction in Glimm’s analysis of conservation laws [2]. In fact,
we show in Theorem 3.2 that n(t) is bounded by 3F(t) + 2, and then go on to show
in Lemma 3.5 that F(t) is nonincreasing in time t. We then have a global upper
bound ((3.8) below) for the number of corners in the solution. This is a major. Step
in showing that the solution may be continued, and remains piecewise linear, for all
time.

The estimate 3L(t) -t- 2 for n(t) is justified loosely as follows. As suggested by
our discussion of Fig. 3.1, each elastic interval contains a corner characteristic, pro-
viding we adopt the convention that neutral loading is plastic. (This result is proved
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3

elastic plastic elastic plastic elastic

FIG. 3.1(b). Graphs of piecewise linear u,v illustrating regular points, elastic intervals and
plastic intervals. F(t) 7.

3

neutral plastic elastic plasticl neutral

FIG. 3.1(c). Graphs of piecewise linear u,v illustrating regular points, elastic intervals and
plastic intervals. F(t) 5.

as Lemma 3.3 below.) Moreover, any corner that is not a corner characteristic is an
elastic-plastic boundary. Therefore, we get an upper bound for the number of corners,
in terms of the number of corner characteristics, by assuming that all corner char-
acteristics (whether elastic or plastic or contact) are embedded in a bounded elastic
interval containing no other corner characteristics. The endpoints of this interval,
which are elastic-plastic boundaries, contribute another two corners. In this way,
each corner characteristic counts as three in our estimate of the number of corners
in the solution. Now, if there are corner characteristics in the semi-infinite intervals
(as in Fig. 3.1(b)), then we overestimate the number of elastic-plastic boundaries in
this counting, and hence n(t) < 3L(t), but if both semi-infinite intervals have neu-
tral loading, i.e., with no corners, and are adjacent to plastic intervals, then we have
missed two elastic-plastic boundaries. Therefore, we must add two to our estimate of
the number of corners in the solution. In particular, the configuration in Fig. 3.1(c)
is minimal in the sense that this estimate is achieved: n(t) 3L(t) + 2. We formalize
the estimate in Theorem 3.2 below.

THEOIEM 3.2. Let (u(x,t), v(x,t)) be a piecewise linear continuous solution of
(1.3) for-c < x < cx, t in an open interval I. Then

(3.7) n(t) < 3L(t) + 2
_< 3F(t) + 2.
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The proof depends upon the following observation, which we state as a lemma.
LEMMA 3.3. Let (u(x, t), v(x, t)) be a piecewise linear continuous solution of (1.3)

]or-oo < x < oo, t in an open interval I. At a fixed t E I, every bounded elastic
interval contains a corner characteristic. Moreover, if Oxu and Oxv have bounded
support, then any semi-infinite elastic interval also contains a corner characteristic.

Proo]. We argue by contradiction. Let J (xl,x2) be a bounded elastic interval
at time to that does not contain a corner characteristic. Then u(x, to) and v(x, to)
are affine for x E J. But the endpoints of J are elastic-plastic boundaries, so that
u(xl, t) v(x, t) and u(x2, t) v(x2, t). Consequently, u(x, t) v(x, t) for all x e g.
Since J is an elastic interval, we have Ou -Otu > 0, and Ou is constant. Moreover,
Ov 0 in J. It follows that there is a subinterval K of J, and T < t in I such that

u(x, T) > U(X, t) V(X, t) v(x, T) for all x e K.

But this is impossible, since u(x, t) <_ v(x, t) for all (x, t).
A similar argument applies to semi-infinite elastic intervals when Ou and Ov

have bounded support. Specifically, if J is such an interval, then the finite endpoint
is an elastic-plastic boundary, so u v there. Since u and v cannot be equal and
constant throughout an elastic interval, and they have to be constant outside some
finite interval, there must be a corner characteristic somewhere in J.

Proof of Theorem 3.2. The number of corners in the closure of a bounded elastic
interval is less than or equal to the number of corner characteristics, plus two, as
discussed above with reference to Fig. 3.1. It then follows from Lemma 3.3 that this
number is less than or equal to three times the number of corner characteristics. The
only corners in a plastic interval are the corner characteristics, so that the number
of corners in each such interval is also less than or equal to three times the number
of corner characteristics. Finally, we add 2 to this formula to admit the possibility
that two unbounded elastic intervals have elastic-plastic boundary points that have
not yet been counted as corners. This proves the first inequality in (3.6). The second
inequality is trivial, since Q(t)

_
O. D

The proof of Theorem 3.1 depends upon using solutions of SI problems to analyze
the behavior of the functionals L(t), Q(t), F(t).

LEMMA 3.4. Q(t) is a nonincreasing function of time.

Proof. As a first step in the proof, we note that no critical points in u(x, t) or

v(x, t) (as functions of x for fixed t) are created through collisions. This is because
each intersection point (xo, to) is the center of a local SI problem, for which the
solution for t > to (given in 3) has at most one critical point in u and v. Therefore,
the solution for t < to near (Xo, to) has at least the same number of critical points in
the same variables. (For example, if u(., t) has a maximum for t > to, then Oxu >0
for x to the left of the maximum, and Ou < 0 for x to the right of the maximum for
t > to. But then Oxu > 0 for small x, and Ou < 0 for large x for t < to, so that u(., t)
also has at least one maximum for t < to.)

Now maxima of u are carried by elastic corner characteristics or type 2 elastic-
plastic boundaries; therefore, maxima of u travel with speed at least (1 -{- k) -1, the
plastic wave speed. On the other hand, minima of v are carried by contact corner
characteristics or type 3 elastic-plastic boundaries; therefore, minima of v travel with
speed at most (1 q- k) -1. Consequently, once a maximum of u is to the right of a
minimum of v, it remains so for all future time. Since no critical points are created,
Q(t) cannot increase.
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The functionals L(t), Q(t), F(t) change only due to intersections. Therefore, we
can understand the global behavior of F(t) by analyzing how L(t), Q(t) change locally
near an intersection point. We shall speak of changes of the functionals across an
intersection point (Xo, to), meaning the effect of that intersection point on changes in
the functionals as t crosses to.

More precisely, this local analysis can be performed by assuming that the only cor-
ners in the solution are carried by curves entering or emanating from the intersection
point. That is, when discussing an intersection point in isolation, we shall consider
L(t), Q(t) to be defined by considering the solution only in a small neighborhood of
that point, i.e., L(t) is the number of corner characteristics in the neighborhood at
time t, and Q(t) is the number of approaching pairs in the neighborhood at time t.
The neighborhood of an intersection point (Xo, to) can clearly be defined so that L(t)
and Q(t) are constant for t < to, and for t > to.

LEMMA 3.5. F(t) is nonincreasing.
Proof. We need only show that F(t) is nonincreasing across intersection points.

Let (Xo, to) be an intersection point. Then it is the center of an SI problem. Therefore,
the data and solution fall into one of the four cases LiRj, i,j 1, 2 of 2. In all
cases we have Q(t) 0 after the intersection. Except for the case L2R2, we have
L(t) <_ 1, and hence F(t) _< 1, after the intersection. Apart from this case, we have
L(t) >_ 1 before intersection, since if L(t) 0, then either there is no intersection,
or two elastic-plastic boundaries pinch off a plastic region, which is necessarily case
L2R2. (Specifically, an elastic-plastic boundary of type 2, carrying a maximum of u
converges from the left on an elastic-plastic boundary of type 3, carrying a minimum of
v. All other intersections of elastic-plastic boundaries pinch off elastic intervals, which
necessarily contain a corner characteristic.) Since Q(t) >_ O, we see that F(t) >_ 1
before intersection and since F(t) _< 1 after the intersection, we have completed the
proof except in the case L2R2.

in case L2R2, we have L(t) <_ 2, Q(t) 0 after the intersection, so that F(t) <_ 2.
Therefore, if Q(t) _> 1 before the intersection, we have F >_ 2 before the intersection
and the proof is complete. Therefore, suppose Q(t) 0 before the intersection. But in
case L2R2 we have Oxui > 0 and Oxvn > 0. Thus, before the intersection, either u has
a maximum and v has a minimum, or at least one of u and v is monotonic increasing.
In the former case, since Q(t) 0, the maximum of u must be to the right of the
minimum of v. But then it stays on the right, and there can be no intersection of
these corners. For the other possibility, namely, one of u(x, t), v(x, t) being monotonic
increasing in x, this means that the deformation is elastic. If Ou > 0, then from (1.3),
Otu < 0, so u(x, t) is decreasing in time, and the deformation remains elastic, with no
intersection. If Ov > 0, then since the graph of u(x, t) is to the right of the graph
of v(x, t), it remains to the right, the deformation remains elastic, and again there is
no intersection. We have shown that Q(t) >_ 1 in Case L2R2 before the intersection
point. This completes the proof. [:]

The consequence of Theorem 3.2 and Lemma 3.5 is that the number of corners
n(t) is bounded as long as the solution can be constructed by solving SI problems and
using propagation along characteristics:

(3.8) n(t) <_ 3F(t) + 2 _< 3F(0) + 2.

Another immediate consequence,of Lemma 3.5 is the following property.
LEMMA 3.6. If L(t) increases across an intersection point, then 2Q(t) decreases

across that intersection point by at least the same amount.
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Proof. The proof of Lemma 3.5 demonstrated that F(t) decreases across inter-
section points. The result now follows immediately from the definition of F(t).

The solution of the initial value problem with piecewise linear continuous initial
data continues by solving SI problems at intersection points. This process can continue
as long as there are a finite number of intersection points. Let T* be the maximal time
with the property that the solution is defined, and has a finite number of intersection
points for-oc < x < oc,0 _< t _< T, for eachT,0 < T < T*. We now consider
the solution defined on the region -o < x < oc, 0 _< t < T*. Within this region,
intersection points are still isolated in space-time, but of course they may in principle
accumulate at some point on the boundary, with t T*. (Because u and v are
constant outside an interval, the intersection points cannot approach x -t-oc in
finite time.)

LEMMA 3.7. There are a finite number o.f intersection points across which L
changes. If L and Q are constant across an intersection point, then L(t) 1 and
Q(t) 0 across the intersection point.

Proof. Lemma 3.4 implies that there are a finite number of intersection points at
which Q decreases, since Q(t) is a nonincreasing nonnegative integer valued function.
Therefore, by Lemma 3.6, there are a finite number of points at which L(t) increases.
Since L(t) is a nonnegative integer valued function, there can only be a finite number
of intersection points across which L(t) can decrease. Therefore, there are a finite
number of intersection points across which L changes.

To show the second statement of the lemma, we argue as in the proof of Lemma
3.5. Considering intersection points as centers of SI problems, note that case L2R2
is ruled out because Q(t) necessarily decreases across the intersection point in that
case. Therefore, we have L(t) _< 1 and Q(t) 0 after the intersection. Lemma 3.4
then implies Q(t) 0 across the intersection point. If L(t) 0 is constant across the
intersection point, then either there is no intersection or we are again in case L2R2.
Therefore, L(t) 1 across the intersection point.

We have shown that after a certain time T < T*, every intersection point has
L(t) 1 and Q(t) 0 across the intersection point. We refer to such intersection
points as generic. There is a finite list of possible generic intersection points for
T < t < T*, as we now discuss.

3.1.3. Generic collisions. Consider intersection points having the property
that L(t) 1, Q(t) 0 are constant across the intersection point. Because L(t) 1,
there is exactly one corner characteristic entering the intersection point, and exactly
one corner characteristic leaving the intersection point.

Suppose the entering corner characteristic is plastic. Then at each time it lies in a
plastic interval. If this plastic interval is bounded, then the endpoints both approach
the intersection point, and form elastic-plastic boundaries that pinch off the plastic
region containing the corner characteristic. But the only pair of approaching elastic-
plastic boundaries pinching off a plastic region involves a type 2 front to the left of
a type 3 front. In this case, we have seen that Q(t) 1 and is, therefore, ruled out
by the requirement Q(t) O. On the other hand, if there were any bounded elastic
intervals, whose endpoints approach the intersection point, then by Theorem 3.2 there
would be additional elastic corner characteristics, giving L(t) >_ 2. We conclude .lihat
if a plastic corner characteristic enters the intersection point, then there is at most
one elastic-plastic boundary entering the intersection point. Since the plastic corner
characteristic and the elastic-plastic boundary approach, we must have a type 2 front
to the left of the corner characteristic, or a type 3 front to the right of the corner
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FIG. 3.2 (1). First touch.
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characteristic. These are the only possible intersections involving a plastic corner
characteristic for which i(t) 1 and Q(t)= O.

If the entering corner characteristic is elastic or a contact, then a similar argu-
ment leads to the conclusion that there can be at most two elastic-plastic boundaries
entering the intersection point. For otherwise, a pair of fronts would pinch off a plastic
region, which was just ruled out because this implies Q(t) >_ 1.

Using these observations, we compile an exhaustive list of intersection points
having the property that L(t) 1 and Q(t) 0 across the intersection point. This
list is represented in Fig. 3.2. In this figure, we also include the additional case in
which Q(t) decreases and L(t) increases keeping F(t) constant.

Remarks. We conjecture that Fig. 3.2 includes all the possible collisions of corners
in piecewise linear continuous solutions that cannot be altered qualitatively by small
perturbations of the solution, that is, that generic intersection points are generic in
the usual sense. We also conjecture that Fig. 3.2 includes all the possible intersection
points in piecewise linear continuous solutions across which F(t) is constant.

We divide the collisions into four categories as follows..
1. First touch. An elastic corner characteristic reaches a point of plastic yield (u
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FIG. 3.2 (2). Collisions of elastic-plastic boundaries.

v) at the corner, and one of the variables is smooth (i.e., linear) at the intersection.
2. Collision of two elastic-plastic boundaries. Some such collisions involve corner

characteristics.
3. Collision of an elastic-plastic boundary and a monotone corner characteristic.
4. Collision of an elastic-plastic boundary and a nonmonotone corner character-

istic.
In Fig. 3.2 we show graphs of u, v before, at, and after collision, and the lines

in the (x, t)-plane representing elastic-plastic boundaries and corner characteristics.
This list of "generic" collisions is the basis for much of the analysis of this section, so
we spend some time interpreting the information of Fig. 3.2.

Here are some properties that we read from Fig. 3.2, referring only to the inter-
section points shown there.

1. L(t) and Q(t) are unchanged across every collision except one (Fig. 3.2.2b), in
which L(t) increases by 2 while Q(t) decreases by 1. F(t) is unchanged in each case.

2. In case 2, the collision of elastic-plastic boundaries, an elastic region is pinched
off except in case 2(b), where a plastic region is pinched off.

3. In case 3, in which an elastic-plastic boundary collides with a monotone corner
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FIG. 3.2 (3). (Types 1, 2.) Elastic-plastic boundary, monotone corner characteristic.

characteristic, the type of the boundary is unchanged, and the corner characteristic
remains monotone.

4. In case 4, in which an elastic-plastic boundary collides with a nonmonotone cor-
ner characteristic, the type of the boundary is changed, and the corner characteristic
becomes monotone.

5. Only monotonic corner characteristics leave intersection points. In particular,
if a nonmonotone corner characteristic enters an intersection point, then a monotone
corner characteristic leaves.

6. All intersection points involving monotone corner characteristics and monotone
elastic-plastic boundaries (of type 1 or 4) have O=u < 0 and O=v < 0 in a neighborhood
of the intersection point.

3.1.4. Proof of Theorem 3.1. Consider the structure of a solution that is
piecewise linear up to some maximal time T*. By (3.8), the number of corners,
and hence the number of corner characteristics, is bounded above at each time t
in the interval [0, T*). Since T* is maximal, there must be an infinite number of
intersection points in (-x, x) x [0, T*); for otherwise the solution could be continued,
and remain piecewise linear, past T*. But Lemma 3.7 states that after a finite number
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FIG. 3.2 (3). (cont.).(Types 3, 4.) Elastic-plastic boundary, monotone corner characteristic.

of intersections, i.e., after some time T < T*, all intersection points have L(t)
1, Q(t) O. Thereafter, corner characteristics are neither created nor destroyed, and
their interactions occur only according to the list in Fig. 3.2.

Let us trace a single corner characteristic C as it propagates forward in time t > T
through intersection points listed in Fig. 3.2. By property 5, if C is nonmonotonic,
either there are no intersection points on C, or it becomes monotonic after the first
intersection point. In discussing further intersection points on C, we are, therefore,
restricted to those in Fig. 3.2 involving only monotone corner characteristics. Regard-
ing these, there are only two cases in which a plastic corner characteristic enters an
intersection point.

(a) An elastic-plastic boundary of type 2 also enters the intersection point, in
which case the corner characteristic emerges as a contact corner characteristic with

O=u > O and O=v < O.

(b) An elastic-plastic boundary of type 3 also enters the intersection point, in
which case the corner characteristic emerges as an elastic corner characteristic with

O=u < O and O=v > O.
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FIG. 3.2 (4). Elastic-plastic boundary, nonmonotone corner characteristic.

Moreover, the remaining intersections involving type 2 or type 3 elastic-plastic
boundaries may be summarized as follows.

(c) An elastic corner characteristic enters a type 2 elastic-plastic boundary from
the left, and emerges as a contact corner characteristic, also on the left. In the elastic
region, in particular along the corner characteristics, we have

Ou > O and O:v < O.

(d) A contact corner characteristic enters a type 3 elastic-plastic boundary from
the right, and emerges as an elastic corner characteristic, also on the right. In the
elastic region, in particular along the corner characteristics, we have

Oxu < O and Ov > O.

Suppose a portion of C is a plastic corner characteristic. Then the next intersec-
tion point on C must be one of (a) or (b); therefore, C becomes either a contact corner
characteristic with Ou > 0 and Ov < 0, or an elastic corner characteristic
with Ou < 0 and O=v > 0. In either case, there can be no further intersec-
tions along C, because neither of (c) or (d) is consistent with these possibilities, and
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intersection with a monotone elastic-plastic boundary of type 1 or 4 is ruled out by
property 6 above.

Suppose on the other hand that C never becomes a plastic corner characteristic.
The only intersections in which neither the incoming nor the outgoing monotone
corner characteristics are plastic are given by (c) and (d). But then the outgoing
characteristics are inconsistent with the possibility of further intersection points.

We conclude that there are at most two intersection points on C for t > T.
Therefore, there are at most a finite number of intersection points in the solution for
t < T*, so they cannot accumulate. We have shown that T* oo, and the solution
remains piecewise linear in (x, t) for all time. This concludes the proof of Theorem
3.1.

3.1.5. Properties of the solution operator. We first show that piecewise
linear continuous solutions of the Cauchy problem with piecewise linear continuous
initial data depend monotonically on the initial data in the following sense. We put
the obvious partial order on pairs of functions: Uo(x) (no(X), vo(x)) <_ Ul(x)
(Ul(X),Vl(X)) if no(X) <_ u(x) and vo(x)

_
v(x) for all x. Let S(t) denote the

solution operator:

s(t)Vo( )

We say that S(t) is monotonically increasing if Uo
_
U implies S(t)Uo <_ S(t)U1.

THEOREM 3.8. q(t) is monotonically increasing on piecewise linear continuous

functions.
Proof. We begin by showing that solutions of the scale invariant problem de-

pend monotonically on the initial data. For the SI problem, note that increasing
(Uo(X), Vo(X)) is the same as decreasing aL and bL, and/or increasing am and

Case L2R2 is trivial. In the other cases, we note that corner characteristics are
pinned on the x-axis at the appropriate value of x determined by the characteristic
speed. For a plastic corner characteristic, both u and v are zero at this point, while for
an elastic (respectively, contact) corner characteristic, only u (respectively, v) is zero
at this point. This property follows by letting x/t approach the characteristic
speed in (2.3)or (2.5).

The strategy of the proof is to first increase am, bn, and show that the solution
functions u, v both increase, and then to decrease aL, bL, showing again that the
solution functions u, v both increase.

In case LR1 (see Fig. 2.5), the elastic-plastic boundary of type 1 is independent
of the elastic-plastic boundary of type 4, because the plastic corner characteristic in
the solution is fixed. Increasing an, bn clearly increases ap, while decreasing aL, bL
clearly decreases ai. Both of these correspond to an increase in u, v.

Consider cases LR2 (see Fig. 2.6) and L2RI (see Fig. 2.7). First note that aE
is decreased in case L1R2, and bE is increased in case L2R by increasing an, bn, or
decreasing aL, bL. But ap is decreased in case L1R2, and increased in case L2R1.
These observations lead to the conclusion that u and v increase in both cases when
the initial data are increased.

By continuity, the same conclusion holds when the data are degenerate, corre-
sponding to the boundary between two of the LiRj cases. Now consider the action
of S(t) on general piecewise linear continuous functions. Any points of intersection
of graphs of u or of v for different data may be treated as SI problems, for which we
have established monotonicity. It now follows that S(t) is monotonically increasing
on piecewise linear continuous functions. We omit the details of the argument.
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Next we show that S(t) is a contraction with respect to the sup norm on piecewise
linear continuous functions. We define the supremum norm (or Lo norm) on piecewise
linear continuous functions V(x) (u, v)(x) as follows:

[[U[[ sup max{u(x), v(x)}.

THEOREM 3.9. S(t) is an Loo contraction on piecewise linear continuous func-
tions.

Proof. The proof relies on the following lemma, reflecting an obvious property of
solutions.

LEMMA 3.10. Let (Ul, Vl), (u2, v2) be two piecewise linear continuous solutions of
the Cauchy problem. If the solutions differ by a constant a at time t O,

Ul (X, 0) 2(X, 0) Cg, Vl (X, 0) V2(X, O) 0,

then they differ by the same constant for all t >_ 0:

1 (X, ) 2(X, ) 0, Vl (X, ) V2(X, ) 0.

Proof of Theorem 3.9. Consider two sets of initial data Uo/(x), i 1, 2, and let
Ui(x, ) S(t)Uo(x) be the corresponding solutions of the Cauchy problem.

Let a -I[Uo2 Uo[[. Then by monotonicity we have the following inequalities for
t > 0, since they are true for t 0.

Ul --O __< U2 <__ Ul +t2,
Vl --O <__ V2 __< Vl --O,

i.e., IIU(.,t) uu(.,t)ll- IIS(t)Uo S(t)Uol _< IIUo UoXll, as required. D

3.2. Convergence to a continuous solution. We can now prove the following
existence result.

THEOREM 3.11. Let the initial data (Uo(X), Vo(X)) be bounded and continuous,
and satisfy Uo(X) < Vo(X) for each x. Then there is a solution (u, v)(x,t) of the
Cauchy problem (1.3) that is bounded and continuous.

Proof. Let (Uon, Vo) denote the continuous approximation of the initial data
(Uo, Vo), defined as follows:

(uno,v’) () (Uo, Vo) (j-) -n < j < n
n

(uo, von) is linear on each subinterval j/u <_ x < (j + 1)In, and constant outside the
interval (-n2, n2). Then

o()< o (), - < < o

(.) su, Io()1 < u, Io()1,
su, Io()1 < u, I,o()1.

Moreover, it is easy to see that {(uon, VOW)} converges uniformly to (Uo, Vo) on every
interval [-N, N].

Let (un, vn)(x,t) S(t)(u, vno)(x) denote the solution of the Cauchy problem
n nwith initial data (Uo, vo )(x). Since S(t) is a contraction, we have

IS(t)(o ) s(t)(o, ,o) < II(uo o) (uo o) I.
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But {(uon, von)} is uniformly convergent, so (un, vn)(x,t) satisfies the uniform Cauchy
criterion as a function of both x and t, and hence converges uniformly in t as well as
in x to a uniformly continuous function (u, v)(x, t).

To see that (u, v) is a solution of the Cauchy problem, we simply take limits in
the weak formulation. That is, each member of the sequence satisfies (3.2)-(3.4), and
by uniform convergence, we can take the appropriate limits, and conclude that (u, v)
satisfies equations (3.2)-(3.4) also.

3.3. Uniqueness of entropy solutions. Let X BUC(R) be the space of
bounded uniformly continuous functions with norm Ilfllx supx If(x)l, and let Y
X x X with norm II(u, v)l Ilullx + Ilvllx. Define Z BUG([O, oc), Y), with norm

IlVllz sup0 IIV(t)lly. An entropy solution of the Cauchy problem (3.1) is a solution
that can be approximated in Z by piecewise linear continuous solutions over finite
time intervals. Let S(t) denote the unique continuous extension of S(t) to the closed
subset {(u, v) e Y: u(x) <_ v(x),-cx) < x < oc} of Y.

THEOREM 3.12. Let the initial data (no(X), vo(x)) be in the space Y, and satisfy
no(X) <_ Vo(X) for each x. Then there is exactly one entropy solution (u, v)(x,t) of
the Cauchy problem (1.3).

Proof. Let U, V be two entropy solutions with the same initial data Uo, and let
Un, Vn be the corresponding piecewise linear approximations of U, V, respectively.
Then U(x) Un(x,O), Von(x) Vn(x,O) both converge uniformly to Uo(x) and
V(x, t) S(t)Uo(X), yn(x, t) S(t)Von(X). Therefore,

U(., t) lim S(t)U S(t)Uo lim S(t)Von V(., t).

This completes the proof.

A. Appendix. Negative k. In our treatment [5] of the SI problem for the
piecewise linear longitudinal model ((1.1), with k constant), we investigated the im-
plications of negative k in some detail. For the unidirectional model of this pa-
per, we discuss two of the mathematical issues raised in [5]. Specifically, we demon-
strate nonexistence and nonuniqueness of solutions of the SI problem (1.3)-(1.6) if
-1 < k < 0. (Recall that k > -1 ensures that plastic and elastic waves propagate
with positive speed. For the longitudinal model (1.1), k > 1 ensures hyperbolicity.)

A.1. Nonuniqueness for k < 0. First note that -1 < k < 0 implies that
CE 1 < Cp (1 + k) -1. That is, elastic characteristics are slower than plastic
characteristics. This has little effect on elastic-plastic boundaries of types 1,3,4 but
has a profound effect on those of type 2. For elastic-plastic boundaries of types 1,3,4,
the u-characteristics (composed of elastic and plastic characteristics, see 3.1.3) pass
through the front, while the contact characteristics enter. This is true for all k > -1.
For elastic-plastic boundaries of type 2, however, the contact characteristics leave the
front, and the u-characteristics enter from both sides if k ’> 0, but leave the front
from both sides if-1 < k < 0. Thus, for -1 < k < 0, elastic-plastic boundaries of
type 2 are unstable in the sense of Lax [3]. We call these entropy-violating fronts. A
consequence of allowing entropy-violating fronts is that there are multiple solutions
of some SI problems. In fact we shall construct two-parameter families of solutions of
SI problems with the same initial data.

First we show how the construction of elastic-plastic boundaries in 2 must be
modified when -1 < k < 0. The hyperbola of (2.11) still describes possible elastic
states adjacent to an elastic-plastic boundary for a given plastic state. The hyperbola
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b= ]xv

b=-ka

a=oxU

FIG. A.1. k < 0.

is redrawn in Fig. A.1 for -1 < k < 0, together with the various regions corresponding
to elastic-plastic boundaries of. types 1-4. (This figure is the analogue of Fig. 2.2, in
which k > 0.)

Consider a plastic right state UR Up, and let UL lie on the portion of the
hyperbola in region 2, as shown in Fig. A.1. Then one solution of the SI problem is
an elastic-plastic boundary of type 2, shown in Fig. A.2. Since plastic characteristics
move faster than the front, while elastic and contact characteristics move more slowly,
it is not surprising that we can insert additional waves ahead of and behind the front,
and adjust the speed of the front, without changing the initial data. These solutions
are shown in Fig. A.3(a), with the corresponding construction shown in Fig. A.3(b).
Here, UR is joined to an arbitrary plastic state UI. Then UI is joined to an arbitrary
point UE in Region 2 on the hyperbola through UI. The point UE now determines the
elastic and contact characteristic fronts. UE is joined to the point Uc shown in the
figure by an elastic wave, and Uc is joined to UL by a contact corner characteristic.
Each of these solutions involves an entropy-violating front, unless UI and UE are at
the origin. In that case, the construction and solution are shown in Fig. A.4. Here,
there is a neutrally loaded region, in which cOxu Oxv O, and the material is in
both the elastic and the plastic state. This is the preferred solution of the SI problem,
since it does not contain an entropy-violating front.

A.2. Nonexistence for k < 0. Now we turn to the issue of nonexistence of
solutions of SI problems for some choices of initial conditions. In Fig. A.5, we have
divided the (a, b)-plane into regions, somewhat as we did in Fig. 2.4 for k > 0.

We proceed by varying U. If U is in Region R1, then there is an elastic-plastic
boundary of type 1, like there is for k > 0. However, as U approaches the ray labelled
OA, the speed of this front approaches cp (1 + k) -1, and Up goes to infinity. Since
the solution (u, v) remains bounded near the front, this suggests that the solution is
tending towards a jump discontinuity.

For U in Region R2, there can be no continuous solution of the SI problem. The
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FIG. A.2. Entropy-violating front.

e 2

(a) (x,t)- plane

b

(b) (a,b)- plane

FIG. A.3. Two-parameter family o.f entropy-violating solutions.

elastic state reaches yield along a curve x st, where s is given by (2.9), and satisfies

cc 1 < s < (l+k)-z =cp

in the wedge R2:

-kaR < bR < O.
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e _P

(c) Solution graphs for > O.

FIG. A.4. Entropy solution.

However, the plastic state Up (ap,ap) to which UR would be connected is given
by (2.14):

+ k)(A.1) ap bp > O,
bn + kan

which violates the condition (2.12) for plastic deformation; therefore, there can be no
solution if UR is in region R2. However, the behavior of the continuous solution as

Un approaches region R2 from within region R1 suggests that there may be discon-
tinuous solutions of the SI problem when Un is in region R2. We plan to investigate
discontinuous solutions in a future paper.

If Un is in Region R3, then there can be a type 3 elastic-plastic boundary, like
there is for k > 0. However, for UL in Region L1, the plastic state Up is determined;
therefore, the hyperbola in the construction of the type 3 elastic-plastic boundary is
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a
2

b -ka

L

FIG. A.5. The (a, b)-plane for k < O.

fixed by UL. For Ut above the horizontal asymptote of this hyperbola,

aR > Cl
apk

ap -F bp

there is no problem, since a faster elastic characteristic can be used to move O=U onto
the hyperbola. But for aR < cl, there can be no global solution because no matter
which elastic front is used, the elastic state does not lie on a portion of the hyperbola
defined by UL corresponding to elastic-to-plastic fronts.

Finally, for UL in Region L2, we saw in A.1 that an apparent problem with
nonuniqueness of solutions is resolved by imposing the entropy condition. But there
is also an unresolved problem with existence similar to the situation for UL in Region
L1.
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A LEVEL SET FORMULATION FOR THE SOLUTION OF THE
DIRICHLET PROBLEM FOR HAMILTON-JACOBI EQUATIONS*

STANLEY OSHERt

Abstract. A level set formulation for the solution of the Hamilton-Jacobi equation F(x, y, u, ux, uu) O
is presented, where u is prescribed on a set of closed bounded noncharacteristic curves. A time dependent
Hamilton-Jacobi equation is derived such that the zero level set at various time t of this solution is precisely
the set of points (x, ) for which u(z, ) t. This gives a fast and simple numerical method for generating the
viscosity solution to F 0. The level set capturing idea was first introduced by Osher and Sethian [J. Comput.
Phys., 79 (1988), pp. 12-49], and the observation that this is useful for an important computer vision problem
of this type was then made by Kimmel and Bruckstein in [Technion (Israel) Computer Science Report, CIS
#9209, 1992] following Bruckstein [Comput. Vision Graphics Image Process, 44 (1988), pp. 139-154]. Finally,
it is noted that an extension to many space dimensions is immediate.

Key words. Hamilton-Jacobi equation, viscosity solution, level set, numerical method

AMS subject classifications. 35L99, 65M05

Introduction. We are interested in solving a general first-order partial differential
equation for a function z u(x, g) of the type

(0.1) F(x, y, z, p, q) O,

where p ux, q uu.
This is a classical problem in partial differential equations (P.D.E.). In fact, the

method of characteristics was invented to solve it. Typically we are given Cauchy data
on a curve F, i.e., for

(0.2a) x xo(S), y yo(s);

then

(0.2b) z zo(s).

The data is assumed to be noncharacteristic, i.e., by the chain rule we have

(0.3) :ko(s) po(s)gco(s) + qo(s)lo(s),

while

(0.4) F(xo(s), yo(s), zo(s), po(s), qo(s)) O.

In order to solve (0.3) and (0.4) locally for smooth po(s), qo(s), the implicit function
theorem requires

(0.5) IoFp(xo, Yo, Zo, Po, qo) =/= coFq(xo, Yo, zo, Po, qo).

This is the noncharacteristic criterion.
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Given (0.5), one then generates characteristic curves via

(0.6)
42;

d-- pF, + qFq

dp
d- -Fz pFz,

dq
d- -Fu qFz.

The initial data "propagates" along these curves and criterion (0.5) guarantees that
we generate a smooth solution locally in time. However, in finite time characteristic
curves generally intersect (caustics develop). Fourier Integral Operators (FIO) were
developed in the sixties and seventies (see, e.g., [8]) to take care of the resulting multi-
valuedness (and to do a lot more, of course).

A classical example is the eiconal equation from geometrical optics:

(0.7) p2 + q2 1.

If F is convex, the solution rapidly develops a caustic. Rather than continuing it as
a multivalued solution t la FIO, we may use the recently developed notion of viscosity
solutions [3], [4], [5] for Hamilton-Jacobi equations to continue the solution uniquely
as a single-valued uniformly continuous function having "kinks"i.e., jumps in the first
derivative. For most real-world problems this is the appropriate class.

We shall propose an analytic and numerical method for solving (0.1), (0.2) when F
is a compact set of closed curves dividing R2 up into f and its complement fc, neither
of which needs to be compact. We call f the "interior" and fc the "exterior."

This method generalizes easily to compact hypersurfaces dividing up R’ into an
interior and exterior. In this paper we shall stick to Rz for simplicity of exposition only.

The present work has three main antecedents. In [12] Osher and Sethian introduced
the concept of a level set formulation to propagate curves and surfaces. The problem
analyzed there was as follows. Wewish to move a closed curve F normal to itselfwith nor-
mal velocity u,. This velocity might be geometrically based; e.g., it might be a function of
the curvature of F. The level set formulation easily treats self-intersections, topological
changes, kinks, and higher space dimensions. Theoretical justification for this method
(along with a great deal of other very important theory) came later in [2], [6], [7].

Briefly, one finds a function (z, y, t) so that at t 0 we have

(0.8a) (x, y, O) 0 , (x, y) e F,
(0.8b) (x, y, O) > 0 in f,

(0.8c) (x, y, 0) < 0 in f,

and (x, y, 0) is a uniformly continuous and monotonic strictly decreasing function of
distance to F near F, which we call F(0).
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We require that F(t) evolves so that

(0.9a) (z, , t) 0 } (z, ) F(t).

This means that for (z(t), (t)) F(t),

(0.9b) _d(x(t), y(t), t) 0,
a/

(0.9c) xt + uYt + Ct O.

Rearranging terms, we arrive at

(0.9d) , -u. +

At this point we imagine that u, is defined throughout R’, not just on F(t), and that this
is done in a natural way. Thus all level sets of move according to this law.

If u, is a given function of (x, y), then this is a Hamilton-Jacobi equation and we
seek the viscosity solution [4], [5]. This has an interesting physical interpretation for
flames. Sethian’s entropy condition [15] follows for the viscosity solution (see [12] for
the proof).

If u, is the curvature of the level set, the equation becomes

(0.10) Ct

Thus, we can define the motion of a square via its mean curvature using (0.10) and
following the level set. Again, this was rigorously justified in [2], [7] for general curves
modulo some unusual exceptions.

As a numerical device this approach has many advantages over tracking. We simply
set up a fixed, Eulerian grid, solve (0.9) numerically, and let the plotter find the front.
Self-intersections, kinks, topological changes, and multispace dimensions are treated
routinely. Of course, we have to construct stable, accurate, and efficient methods for
(0.9). See [12], [13] for a description of such methods.

The second antecedent is [10]. There the authors wished to solve a problem in com-
puter vision. We are given z(z, y), describing the surface of an object that is illuminated
by an overhead light source at infinity. In the simplest model the intensity of light I(z, y)
is given by

(0.11) I(x,y)
V/1 + p2 W q2

0 F(x,y,z,p,q).

The shape-from-shading problem is: given 0 < I(x, y) <= 1, find u(x, y). This is a very
well studied problem, but only recently in [11], [14] was the correct theory of viscosity
solutions brought to consideration. In [10], the authors assumed that they were given a
level surface of u, i.e., (0.2) for z0 0. What they proposed was to use the methods of
[12] to propagate the level surface to generate the solution of (0.11). We now recognize
this as a general method for solving (0.1) for Dirichlet data. We shall describe and justify
it in the next section.

Finally, the third crucial antecedent came in Bruckstein [1]. There the author trans-
formed the shape-from-shading problem into a level set propagation P.D.E. and realized
the advantages of this formulation. The link with the propagation methods of [12] and
the viscosity solution concept came later in [10] for this important problem.
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1. Description and justification of the method. Let F be a compact set of disjoint
closed curves in R2, dividing R2 up into an interior f and an exterior fc. We wish to
solve for z u(z, y),

(1.1a) F(x, y, z, p, q) O,

with Dirichlet data on r written locally as

(1.1b) x xo(s),

(1.1c) y yo(s),

(1.1d) z zo(s),

which is noncharacteristic for (1.1a).
We next assume that zo(s) can be continued into a set containing F as a function

w(x, y) so that the function n(x, y) defined by

(1.2) u) u) + u)

is the unknown. This has the effect of changing F and setting z0 0 in (1.1d). Thus we
have the zero level set of the solution to a simple related P.D.E. as boundary data. This
new P.D.E. continues to be called F and the new unknown function is z.

The noncharacteristic criterion then becomes

(1.3) poFp + qoFq : 0

on F.
Now we wish to construct a function of three variables v(x, y, t), t >= 0 such that if

(1.4a) v(x, y, t) O, then

(lAb) z u(z, y) t.

Of course any such function will not be unique. However, all of them will satisfy on
the level set (1.4):

0
(1.5a) -xV(X, y, u(x, y)) 0 vx + vtux,

0
(1.5b) --v(x, y, u(x, y)) 0 vu + vtuu.

Y

Thus, at least formally on this level set,

(1.6) F(x’ y’ t’ -vvt -% =0 on{v =0}.

We shall choose v(x, y, O) to be a uniformly continuous function vanishing only for
(x, y) on P, v > 0 in f, v < 0 in f, and v is a strictly monotone function of distance to
F near F.
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The noncharacteristic criterion of (0.3) guarantees that we may invert (1.6) locally
for vt near F. To devise a numerical algorithm based on time evolution we need the
following assumption.

Assumption 1. An explicit inversion formula exists for (1.6) near F so that the formula

(1.7) vt + H(x, y, t, vx, vu) 0

with H > 0 near F implies (1.6) near (x, y) E F, t 0.
We note that H must be homogeneous of degree one in v, vv.
Some geometric analysis of Assumption 1 is in order. We wish to solve (1.6) for yr.

By the implicit function theorem this is valid if (1.3) is valid near F, i.e.,

pFv + qFq # O.

As pointed out by Evans, this says that the zero level set (in (p, q) space) of F is star
shaped.

Another interesting observation of Evans concerns the link with steady multidimen-
sional conservation laws. Equation (1.7) is an ordinary Hamilton-Jacobi equation, while
(1.1) might be a conservation law admitting shock solutions. This may provide a connec-
tion between conservation laws and Hamilton-Jacobi equations in multidimensions.

We now have our analytical method for solving (1.1), kinks and all. (Numerical
methods may be easily constructed using the results of [12], [13].)

We solve (1.7) on all of R’ (we really only need to do this near F(t)) with uniformly
continuous initial data.

(1.8a) v(x, y, O) vo(x, y),

with

(1.8b) vo(x, y) 0 if and only if (x, y) E F,

(1.8c) vo(x, y) > 0 if and only if (x, y) f,

(1.8d) vo(x, y) < 0 if and only if (x, y)

Then, to compute u(x, y) for (x, y) f we calculate the level sets via the relation

(1.9) v, t) o t v).

This allows us to generate u(x, y) by building it up through this level set formulation.
It is clear from the classical method of characteristics (see, e.g., [9]) that if F is a

smooth curve and F and H are smooth functions near F, then the solution to (1.1) is
locally (near F) the same as (1.9) for t > 0 and small. We now claim that the level set
generated function (1.9) is a viscosity solution to

(1.10) -1 + H(x, y, u, ux, uu) 0

if v is the viscosity solution to (1.7), (1.8).
We now recall the definition of viscosity solution; see, e.g., [3].
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DEFINITION 1.1. Let C near (,, ). Suppose v has a local minimum
(maximum) at (5, , ). Then v is a viscosity supersolution (subsolution) of (1.7) at this
point if

(1.11) g, + H(x, y, v,, eu) _> 0(__< 0)at (5, y, )

for all such .
DEFINITION 1.2. v is a viscosity solution at this point if it is both a viscosity sub and

supersolution.
The fact that H > 0 indicates that v is strictly decreasing in t near this point. In fact,

if v has a local maximum there, then

<-H,

which means that is strictly decreasing there.
We take so that

(1.12a) v(x, y, t) <= (x, y, t) near (5, , )
and

(1.12b)

Then, for t satisfying < t < + for > 0 small,

(1.13)
(z, , t) (z, , tO 5 (z, , t) (z, , tO

t(5:, if, t-)(t t-) (where - < < t)

< -(t t-).

Thus v is uniformly strictly decreasing for t > t-. This is true for all such -and t in any
neighborhood in which v(x, y, t) is a viscosity solution. Thus there exists an increasing
uniformly continuous inverse function h such that

(1.14) h((, u, t)) u(, u) t.

What remains to be shown is that u is a viscosity solution to

(1.15) -1 + H(x, y, u, u, uv) O.

This follows directly from [2, Thm. 5.2] under the hypothesis that H is independent of
u. Thus we make that assumption for theoretical purposes only and conclude. (This key
theorem of [2] was motivated by problems involving motion of level sets such as those
described in [12].)

2. Examples. Given the shape-from-shading problem described above, with a re-
mote generally nonoverhead light source whose direction cosines are (a,/3, -7) for 7 >
0, with respect to the normal to the surface z u(x, y), we wish to solve

I(x, y)/1 + u2 + u2u ou uu 7 0(2.1a)

with

(2.1b) u 0 on F 0gt.
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The noncharacteristic criterion is satisfied if 7V/1 + p2 + q2 I. Equation (1.6) be-
comes in this case

(2.2) l x, y l + v--]t + v-t + vt + vt -7=0.

This can be inverted to obtain our version of (1.7):

(sign(l: "Y2))"/(cv: 4- vv) q- Iv/v2z(-l2 q- 12) q-- v2(-cx2 -4- 12) -4- 2otvzvlt(2.3) v + I-r2 I21
0.

Note that if, for example, "r 1 : o --/3 0, the resulting overhead formula

(2.4) vt + v/1 12 2 + vu2 0

gives difficulties near I 1. This is inherent in the problem [11], [14]. In the general
case the method has problems because of a possibly negative quantity under the square
root sign, unless I =< 7. If this inequality fails we must require that the gradients satisfy

(2.5a) v2(1 12 fl2)+vu2(1 12 a2) + 2avzvu >= 0

if

(2.5b) 1 > 7.

This is, of course, required at the zero level set of v(x, y, t) from (2.1a) using (2.3) and
the related (1.5a, b), but it does present some numerical difficulties.

Example 2. Control-optimal cost determination:

(2.6a) -(sin y)ux + (sinx)uy + lull 1/2 sin2 Y (1 cosx) 0,

(2.6b) u 0 on F, which is noncharacteristic, which means

(2.6c) -sin2y+(1-cosx)#O onr.2

We are led to

Iv l + (sin x)vy -(sin y)vx(2.7) vt+
1/2sin2y+(1-cosx) =0’

and the quantity H(x, y, u, uu) defined above is assumed to be strictly positive near F.
(Of course, if it is strictly negative, everything works with a different initialization, merely
reversing the inequalities in (1.8c, d).)

Acknowledgments. We would like to thank Professor A. M. Bruckstein for making
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the paper.
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THREE-DIMENSIONAL STEADY WATER WAVES GENERATED BY
PARTIALLY LOCALIZED PRESSURE DISTURBANCES*

TIEN-YU SUNt

Abstract. The author constructs a class of three-dimensional exact steady water waves resulting
from a partially localized pressure disturbance on the free surface. The term partially localized means
that the pressure disturbances are periodic in the direction of the flow and are decaying rapidly in
the transverse direction. The resulting exact steady flows exhibit symmetric doubly periodic wave
patterns at infinity on either side of the pressure disturbance. The surface tension effect is taken into
account, and this enables the author to use the Implicit Function Theorem in his construction.
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1. Introduction. We are concerned with steady wave motions of an infinite
ocean of water, bounded above by a free surface and below by a flat bottom. The
problem is to determine the velocity field and the free surface as an exact steady
solution of the equations of water waves; see (2.1)-(2.5). Earlier work on exact steady
water waves used complex formulation of the problem, and hence the results were
limited to two-dimensional flows. See Wehausen and Laitone [7] for a detailed ref-
erence. Methods applicable to three-dimensional flows were considered by Beale [1]
and Hewgill, Reeder, and Shinbrot [2]. In [5], with no pressure disturbance on the
free surface, Reeder and Shinbrot proved the existence of symmetric doubly periodic
solutions of (2.1)-(2.5), treating them as nonlinear interactions of two periodic plane
waves. The surface tension effect is crucial in their construction. In contrast to the
two-dimensional periodic waves, the existence of three-dimensional symmetric doubly
periodic solutions becomes a small divisor problem when the surface tension effect is
omitted. See Plotnikov [4].

In this paper, the method developed by Beale in the two-dimensional setting is
applied to the three-dimensional problem. By applying a specific class of pressure dis-
turbances on the free surface, we show that a class of three-dimensional exact steady
solutions can be constructed as in [1]. It is well known that steady flows of water re-
sulting from pressure disturbances on the free surface may have various wave patterns
at infinity. For two-dimensional flows, it has been shown that the steady wave gener-
ated by a localized pressure disturbance has periodic wave patterns at infinity. When
the surface tension effect is included, capillary waves appear upstream and gravity
waves appear downstream. See Lighthill [3] and Whitham [8] for the linear theory
and Beale [1] for the nonlinear result. The wave patterns at infinity remain a major
concern in constructing three-dimensional steady water waves. Further complication
arises from the fact that a three-dimensional linear steady wave may exhibit a com-
plicated wave pattern like the wake after a ship. Again see Lighthill [3] and Whitham
[8] for the linear theory of ship waves.

The main result of this paper can be stated as follows. We assume that the
pressure disturbances applied on the free surface are partially localized and are small
in amplitude. By partially localized, we mean the pressure disturbances are periodic

Received by the editors July 15, 1991; accepted for publication (in revised form) November 30,
1992.

Department of Mathematics, Chung-Yuan Christian University, Chung-Li, Taiwan 32023
public of China.

1153



1154 TIENoYU SUN

in the direction of the flow and are decaying rapidly in the transverse direction. We
seek exact solutions which are small perturbations of the uniform horizontal flow with
constant flow speed U0 and constant depth h. When the flow speed U0 and the period
of the pressure disturbance are within a certain range, we show that there exists a two-
parameter family of three-dimensional exact steady waves which exhibit symmetric
doubly periodic wave patterns at infinity on either side of the pressure disturbance.
The symmetric doubly periodic waves appearing are those constructed by Reeder and
Shinbrot in [5]. The two parameters involved are a phase shift at infinity on each
side of the partially localized pressure disturbance. If the pressure disturbance is even
in the transverse direction, the resulting solutions can be regarded as steady waves
traveling along a vertical wall. As in [5], the surface tension effect is important in our
construction.

In 2, the problem is formulated in detail. In the problem, we assume that a
partially localized pressure disturbance with wave number kl in the direction of flow
is applied on the free surface. In 3, symmetric doubly periodic waves with flow speed
U0 and wave number kl in the direction of the flow are constructed. In comparison to
[5], 3 provides an alternative construction of the symmetric doubly periodic waves
which uses a different set of relevant parameters. In 4, exact steady flows resulting
from a partially localized pressure disturbances on the free surface are constructed.

2. Preliminaries. We begin by describing the three-dimensional equations of
water waves, with the surface tension effect taken into account on the free surface.
Suppose a coordinate system (X, Y, Z) is chosen so that the X, Y directions are
horizontal and the Z direction points upward. Let (U, V, W) and Z S(X, Y) be
the unknown velocity field and free surface, respectively. Assuming the ocean has a
flat bottom, the fluid occupies the domain {(X, Y, Z): 0 < Z < S(X, Y)}. Now the
equations of water waves can be stated as follows:

(2.1) Vx + Vy + Wz -0,

Wr Vz 0,

Uz Wx 0,

Vx uv =0,

(2.3) W=0 onZ=0,

W USx VSy. 0 on Z S(X, Y),

(2.5) gS o D DS 1 U2 V2 W2 -l (p Po) C+( + + )+po
1 +IDS :

on Z--- S(X, Y),

where D Ox, Oy ). Here P is the pressure on the free surface, P0 is the atmospheric
pressure, and P0 is the constant density of the fluid. The parameters g and 0 are the
gravitational acceleration and the surface tension coefficient, respectively. Equations
(2.1) and (2.2) are due to the incompressibility and irrotationality of the fluid; (2.3)
and (2.4) are the streamline conditions on the bottom and top surfaces; (2.5) is
Bernoulli’s equation.
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When P P0, the uniform horizontal flow with S(X, Y) h > 0, U U0 and
V W 0 is a trivial solution of the above boundary value problem. Hence, when
P-Po is small, we seek exact solutions of (2.1) (2.5) which are small perturbations of
the uniform horizontal flow. On the free surface, we suppose P- Po e Po ghp(X, Y),
where

(2.6) p is periodic in X and is decaying rapidly in the Y direction.

The factor pogh is inserted for convenience. We can assume that the velocity (U, V, W)
and the free surface S have the form

U=Uo(l +eu),
V=eUov, W=eUow,
S h(1 + e/).

By stretching the vertical coordinate, we can transform the fluid domain to a fixed
horizontal slab. We set

x X/h, y Y/h,
z Z/h(1 + e rl).

Now the new fluid domain is {(x, y,z)" 0 < z < 1}; and (2.1)-(2.5) are transformed
to

{ (1 -b erl)u: ezrl uz } + { (1 + erl)v ezrly vz } -b wz O,

Wy O" Vz Z O" l’ly Wz Or
O" Uz Wx -[- Z O" rlz. Wz Or

Vx Uy e. Z O" rlx Vz --[-- e. z o" rly uz

(2.10) w 0 on z 0,

(2.11) w eur. evy / on z 1,

(2.12) /-flV Vr/
+Tu+ 7(u2 v2 w2

41/e2l Vol
+ + )+p=O on z= 1,

where V (0z, Oy) and a (1 + e r/) -1. The parameters

o /gh2, ’7 U02 /gh
are the dimensionless coefficient of surface tension and the Froude number, respec-
tively.

The free surface is now removed at the price of introducing nonlinear terms into
the interior equations. For e sufficiently small, we can treat r/as already known and
solve (2.8)-(2.11) for (u, v, w). This enables us to regard (u, v, w) as a function of r/,
and we are led to solve (2.12) as a functional equation of r/. Linear approximations
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can be found by solving (2.8)-(2.12) with e 0. Based on the solvability of the linear
problem, exact solutions are constructed using the implicit function theorem.

Now we introduce the function spaces that are used in the subsequent sections.
Let ’el 7r/kl and

{(x, y, z) -l < x < 1, 0 < z < 1},
r < <

For a nonnegative integer s, let HS(12) and H’(r) be the Sobolev spaces of functions
that are periodic in x with period 291, with derivatives up to order s in L2. A subscript
e or o is used to indicate the subspaces of functions that are even or odd in x. In
particular, for v E He(F), v can be written as

V

and its H8 norm is given by

(1 + m2kl2 + d{ }
1/2

Here is the Fourier transform in y with as the dual variable. When s > 0 is
nonintegral, these spaces are defined according to the usual generalization. Given
p > 0, pHS(f) and H(F) represent subspaces of H(f) and H(F) consisting of
functions v which decay rapidly in the y direction such that (cosh py)v H8, with
norms v 18,p (cosh p y) v 18. Again, a subscript e or o is used to indicate subspaces
of pH8 consisting of functions which are even or odd in x.

As for functions which are doubly periodic in x and y with periods 291 2r/kl
and 22 2r/k2, let

f {(x, y, Z) --1 < X < 1, --2 < Y < g2, 0 < Z < 1},
F---- {(x, Y) -1 < x < 1, --2 < Y <

HS(f) and H(F) represent Sobolev spaces of functions doubly periodic in x and
y, whose derivatives up to order s are in L2, provided s _> 0 is an integer, or the
usual generalization when s is nonintegral but > 0. A subscript (e, e), (e, o), (o, e), or
(o, o) is used to indicate subspaces with specific symmetries in x and y. For example,
Hg,o(f are the subspaces of HS(f) consisting of functions that are even in x and odd
in y.

3. Symmetric doubly periodic waves. The problem in the next section is to
construct exact steady waves traveling with flow speed U0 in the x direction, gener-
ated by a partially localized pressure disturbance with wave number kl in the same
direction. In this section, we construct a family of exact doubly periodic solutions
of (2.8)-(2.12) with p 0. As we will see, these exact solutions are the symmetric
doubly periodic waves that the solutions of our problem tend to as y +cx. In
[5], Reeder and Shinbrot proved the existence of symmetric doubly periodic water
waves by regarding them as nonlinear interactions of incoming periodic plane waves
with their reflections off a vertical wall. Incident wavelengths and incident angles
within a specific set were used as the parameters of the problem. In this regard,
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the present section provides an alternative construction which uses a different set of
relevant parameters.

In what follows, we will assume that the symmetric doubly periodic waves con-
sidered have flow speed U0 and wave number kl in the x direction. We first consider
(2.8)-(2.12) with e 0 and assume the linear approximation considered has /given
by

/(x, y) cos klx cos k2y.

Here the wave number k2 is yet to be determined. With /given by (3.1), it is easy
to solve (2.8)-(2.11) and obtain

(3.2)

-kl2 coshl k Izu-
k sinhlk

cOSklXcOsk2y,

klk cosh k [z
v--

[k sinh]k
sinkxsink2y,

sinh k z
w -kl sinh k

sin kx cos k2y,

where k (k, k2) and [k[-- (k2 -t- k22) 1/2. Consequently,

/-/V2 /+’u b(kl,k2) coskx cosk2y.

Here the function b(., .) is given by

T12(3.3) b(1, T2) 1 q- IT 12 --7 cothl T I,

where T (T1, T2) and lT l-- (T12 + T22)/" Hence, in order for /and (u, v, w) given
by (3.1) and (3.2) to satisfy (2.12), we need wave number k2 to satisfy b(k, k2) 0.

Now, for each fixed parameter fl > 0, define

1-bfl2

"7o() min
eR coth

It was pointed out in Lemma 2 in [1] that 0(/) < 1, provided fl < 1/2. Moreover,
when 3 < 0.02 and the flow speed U0 is within a range so that the Froude number /
satisfies "r0(/) < < 1, the equation

1 +2 -7 coth 0

has two simple positive roots, kv, kT, where 0 < k < kT. Note that, from (3.3),
we have b(kG, O) b(kT, 0) 0. The following lemma is used to determine the wave
number k2 in the transverse direction.

LEMMA 3.1. Suppose and are fixed parameters with 0 < fl < 0.02 and
7o(3) < < 1. Let b(., .) be the function defined in (3.3). For TI > 0 SO that
kG < Ti < kT, the equation b(T1, ) 0 has a unique positive root k2 which is
simple. When 0 < T1 < kG or kT < Ti, the equation b(T1, ) 0 has no real roots.

Proof. See Appendix.
In this paper, we will always assume that the water is deep enough such that

/ < 0.02. When 70(/) < 7 < 1 and k < kl < kT, with wave number k2 determined
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by solving b(kl,) 0, /and (u, v, w) given by (3.1) and (3.2) provide us a linear
approximation of symmetric doubly periodic waves.

The wave number k2 determined by the flow speed U0 and wave number kl provide
us a first approximation of the wave number in the transverse direction. For fixed U0
and kl, an exact solution of (2.8)-(2.12) based on linear approximation (3.1), (3.2)
should have wave number in the y direction fairly close to k2 when e is sufficiently
small. We can assume that the exact wave number in the y direction is O(e)k2. Here we
suppose O O(e) is close to 1 for e sufficiently small. Now we stretch the y coordinate
axis by setting 9 0 y and replace the (x, y, z) coordinate system by (x, 9, z) instead.
As a result, (2.8)-(2.12) are transformed to

(3.4) {(1 -4- e /) tx ezrla: uz} -f- 0 {(1 --I-el)vf --ezlgVz} +Wz O,

(3.5)
Ow9 a vz e O z a lg wz O,

O’Uz "Wz + e z o’rlx Wz 0,

vx O u9 e z a la: vz + e O z al Uz =0,

(3.6) w=0 onz=0,

(3.7) w e u7 e O v rl /x onz-1,

(3.8) /-V.
[1 -4-e21r/1211/2 -t-’)’u+(u2+ +w2)--0 onz--1.

Here V 0, 00 and a (1 + e r/)- 1. Thus, by introducing the stretching factor 0
as an unknown, the doubly periodic waves sought now have a fixed period 22 2r/k2
in the direction. In comparison to the construction in [5], the symmetric doubly
periodic waves considered there have both of the periods determined by the incident
wavelength and the incident angle. Hence no stretching of the coordinate axis was
needed to determine the domain occupied by the symmetric doubly periodic waves.
However, the Froude number had to be determined as part of the solution.

A careful examination of (3.4)-(3.8) suggests that we can assume the exact so-
lution has the same symmetries in x and ) as in (3.1) and (3.2). In particular, we
seek /and (u, v, w) so that /, u are even in x and v, w are odd in x. An immediate
consequence is that V e U0 v is identically zero along x 0. Generally speaking,
we cannot expect (2.1)-(2.5) to have a unique exact doubly periodic solution unless
some kind of normalization is imposed. For this reason, we suppose

(3.9) fO0
S(O’Y)

U(O,Y,Z) dZ Uoh.

In terms of the new coordinates, (3.9) can be written as

1

(3.10) (1 + e/) udz + r/= 0 on x 0.

Integrating (3.10) with respect to , we obtain

(1 + e 1) u dzdl 1 dl
2 2

onx=0.
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In what follows, we will solve (3.4)-(3.8) with (3.11) as the normalization. When
e 0, this modified system has 0 1, and 17, (u,v, w) given by (3.1) and (3.2) as
soIution.

We start the construction by finding (u, v, w) that satisfies (3.4)-(3.7) and (3.11)
H,S+3/2for prescribed v], 0, and . We suppose that , (), where s is an integer > 23-.

Let

Y { (u, v, iv) E HeS,+el () x --o,oHS+l() x --o,eHs+l () w(x, #, O) 0 }

and

Z H,,()x H,,o( x H,()x H,o( x --o,H8+1/2() x R.

We can rewrite (3.4), (3.5), (3.7), and (3.11) as

(3.12) L(e 17, 0)(u, v, w) 0, 6, y,- y(0, ) d

where L(e, ) is a bounded linear operator from Y to Z, depending smoothly on y,
O, and e. To examine the range of L(e , 0), suppose ff (gl, g2, g3) and (f, , q, c) e Z
such that

(3.13) L(e 17, O)(u, v, w) (f , q, c)

for some (u, v, w) in Y. Note that, from (3.13), we see that g is a curl in the (X, Y, Z)
coordinates and thus its divergence with respect to (X, Y, Z) has to be zero. In terms
of the new coordinates, satisfies

(3.14) {(1 +e7)gl,x-ezr:g,z}+O{(1 +e7)g2,-ezg2,z}+g3,z --0.

This indicates that the range of L(e y, 0) is a subspace of Z which varies with y, 0,
and e. For each , define y (, 2, 3) by

(3.15)
(1 + eu) g, ; e (1 + eu) g,

3 g3 e z x gl e 0 z

and let g(e , 0): Z Z be the linear operator which maps (f, , q, c) to (f, , q, c).
Let Z0 be the subspace of Z consisting of (f, , q, c) such that

(3.16) g,x + g2,# + g3,z O.

Now if (f, , q, c) e Z is in the range of n(e , ), then (3.14) implies that defined by
(3.15) satisfies , + ,# + 94, 0.

That is to say, J(e , O) maps the range of L(e , O) into Zo, which is independent of, , and e. It is clear that operator J is bounded and is depending smoothly on y,
0, and e. Moreover, J(0, 1) is the identity operator. Hence, for y in a bounded set in
H+3/2, () and close to 1, g(e y, 0) is invertible when e is sufficiently small. For this
re,on, since

(s:")( s:" )
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(3.12) and

JL (e rl, O)(u, v, w) O, 6, lz, 1(0, I) dl

share the same solution. In the following lemma, we show that JL(O, 1) L(0, 1), as
an operator from Y to Z0, is invertible.

LEMMA 3.2. Given (f, , q, c) E Zo, there is a unique solution in Y of the problem

(3.17) uz + v + wz f,

(3.18) w,9 v gt,

(3.19) uz wa: g2,

(3.20) v u,9 g3,

(3.21) w q on z -1,

(3.22) w=O onz=O,

(3.23)

The solution (u, v, w) satisfies

oo u O 1, z) dzdt c.

(3.24) Il+l+lvl+l+lWl+l <_ C Ifl+-ll+lql+/+lcl
i=1

Since the proof is similar to that of Lemma 5 in [1], we will summarize it as
follows. First, we consider the case with q 0. Assume that the solution (u, v, w) is
known for the time being. Let

=() co., .() sn.

for n > 1, and let lo(z) 1. To expand u, v, and w in eigenfunctions in z, we define

,o(, ) ,o(, , )(,
fo,(,f) (,,),() fo i= 1,,

and define u,, v,, :f,, and 9an as similar products with 1,. Multiply (a.17) and
by ln(z), (a.la) and (a.l) by m,(z), and integrate with respect to z. We obtain

(3.25) u,, + v,, + n-w, f,, n _> O,
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(3.26) wn, + nr vn gl,, n _> 1,

(3.27) nr Un Wn,z g2n, n _> 1,

(3.28) vn,z --un, gan, n >_ O.

Since (f, g-*, q, c) is in Z0,/1 satisfies (3.16). Multiplying (3.16) by mn and integrating
with respect to z, we have

gln,x W g2n, nr g3n 0 for n >_ 1.

This implies, for n > 1, that (3.28) is automatically satisfied when (3.26) and (3.27)
hold. Hence, for n > 1, un, Vn, and wn can be determined by solving (3.25)-(3.27)
by expanding in Fourier series in x and 9. Similarly, we can determine u0 and v0 by
solving (3.25), (3.28)with normalization (3.23). Now define

z)
n--0

It can be shown as in Lemma 5 in [1] that (u, v, w) thus defined solves (3.17)-(3.23)
and satisfies estimate (3.24) with q 0. Finally, it remains to remove the assumption
q 0. Given (f, , q, c) E Z0, we can find E H8+1() so that -- q on z 1, 0--oe
on z 0, and

14 I+1 <- Via Is+1/2"
Now if we set w + , then the problem of solving for (u, v, ) brings us back to
the previous case and we are done.

Since both J and L depend smoothly on r/, 0, and e, it follows from Lemma 3.2
HS+l/2that for ] in a bounded set in , () and 0 close to 1, JL(e r, O) as an operator

from Y to Z0 is invertible for e sufficiently small. Consequently, the solution of (3.12)
is given by

(3.29) (u, v, w) JL(e rl, O) )-1 0, , //x, (0, )) d
t2

and is depending smoothly on /, 0, and e.
Now because of (3.29), we are led to solve (3.8) as a nonlinear equation for r/and

0. For e close to zero, we seek r/of the form

(3.30) ? COS klx cos k2 -- ?
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in which is even in x and , such that

(3.31) // ?(X, ) COS klx cos k2 dxd O.

Let XS+3/2() be the subspace of Hs+3/2(e, - consistingof that satisfies (3.31). We
can write Bernoulli’s equation (3.8) as

(3.32) S(, O, e) 0,

HS-1/2where B is a smooth function from an open subset of XS+3/2() R2 to e,e ().
When e 0, (3.32) has a trivial solution 0, 1. In what follows, we will assume
that the wave numbers kl and k2 satisfy the condition

(3.33) b(mkl, nk2) =fi 0 for all (m, n) except for (m, n) (1, 1).

Here b(., .) is the function defined in (3.3). Based on (3.33), we will show that the
Fr6chet derivative

B(#,o)(0, 1, 0)" XS+3/2() R H,1/2()
has a bounded inverse.

In 4, we will limit the range of wave number kl to

max (kG,) < kl < kT.

When < 0.02 and the oude number is within the range 70() < 7 < 1, Lemma 3.1
implies that equation b(k,) 0 h a unique positive root k2 which is simple.
For m 1, mk lies outside the range [kv, kT] and so equation b(mk, ) 0 h no
real roots. As a result, condition (3.33) is met. For a detailed discussion of the set of
excluded parameters, see 7 in [5].

When e 0,

(3.34) B(, 0, 0) 2 + u,

where V (0z, 0 0) and is given by (3.30). (u, v, w) is a function of and 0,
determined by

(3.35) u + 0v +w 0,

(3.36)
0W9 Vz Or
Uz Wx Or
v 0u9 O,

(3.37) w=O on z 0,

(3.38) w=r/x onz=l,

(3.39) udzd
t2 t2

on x:0.
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Given any e XS+3/2(), because of (3.31), we can express 0 as

(’m,,n)#(1,1)
amn cos mklX cos nk2.

As a result, /given by (3.30) has Fourier expansion

m,n----O
amn cos ink1x cos nk2,

where all- 1. By solving (3.35)-(3.39), we obtain

m2kl2 coshCmn z
(3.40) Cmn sinh

(,)#(o,o)

cos mklx cos nk2,

where Cmn (m2kl2 + 0 n2k22) 1/2. It follows that

(3.41) B(O, O, 0) (1 "y)a00 ’(m,n)#(O,O)
b(mkl, 0 nk2) ainu COS mklx cos nk2l.

Note that the derivative B(0,e)(0 1, 0) is given by

(, ) B(O, 1, 0) + Be(0, 1, 0).

When 0 1, the coefficient b(kl,k2) in (3.41) is equal to zero. This implies that
B(., 1, 0) is a linear operator from XS+3/2(’) to XS-1/2(). From (3.3), it is easy to
see that, when IT is sufficiently large, coth T is close to 1 and the term/1-12
becomes dominant in b(T1, ’2). Thus, for m and n sufficiently large, we have

b(mkl, nk2) > c (m2kl2 + n2k22).

As a result, B(., 1, 0) has a bounded inverse from XS-1/2() to XS+3/2(’).
Next we compute the derivative Be(O, 1, 0). When 0, (3.40) gives

U
kl 2

11 cothll COS klX cos k2 on z 1,

where 11 (kl 2 + 02 k22) 1/2. Note that, given a smooth function f, we have

{ Oe f(Ok2) }e=l { O f()

This simple fact leads to

ue={O ( -k12cthV/k12V/k12+2 COS klx cos k2.

Hence, from (3.34), we obtain

Be(0, 1, 0) 2f k22 cos klx cos k2 + y ue
k2 {0 b(kl, )}=k2 cos klx cos k2.
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From Lemma 3.1, since k2 is a simple root of b(kl, ) O, (0 b(kl, )}=k2 O. Thus
the derivative Bo(0, 1, 0) is nonzero.

HS-1/2Now let f E e,e () be arbitrary and consider the equation

B(FI, 1, O) + Bo(O, 1, O) f

Since the operator B(., 1,0) ranges in X8-1/2() and B0(0,1,0) is orthogonal to
Xs-/(’) in the L sense, should be chosen so that

f Bo(O, 1, 0) e Xs-1/2().
Then

B(I, 1, O) f 9 Bo(O, 1, O)

has a unique solution in XS+3/2(). It is easy to see that the Fr(chet derivative
B(,o)(O, 1, 0) is bijective. Thus, by the open mapping theorem, B(,o)(O, 1, O) has a
bounded inverse.

Now by the implicit function theorem, for each e sufficiently close to zero, (3.32)
has a solution ((e), 0(e)) near (0, 1) in Xs+3/2() x R, depending smoothly on e. By
(3.29) and (3.30), (O(e), 6(e)) thus obtained provides us with an exact doubly periodic
solution of (3.4)-(3.8) and (3.11).

Finally, we point out that given any constant a in a bounded set, if rt, , and
(u, v, w) satisfy (3.4)-(3.8) with e replaced by he, then art(he), 9(ae), and as(he),
av(ae), aw(ae) also satisfy the same problem. Moreover, if we translate the (x, )
coordinates by (0, 5), then

(3.42)
art(x, l ; he), 0(he), as(x, l 3, z; he_),
av(x, l 5, z; he), aw(x, 9 5, z;

still satisfy (3.4)-(3.S) with e replaced by he. By construction, when e 0, we have

(3.43) art(x, 1 ; O) a cos klx cos k2() 5).

Thus, by treating the constants a and as two free parameters, we obtain a two-
parameter family of doubly periodic solutions. The constants a and can be inter-
preted as amplitude and phase shift, respectively.

4. Flows due to a partially localized pressure disturbance. We now turn
to the main issue of this paper. Suppose that, in (2.12), we are given a pressure

Hs-/2disturbance p which is periodic in x with period 2gl 2/kl and is in p e (F)
for some integer s > . The problem is to solve (2.8)-(2.12) for rt and (u, v, w),
provided e is sufficiently small. Note that, by definition of the pHs spaces, the pressure
disturbance p is partially localized in the sense that p and its derivatives are decaying
rapidly as y - +oc. In the following discussion, we will assume that the wave number
k is in the range

max(kG,k-jT) <kl <kT.(4.1)

Under this circumstance, when the surface tension effect is small and the flow speed
U0 is within a certain range, we are able to use the symmetric doubly periodic waves
discussed in 3 to construct solutions of (2.8)-(2.12).
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4.1. A linearized problem. We first construct linear approximations by solv-
ing (2.8)-(2.12) with e 0. Consider

(4.2) ux + vu + wz 0,

(4.3)
Wy Vz Or
Uz Wx Or
Vx Uy Or

(4.4) W=0 onz=0,

(4.5) w=yx onz=l,

(4.6) r-V2ri+/u+p=O onz=l,

where V (0, 0u). Assume that, in (4.6), the given pressure disturbance p has the
form

() os,.
m--0

We seek a solution of (4.2)-(4.6) which has y even in x. Let

,
m--0

By applying Fourier series in the x direction and Fourier transform in the y direction,
we can solve (4.2)-(4.5) and regard (u, v, w) as a function of v]. We obtain

+ m2k2 cosh Cm()z(x,,z)-- Z Cm()’() sinhCm()
cosmkx,

m=l

where Cm() (m2k2 + 2)/2, is the Fourier transform in y with dual variable. It remains to solve (4.6) as a linear equation for y. From (4.6), by taking Fourier
transform with respect to y, we see that y solves (4.6) if

{b(mkl,)m() Tm()) cosmkx O.
m"-O

Here b(., .) is the function given in (3.3). Hence we are led to solve

(4.7) b(mkl, )m() +m() 0

for each integer m _> 0.
We now discuss properties of the function b(., .) in more detail.
LEMMA 4.1. Let p be any positive constant < kl. For each integer m >_ O, the

function

/2k12
coth /m2kl2 -t- z2b(mkl, z) 1 -t- (m2k2 + z2) - v/m2k2 + z2
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is an analytic function in z over the strip {z "t Im z I<_ p}. Furthermore,

Ib(mkl, z)l

_
c m2kl 2 4- Re z 12

when m or Re z is sufficiently large. Here c is a positive constant independent of m.
Note that, for any complex number w,

cothw 12 sinh2 Rew + cos2 Imw
sinh2 Rew + sin2 Imw

It is clear that coth V/m2k2 + z2 is close to 1 provided m or Re z is sufficiently
large. Based on this observation, the proof of Lemma 4.1 is straightforward and is
thus omitted. The following corollary concerns roots of analytic functions b(mkl, z).

COROLLARY 4.2. Suppose parameters and / are the same as in Lemma 3.1.
Given k > 0 such that

max lkG, T.) < k < kT,

there exists a positive number p, < k such that
(i) .for each nonnegative integer m 1, b(mk, z) is nonzero for all z in the

strip Imz I_< p,;
(ii) b(k, z) has two roots in the strip Imz I<_ p,, all real and simple.

Proof. See Appendix. D
The following lemma is used to solve (4.7).
LEMMA 4.3. Suppose b is an analytic function from a strip {+i "1 < P} to C

satisfying b(+i) I>_ col m .for sufficiently large, where m >_ O, p > O. Suppose
that b has only a finite number of roots, all real and simple. Given f E pHs (R), s _> 0
with the property that ]() 0 at each for which b() O, we define l as the inverse

transform of ]()/b(). Then is the unique function in LI(R) satisIying b ];
r/E pHs+m(R) and

Here the constant C depends on b but not on f
Proof. See Lemma 3 in [1]. D
In what follows, beside (4.1), we will also assume that p pHeS-/2(F) where p <

p,. Here p, is the constant that appears in Corollary 4.2. Under these assumptions,
with 0 < fl < 0.02 and 70(fl) < 7 < 1, we are able to show that (4.2)-(4.6) have
a two-parameter family of solutions which exhibit doubly periodic wave patterns at
infinity. See (4.17), (4.18)below.

HS-1/2Since p e p e (F), in (4.7), Pro(Y) is in pHS-/2(R) for each m _> 0. Now,
for each nonnegative integer m 1, Corollary 4.2 implies that b(mkl, z) 0 for all
z in the strip Imz I_< p. Thus, by Lemmas 4.1 and 4.3, there exists a Ym(Y) in
pHS+3/2(R) that satisfies (4.7). As for m 1, Corollary 4.2 shows that b(kl,z) 0
has only two roots q-k2, all real and simple. We will show that, when m 1,
(4.7) has a solution rh of the form

(4.8)

in which r/(y) a+ +(y) cos k2(y 6+) and rh e pH+3/2(R). Here +(y) are two
Co cut-off functions such that 0 _< + <_ 1, +(y) 1 for y _> 1, +(y) 0 for
y _< 1, and - (y) 1 + (y).
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From distribution theory we know that the Fourier transforms of + are

(4.9) ()-- 5() +/-
()
i’

in which 5() is the delta function and X 09 +. It is immediate from (4.9) that the
transforms of v] are

a+ e k2 ,+ a+/- e-i k2 ,+/-

(4.10) y() +/- ( -t- k2) +/-
2 ( + k) 2 (- k) ( k)

+ [- (, + k)+e-(,-k)].
om (4.10), since k2 are simple roots of b(k, () 0, we have

[b(kl )(;](k2) ae"(a.11)

[b(kl, )( ;] (-k2) ae
where c is a nonzero, pure imaginary, complex number.

Now if a solution of the form (4.8) does. exist, then we have

(a.:) (,, .) (,) - (,, .) (,t)

Since y decays rapidly y , its transform y is a smooth function of and so

Hence we are led to choose he ampligudes such

that is to say,

(4.13) a+ e-i k + a- e-i k: - p (k2)
C

according to (4.11). Here c is a nonzero, pure imaginary, complex number. The
real and imaginary parts of the complex numbers in (4.13) form a linear system of
two equations in a+/-, whose determinant is sink2(ti+ --). Given phase shifts ti+/-

so that sink2(i+- ti-) 0, we can uniquely determine the solution a of (4.13).
Clearly, the amplitudes a satisfy

(4.14) a I C I(k2)

for some constant C. Note that, since p(y) is real-valued, (-k2) is equal to the
complex conjugate of (k2). om (4.11), it is ey to see that the amplitudes a
determined above also satis

[b(ki,*) (,;] (-k2) [b(ki,’)(, ;]



1168 TIEN-YU SUN

Consequently, the right-hand side of (4.12) vanishes at -t-k2.
Now (4.12) can be rewritten as

(4.15)

where

(,,.) (,0) ],

Note that, by construction, f"(:t=k2)- O. Moreover b(kl,)(rl )^() cos klx are the
transforms of the left-hand side of (4.6) with p- 0 and v/replaced by /l(y) cos klx.
From 3, we know that a cosklx cosk2(y- i+) are the surface elevations of two
linear symmetric doubly periodic waves. Consequently, /(y) cos klx satisfies (4.6)
with p 0 for [y[ _> 1, and we can regard [b(k, .) rl )^ iv as two smooth functions
of y with compact support in y [_< 1. Thus the function f defined above is in
pH8-1/2 (R) with

By Lemma 4.3, (4.15) has a solution o in,HS+3/2(R and

(4.16)

With all the y, determined, for each pair of phase shifts i+ such that

sin k2 (5+ 5- = 0,

we obtain a solution /of the form (4.6) of the form

(4.17) a+ +(Y) cosklx cos k2(y i+) + 7"
+ -() cos k cos k.( -),

where

(4.18) ,* ,1() os + ,() cosx.
ml

To complete our discussion of the linearized problem, we will show that /* is in

,H+3/2 (F).
To estimate I/* Is+3/2,p, it suffices to consider le+py r/*ls+3/2. Note that

(4.19)

e-t-py ?* Is-t-3/2 // (1 + kl2 T 2)sT3/2](ePY )A ()]2 d

2)sT3/2 A 2+ (1 + 2k12 + epy "m) () d.
reel

Here the first term in (4.19) is finite because of (4.16). As in the proof of the Paley-
Wiener theorem, given a function f E pHS(R), its Fourier transform f can be ex-
tended to an analytic function over the strip ( +i I< p} by defining

s( +) (s ’().
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Moreover, f has boundary values in the sense f(. +i) ---. f(. +ip) in L2(R) as
--, 4- p. See [6]. For each nonnegative integer m 1, we can extend /m(Y) and Pm(Y)

into analytic functions over the strip Im z I< p, where p < p.. By Corollary 4.2,
for each such m, b(mk,z) 0 for any z in Imz I< p. Now (4.7) implies that
(z)/b(mk,z) is an analytic function over the strip and is equal to the (z)
along the real line. Thus, for each nonnegative integer m 1, we have

() () /(.k. z)

for all z in the strip Im z I_< p. Now, by Lemma 4.1, the second term in (4.19) can
be estimated as follows:

2)s-I-3/2Z (1 + m2kl2 + I( e"4py m () d
ml oo

m#lF ,2)sT3/2(1 + .2k12 + (e + i,) d

oo I(e + i,) 12(1 + .21: +
ml oo (: e ip)122)+3Z2

2)--1Z2 12C (1 +12 + ( ,) d
ml

Clpl2
s--1/2,p"

The above estimate and (4.16) show that * is in pH+3/2 (F), where

(a.o) Iv* I,+3/2,, c (I I,-1/2, + I(k:) I).

Since PI(y) is in pU-/2(R), where s > , (k2) is then bounded above by
Ipll,-i/2,p. Thus, from (4.14) and (4.20), we obtain

(a.) * +/,, + + la C l -1/,,
for some constant C.

4.2. The nonline problem. We now show that we can use the exact sym-
metric doubly periodic waves of 3 to construct exact solutions of (2.8)-(2.12), which
exhibit doubly periodic wave patterns y . Note that the symmetric doubly
periodic waves considered have wave number O(e)k2 in the y direction. For the same
re,on in 3, we stretch the y coordinate by setting 0(e)y. Here 0(e) is the
stretching factor determined in 3. Aer the stretching, we are led to consider

{(1 + er)u ez7. uz) + O {(1 + erl)vf ez7,gv) + w =0,

(4.23)
Ow#-aVz -eOzay#wz =0,

r Uz Wx + e z ff rlx Wz O
Vx O U9 e z a %, Vz + e O z a 7g uz =0,

w eul eOv7 t onz=l,
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(4.25) w=0 onz=0,

(4.26)

V2-V.
[1 +e21V7 12 ]1/2 +u+

V(u2+ +w2) +p 0 on z 1.

Here a (1 + ey)- and V (0, 0).
We seek a surface elevation y of the form

(4.27) y y+ + yo + y-

in which 0 e H+3/2 (F) and

() (, ,,,).

Here y e the doubly periodic surface elevations in (3.42). () are C cut-off
functions so that 0 + 1, +() 1 for > 1, +() 0 for < -1, and
-() 1 +(). Similarly, we seek (u, v, w) of the form

u u+ + u

(4.28) v v+ + v + v-,
W=W+ TWo +W-,

in which

and

(uo, o, o) e H:+(n) [gF(n)]2

Here (u., v.:e, w) are the correction terms of the doubly periodic velocities in (3.42),
corresponding to v]..

We now summarize the main result of this paper. Suppose that 0 < < 0.02.
In case of air-water interface at 20C, with standard value for g, this corresponds
to h > 10cm. Furthermore, assume that the Froude number 7 is within the range
/o() < 7 < 1 and a pressure disturbance p E pH-1/2 (F) with s > is given. Let

(,) () cos,.
m--0

We consider the case in which p’s wave number kl in the x direction satisfies

max(kG, kT/2) < kl < kT

and 0 < p < p,. The constant p, is described in Corollary 4.2. We have the following.
THEOREM 4.4. With the assumptions above, let k2 be the positive root of equa-

tion b(kl, ) O. When the Fourier transform ’is nonzero at k2, .for each pair
of phase shifts 5+ such that sink2(5+- 5-) 0, (4.22)-(4.26) has a solution y(e),
(u(e), v(e), w(e)) of the .form (4.27) and (4,28) for each e su]ficiently small.
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From each solution of (4.22)-(4.26), we can define (U, V, W) and S according to
(2.7). After returning to the original (X, Y, Z) coordinates, we obtain a two-parameter
family of exact solutions of (2.1)-(2.5) which exhibit doubly periodic wave patterns

By multiplying all three equations in (4.23) by. (1 + e y), we can rewrite (4.22)-
(4.24) as

(4.29) {L0 + eLl(y)}(u,v,w) (0,,%),
in which Lo and Ll(y) are linear operators, with L(r) depending linearly on y.
Suppose that (4.22)-(4.24) do have a solution y and (u, v, w) of the form (4.27) and
(4.28). Note that we can rearrange (4.29) as

{ Lo + eL (/) }(u, v, w) (0, , r/) {Lo + eL (/)} (u+, v+ w+/-)

(4.o)
[(o, , +/-) (Lo + L(+/-)}(, +/-, )]
L(+/-)(,,) L()(u+/-,, +/-)

+ (0, 6, ).
Here each term with +/- represents a sum of two terms. In (4.30), the first two terms
on the right vanish for I I-> 1 since y.=e and (u, v,w) satisfy (3.4), (3.5), and

(3.7). The third and fourth terms decay rapidly as --. +/-x) since v] E pHS+3/2().
Therefore, if we can invert Lo+eL (y) over an appropriate space of functions which de-
cay rapidly as ) -- +/-), then we can regard (u, v, w) as a function of v], a+, 5+,
and e.

Let

Y= {(u,v,w)e pHS+l() x [pHoS+l(-)]2 W(X, , O) 0},
Z- [,HoS(2)]2 [,H()]2 ,H+/(F

and, for each r of the form (4.27), regard L0 / eL() as a linear operator from Y to
Z. To take a closer look at the range of L0 + eL (y), suppose we have

(4.31) { L0 + e L1 (r) }(u, v, w) (f, y, q)

for some (u, v, w) e Y. Here (f, y, q) is in Z with = (g, g2, g3). As in (3.13), (4.31)
implies that is a curl in the original (X, Y, Z) coordinates. Therefore, (3.14) still
holds for y. Now if we define y-- (1, 2, 3) as we did in (3.15), then satisfies

(4.32) ,x + 2, + 3,z 0.

Furthermore, by(3.15) and (4.31),

(4.33) 3 vx 0u + e 0 z (y wx x w),
v o + o {() (u )},

which shows that 3 is a divergence with respect to x, ). Motivated by (4.32) and
(4.33), we define a subspace Z0 of Z as follows. Let be a C function of compact
support on R with (0) 1. Let Z0 be the subspace of Z consisting of (f, , q) in
which (gl, g2, g3) satisfies

(4.34) g, + g2,9 + g3,z 0,
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+tl

(x, 0, z) dx 0,

(x, , z) dx dzd < +oo.

Here is the Fourier transform with respect to with dual variable , and 1
r/kl. Condition (4.36) states that the quantity in the brackets is zero at 0 in a
generalized sense. The square of the norm in Z0 is a set equal to the square of the
norm in Z plus the term in (4.36).

As in 3, let J(ev/) Z --. Z be the linear operator in (3.15) that maps (f, , q)
to (f, , q). Now we can treat J(ev/){L0 + eLl(V/)} as a bounded operator from Y
to Z0. Clearly, when e 0, the stretching factor 1 and thus J(0) is the identity
operator. In the following lemma, we show that J(0)L0 L0 is invertible.

LEMMA 4.5. Given any (f, , q) in Zo, there exists a unique solution (u, v, w) in
Y that satisfies

(4.37) ux / v / wz f,

(4.38) w vz gl,

(4.39) u wx g2,

(4.40) v u g3,

(4.41) w q on z l,

and the estimate

w=O Onz=O

(u,v, w) Iy <- CI (/,if, q)IZo"

Proof. We use the method of Lemma 3.2 and start with the case q 0. With un,
Vn, Wn, fn, and gn defined as before, we are led to solve (3.25)-(3.28). According to
their symmetries in the x direction, we can expand all functions involved into Fourier
series in x. For example, we have

m--0

Similar to (3.16), (4.34) implies

gln,x + g2n,,9 nr g3n 0 for n _> 1.

As in Lemma 3.2, it is sufficient to consider (3.25)-(3.27) when n _> 1. By taking
Fourier transform in the direction, we obtain the algebraic linear system

-mkl unto + i Vnm + n r Wnm faro,
(4.43) nrv’ + i w’ g,

--nr unto --mkl Wnm g2mn
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for each m _> 1. For m, n _> 1, since p < p. < kl, the determinant n2r2 -+-m2kl 2 +2of
the above linear system has no complex roots in the strip Jim z [_< p.. Now we can
use the Cramer’s rule and Lemma 4.3 to solve (4.43).

For n- 0 and m >_ 1, (3.25) and (3.28) lead to

-mkl Om + i fOre,

-im +mk ’g30,
which can be solved as in the previous paragraph. When n >_ 0 and m 0, from
(3.28), we are led to solve

(a.aa) 0g3n"

Note that (4.35) implies og3n (0) 0 for n _> 0. Thus Lemma 4.3 applies and uno are
determined.

With the help of the extra factor given in (4.36), we can show that

i--1

The rest of the proof is essentially the same as that of Lemma 5 in [1].
Now suppose that we are-given a y of the form (4.27) in which y0, a+, and

are within some bounded set. We can regard g(e 7) and (Lo + eL(y)} as operators,
depending smoothly on yo, a+, i+, and e. Since J(0) is the identity, J(e 7) is invertible
for e sufficiently small. Thus solving (4.30) is equivalent to solving

.(4.45) J(e r]) { Lo + eL (r/) }(u, v, w) (f, g/, q),

where

(4.46) (f, , q) J(e) ( (0, {,) ( L0 + e L1 (v]) }(u+/- v+/- w+/-) ).
Here the last term with =t= represents a sum of two terms. As a result of Lemma 4.5,
J(e 7) {n0-t-en (v])} is an invertible operator from Y onto Zo, provided e is sufficiently
small. To solve (4.45), it remains to show that (f, , q) defined above is in Z0. Let

(Lo + eL()}(u+/-,v+/-, w+/-) (f+/-,g+/-,q+/-).

As before, if we apply (a.15) to g and define +/-, then +/- satisfies (4.32) and, as in
(4.33), are divergences with respect to x and . Thus -- -+ -- defined in
(4.46) satisfies (4.34). Moreover, from (4.30), we see that g+/- defined above decay
rapidly in the direction. This implies

g3(x, , Z) dX O rl (, z)

for some function rl that decays rapidly in the direction. Consequently, (4.35) and
(4.36) hold and we have (f, , q) E Z0. Now, for e sufficiently close to zero, (u, v, w)
can be regarded as a function that depends smoothly on r], a+/-, 5+/-, and e through

(4.47) (u, v, w) J(e v]) { L0 + e L1 (v]) } )--1 (f, y, q),
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where (f, , q) is given in (4.46).
Now, because of (4.47), it remains to solve Bernoulli’s equation (4.26) as a non-

linear equation of the form

(4.48)

where

B(y, a+ 6+, ) + p 0,

(4.49) B(y, a+, 5+, e) y -/.
[1+e2 Vyl2]/2

e
(u + v w++ + ).

Here (0x, 0 0); y and (u, v, w) are defined as in (4.27) and (4.28), with (u, v, w)
given by (4.47). Let N be any bounded neighborhood of in piles+3/2 (F) R5 and re-

Hs-lgard B as an operator defined on N. First we point out that B ranges in p e (F).
Let (0, a+, 5+/-, e) be an arbitrary element in N. Note that

(4.50) V.
[1+e21 7 12] /2

Let f be the C function

Note that

1 + e2 /x2 :2 2 r/if2 ]1/2

+-
e [1 + e2r + e 0 r, ]

f(’l, T2) (1 + T12 + T22) 1/2"

d
f(T + hi, T2 + h2) f(T, T2) + -f(T + the, T2 + th2) dr.

oApply this formula with T1 (/+ +r/-), T2 0 (/ +r/), hi e r/ and h2 O Y0"
Since 0 pH+3/2(F), we have

f(ex, e0) f(T1,T2) +r2,

where r2 oH+/(F). By construction, the term

+

h compacg suppor in . Hence, ghe firsg erm in (4.50) can be rewrigen

where ra oH-/(r). We can rewrige ghe second germ in (4.g0) in a similar manner.
Next, on 1, we c wrige

( + +/= (+ ++ ++/+ (- +- +- +,
where r is in oH"+/(r). Now, since ghe symmegric doubly periodic waves sagis
Bernoulli’s equagion, ghe sum of all ghe germs wih sign h compac suppor in .
Hence, we have shown hag B rges in oH-/(r).
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When e 0, the y coordinate and the coordinate are the same since the stretch-
ing factor 1. Given phase shifts 5+/- such that sink2(6+- -) 0, v/* and a
determined by (4.18) and (4.13) in 4.1 satisfy

B(v/*, a, +, 0) / p O.

Let N be a sufficiently large neighborhood of (v/*, a, 6+, 0) in pH+3/2 (F) R5. In
what follows, we will apply the implicit function theorem for Banach spaces to solve
(4.48) for e close to zero. We will show that the Fr6chet derivative A of B with
respect to (v/, a+) at (r/*, a, 6+, 0) is an invertible operator from pH+3/2 (F) R2

to
When e 0,

(4.51) B(v/, a+ 5+, 0) fl 92 /+ 7 u,

where /is of the form (4.27) and (u, v, w) is determined by (4.2)-(4.6). As is pointed
out in (3.43), the terms r/+ in (4.27) now have the form

+/- a +/-() coskx cos k:( +/-)

when e 0. Given any amplitudes 5+ and 0 . r8+3/2 0----e (F), with written as

o ,).,() cos.,
m=0

we obtain

A(O, +;(x,)= E b(mkl,) (m;() cosmklx

+ a+ oo/ b(, )(n+) (,)
+ a- Oa- b(kl, )(r]-) (x, ).

HS-1/2Here is the Fourier transform in . We need to show that, for any g E p e (F)

(4.53) A(, +) g

has a unique solution depending boundedly on g. Assume that

From (4.52), the transform of (4.53) leads to

(4.54)
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and

[b(mkl, .)(m;] () m() for m 1.(a.)

Note that (4.12) and (4.54) are similar. As before, we set k2 and use

T [b(kl,*)(,T;] (x, k2)--,- [b(kl,.)(?-;] (x, k2)= (k2)cosklX

to form a line system for 5. Then by (4.11) and the sumption that sin k2(5+ 5-)
is nonzero, h can be determined in (4.13), and then the right-hand side of (4.54)
becomes a function that vanishes at k2. As in 4.1, the amplitudes 5 thus
determined arantee that the right-hand side of (4.54) also vanishes at -k2. As
a result of Corollary 4.2, we can now use Lemma 4.3 to solve (4.54) and (4.55) in
(4.7), (4.15). The solution (0, a) thus obtained can be estimated in (4.4) ad
(4.19). We obtain, in (4.21),

l I,+a/, +1 a+ I+la- 4 c Ig I,_/,.
The uniqueness of the solution follows a result of th above estimate.

Now, since the dchet derivativ A is invrtible, the implicit function theorem
ro Ban saes lies. s eut, te eit solution (,0(), ()) or (a.as)
in H+1() x R: for each sutciently close to zero, provided the he shis at
infinity i saris? sin(+ -) # 0.

By examining the above result more closely, we can construct thre-dimensional
exact steady water waves traveling along a vertical wall located on y 0, generated
by a partially localized pressure disturbance. Suppose that the pressure disturbance

H-IIp e (F) is an even function of u. Observe that an L: function v(x, U, z) is
even in if and only if its Fourier transform i(, , z) is even in . Similarly, v is odd
in if and only if i is odd in . Note that is ven in implies that each o the
() i (a.7) is een i . Since te runtio (,) is also even in roe ,
th solution of (.) is even in . For this re,on, we seet a surface elevation
ic is eve in U. ive su V,ee solve (a.)-(a.), te eutin (, ,)
would have , even in and v odd in . Consequently, we will need to use Sobolev
saces which seci? the symmetries in both the and direction. Let H’(fi) and
H(V) be dened . A ssit (, ), (, o), (o, ), o (o, o) s ue4 to i4ate
the symmetries in and . Similarly, we define subsaces of H(fi)and H’(). In
what follows, we will only point out the necessary changes; most of the construction
remains the same.

When e carry out the linear calculation in .1, since is even in y, we should
take

(4.56) a+ a- and 5+ -5-

in (4.8). As a result, (4.13) is replaced by

2ia+ sin k25+ (k2) / c,

where c is nonzero and pure imaginary. Since pl is real-valued and is even in y, we
have

p (k2) P(-k2) (k2).
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This implies is real-valued. Given i+ such that sink25+ 0, we can determine
a+ uniquely from (4.57). The rest of the calculation remains unchanged except that
we now have additional symmetry in the y direction. The estimate (4.21) shows that

Hs+3/2(r Because of (4.56), (4.17) provides a one-parameter family ofr/* is in p e,e

solutions of (4.2)-(4.6) with v vanishing along y 0.
As for modifying the construction in 4.2, first we need to replace function spaces

Y and Zby

4rs-b s-I-1 it.is-t-1Y {(u, v, w)e a"e,e (n) x aHo,o (t) x p--o,e (ft)’w(x, ), 0)= 0},
Z oH,e(a) oH2o,o(a) oH,e(ft) oHeS,o(a) o"e,e (r).

Again, let Z0 be the subspace of Z consisting of (f, , q) that satisfies (4.34)-(4.36).
Next, because of the symmetry in the ) direction, the function B in (4.49) can be

Hs+3/2 R3regarded as a function of r/ a+ /i+ and e from a neighborhood N in p e,e (F)
to pHI/2(F). Amplitude a- and phe shi - on the other side are determined
by (4.56). Consequently, when we solve (4.53), 5+ is determined by an equation that
is similar to (4.57). Finally, by applying the implicit function theorem, we obtain a
one-parameter family of exact solutions of (4.22)-(4.26). Note that these solutions
so satis

=o,

which is the boundary condition along the vertical wall. Now, if we accept the as-
sumption that the contact angle of the fluid with the wall is 90 by restricting the
solutions we just obtained to the domain {(x, y, z) y > 0, 0 < z < 1}, we obtain a
one-parameter family of exact steady waves traveling along a vertical wall.

5. Appendix.
Proof of Lemma 3.1. Let f(x) (1 +/ x2) x tanhx for x >_ 0. From (3.3), it is

easy to see that is a real root of b(kl, ) 0 if and only if (kl2 + 2)1/2 satisfies

(5.1) f(x) "), kl 2.

Thus we are led to investigate whether (5.1) has a positive root _> kl.
Clearly, we have f’(x) > 0 for any x > 0 and f(0) 0. Hence, given any real

number kl > 0, there exists a unique k > 0 such that f() -y kl 2. Note that

(5.2) f()-f(k1)-/k12-(l+/k12)kl tanh kl
-kl b(kl, O) tanh kl.

From the proof of Lemma 2 in [1], it is not hard to see that

(5.3) b(kl, O) < 0

b(kl,0) > 0

if kG < k < kT,
if 0 < k < kv or kT < kl.

Thus, when 0 < kl ( kc or kT ( kl we have f() < f(kl). This implies that the
only positive root of (5.1) is strictly less than kl and so b(kl, ) 0 has no real roots.
When kG < kl < kT,(5.2) and (5.3) imply (5.1) has a positive root : which is
As a result, k2 (c2 k12) 1/2 satisfies b(kl, k2) 0. The uniqueness of the positive
root k2 follows from that of k.



1178 TIEN-YU SUN

It remains to show that k2 > 0 is a simple root of b(kl, ) O. For any > 0,
note that

f kl2 / ")/k2 -t- b(k ) / tanh

This implies

where (k2 / 2)/2. It is easy to see that [04 f( V/ kl 2 + 2 )]=k. is nonzero.
Thus 04 b(k,) is also nonzero at k2. This completes the proof of Lemma 3.1.

Proof of Corollary 4.2. Let p be an arbitrary constant such that 0 < p < k. By
Lemma 4.1, for each m >_ O, b(mki, z) is analytic over the strip Im z I_< p. Moreover,
there exists a positive integer M such that

Ib(mk, z)l >_ C (m2kl2 T IRe z12)
whenever IRe z or m is larger than M. Hence, to prove Corollary 4.2, it suffices
to consider analytic functions b(O,z), b(k,z),...,b(Mkl,z) over the compact set
(/i :1 I-< M, I1 -< P}. Each of these functions can only have a finite
number of zeros in the compact set. Since max(k(,kT/2) < k < kT, among these
functions, Lemma 3.1 implies that only b(kl, z) has two real roots z +/- k2. Thus
there is a small enough p, > 0 such that all the roots of b(O, z), b(kl, z),..., b(Mk, z)
except +/- k2 lie outside the strip IIm z _< p, < k. This proves Corollary 4.2. D
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TRAVELLING WAVES IN PREDATOR-PREY SYSTEMS*
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Abstract. The existence of travelling wave solutions to reaction-diffusion equations which
model predator-prey systems is proven. Bistable waves, Fisher waves, and higher-dimensional ana-
logues of Fisher waves are found. Some of the systems investigated have bistable homoclinic waves.
The proofs use the Conley index, continuation, the connection matrix, and bifurcation theory in the
Conley index setting.

Key words, travelling wave, reaction-diffusion equation, predator-prey system, Conley index
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1. Introduction. This paper discusses the existence of travelling wave solutions
for systems of reaction-diffusion equations which model two-species predator-prey in-
teractions. In particular, the following two questions are addressed.

(Q1) Given general qualitative hypotheses on the nonlinear reaction terms, what
travelling waves occur?

(Q2) Given qualitative properties of a travelling wave, can one find nonlinearities
for which such a travelling wave exists?

From the very beginning it must be emphasized that we are far from being able to
give a complete answer to either 1of these questions. On the other hand, we are able to
provide partial solutions to both problems. What is perhaps more important is that
our results are obtained in a systematic manner which shows potential for applications
in both higher-dimensional and more complicated problems.

In some sense the techniques we use are not new. They are based on careful
choices of isolating neighborhoods and applications of the Conley index, a procedure
which in a very simple setting (one-species) was outlined by Conley [Co, Chap. IV.2.6].
That these ideas work for more challenging problems has been amply demonstrated
by now. For a sampling of these we draw the readers’ attention to the work of Conley
and Gardner [C-G] (a "simple" two-competing species model), Feinberg and Terman
IF-T] (a "complicated" two-competing species model), Mischaikow and Hutson [M-HI
(n-mutualist species), Mischaikow [Mi2] (two-mutualist and one-competitor), Gardner
and Smoller [G-S] (periodic wave trains via perturbation methods). Of particular note
for the problem we consider here is the work of Gardner [Ga], also on a predator-prey
system.

Our proof of existence uses techniques similar to those of Conley [Co], Conley
and Gardner [C-G], and Gardner [Ga]. As in the earlier work, we deform the original
system to a simpler one where the existence of travelling waves is shown by making
direct computations using the Conley index and related machinery (Theorem 2.1 and
4). A set is constructed in phase space which is an isolating neighborhood through-
out the deformation, and it follows that there is a travelling wave throughout the
deformation, and in particular for the original system. The major difference between

*Received by the editors May 16, 1991 accepted for publication (in revised form) January 5,
1993. This research was supported in part by the National Science Foundation.

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332.
SDepartment of Mathematics, SUNY at Buffalo, Buffalo, New York, 14214.
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our work and that of Conley-Gardner and Gardner is in the computations in the sim-
plified system. We use connected simple system arguments instead of the connection
index arguments of [C-G] and [Ga]. Thus we return to the ideas developed in Conley’s
monograph [Co]. Theorem 2.1 is weaker than the abstract theorem in [C-G] and [Ga],
but it suffices to prove existence of travelling waves both in the earlier work and in our
setting, and the necessary computations are simpler. In addition, we believe that this
is an improvement over previous work, since, as will be demonstrated in 4, we can
incorporate the connection matrix and transition matrix theory to obtain travelling
waves in a product system which we then continue back to the original system. We
believe that the continuation ideas developed in [Co], [C-G], and [Ga], combined with
the more powerful computational tools which have been developed, will yield many
useful results similar to those obtained in this paper.

Turning to the problem at hand, we will consider the following pair of reaction-
diffusion equations

(1.1)

where x, t E R and the #i (assumed > 0) are the diffusion coefficients. It is convenient
to state the hypothesis for (1.1) in terms of the reaction system

(1.2)
i2 u2g(Ul, U2).

H1. f, g C2, Of/Ou2 < 0 and Og/Oul > O.
H2. The zero sets of f and g, i.e., {u f(u) 0} and {u g(u) 0}, are as shown

in Fig. 1.1. In particular, {u f(u) 0} is given by a smooth curve p(ul) lying to
the right of the y-axis such that p’(ul) < 0 and p has a unique maximum at ul 1.
Similarly, {u g(u) 0} is given by a smooth curve q(u2) lying to the right of the
y-axis such that q’(u2) > 0 and q has a unique minimum at u2 2. Furthermore,
we assume that p and q intersect in four points with two intersections on each side of
the vertex of either curve.

fix, y) < 0 / \
g(

/ g(x, y) 0

2 % / g(x,y)>0

M
rg4 M2- fix, y) 0

FIG. 1.1

Fom H1 and H2 it follows that there are seven critical points for (1.2). We label
these as Mi, i 1,..., 7 and le
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H3. The critical points are hyperbolic.
This implies that M1, M2, and M3 are attractors, Ma, Ms, and M6 are saddle

points, and Mr is a repeller. Recall that a travelling wave for the system (1.1) is a
solution of the form

+ + +
where is called the wave speed. If we set T X + Ot and let’-- d/dT, then (1.1)
reduces to the four-dimensional system of ordinary differential equations,

Notice that the critical points of (1.2) are in 1-1 correspondence with those of (1.3).
More precisely, the set of critical points of (1.3) is given by (M(i) (Mi, 0) e R4

i= 1,...,7}.
Typically, when one speaks of travelling wave solutions one incorporates the

boundary conditions

(1.4)
lim (u(r), v(r)) (M, 0),

T--+-- CXD

lim (u(r), v(r)) (Mj, 0).

We shall refer to such a solution as an M(i) -- M(j) wave. In analogy with the
one species problem (see Fife [Fi, pp. 106-109] for example) if i,j 1, 2, 3 we shall
refer to these waves as bistable travelling waves. From the point of view of stability
(under the dynamics of the partial differential equation (1.1)) these solutions are
of special interest. Another class of waves which have been extensively studied are
Fisher waves. For the specific system we are considering here these waves satisfy the
boundary conditions (1.4) with i 4, 5, 6 and j 1, 2, 3. Because we are studying
a system where the reaction dynamics is nontrivial, "new’’2 types of waves appear.
From the point of view of the dynamics of the partial differential equation (1.1) it
appears that the most relevant are those that satisfy the boundary conditions (1.4)
with i 7 and j 1, 2, 3. We shall refer to these a HDF waves (higher-dimensional
Fisher waves).

As will become clear in 8, we can, for high wave speeds, give a fairly complete de-
scription of the Fisher waves and HDF waves which occur under only slightly stronger
hypotheses than H1-H3. Unfortunately, we cannot treat the bistable waves in this
generality.

To motivate the additional hypotheses that we are forced to make consider the
existence of an M(1) - M(2) wave. Observe that ((u2, v2) (0, 0)} defines a two-
dimensional invariant subspace for (1.3) on which the dynamics are determined by

/$1 Vl
(1.5)

1/1 Vl Ulf(UI, 0).

1This in no way implies that we claim to understand the stability properties of the waves whose
existence we are proving. For techniques which might be applicable to some of our results, see [G-J].

2In this context new means that we have not seen it addressed in the literature.
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Now it is easy to check that transformations vl -vl, 0 - -0, and T - --T leaves
(1.5) unchanged (in fact it leaves (1.3) unchanged). Thus there is no loss of generality
in restricting our attention to 0 _> 0. To simplify the presentation we shall actually
search for waves that satisfy the slightly stronger assumption condition that > 0.

Define

(1.6) H(ul, vl) V 2t- Ulf(Ul, O) dul.

Then along solutions to (1.5),

dH
(1.7) d--- Ov >_ O.

Thus, a necessary condition for the existence of an M(1) --. M(2) wave is the assump-
tion

(H4) ulf(ul, O) dul > O.

This is also a sufficient condition as the following theorem indicates.
THEOREM 1.1. Given H1-H4, there exists an M(1) --, M(2) wave for some wave

speed 12 > O
This is by now a classical result (see Fife [Fi], Conley-Gardner [C-G], or Terman

[Te], for instance). For a proof in the spirit of the rest of the results of this paper
see Conley [Co]. Since it is obvious how to modify the assumptions of this theorem
to prove the existence of an M(2) M(1) which lies in ,the (u2 v2 0} invariant
plane we shall not explicitly discuss this problem. This comment holds throughout
the rest of the discussion.

Remark. Let (u(t), v(t)) be a travelling wave solution, and assume that a maximal
interval of monotonicity for Ul(t) is [to, tl]. Then we immediately obtain

#1 viii1 dT Ov dT ulvf(u, u2) dT.
to

Using the monotonicity, we observe that this integral can be parameterized by u, i.e.,

0 1 V21 dT- ulf(/,1, u2(?l))dul,

where c ul(t0) and f u(tl). For example, using the wave M(1) -. M(2), this
reduces to

uls(Ul,
#1 Lc 0V21 dT

and H4 clearly implies that
0>0.

Although this argument is trivial, it will be repeated numerous times in various forms
to guarantee that the waves considered have positive wave speed.
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a u()

a

FIG. 1.2. M(1) M(2) wave from Theorem 1.1.

It is enlightening, perhaps, to consider what the M(1) -- M(2) waves of Theorem
1.5 look like in terms of the function ul (T). See Fig. 1.2.

We now turn to the first new result, namely the existence of an M(2) -- M(3)
wave. In this case there does not exist a simple two-dimensional invariant subspace,
and hence we are forced to work with (1.3). The strategy in this case involves the
following three steps.

1. Homotope the four-dimensional system to a system with an invariant two-
dimensional subsystem on which the dynamics are qualitatively the same as (1.5).

2. Use the proof of Theorem 1 to conclude the existence of a wave speed for
which the heteroclinic orbit occurs for the two-dimensional system.

3. Homotope back to the original problem and conclude that for some wave
speed the travelling wave exists.

Since we will be using Conley index techniques, the key to this procedure is
the existence of an isolating neighborhood throughout the homotopy. The following
hypotheses will be used to guarantee this. Let a and be defined by Fig. 1.3. We
assume

(H5) p(l) > a,

(H6) sg(a2, s) ds < O.

Finally, we add a hypothesis to guarantee that the wave speed is positive:

b3
(H7) sg(a3, s) ds > O.

THEOREM 1.2. Given H1-H3, H5-HT, there exists an M(2) --. M(3) wave with
wave speed 23 > 0.

In Fig. 1.4 we indicate what the M(2) M(3) wave of Theorem 1.2 looks like.
Note that there are two possibilities: (a) where the eigenvalues of (M3, 0) are real and
(b) where the eigenvalues are complex.

The next wave whose existence will be demonstrated is M(3) --. M(1). This
result is complicated by the fact that there does not appear to be a natural two-
dimensional system towards which one can homotope. Thus instead we will homotope
to a simple four-dimensional system for which the nonlinearities decouple. Again we
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M

(a2’ ct)

M6

M5

M1
rM4

FIG. 1.3

-a

(a)

-a

(b)

FIG. 1.4. M(2)-- M(3) wave from Theorem 1.2.

need hypotheses to guarantee the existence of isolating neighborhoods and a positive
wave speed.

(H8) sf(s, b3) ds > O,
4

ba
(H9) sg(a4, s) ds > O.

THEOREM 1.3. Given H1-H3, H8, and H9, there exists an M(3) --. M(1) wave

for some wave speed 31 > O.
Figure 1.5 indicates what the function uI(T) looks like for the M(3) -- M(1)

wave of Theorem 1.3. Again there are two possibilities depending on whether the
eigenvalues of (M3, 0) are real (a) or complex (b).

Theorems 1.1, 1.2, and 1.3 are partial answers to question Q1. We shall now
describe our results, involving Q2.
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ra2

a3

(a)

a2

(b)

FIG. 1.5. The M(3) M(1) wave o.f Theorem 1.3.

We begin by viewing (1.1) as a parameterized family of equations, namely

(1.8)

where A E [0, 1]. Furthermore, we assume that the hypothesis H1-H9 are satisfied
for all values of A. In this case Theorems 1.1, 1.2, and 1.3 apply and hence for each
A E [0, 1] there exist positive wave speeds, 02 2)’3, and 03)’1, for which corresponding
travelling waves occur. We would like to show that for some choice of nonlinearities
additional bistable waves occur; e.g., M(1) --+ M(3), M(2) -- M(1), M(3) --+ M(2),
also with positive wave speed.

Unfortunately, at this point an additional complication arises, namely, the possi-
bility that the wave speeds are not unique. It is well known that the M(1) --. M(2)
waves which satisfy (1.5) occur at a unique positive wave speed 2, however, there are
no corresponding results known regarding 2)’3 and 831 For each fixed A, let 23 denote
the fastest wave speed and 0__23 the slowest wave speed for which an M(2) -- M(3)
travelling wave occurs for (1.8). By our assumptions 0 < 23 < 23 < oc. Let
I23 [-023, 31 c (0, ) and I3X1 [_31, 3Al].

THEOREM 1.4. Assume that .for )t O, and i # j # k # i, O__ik > Oj and for
)t 1, O-ik < kj, there then exists an open interval A c [0, 1], such that .for e A,
there exists an M(i) - M(j) wave which passes close to (Mk, O) and which has wave
speed O > O.

It should be noted that the proof of this theorem works equally well if we assume
that 0k < O_j and _fleck > 1kj"

The implications of this theorem is most easily understood via Fig. 1.6, where
the case i 2, j 1, and k 3 is shown. Again there are two cases depending on
the nature of the eigenvalues at (M3, 0). These drawings should be contrasted with
that of Fig. 1.2.
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a2

(a)

u()

(b)

FIG. 1.6. M(2)-- M(1) wave of Theorem 1.4.

Finally, we shall prove that for some set of nonlinearities there exist homoclinic pulse
waves. Recall the notation of Theorem 1.4. In particular, for A E A, let denote
the wave speed of the M(i) M(j) wave of Theorem 1.4 and let Oj denote the wave
speed of the M(j)---. M(i) wave of Theorems 1.1, 1.2, and 1.3.

THEOREM 1.5. Let the interval [a, b] c A, and assume that

_
> 0 and 0 <. Then there exists an open inteal c A, such that for A there exists an

M(i) M(i) wave which passes close to (Mj, O) and (Mk, O) and which has wave
speed O > O.

Again, the implications of this result are explained in Fig. 1.7 (where 2), and
depends on the eigenvalues at (M3, 0).

A large part of this paper is concerned with proving Theorems 1.2-1.5. In 2, the
relevant definitions and theorems from the Conley index theory are presented. The
proofs of Theorems 1.2 and 1.3 appear in 3 and 5, respectively. However, the latter
result depends on understanding a complicated homotopy from a product system to
the desired system. This is discussed in 4. In 6 the proofs of Theorems 1.4 and 1.5
are presented. This is followed in the next section by a construction to show that the
abstract algebraic results of 6 are realizable for our particular cls of predator-prey
systems. We include a discussion in an attempt to convince the reader that these
techniques are, in fact, applicable to a wide variety of travelling wave problems.

In 8 we return to the question of Fisher waves and HDF waves. The key to the
existence proofs are two abstract results, Theorems 8.1 and 8.7. Since the theorems
make it trivial to determine the existence of certain waves, the emphis of this section
is on explaining how they can be applied rather than formal existence theorems for
the predator-prey system. Finally in 9 the proofs of Theorem 8.1 and Corollary 8.2
are presented.

2. Definitions and notation. This section presents some of the definitions,
notations, ideas, and theorems related to the Conley index theory. However, it is
assumed that the reader is already familiar with these ideas (see Conley [Co], Salamon
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a3

(a)

a2

a3

(b)

Fro. .7. M()-- M() ,, o Tor, 1..

u()

[Sa], Smoller [Sm], Franzosa [Fr], or Moeckel [Mo]).
Let R x X --+ X be a flow on a locally compact space. Given a compact set

N, let
NT {x E N I([-T,T],x) C N}.

N is called an isolating neighborhood if there exists T > 0 such that NT c int(N). Let
N f’T>0 NT" It is easy to check that N is an invariant set, i.e., (R, Nc)
N. Clearly, N is an isolating neighborhood if and only if x E N implies x ON.
An invariant set S is called isolated if there exists an isolating neighborhood N of S
such that S N. We shall also use I(N) to denote N.

A simple but, as we shall see, useful decomposition of an invariant set S is that
of an attractor-repeller (A-R) pair. Let co(U) and w*(U) denote the omega and alpha
limit sets of U, respectively. A c S is called an attractor in S if there exists a
neighborhood U of A such that co(U N S) A. The dual repeller of A, denoted by
A* is defined by A* {x S lco(x V A q}}. The pair (A,A*) make up an A-R
pair. Notice that given an A-R pair decomposition of S, if x S then x A t2 A*
or co(x) c A and co*(x) c A*, i.e., S is made up of the attractor A, its dual repeller
A*, and connecting orbits from A* to A. Thus, if one lets C(A*, A) denote the set of
connecting orbits from A* to A, then S A t.J A* t_) C(A*, A).

Since in our proof the complicated four-dimensional problem will be homotoped
to a simple two- or four-dimensional problem we need to discuss what is meant by
continuing isolating neighborhoods and isolated invariant sets. Consider a parame-
terized family of flows (t, x, a) Ca(t, x), where a [0, 1] is the parameter value.
Define the parameter flow to be (I): R x X x [0, 1] X x [0, 1] by

Let N denote an isolating neighborhood for the flow . One says that the isolating
neighborhood N continues to NO if there exists N an isolating neighborhood of (I), the
parameter flow, such that NIx {0} NO and NIx {1} N. Similarly, if S denotes
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an isolated invariant set under , then SO continues to S1 if there exist corresponding
isolating neighborhoods which continue.

For our applications, the homotopy we have in mind takes the form

(TWO,a

where a E [0, 1] is the homotopy parameter. It will always be assumed that at a 0
we have the system of interest, namely, (1.3), and at a 1 we have a simpler system,
i.e. one which we can analyze directly. The corresponding family of reaction systems
is given by

il Ulfer(Ul, U2),
(Rcr)

i2 u2ga(ul, ?2).

We now state an abstract theorem which will be used in 3 to prove Theorem 1.2,
and a modification of which shall be used in 5 to prove Theorem 1.3.

Assumption 1. For the reaction system (R1) there exists a one-dimensional at-
tracting invariant affine subspace L c Rn. Furthermore, the dynamics on L are as
in Fig. 2.1, i.e., the set of bounded solutions consist of the hyperbolic critical points
(A, B, C} and the heteroclinic connections C -, A and C B.

We now state the assumption concerning the homotopy from a 1 to a 0. Let
A (A, 0), S (S1, 0), and C (C, 0).

Assumption 2. A and Ba continue as critical points for (R) and N continue as
isolating neighborhoods for (TWo,) such that (B,Ag) is an attractor-repeller pair
for (gc,), the invariant set isolated by N under the flow generated by (TW,).
Furthermore, for a 1, if there exists an A -- B solution to (TWc,) for some value
of c, then the connecting orbit belongs to (Nc,1).

A C B

FIe:. 2.1 The dynamics on L.

THEOREM 2.1 [M-H, Thm. 3.1]. Given Assumptions 1 and 2, there exists a
bistable travelling wave from Ao to Bo for some wave speed OAB.

As will be seen most of 3 is dedicated to verifying Assumption 2.
Assumption 1 is equivalent to finding an invariant two-dimensional subspace for

(TW,1) on which the dynamics is qualitatively equivalent to that of (1.5). For proving
the existence of the M(3) - M(1) wave, this does not appear to be possible. Thus
we need a weaker version of Assumption 1. This will be discussed in 4 and requires
connection matrix and transition matrix techniques. For these purposes we shall adopt
the following conventions.

The Z2 homology Conley index of S is denoted and defined by

CH,(S) :-- H.(N/L, [L]; Z2),
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where (N,L) is an index pair for S. Given a Morse decomposition of S, M(S)
(M(i) i E (P, >)}, where P is the indexing set for the Morse sets M(i) and > is a
strict partial order on P, recall that the connection matrix is a linear map

A )CH,(M(i)) )CH,(M(i)).
iEP iEP

We shall always take the direct sum according to a nonincreasing order in P. This
has the effect of making A into a strictly upper triangular matrix.

For (N, L) an index pair for S, the homotopy type of the pointed space (N/L, ILl)
is usually referred to as the Conley index of S and is denoted h(S). There exists,
however, a finer version of the index which will be used in the proof. A connected
simple system consists of a collection Io of pointed spaces along with a collection Im
of homotopy classes of maps between these such that:

1. hom(X, X’) ([f] e [X,X’] If] e Ira} is nonempty and consists of a single
element for each ordered pair X, X of spaces in Io;

2. if X, X’, X" e Io, If] e hom(X, X’), and [f’] e hom(X’, X"), then [f’ o f]e
hom(X, X");

3. hom(X,X) ([1x]} for all X e Ira.
Recall ([Co], [Sa]) that the Conley index of S forms a connected simple system

where Io ((N/L, ILl) (N,L) is an index pair for S} and I, consists of the flow
defined maps between the elements of Io. The connected simple system of the Conley
index of S is denoted by I(S). The following result ([Co], [Sa]) is crucial to our
analysis.

PROPOSITION 2.2. If (Ac, Ac*) is an attractor repeller pairfor Sc which continues

for c e R and Sc, A, J A,* when i O, 1, but I(So) g I(S1), then for some
c (co, cl) there exists a connecting orbit from A* to Ac.

It should be noted that the proof of Theorem 2.1 uses this proposition. In fact,
a cursory reading of the proof [M-H, Appen.] shows that if the bistable wave is found
via Theorem 2.1 then the connected simple systems at large and small wave speed
differ.

3. The M(2) --, M(3) travelling wave. In this section we prove Theorem 1.2,
i.e., we show that there is a M(2) --, M(3) travelling wave provided assumptions
H1-H3 and Hh-H7 are satisfied. Recall that c and - are defined in Fig. 1.3. Choose
> a such that f(l,a) > 0 (we can do this by Hh). Choose h > a2 such that

f sg(h, s)ds < 0 and such that ( (x, l) I1 -< x _< h ) lies in the region (g < 0}. We
can always do this by the assumptions on g. Choose k and m such that ( (x, k) I1 <_
x_< h } lies in the region (g>0}, and((x,y) I -<x-< h, 0 _< y _< m } lies in the
region {g < 0}.

To prove Theorem 1.2, we use Theorem 2.1 and continue to a system where g is
unchanged and f(x, y) is independent of y. See Fig. 3.1. Clearly one can choose a
deformation so that the assumptions hold for (TW,) for a [0, 1). In particular,
the integral in assumption H7 can be bounded throughout the deformation, so by the
Remark following Theorem 1.1 the wave speed will be bounded away from zero. For
each a we will construct an isolating neighborhood which contains only the critical
points M(2) and M(3), plus any connecting orbits between the points. The construc-
tion we make will also construct an isolating neighborhood for a 1, so we can apply
Theorem 2.1 and conclude the existence of an M(2) M(3) travelling wave.

Let N3 [1, h] x [k, l], Na [1, h] x [m, 1], and N5 [, h] [-e, m] for small
positive e. These will be the u projections of our isolating neighborhood. For K, e > 0,
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FIG. 3.1

define
N3 N3 x [-K,K] x [-K,K],

/94 N4 x I-K, 0] x [0, K],

N5 N5 x [-K,K] x [-K,K],

N,,, (N Na N) \ B(M(5)).

See Fig. 3.2. Via a series of lemmas we will show that for K big enough and small
enough, NK,, is an isolating neighborhood.

d h

FIG. 3.2
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LEMMA 3.1. For any K, I(N3)- M(3).
Proof. Suppose there is some nonconstant orbit which stays in N3 for all time.

Let B { (Ul, u2) xl < u < x2, y _< u < y2 } be the smallest rectangular box
containing the u-projection of the orbit. Since B is the smallest such box, some-
where on the top edge there is a point (u,y2) such that when the u-projection of
the orbit passes through the point, v2 0 and ?)2 < 0. At this point we must have
-y2g(u, y2) _< 0, i.e., g(ul, y2) _> 0. It follows that g(x2, y2) _> 0. By looking at the
other edges of B, we can conclude that f(x2,y) > O, g(x,y) < O, and f(x,y2) >_ O.
Assumption H5 plus the concavity assumptions on p and q make it impossible for such
a closed box to exist, so there is no recurrent orbit, and the only orbit which stays in
N3 for all time is the critical point M(5).

LEMMA 3.2. For any K, I(Nh) M(2).
Proof. We first show I(N5 [-g,g] [-g,g]) is contained in the invariant

plane (u2 v2 0}. If v2 0, then #2?)2 -u2g(u), and since g(u) < 0 in Nh, the
sign of ?)2 is the same as the sign of u2 when v2 0. Thus if u2 > 0, and v2 > 0, v2
cannot change sign along the forward orbit and the orbit leaves N5 in forward time.
If u2 > 0 and v2 < 0, then the orbit leaves N5 in backward time. If u2 < 0, then a
similar argument shows that the u-projection of the orbit leaves the bottom of N5 in
one direction or the other. Finally, if u2 0 and v2 0, then there are points on the
orbit with u2 0, so the orbit must leave.

Notice that the proof of Lemma 3.2 actually shows that for an M(2) to M(3)
connecting orbit, v2 > 0 in N5 [-g,g] [-g,g]. By Lemmas 3.1 and 3.2, and
the fact that u acts as a Lyapunov function in the region with u-projection in Na,
the only orbits which can stay in Ng,e for all time are connecting orbits from M(2)
to M(3). To show that Ng,e is an isolating neighborhood, we must show that no
connecting orbit is internally tangent to Ng,e. For sufficiently large K, if vi K,
then the u-projection of the orbit leaves N3 t.J Na t_J Nh, so no internal tangencies can
occur at vi K. Also, no orbit can be internally tangent to the top of N3, the bottom
of Nh, or the left or right side of the Ni. If u2 l, for example, and v2 0, then the
orbit leaves immediately. If v2 0, then #2?)2 --u2g(u) > 0 so the orbit is externally
tangent. The argument which shows that orbits tangent to the bottom and sides are
externally tangent in u-space is similar.

LEMMA 3.3. If (u, v) is a point on a connecting orbit in K, and u e Na, then
vi 0 for i 1,2.

Proof. First assume that u E int(Na). If v 0 and ?)1 0, then the orbit
leaves NK immediately in one direction or the other. If v 0 and ?) 0, then
-uf(u) O, and since ul > 0 in gg, we must have f(u) O. Thus if (u, v) is on
connecting orbit and v ?) 0, then u must lie on the segment of (f 0} between
M2 and M3. At this point we have

#1)1 07)1 Vlf(Zt) UlVlfl (t) tlV2f2(U) --UlV2f2(t).

(Here fl denotes the partiM derivative with respect to the first argument.) If v2 > 0,
then i1 > 0 and the orbit leaves in forward time. If v2 0, then ?)2 0 (or else we’re
at a critical point), so the orbit leaves in one direction or the other. Thus Vl cannot
be zero.

If v2 0 and ?)2 0, then the orbit leaves immediately in one direction or
the other as noted above. If ?)2 0, then g(u) O. Parameterize time so that
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(u, v) (u(0), v(0)). Since v2 _> 0 we can parameterize the orbit by u2. We get

The first inequality follows from the fact that gl > 0, and the integral in the scond
term of that line is negative by assumption H6. This chain of inequalities is impossible,
so (u, v) cannot be on a connecting orbit. We have thus proved the lemma for the
case u E int(Na).

If u is on the left or right edge of Na and vl 0, then the orbit leaves Ng,e in
both directions. If v2 0 and v 0, then the orbit leaves Ng,e in one direction. If
u E Na N Nh, i.e., if u2 m, and v2 0, then 02 > 0, so the orbit leaves in backward
time. If u2 m, and v 0, then #101 -uf(u). If f(u) < 0, then the orbit leaves
NK, in forward time (since v2 > 0). Similarly, if f(u) 0, then ii -uv2f2(u) > 0
so the orbit leaves. If f(u) > 0, then ul < a2, and if we follow the backward orbit,
it moves in the direction of decreasing ul (i.e., v > 0). This cannot change unless f
changes sign (which can only occur of the backward orbit exits N5 to the left), or u
changes sign, which by the remark following the proof of Lemma 3.2 cannot occur on
a connecting orbit. Thus (u, v) is not on a connecting orbit if u2 m and vl 0.
The argument for u Na N N3 is similar.

We now have shown that the only possible internal tangencies can come from
connecting orbits which are close to the rest point M(5). The next lemma states that
orbits cannot come too close to M(5).

LEMMA 3.4. There is an e > 0 such that if
B(M(5))

Proof. Suppose not. Then there is a sequence en --* 0 and points (un, vn) on
connecting orbits from M(2) to M(3) such that (u=, v,) e S= (M(5)). It follows that
there is a connecting orbit (u(t), v(t)) from M(2) to M(5) (since ul is a Lyapunov
function). We can again use u2 as a parameter along the orbit and we obtain

This is a contradiction.
Putting together Lemmas 3.1-3.4, it follows that we have an isolating neighbor-

hood for each a during the deformation, so by Theorem 2.1, there is a M(2) to M(3)
travelling wave, and the proof of Theorem 1.2 is complete.
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H(ul, 0)

2

FIG. 4.1

4. The product system. In this section we will analyze the existence of a
bistable travelling wave for a very simple system. The purpose of this analysis is to
provide a system to which (1.3) can be homotoped in order to prove Theorem 1.3.

Consider the product system

(po)

I Vl

/t2 --V2

1i31 Or1 Ul h(ul
2/2 0V2 u2h(u2),

where 0 > 0 and define H :IR2 IR by

fUl /U2H(ul, u2) h()d + h() d.

Furthermore, assume H(ul, 0) is as in Fig. 4.1, i.e., it has exactly three nondegenerate
critical points at Ul 0,1,2 and it takes the values H(0,0) 2, H(1,0) 0 and
H(2, 0) 1.

Observe that if we define

7-l(u, v) 1/2 (v, v) + H(u),

then dT"l/dT O(v, v), i.e., 7 acts as a Lyapunov function for (po). Fig. 4.2 indicates
the (Ul, u2) coordinates for the set of critical points of (po) and their respective values
under T/.

Observe that the u2-axis defines an invariant two-dimensional subspace for the
system (po). Let C3 equal the set of all bounded orbits lying in the space u v 0.
One can check that C3 is an isolated invariant set.
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’B3

C

S

,C2 u

FIG. 4.2

Let S denote the set of bounded solutions to (p0), then S is an isolated invariant
set and

’Z2 if n-2,CH, S)
0 otherwise.

A Morse decomposition of S is given by

AA(S) {A, Bi, Ci i 1, 2, 3}.

Furthermore, 7-/and the fact that (PO) is a product system implies that the following
is an admissible order on

A > Bi > B3 > Ci > C3,

where i 1, 2. A simple computation leads to the Conley indices of the Morse sets.
In particular,

Z2 if n 4,CH,(A) 0 otherwise,

22 if n 3,CHn(Bi) 0 otherwise,

[Z2 ifn=2,CH,(C)
0 otherwise.

We now wish to compute the connection matrices of J4(S) for 0 small and large. For
large, the dynamics of (Pe) are approximated by that of the reaction system .(see

8)
ii Ulh(ul ),
i2 u2h(u2).

It is left to the reader to check that the appropriate connection matrix in this
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setting is
C3 C2 C1 B2

Ca 1
C2 1
C 0

Ao= B3
B2
B1
A

For 0 < 0 << 1, the connection matrix is given by

0 0 0
1 0 1
0 1 1

AO

B2 B1
1 0
0 1
1 1

A

This is easily obtained by comparing the dynamics of

with that of

//,I Vl

#1/)1 :OVl

1/1 -ulh(Ul).

(For more details see Mischaikow [Mill.)
Since T/ acts as a Lyapunov function for all 0 E (0, oc) and since the Morse

decomposition is valid for all these values of 0, there exists an upper triangular degree-0

(1 x y
0 1 z
0 0 1

T

isomorphism

1 a b
0 1 0
0 0 1

which satisfies the equation (see Franzosa and Mischaikow IF-M])

A0T + TAoo 0.

This implies that x y 1. Now a result of McCord and Mischaikow [M-M] implies
the following.

PROPOSITION 4.1. The connected simple system for the attractor repeller pair
(C3, el) differ at 0 oc and 0 O.

Observe that because (po) is a product system it is easy to check that S c [0, 2] x
[0, 2] x IR2. Thus, changing the dynamics outside a neighborhood of [0, 2] x [0, 2] x IR2
will have no effect on Proposition 4.1 as long as one restricts attention to the invariant
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set inside [0, 2] x [0, 2] IR2. Therefore, we claim that Proposition 4.1 holds for the
following system

2 V2

61 eVl Ulhl (Ul, u2),
i2 Ov2 u2h2(ul, u2),

where hi(u1, u2) h(ui) for (Ul, u2) in a neighborhood of [0, 2] [0, 2] and the zero
sets for the functions are as shown in Fig. 4.3.

u

B C

C2

FIG. 4.3

Now recall, that the Conley index is stable under perturbations. Thus Proposition
4.1 holds for the system

’1 Vl,

?2 V2

i)l OVl Ulfl(ul, U2),
i)2 Or2 u2gl(Ul, U2),

where fl is a perturbation of hi and gl is a perturbation of h2 such that hypothesis
H1-H3, Hh, H8-H9 are satisfied. The existence of such fl and gl is clear when .one
notes that one can choose h such that Hh, H8, and H9 are satisfied for system (p0).

5. The M(3) M(1) travelling wave. In this section we show that there is
a M(3) - M(1) travelling wave. Choose l, n, d, r, and h as in Fig. 5.1, i.e., the box
with corners (d, n), (d,l),(r, n), and (r, 1) has its left side in the region (f > 0}, its
right side in the region (f < 0}, its top in the region (g < 0}, and its bottom in the
region (f > 0}. Also, choose r < ah, and n > b6. Choose c with 0 < c < aa such that

> 0, > 0, >
To prove Theorem 1.3, we use the strenhened version of Theorem 2.1 in which

we homotope the system to a product system discussed in 4. See Fig. 5.2. As
usual, we let a denote the continuation pameter, with a 0 the original system,
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d

FIG. 5.1

and a 1 the system of Fig. 4.3. Clearly one can choose a deformation so that the
assumptions hold for a [0, 1). In particular, the integrals in assumptions H8 and
H9 can be bounded away from ero, so by the remark following Theorem 1.1, the
speeds of any M(3) --+ M(1) travelling waves will be positive. For each a we will
construct an isolating neighborhood which contains only the critical points M(1) and
M(3), plus any connecting orbits between the points. The construction we make will
also construct an isolating neighborhood for 1, so we can apply Theorem 2.1 and
deduce the existence of an M(3) --+ M(1) travelling wave.

f(x, y) 0

FIG. 5.2

For e > 0 define

N2 [c, d] x I-e, 1],
N3 [d, r] x In, 1],
N4 [d, hi x I-e, hi.

For K, e > 0, define/1 N1 x [-g,g] x [-g,g], N2 N2 x I-K, 0] x [-g, 0],
/3 N3 [-g, K] x I-K, g], 4 N4 [-g, K] x [-g, 0], and set

NK N1 t.J N2 t2 N3 t_J N4,
gg, (N1 U N2 J N3 t2 N4) \ (B(2) t_J S(4)t2 B(5) t_) B(6) U S(7)).
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To prove Theorem 1.3, we will show that for K sufficiently large and e sufficiently
small, NK,e is an isolating neighborhood for any positive . We will use several lemmas
in the course of the proof.

LEMMA 5.1. For any K, I(N3) M(3).

Proof. The proof is the same as the proof of Lemma 3.1. [:]

LEMMA 5.2. ForK su.ciently large, N1 is an isolating neighborhood and I(N1) c
{u v 0}.

Proof. We first show that every boundary point of N1 leaves in forward or back-
ward time. For large K, if u E N and Ivil K for i 1 or 2, then the orbit leaves
N. If u c and v 0, then the u-projection of the orbit leaves N1 immediately
in forward time if vl > 0 and in backward time ifv < 0. Ifu candv 0,
then #1i -ulf(u) > 0, so the orbit leaves 1 in both forward and backward time,
i.e., the orbit is externally tangent. A similar argument for the other sides of N1, i.e.,
u -e, u2 -e and u2 h, establishes that N is an isolating neighborhood.

To see that I(N) c (u vl 0}, first suppose that u > 0 and v 0. Then
#i -ulf(u) > 0, i.e., v can only change from negative to positive and in fact,
if v _> 0, then Vl is increasing. So if Ul > 0 and v >_ 0, then the u-projection of
the forward orbit leaves N to the right (unless it leaves via the top or bottom first).
Similarly, if v < 0, then vl must stay negative in backward time, so the u-projection
of the backward orbit leaves N. Thus if u > 0, the u-projection of the orbit leaves
N1 in one direction or the other. If Ul < 0, a similar argument shows that the orbit
exits to the left (in forward time if v _< 0 and in backward time if v > 0). Finally if
Ul 0 and vl 0, then the orbit contains points with nonzero u so the u-projection
of the orbit leaves N, and it follows that I(N) c {u vl 0}. l

The argument used in the second paragraph of this lemma actually shows that if
u2 < 0 for any orbit, then/$2 must stay negative on either the entire forward or entire
backward orbit, so any orbit with u2 < 0 somewhere on the orbit cannot be contained
in g,e.

Lemmas 5.1 and 5.2, plus the fact that V2 _( 0 in N2 and Na, imply that any
nonconstant orbit - which stays in NK,e for all time and is not in the invariant subspace
(u v 0} must have w() c {u v 0} and w*() M(3). To show that
Ng,e is an isolating neighborhood, we must show that no connecting orbit in NK,e is
internally tangent.

LEMMA 5.3. Suppose (u, v) is on a connecting orbit in NK (for any K) with
u N2. Then vl 0 and v2 O.

Proof. To prove this, we will assume u N2, vi 0, and show that (u, v)is
not on a connecting orbit. First suppose u int(N2). If v2 0 and 02 0, then
the orbit leaves immediately in one direction or the other. If v2 02 0, then
#2/i2 -u2vg(u). If u2 _< 0 then the orbit cannot be a connection in Ng,e, so
assume u2 > 0. Then ii2 > 0, and the orbit leaves immediately in forward time unless
v 0. If v 0 and 0, then the orbit leaves immediately in one direction or
the other, and if Vl 1 0, this combined with v2 1)2 0 implies that (u, v) is a
critical point. This finishes the case u int(N2), v2 0.

If u e int(N2), vl 0 and 3 0, then f(u) 0 and we may assume u2 > 0.
Assume time is parameterized so that T 0 at (u, v) and T to < 0 when the orbit



TRAVELLING WAVES IN PREDATOR-PREY SYSTEMS 1199

enters N2. If we integrate #lVl/)l along the orbit segment inN2 we get

To get the second line, we parameterize the path by Ul which we can do since Vl < 0 in
N2. The inequalities come from the fact that f2 > 0 and H9. The resulting inequality
is absurd, so we cannot have u E int(N2), vl 0, and 01 0.

If u2 l, i.e., u is on the top boundary of N2, and if v2 0, then )2 > 0, so
the orbit leaves in both directions. If.u2 -e, then the orbit leaves as noted in the
remark after the proof of Lemma 5.2. If ul c and vl 0, then 01 < 0, so the orbit
leaves in both directions.

Suppose ul c, u2 z, and v2 0. If 3’ c Ng,e, then vl < 0 as noted above.
#2)2 -u2g(u). If g(u) > 0, then 2 < 0, so the orbit leaves g, in backward time.
If g(u) > 0 and (c,z) lies above the {g > 0} region, then 2 > 0 so v2 is positive
in forward time. In the region (0, c)x [z, oc), g(u) < ,0, so if v2 0, then 2 > 0,
i.e., v2 cannot change from positive to negative.on the forward orbit (unless the orbit
crosses {Ul c} again, in which case it leaves g,e). Since w(3’) C {ul vl 0}
and the flow on {Ul Vl 0} is gradient-like, w(3’) must be a critical point. This is
impossible since u2 >_ z on the forward orbit from (c, z). Thus 3’ Ng,e if 3’ passes
through (c,z) with v2 0 for such a.z. If z is the larger value in the intersection
{g 0} Cl {Ul c}, then 2 0, but ii2 -U2Vlgl (u) > 0 so the same argument
applies. If g(c,z) N 0, and (c,z) lies below the {g > 0} region, then we integrate
#2v202 along the orbit segment in N2 U N4. Assume T 0 at (c, z), and T to < 0
when the orbit enters N2 U N4. Since v2 < 0 in N2 U Na, we can parameterize the
orbit segment by u2 and we get

f’
to

V2/2 dT-
o

0v22 dT v2u2g(u) dT

00V dT -t- U2g(U) du2_
OV dT + 8g(C, S) ds

> Ov dT + sg(c, s) ds

> O,

using gl < 0, the fact that g(c, y) < 0 for y > b6, and H9. This can’t happen, so v2
can’t be zero, .when u c on an orbit lying entirely in NK,e. Notice that the same
argument using t x instead of t 0 for the upper limit shows that there cannot be
an M(3) -- M(4) connection in K.

Finally, if Ul d and Vl 0, )1 < 0 so the orbit leaves in both directions, and if
v2 0, the argument is the same as that for Ul--" d. [3
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LEMMA 5.4. Suppose (u, v) is on an M(3) -+ M(1) connecting orbit in NK (]or
any K) with u E Na. Then v2 O.

Proof. If v2 0 and v2 E int(Na), then if 02 0, then the orbit leaves Na, so
assume v2 02 0. Then either u2 0, in whch case (u, v) is in the invariant plane
(u2 v2 0} (and not on a connecting orbit), or g(u) O. If g(u) O, then we
integrate #2v2)2 along the orbit segment in Na, setting T to as the time when the
orbit enters Na, and T --0 at (u, v). Note that u2(to) -n.

so we have a contradiction, and there is no such (u, v).
The verification that v2 cannot be zero on a connecting orbit when u ONa is

tediously similar to the proof of Lemma 5.3, and hence omitted.
LEMMA 5.5. There is no M(3) - M(2), M(3) -+ M(4), M(3) -+ M(5), M(3) -+

M(6), or M(3) M(7) connection in K.
Proof. Suppose there were an M(3) - U(2) connection. Then we can parame-

terize the orbit segment in Na by the u2 coordinate, and we get the same contradiction
as in the proof of Lemma 5.4, so we cannot have a M(3) - M(2) connection. Simi-
larly, we cannot have a M(3) -+ M(5) connection. It was noted in the proof of Lemma
5.3 that there is no M(3) -+ U(4) connection. If there were a M(3) -- M(6) connec-
tion, parameterize the orbit segment in 2 such that t 0 when the orbit enters 2,
i.e. when ul d. Using the fact that Ul is decreasing along the orbit segment we get

with the last inequality following from H8. Thus there is no M(3) --, M(6) connection.
Finally, there cannot be a M(3) -- M(7) connection beacuse M(7) is a repeller for
0>0.

Proof of Theorem 1.3. The only possible orbits which can stay in NK: for all
time are orbits lying in the invariant plane {ul vl 0} and orbits connecting M(3)
to a point in the invariant plane. We will show that no such connecting orbit can
be internally tangent to the boundary of NK, for large enough K and small enough
e. If K is large enough, then no orbit with vi K can stay in K, for all time.



TRAVELLING WAVES IN PREDATOR-PREY SYSTEMS 1201

It is easy to check that if u lies on the boundary of N1 U N2 t2 N3 t.J N4, then using
the above arguments the orbit leaves Ng,e immediately in one time direction or the
other. Lemmas 5.3 and 5.4 show that there cannot be an internal tangency in Ng
when vl 0 or v2 0. The only other possile source of internal tangency is around
the e balls which are cut out.

Since M(7) is a repeller, we can simply take e such that w*(B(M(7))) M(7).
For the other critical points, suppose that for any e > 0 there is no e-ball around
M(j) which can be cut out to give an isolating neighborhood, j E { 2, 4, 5, 6 }. Then
there is a sequence en --, 0 and a sequence (un, vn), with (un, vn) on an M(3) -- M(1)connection which passes within en of M(j). If we parameterize the connecting orbit so
that t 0 at (un, v’), then the same integrals which were used to derive a contradiction
in the proof of Lemma 4.6 can be used here to derive the same contradiction. Thus no
sequence of en --, 0 can be found, so for K sufficiently large and e sufficiently small,
K, is an isolating neighborhood. D

6. Bifurcation results. This section presents the proofs of Theorems 1.4 and
1.5. As will be seen shortly, they follow immediately from work of McCord and
Mischaikow [M-M], thus we begin by describing their result.

Let R x X x .=. --. X be a parameter flow (see 2 for a concrete description)
where R2 i.e., we are thinking of a system with two independent parameters.
Let S be an isolated invariant set under . We need to make several assumptions, the
first being the following.

A1. (S) {M(p) P 1, 2, 3 and 3 > 2 > 1} is a Morse decomposition of S.
Let S S N (X {}) and M(p) M(p) f (X {}). It can be easily checked that
S is an isolated invariant set under o and A4(S) {M(P) IP 1, 2, 3, 3 > 2 > 1}
a corresponding Morse decomposition. We shall also assume the following.

A2. h(M(p),) Zn, n >_ 1, p 1, 2, 3, E .., where n denotes the pointed
n-sphere. Since { 1, 2} and {2, 3) define intervals in { 1, 2, 3} under the ordering on the
Morse decomposition,

M(i, i + 1) M(i) J M(i + 1)U C(M(i + 1), M(i))

is an isolated invariant set and has an attractor repeller decomposition given by
(M(i), M(i + 1)). Let I(i, i + 1) denote the connected simple system associated with
h(M(i, i + 1), o). Let .=.’ c .=. such that M(i, i + 1) M(i) J M(i + 1) for i 1, 2.

A3. Assume there exist parameter values 0, 1, 2, 3 .=/for which

and

I0(1,2), I1(1,2) I2(1,2), I3(1,2)

 o(2, 3), 3) 3), 3);
A4.

I0(1, 2) Ill, 2), I2(1, 2) I3(1, 2),
I0(2, 3) 12(2, 3), 11 (2, 3) I3(2, 3).

Let Cj { e ":1 there exists a connecting orbit from MA(i) to MA (j)).
THEOREM 6.1 [M-M, Thm. 4.2 and Cor. 4.3]. Assume A1-A4, and assume that

C21 does not separate o from 1 nor 2 from 1 and that C32 does not separate o
from 1 nor 2 from 3. Then C31 . Furthermore, c1(C31) f C21 f C32 {.

We shall now show how Theorem 6.1 leads to Theorem 1.4. Hopefully, from
the discussion it will become clear why the hypothesis needs to be stated in such a
complicated manner.
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Proof of Theorem 1.4. Consider Fig. 6.1, which shows [0, 1] [0, c). We
consider (A, ) E where is the flow associated to the ordinary differential
equations

The results of Theorems 1.1 and 1.2 guarantee that for each fixed A E [0, 1] there
exists 2, 23 wave speeds at which M(1) M(2) and M(2) M(3) waves exist.
Actually, the proof of Theorem 2.1 tells us more. First, there is an upper and lower
bound for . Second, the existence of these wave speeds is obtained by knowledge
that the connected simple systems for h(M(i,j)) differ at cx) and 0. Thus,
Figure 6.1 is the simplest possible diagram of the sets 12 and 23

Let (, 0). Chose 0 such that 0 is greater than2 and 23 for all E [0, 1],
where are determined by Theorems 1.1, 1.2, or 1.3. Similarly, 3 is chosen such
that 3 > 0 is less than _02 and 0__23 for all ) e [0, 1]. Finally, the hypotheses of
Theorem 1.4 allows us to choose 1 and 2 such that 2 0, 23 < 2 < 0__2, 1 1,
and _023 > 1 > 2. Because was determined by changes in the connected simple
system of h(M(i,j)) one can immediately conclude that

I0(1, 2) I1 (1, 2),
I2(1, 2) I3(1, 2),

e),
I1(1, 2) I3(1, 2),

and similarly for I(2, 3). Thus, Theorem 6.1 gives the desired result. The proofs for
the other i, j follow similarly. []

FIG. 6.1

The proof for Theorem 1.5 is similar, if one observes that in the proof of Theorem
6.1 the existence of C13 is obtained as the separating set of parameter value for two
different connected simple systems for h(M(13)).
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7. Existence of nonmonotone bistable waves. The results of the previous
section were dependent upon knowing that the wave speeds of different bistable waves
could be made to cross by changing the nonlinearities. In this section, we intend to
show that it is easy to construct parameterized families of nonlinearities for which this
phenomenon occurs. One of the implications of our construction is that for a wide
class of predator-prey systems of the type being considered here one should expect
the existence of nonmonotone travelling waves. It should also be pointed out that the
constructions we make are general and applicable to other reaction diffusion systems.
To emphasize this latter point we begin with a schematic sketch of the general existence
proof (in effect outlining the proof of Theorem 1.4) along with comments of how this
will be done for our specific predator-prey system.

Step 1. For a class of reaction terms, one proves the existence of travelling waves
M(i) --, M(j) and M(j) M(k). Furthermore, one obtains the existence results by
showing that the connected simple systems of the Conley indices differ; depending on
whether the wave speed is large or small.

Comment. This is the content of Theorems 1.1, 1.2, and 1.3 where the reaction
terms are assumed to satisfy H1-H9.

Step 2. One parameterizes the class of possible reaction terms. Let A denote
the set of parameters. Also, let I [_0,.,] and Ik [O_O_jk -,0] denote bounded
intervals in R such that if is a wave speed for which an M(i) --, M(j) wave occurs,
then I..

Comment. In the statement of Theorem 1.4, we chose A [0, 1] for the sake
of simplicity. For more concrete problems there may be a more natural choice for
A. From a practical point of view the only necessary restrictions on A is that it be
compact and simply connected.

Furthermore, it is assumed implicitly in the statement of step 2 that the connected
simple system of the Conley index for the attractor-repeller pair (M(j), M(i)) for wave
speeds which lie above I differ from the connected simple system for wave speeds
which lie below I. This will always be the case if the existence of bistable waves were
found by an application of Theorem 2.1.

Step 3. One finds parameter values A0 and A such that ? < _0 and - < _O.
Comment. This of course involves estimates on the wave speeds which may or may

not be easy to obtain. In Theorems 7.1, 7.4, and 7.5 we present some general results
which allow us to make comparisons of wave speeds between certain nonlinearities.
Given these theorems it then becomes a triviality to choose the desired nonlinearities
at A0 and A.

Step 4. One applies Theorem 6.1.
Comment. See the proof of Theorem 1.4 to see how this is done.
With this outline in mind we now turn to the problem of comparing wave speeds

for different nonlinearities. To simplify notation, we consider the one-dimensional
problem which has the form

(7.)
v,- ’(u).

(Here we have absorbed the diffusion coefficient in and f, and we write f(u) instead
of uf(u).) The nonlinearity f satisfies f(O) f(a) f(1) 0, f is negative between
zero and a and p(sitive between a and 1. Let F be such that F’(u) f(u), F(O) O,
so F has maxima at zero and 1, and a minimum at u a. We assume F(1) > 0, so
Theorem 1.1 guarantees a positive * so there is bistable wave, i.e., a solution to (7.1)
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connecting the saddle point (0,0) to the saddle point (1,0). Moreover, it is well known
that this connecting orbit satisfies v > 0, so we can parameterize the travelling by u
instead of t, and (7.1) becomes

(7.2) V-u Ov f(u).

Finally, by integrating (7.2) we get

(7.3) v2(u) 0o
u

2
,(e)

There are two ways to alter the equation to decrease the wave speed: we can
decrease f (near the minimum between zero and a), or we can make the well in F
deeper (near u a). Notice that decreasing the well has the effect of decreasing f for
u < a and increasing f for u > a. We show that either technique can be used to make
the wave speed 0 -. 0 monotonically.

THEOREM 7.1. Let I C (0, a) be an interval, and let f2 be a function with wave
speed . Then jor any e > O, there is a function fl which agrees with f2 on [0, 1] \ I
and has O < 9 < e.

The proof of this theorem requires two lemmas.
LEMMA 7.2. Suppose fl (u) <_ f2(u) for all u. If ft (u) f2(u) for some u, then

Proof. We have a(u) f0 fi()d for i 1,2, and let b denote a point with

f (b) < f2(b), so F(u) < F2(u) for u > b. Fix for both f and f2. For the
f flow, there is a connecting orbit from the u 0 saddle to the u 1 saddle. In
the f2 flow, the corresponding orbit coming from the u 0 saddle will agree with the
connecting orbit as long as fl and f2 agree. However, (7.3) implies that for u > b,
v2(u) > v(u), since v, v2 >_ 0, the is the same, and F(u) < F2(u). Indeed, (7.3)
implies that v -v2 is an increasing function of u, so vl (u) > 0, and [ . It is
clear from (2) that increasing for a fixed f increases v(u), therefore we must have

As noted in the previous proof, since F(u) f f()d, decreasing f causes
a corresponding decrease in F, so by decreasing f in some interval we can force
F(1) F(0) to become arbitrarily small. (If the difference becomes nonpositive, *
will also become nonpositive.) Since Of v du F(1)- F(0), we only need to show

that f v du is bounded away from zero as f is decreased.

LEMMA 7.3. Suppose f (u) .<_ f2(u) .for all u. Then f v du >_ f V/-2F2()d.
Proof. By (7.3), v2(u)/2 > -F(u) and by hypothesis F(u) <_ F2(u). For 0 <

u < a, Fi(u) < 0, so we have

1 a

vl du >_ v du

>_ V/-2F2(u) du. D

Proof o.f Theorem 7.1. Theorem 7.1 is an easy consequence of Lemmas 7.2 and
7.3. Start with some f2, and let k f0a V/-2F2(u)du. Now decrease the value of f in
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I (this introduces no new critical points), so F(1) F(0) < elk. For this f we have

Of Vl du F(1) F(0) < elk and f vl du >_ k by Lemma 3, so
The arguments to show that increasing the depth of the well of F can force the

wave speed to go to zero are similar. We now state assumptions in terms of F.
THEOREM 7.4. Let F2 be a function with wave speed , and let I be an interval

containing a with F2 < 0 on I. Then .for any e > O, there is a function FI which
aarhF o [0, ] \ I ad ha 0 < < .

We use one more lemma.
LEMMA 7.5. Suppose F(u) <_ F2(u) .for all u. I]F (u) F2(u) for some u, then

Proof. The proof is the same the proof of Lemma 2.

Proof of Theorem 7.4. Stt with F2, and let F2(1) F2(0) k. Now decree F
in I so that f -2F(u)du > k/e. Since a e I, this can be done without introducing
new critical points, and since I c (0, 1) the new F still satisfies F(1)- F(0) k. We
have

k F(1) F(O) O* v du

0, -()

> o,/e,

so0* < e.
We now show ha by raising N(1) (or equivalently, lowering (0)), we can force

0* o go o .
o 7.6. et F be function with wve peed 0, nd let b (, 1) be the

point with F(b) O. .Then ]or n M, e > O, there i ]unction 1 which gree with
F on (b + e, 1] nd h O{ > M.

Pro4 Le v be a solution o (7.2) wih 0 M, i.e., v satisfies dv/du M-

for u e [b, 1], so dv/du M for u e [b, ll. Ig follows ha v(u) N 7 + M(1- b)
for all . Make a funcgion Fa() which aees wih F() for e [0,1], F > 0
in [b, 1], (so he bound on v(u) holds.for solutions involving Na and 0 M), and
a(u) () + K for u e [b + e, 1] where K is a consan o be named laer.
Nquagion (7.a) implies Fa(1) Mf v(()d( if v > 0 along ghe whole orbig. Bug

Mf v(()d( < M(7 + M(1 b)) < Fa(1), if K is large enough, so he wave speed for
Fa is greaer han M. We now se F (u) Na(u) K.

Obviously, ghese resulgs hold if he crical points are
and 1.

We now show how these one-dimensional results can be applied go he predator-
prey sysgems we have been studying. We will show ha here e sysgems of ghe

form (1.a) which have M(1) M(a) gravelling waves and homoclinic M(1
gravelling waves.
o 7.7. There re tem o] theo (1.g) ti]in9 HI-H nd Hg-H7

which hve n M(1) M(a) trvellin9 wve with 0 > O.
Proof. heorem 1.2 guanees an M(2) M(a) ravelling wave of speed 0a > 0.

Le a be he minimum speed for any M(2) M() travelling wave.
see ha he se of wave speeds is closed, so a > 0. Similly, le 0a be ghe largesg
M(2) M(g) wave speed. Ig will be shown in 9 ha his is finite. The idea of he
proof is o deform I away om his wave go change he speed of he M(1) M(2)
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travelling wave. So start with any system (1.3) satisfying H1-H3, Hh-HT. We apply
Theorem 7.6 to the one-dimensional problem

’I --Vl

/)1 10Vl Ulf(Ul, 0)
which is the equation governing the M(1) -- M(2) travelling wave. By altering
f(Ul, 0) on the segment ((Ul, 0) e _< Ul < b + e (where the b is as in Theorem
7.6, and e is small), we can produce a function f(Ul, 0) so that 12, the speed of
the M(1) --. M(2) travelling wave, is greater than 23. Let U be a neighborhood of
the segment ((Ul, 0) e _< Ul < b + e } which misses the (ul, u2)-projection of any
M(2) -- M(3) travelling wave. Define f0 to be a function which satisfies H1-H3,
H5-HT, f0 f outside of V and f(Ul, 0)- ](Ul, 0). Similarly, by using Theorem 7.1
we can alter f(Ul, 0)on the segment { (Ul,0)le _< Ul < b+e} to ](Ul, 0)so that 12 is
less than _023. Let fl be a function which satisfies H1-H3, Hh-HT, fl f outside of U
and fl(ul, 0) ](Ul, 0). Finally, for 0 _< A _< 1 define f)’(u) (1 .)f(u) + )fl(u).

Now consider the parameterized family

1 Vl

2 v2

202 0V2 U2g(Ul, U2).
For each ) E [0, 1] there is an M(1) --, M(2) travelling wave of speed 02 and an
M(2) -, M(a) travelling wave of speed 032. By the construction of f, 012 > 32, and
0112 < 0_32. Theorem 1.4 implies the existence of a A so that the system with f has
an M(1) --* M(3) travelling wave of speed 013 > 0.

We remark that the proof of Theorems 7.7 and 1.4 actually imply that the M(1)
M(3) travelling wave passes close to M(2), and that 13 is close to the speed of some
M(2) M(3) travelling wave.

Finally, we discuss how to use Theorem 1.5 to construct homoclinic M(1) --* M(1)
travelling waves. We first use Theorem 1.4 to construct M(2) --. M(1) travelling waves
(via M(3)), then apply Theorem 1.5 to the M(2) --, M(1) and M(1) -- M(2) waves,
where we control the speed of the M(1) M(2) wave as in the proof of Theorem 7.7.
We begin by modifying f so that the critical points M2, Mh, and M3 all lie in the
same vertical line in the (ul, u2)-plane, i.e., a2 -a5 --a3. See Fig. 7.1.

The proof of Theorem 1.3 implies that there is an M(3) --, M(1) travelling
wave with positive wave speed 31. Let 0_31 be the minimum M(3) -- M(1) speed,
and 31 be the maximum speed. The one-dimensional analysis applies in the set
{ Ul a2, Vl 0 } to allow us to control the speed 23 of the M(2) --. M(3) travelling
wave. As in the proof of Theorem 7.7, we can alter g in a neighborhood of the ul a2
line (in particular, away from any M(3) --, M(1) travelling wave) to obtain functions
gO so that the speed of the M(3) --, M(2) travelling wave for the system using gO
is 23 > 31. Similarly, we can alter g to get gl so the speed of the M(3) M(2)
travelling wave for the system using gl is 23 < 0_31. Notice that gO and gl can
be constructed so that hypotheses H6, HT, and H9 are still satisfied. We define
g)(u) (1 X)gO(u)+ ,kgl(u), and consider the parameterized family

I --’Vl

(7.4)
?2 V2,

1/1 OVl Ulf(Ul, U2),
2/2 0V2 U2gA(Ul, U2).
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M6
M3

M

M1 M2
M4

FIG. 7.1

We now argue as in the proof of Theorem 7.7 and obtain a gA such that there is
an M(2) --+ M(1) travelling wave of speed 21 > 0. Note that this wave passes close
to M(3).

Now we perturb f slightly so that the points M2, M5, and M3 are no longer
in the same line in the (ul, u2)-plane, but instead that f satisfies H1-H9. As noted
in the proof of Theorem 1.4, because the connected simple systems continue, for a
small perturbation the speed of any M(3) -. M(2) travelling wave in the perturbed
system will be close to the speed in the system with the vertical line analyzed in
the preceeding paragraph. It follows that we can still construct gO and gl so that
_203 > 31 and 3 < 0-31, s for the perturbed f there is a g)’ so that system (7.4) has
an M(2) --. M(1) travelling wave of speed 21 > 0. We have proved the following.

THEOREM 7.8. There are systems of the form (1.3) satisfying H1-H9 which have
an M(2) -. M(1) travelling wave with 21 > O.

Now to show the existence of an M(1) --+ M(1) travelling wave, we start with a
system from Theorem 7.8, with a M(2) --, M(1) travelling wave of speed 21 > 0. We
now repeat the proof of Theorem 7.7 with 21 replacing 32. Specifically, by changing
f near the Ul axis in the (1, u2)-plane (in particular, away from the M(2) --. M(1)
travelling wave), we construct a one-parameter family f so that the system (7.4)
satisfies the following.

(i) There is an M(2) -+ M(1) travelling wave of speed 021 for all A (the wave
speed is independent of A since f)’ is unchanged near the wave).
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(ii) When A 0, there is an M(1) --, M(2) travelling wave of speed 02 > 21.
(iii) When A 1, there is an M(1) --, M(2) travelling wave of speed 02 < _21-
The conditions of Theorem 1.5 are satisfied, so there is a A E (0,1) and a ho-

moclinic M(1) -- M(1) travelling wave of speed 01A1 > 0. So we have proved the
following.

THEOREM 7.9. There are systems with M(1) --* M(1) homoclinic travelling
waves of speed 011 > 0.

8. Fisher waves and higher-dimensional analogues. Proving the existence
of bistable waves as described in the previous sections was dependent upon careful
selections of isolating neighborhoods and homotopies to simpler systems. As will
be shown now, for high wave speeds the existence of Fisher waves and their higher-
dimensional analogues can be determined directly from the dynamics of the reaction
system. In particular we shall state an abstract existence theorem and a simple corol-
lary, followed by a discussion of how they can be applied to the two species predator-
prey systems being considered in this paper.

The abstract existence theorem relates, in a general setting, connecting orbits for
the reaction system with connecting orbits (i.e., travelling waves) for the travelling
wave system. So consider the following n-dimensional system of ordinary differential
equations

(8.1) /t F(u)

and the corresponding 2n-dimensional travelling wave system

’--V(8.2)
Di Ov F(u),

where D is a.diagonal matrix with strictly positive entries and (u, v) E Rn Rn.
For the remainder of this section N will always denote an isolating neighborhood for
(8.1) and S I(N), the maximal invariant set in N. Let 0 denote the flow on R2n

generated by (8.2). Let J/[(S) {M(p) P e (P, >)} be a Morse decomposition for S
and let CAA(S) denote the set of connection matrices for JP[(S).

THEOREM 8.1. (i) There exist positive constants K, 0 such that N I-K, K]c
Rn Rn is an isolating neighborhood for the flow o when > O.

(ii) Let S I(N I-K, g], o). Then, there exists a Morse decomposition of
the form

.(S) {M(pO) pO e (P, >)}
such that M(p) and M(po) are related by Continuation for all

(iii) ff A0 e (:J(S), the set of connection matrices for Jt/[(S), then AO is a
degree n conjugation of A .for some A

Theorem 8.1 is considerably more general that what we need. For our purposes
the following corollary will suffice.

COROLLARY 8.2. Assume that:
(i) For all p e P, M(p) is a hyperbolic fixed point of (8.1),
(ii) CJt/I(S) consists of a unique connection matrix A,
(iii) p, q e P are adjacent and A(p, q) # 0.
Then there exists 0 such that for 0 > O"
(a) A/[(S) {(M(p), 0) P e (P, >)} is a Morse decomposition for S
(b) Ao, a degree n conjugation ofA, is the unique connection matrix.for .A4(S),
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(c) there exists a solution (u(t), v(t)) of (8.2) such that

lim (u(t) v(t))= (M(q),0)

lim (u(t), ,(t)) (M(p), 0).;-- 00

The proofs of Theorem 8.1 and Corollary 8.2 can be found in 9. For the moment
we concentrate on showing how Corollary 8.2 can be applied to two-species predator-
prey systems. In particular, both Theorem 8.1 and Corollary 8.2 suggest that we begin
our analysis by investigating the possible connection matrices for the predator-prey
system. This has been done by Reineck IRe2] under hypothesis H1, H2, and H3. In
particular, A/[(S) {M(p) Mp [p- 1, 2,..., 7} forms a Morse decomposition of
S, the set of bounded solutions in the positive orthant for the reaction system (8.1).
The connection matrix can now be consider as map on

CHo(M1) @ CHo(M2) @ CHo(M3) @ CH1(M4) @ CH1(M5) B CH1(M6) CH2(M7).

Thus it is a 7 x 7 matrix and since it is degree -1 it must be of the form

M1
M1 0
M2
M3

A= M4
M5
M6
M7

M2 M3 M4 M5 M6 M7
0 0 0 x

0 0 0 0
0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0

where denotes entries which need to be determined. The following theorem provides
this information.

THEOREM 8.3 JR2, 3]. Under the hypothesis H1, H2, and H3, only the following
6 connection matrices can be realized.

M1
M1 ’0
M2 0
M3 0

B= M4 0
M5 0
M6 0
M7 0

M2 M3 M4 M5 M6 M7
0 0 1 0 0 0
0 0 1 0 1 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

M1
M1 0
M2 0
M3 0

C- M4 0
M5 0
M6 0
M7 0

M2 M3 M4 M5 M6 M7
0 0 1 1 1 0 ’0 0 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0 /
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M1
M1 (0
M2
M3

D= Ma
M5
M6
M7

M2 M3 M4 M5 M6 Mr
0 0 1 1 0 0

0 0 0 1 1 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
M1

Ul ( 0
M2
M3

E= 21//4
M5
M6
Mr

M2 M3 M4 M5 M6 Mr
0 0 1 0 0 0

0 0 0 1 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

M1
M1 ( 0
M2
M3

F= M4
M
M6
Mr

M2 M3 M4 M5 M6 Mr
0 0 1 0 0 0 5

0 0 0 1 1 1 0
0 0 0 0 1 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 .0 0 0 0 0 1
0 0 0 0 0 0 0 /

M1
M1 (’ 0
M2 0
M3 0

G= M4 0
M5 0
M6 0
Mr 0

M2 M3 M4 M5 M6 Mr
0 0 1 0 1 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0 )

In order to simplify matters we shall make the following assumption.
H10. The reaction system (8.1) is Morse-Smale.
By Reineck IRe1], H10 implies that the connection matrix is unique. Furthermore,

if any entry in the matrix is nonzero then the Morse sets are adjacent, and therefore
Corollary 8.2 is applicable. This raises the question, which of the six possible con-
nection matrices correspond to the systems we have been studying. Before providing
an answer let us introduce a formal hypothesis. Recall from H2 that u2 2 is the
point at which q(u2), the zero set of g, reaches an absolute minimum. Also recall that
M4 (a4, b4).

Hll. q(2) _< a4
Implicit in the discussion of IRe2] is the following result.
PROPOSITION 8.4. Assume H1, H2, H3, and H10. If in addition one assumes:
(a) H5 then A E, F,or G;
(b) Hll, then A C,D, or G;
(c) H5 and H10, then A G.
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Recall that H5 was essential to our construction of an isolating neighborhood for
the M(2) -- M(3) bistable wave. From Fig. 5.1 we see that we are assuming Hll
in our proof of the existence of the M(3) --. M(1) wave. Therefore, by Proposition
8.4 for hypotheses under which the results of 6 hold, the connection matrix for the
reaction system is G. Therefore, as an example of how to apply Propositions 8.2 and
8.4 we state the following result.

PROPOSITION 8.5. Given H1-H3, Hb, H10, and Hll, there exists > 0 such
that for all 0 > 0 there exist Fisher waves o] the

M(4)--. M(1),
M(5) M(2),
M(6) M(1),

M(4)--. M(2),
M(5)--. M(3),
M(6)- M(3).

While Corollary 8.2 is easy to state and easy to apply, its hypotheses are somewhat
stronger that desired. In particular, even if 8.2(iii) is violated, i.e., A(p, q) 0, it is
possible to have an M(p) - M(q) traveiling wave. As an example consider the
following result.

PROPOSITION 8.6. Assume H1-H3, Hb, H10, and that A E. Then, there exists

> 0 such that for all > there exists Fisher waves of the form

M(4)--. M(1),
M(5)--, M(2),

M(4)-- M(2),
M(5)-- M(3),

and two distinct waves
M(6) M(3).

Proof. For the reaction system (1.2) one can always find an isolating neighborhood
which contains an M6 -- M3 connecting orbit (see [Re2, 3]) and for which, restricted
to that neighborhood, the connection matrix entry A(6, 3) 1. Since, for A E,
A(6, 3) 0, there exists another connecting orbit (this follows directly from [McC,
Thm. 2.5]). Now apply Theorem 8.1.

This result should be contrasted with those of one-dimensional systems where the
Fisher waves have been most extensively considered. First, for a given wave speed in
one species systems there can be at most one Fisher wave connecting two stationary
solutions. For two species problems this is no longer the case. Second, in the one
species case the minimum wave speed which these Fisher waves occur is associated
with the appearance of a bistable wave. This wave speed is known to be unique for
the one species problem. In the two species model there is no reason to assume that
the minimum wave speed agrees for the two distinct Fisher waves.

We now turn to the question of determining the existence of HDF waves. Recall
that for the systems being consider in this paper these take the form M(7) M(j)
where j 1, 2, 3. The key to proving the existence of these wave is the following
theorem.

THEOREM 8.7 [M-R, Thm. 3.2]. Let Ao be the unique connection matrix for the
Morse decomposition J(S) (M(p) pO E (P, >)) where > is the flow defined
order. Let (a, fl+,’) c P. Assume:

(i) - > + > a,
(ii) {c, +, "} and {t,/-, /} are intervals in P,
(iii) A(+, a) o A(q,, +) O,
(iv) C/.(M(p); Z2) is finitely generated for p
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Then there exists a connected set r M(a)) such that cl(r)M(fl+)

Obviously, given H1-H3 and H10, Theorems 8.1 and 8.3. determine the possi-
bilities for A0. Now to apply Theorem 8.7 we need only find four element subsets
of {1, 2, 3, 4, 5, 6, 7} for which the hypotheses apply. As an example of this assume
A0 G. Consider the sets

{a,f+,fl-,V}- {7,6,4,1}, {7,5,4,2}, or {7,6,5,3}.

It is easy to check that they satisfy hypotheses (i)-(iv), and hence, Theorem 8.7
provides the existence of HDF waves. In fact, since we know that M(7) is a hyperbolic
critical point with a four-dimensional unstable manifold and M(i), i 1,2,3, are
hyperbolic critical points with two-dimensional unstable manifolds we can conclude
that the set of connecting orbits M(7) --. M(i), i 1, 2, 3, contains open 2-disks. For
a more detailed discussion of Theorem 8.7, possible variations, and its applications we
refer the reader to [M-R].

Aside from demonstrating how to find Fisher waves, this section serves another
purpose, and that is to show how far we are from a general understanding of the
existence of travelling waves for predator-prey systems. As was mentioned before, to
obtain the types of results presented in 6, it must be that the connection matrix for
the reaction system is of the form G. In particular, if the connection matrix for the
reaction system is of the form B or D (and Theorem 8.3 guarantees the existence
of such systems), then our analysis for the existence of either an M(2) M(3) or
M(3) -- M(1) travelling wave fails. It is easy to see why this is the case; all our
constructions of isolating neighborhoods in 3 and 5 were based on finding monotone
travelling waves. However, the obvious homotopies for the latter two cases suggest the
existence of a nonmonotone wave. It seems reasonable to speculate that such waves
could be of physical interest if one assumes that the diffusion coefficients are small
while the reaction terms are large. If this is indeed the case, then this suggests an
important future avenue of research.

9. Proof of Theorem 8.1. Although it will be clear from the proof, we wish
to emphasize that Theorem 8.1 is essentially a corollary of perturbation results due
to Conley and Fife [C-F].

Proof of Theorem 8.1. Consider the system of equations

u’ eF(u) / ew,
w’ D-lw eVE(u). Dw eVE(u). F(u).

For e--0, (9.1) becomes

(9.2) u 0, w’ D-lw.

Since D-1 is a diagonal matrix with strictly positive entries, {(u, w) ]w 0} defines
a critical manifold [C-F, p. 160]. The corresponding limit equation [C-F, p. 164] is

(9.3) u’ F(u).

If one sets e c-2, 1/c ", and Dw 9v- F(u), then (9.1) becomes (8.2), the
travelling wave system. One now applies Theorems 3.5A and 3.5B of [C-F] to obtain
(i), (ii), and the fact that for every attractor repeller pair of j(Se) the connecting
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maps are n-fold suspensions of the connecting maps for the corresponding attractor-
repeller pair in fl4(S). (iii) now follows from [Fr2, Whm. 5.7]. [:]

Proof of Corollary 8.2. An easy eigenvalue computation or [C-F] guarantees that
if Mp is a hyperbolic fixed point for (8.1), then so is (My, 0) for (8.2) and large. Thus
(a) follows from Theorems 3.5A and 3.5B of [C-F]. Observe that (b) follows from 8.2(ii)
and 8.1(iii), while (c) follows from 8.2(iii) and properties of the connection matrix.
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SINGULARITIES OF THE X-RAY TRANSFORM AND
LIMITED DATA TOMOGRAPHY IN 2 AND 3,

El:tiC TODD QUINTOt

Abstract. Given a function f, the author specifies the singularities of f that are visible in a
stable way from limited X-ray tomographic data. This determines which singularities of f can be
stably recovered from limited data and which cannot, no matter how good the inversion algorithm.
Microlocal analysis is used to determine the relationship between the singularities of a function f and
those of its X-ray transform. The results are applied to determine the singularities that are visible
for limited angle tomography and the interior and exterior problems. The author also suggests a
practical method to use this relationship to reconstruct singularities of f from limited data Rf. The
X-ray transform with sources on a curve in R3 is also analyzed.

Key words. X-ray transform, limited data tomography, microlocal analysis

AMS subject classifications, primary 44A12, 92C55; secondary 35S30, 58G15

1. Introduction. X-ray tomography is an important, noninvasive, practical way
of finding the density of objects. In standard tomography, X-rays of the object are
taken over an evenly distributed set of lines, so-called complete tomographic data,
and well-known algorithms are used to recover a good approximation to that object
[21]. Inversion is only mildly ill-conditioned (continuous of order 1/2 in Sobolev norms).
However, one often needs to. find the density of an object but one cannot get X-ray
tomographic data over an evenly spaced set of lines through the object but only some
subset; one has limited tomographic data. Limited data tomography is important in
medical imaging [21], scientific tomography [1], and industrial nondestructive evalua-
tion [28].

In general, reconstruction from limited tomographic data is much more highly
ill-posed than reconstruction from complete data [6]. As a result, inversion algorithms
using limited data, generally, can create artifacts, blurring or other distortions in
their reconstructions. The goal of this article is to classify what singularities can
be stably reconstructed from limited data and what singularities cannot be stably
reconstructed no matter how good the algorithm. To do this, we will use a precise
concept of singularity: the wave.front set, and a precise concept of stability: continuity
in microlocal Sobolev norms. Then we will tell which singularities the X-ray transform
"sees" stably and which singularities are not stably detected from limited data. The
reason we can do this is because the X-ray transform is an elliptic Fourier integral
operator and, therefore, changes wavefront sets in specific ways.

We do not claim that all limited data tomography algorithms will reconstruct the
"visible" singularities well. Rather, we claim that, if a singularity is not stably visible
from limited data, no algorithm can reconstruct it stably. For "visible" singularities
our theorem gives stability estimates of order 1/2 in Sobolev norms, so one would ex-
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1993.
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pect "visible" singularities to be well constructed by a "good" algorithm even in the
presence of noise.

This work is a natural outgrowth of [26], which gave the general principle (3.3)
we make more precise and then prove in 3-4. Palamodov stated a closely related
idea in [22]. The "tangent casting" effects of [30] is an intuitive way of expressing
(3.3) below. One can also understand stability of these problems using singular value
decompositions [4], [14], [16], [17], [18]. Lambda tomography [5] is a well developed
algorithm that finds singularities of a function from real tomographic data. Their
method works quite well with interior data (Example 3.3). Ramm and Zaslavsky [29]
have developed a method using Legendre transforms to reconstruct the singularities
of a function from knowing the singularities of its Radon transform. They consider
functions f CXD, where D is a piecewise smooth domain and is smoothmfunctions
with the jump singularities on OD, and they use.the behavior of Rf at OD to find
the (jump) singularities of f. Technicians currently use the sinogram, the graph of
Rf(0, p) in rectangular coordinates, to find boundaries, but this method is subjective.

In Remark 3.2, we propose a method to reconstruct singularities (classified by
Sobolev wavefront set) for arbitrary functions from general limited data.

Section 2 of this article provides the definitions of singularity and microlocal
Sobolev smoothness. In 3 we give the singularity result for the Radon transform
in the plane, Theorem 3.1. We apply this to determining singularities of arbitrary
functions from general limited data (Remark 3.2) and to show limitations inherent in
the common types of limited data tomography (Examples 3.3-3.5). Reconstructions
from exterior data are presented that illustrate our analysis. 4 gives analysis and
results for the X-ray transform with sources on a curve in R3.

2. Microlocal singularities and Sobolev spaces. Our development is valid
for distributions as well as functions, so first, we recall some basic definitions.
is the space of Coo functions of compact support. A distribution f E /)(R) is a
continuous linear functional on :D(R). A distribution f has compact support if there
is a compact set g c Rn such that f() 0 for all functions E T)(Rn) with support
disjoint from K, that is, f is zero outside of K. The set of distributions of compact
support is denoted by (R’).

The wavefront set of f T (]n) is a powerful classification of singularities because
it involves not only a point x0 at which f is not smooth, but also a direction in which

f is not smooth at x0. To understand this we recall some facts about the Fourier
transform. When f has compact support, then f is equal to a Co function almost
everywhere if and only if its Fourier transform, ’f, decreases rapidly in all directions
(for all N N, there exists CN such that for all
This relates global smoothness of f to rapid decrease of its Fourier transform. A local
version of this at a point x0 lln would be obtained by multiplying f by a smooth
cut-off function, (with (x0) 0) and seeing if this Fourier transform is rapidly
decreasing in every direction. However, this localized Fourier transform ’(f) gives
even more specific informationmmicrolocal information--namely, the directions in
which ’(f) does not decrease rapidly.

DEFINITION 2.1. Let f E :D’(Rn) and let x0 Rn and 0 Rn \ 0. Then we
say (xo,0) WFf, thewavefront set of f, if and only if for each cut-off function at
x0, T(Rn) with ,(x0) 0, ’(f) does not decrease rapidly in any open conic
neighborhood of the ray {tolt > 0}.

For example, if D C Rn has smooth boundary, then WFXD is exactly the set of
normals to cOD. One can prove this using the definition and a local coordinate change
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to flatten cOD locally. If is a smooth function then WFCXD (7_ WFXD and if is
not zero anywhere on OD, then these sets are equal [11], [24, Lemma 13.3, p. 279].

As defined, WFf is a closed subset of ]Rn (JR’ \ 0) that is conic in the second
variable. The Sobolev space analogue to the concept of microlocal smoothness is as.
follows (see [24, p. 259]).

DEFINITION 2.2. A distribution f is in the Sobolev space H microlocally .near
(x0, 0) if and only if there is a cut-off function :D(]Rn) with (x0) 0 and function
u() homogeneous of degree zero and smooth on ]Rn \ 0 and with u(0) 0 such that

(1 +
First, one localizes near x0 by multiplying f by and then one takes Fourier

transform. Finally, one microlocalizes near 0 by forming uJZf and see if this is in
Jz(U(.Rn)). It follows from the.definition that, if (x0,0) WF/, then for all s, f is
Us near (x0, 0).

Wavefront set and microlocal smoothness are usually defined on T*(Rn) \ O, the
cotangent space of ]Rn with its zero section removed, because such a definition can be
extended invariantly to manifolds using local coordinates. For the manifold [0, 27r] x
choosing a function (0,p) with sufficiently small support allows one to use 0 and p
as local coordinates. We will use these conventions.

3. The X-ray transform in the plane. In R2 the microlocal analysis of the
X-ray transform is easier to describe if one uses parallel-beam geometry rather than
fan-beam geometry. By rebinning--a coordinate change---the results are the same
as for fan-beam data for functions supported inside the circle of sources. First, let
denote the standard inner product on JR2; let II be the induced norm. Let 0 [0, 27r],
and let p e R. Let 0 (cos/9, sin/9) and +/- (-sin 0, cos0). Now let g(O, p)
]R21x 0 p}, the line with normal vector 0 and directed distance p from the origin.
The points (0,p) and ( + 7r,-p) parameterize the same line g(O,p). Let ds be arc
length, the measure on g(0, p) induced from Lebesgue measure on R2. The classical
X-ray transform in the plane is defined for an integrable function f on ]l2 by

(3.1) Rf(O,p) f f(y)ds.
ce(O,p)

Rf(O,p) is the integral of f over the line e(O,p).
In order to describe the main theorem, we will consider wavefront sets as subsets

of cotangent spaces. To this end, let x0 R2. If y (y, y2) ]2, then we let
ydx ydx + y2d2 .be the cotangent vector corresponding to y in T$o]R2. Now let
(Oo,po) e [0,2r] JR. Here we will identify [0,2r] with the unit circle by equating
zero with 27r. Then for (0, p) e [0, 2r] R, we let dO and dp be the standard basis of
T* R). The theorem follows.(O,p) ([0, 27r]

THEOrtEM 3.1. Let f E’(2). If (z;) e T*(’) \ O is not conovmal to
e(Oo,po), then wavefront set off at (x;) does not contribute to WFRf above (Oo,po).
Let xo e.(Oo,po) and let r/o dp- (xo. 0ff)d0. Let a # O. The correspondence
between WFf and WFRf is:

(3.2) (xo; aod) WFf if and only if (0o,po; at/o) WFRf.
Given (0o,po; ano), (:co; aOodz) is uniquely determined by (3.2). Moreover, f Hs

is microlocally near (xo;aoda:) if and only if Rf H+i/2 is microlocally near
(Oo, Po; arlo).

Theorem. 3.1 provides an exact correspondence between singularities of f and
those of Rf. Moreover, it states that the singularities of Rf that are detected are
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of Sobolev order 1/2 smoother than the corresponding singularities of f. For typical
singularities of f (jump singularities in H1/2-e) one can realistically expect the cor-
responding singularities of Rf not to be masked by noise. Reconstructions given in
Figs. 1 and 2 will corroborate this.

The theorem has this simple corollary:
(3.3)

The X-ray transform data Rf for (, p) arbitrarily near (t?0, p0) detects
singularities of f perpendicular to the line t?(Oo,po) but not in other directions.

This follows because of the correspondence (3.2)" Rf(O, p) is smooth near (0, p0) (no
wavefront set near this point) if and only if there is no wavefront set of f at points on
t(t?o,p0) conormal to the line.

As an example, let D be a compact set with smooth boundary and let f
where is a smooth function that is not zero anywhere on cOD. Then, by (3.3),
Rf(O,p) is smooth near (80,p0) if and only if (0,p0) is not tangent to cOD. If OD
is not smooth then more wavefront directions will appear at points where OD is not
smooth. Remark 3.2 gives a more general observation with practical implications.

Remark 3.2. The correspondence (3.2) gives a way to find WFf from knowing
WFRf. Given (O0,p0; argo) E WFRf, the rule (3.2) determines (x0; a00dx) uniquely.
This method to find singularities of f is easiest to describe in the case f is C except for
jump singularities on a collection, E, of C curves. In this case, almost all singularities
of f are in H/2- (so corresponding singularities of Rf are in H-) for e > 0 but
not for e 0. One can take a local (discrete) Fourier transform of Rf in (O,p) and
find the directions in which the localized transform is not in ’H1. Perhaps this
can be efficiently done just by calculating local fast Fourier transforms and looking for
directions in which they do not decrease quickly. Then the rule (3.2) gives the covectors
(xo; a0dx) at which f is not H/2. These covectors specify the jump singularities of
f, that is the location of E (and 0 even gives the normal to E at x0). This method
also filters out noise that is H or smoother.

This method can be used for limited data problems: the method is local in the
strong sense that singularities of Rf at (O0,p0) (and therefore the corresponding sin-
gularities of f on (00,P0)) are determined by data Rf(O,p) for (O,p) near (Oo,po).
This method is being pursued.

Proof of Theorem 3.1. The microlocal correspondence between WFf and WFRf
is in the literature (e.g., [8], [25]), but since it is especially straightforward in this case,
it will be given here. First, note that the Schwartz kernel of. the operator R is the
distribution on R2 ([0, 2r] R) that is integration with respect to the weight dxdO
over the set Z ((x, O,p)lx.O p}. This is a special type of distribution and in [10] it
is shown to be a Fourier integral distribution associated with the Lagrangian manifold
F N*Z \ 0 where N*Z is the conormal bundle of Z in T*(R2 ([0, 2r] R)). As
shown in [8] (see also [25] details), because the measure of integration dxdO is
nowhere zero and the projection from F to T*([0, 2r] R) \ 0 is a injective immersion,
R is elliptic with elliptic inverse that composes well with R. To understand what R
does to wavefront sets, one must calculate the set F. Z is defined by the equation
x 0 p 0 and so its differential, 0dx + x. 0+/-d0 -dp, is a basis of N*Z at each
point. Therefore,

(3.4) F { (x, , p; a(dx + x. O+/-d9 dp))l (x, , p) e Z, a 0}.
By the calculus of elliptic Fourier integral operators, there is a simple correspondence
between WFf and WFRf: (x; ) WFf if and only if there is a (, p; ?) WFRf
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with (x, 0, p; ,-r/) e r [31]. Using (3.4) we see this correspondence is exactly (3.2).
Furthermore this correspondence coming from (3.4) shows that if (x; ) is not conor-
mal to g(Oo,po), then wavefront set of f at (x; ) does not contribute to WFRf above
(Oo,po). To see that (3.2) uniquely determines (x0; 00dx), first note that a is deter-
mined by the dp coordinate of at/0. Then as a 0, x0.0- is determined by the dO
coordinate of a/0, and finally x0 00 p determines x0.

The assertion about H8 will be given because, although it is straightforward, it
is not in the elementary literature. We prove one direction and leave the other to the
reader. Let Rf be in HB+I/2 near (00,p0; at/0). Then, by Theorem 6.1 [24, p. 259],
Rf u + us where u E H+/2 Hs+/2 f3 ’, us ’, and (00,p0; at/0) WFu2.
Because R- is a Fourier integral operator continuous of order 1/2 [8] and u e H+/2,
R-u e HI)c(]R2 [31]. R- is a Fourier integral operator associated to F (with
R2 and [0, 2r] R coordinates reversed) and so the "inverse" relation to (3.2) holds
for R-1. Therefore, as (Oo,po;awo) WFu2, (x0;aO0dx) Wf(R-u2). Therefore,
f R-u + R-u2 is the sum of a.distribution in Hl)c and one that is smooth
near (x0; aOodx). Therefore, by Theorem 6.1 [24, p. 259], f is microlocally Hs near

(x0; aOodx).
We now apply Theorem 3.1 and (3.3) to three common types of limited data

tomography in the plane.
Example 3.3. Limited angle tomography. Let U c [0, 2r] be open, U U + r

mod 2r. In limited angle tomography, one knows data Rf(O, p) for all p and for 0 U.
One can reconstruct f(x) for all x R2 from limited angle data [21]. However, by
(3.3), the only singularities of f that one can detect in a stable way are those with
directions in U. To see this, choose x E R2 and 0 U. Any wavefront of f at (x; 0dx)
is detected by limited angle data because the line g(O, x. O) is in this data set. For the
same reason, wavefront of f at (x; 0dx) for 0 U will not be stably detected by this
limited angle data.

This phenomenon is illustrated by the singular functions in [14]. Those corre-
sponding to large singular values (easy to reconstruct) oscillate generally in directions
in U and those corresponding to small singular values (hard to reconstruct) oscillate
generally in directions outsi.de of U. This is also seen in the actual reconstructions
from limited angle tomography.

Example 3.4. The interior problem. Let M > 1 and assume supp f C {x
R211x <_ M}. In this problem, one has data Rf(O,p) for all 0 but only for IPl < 1.
The goal is to reconstruct f(x) for Ix[ < 1. Simple examples show this is impossible
in general. However, according to (3.3), one can detect all singularities of f in Ix < 1.
To see this, choose a point x inside the unit disk and choose a direction 0 [0, 2r].
Then the line through x and normal to 0 is in the data set for interior tomography
and so any singularity of f at (x; 0dx) is detected by interior data.

Lambda tomographic reconstructions are local--they use data Rf(O,p) only for
lines g(O, p) near x to reconstruct at x. So Lambda tomography is useful for the interior
problem. In fact, Lambda tomographic reconstructions for the interior problem clearly
show the singularities of f in the unit disk [5]. Maass [18] has developed a singular
value decomposition for this problem. See also [16].

Example 3.5. The exterior problem. Assume supp f C {x e ll211x _< M}. Here
one has data Rf(O,p) for all 0 but only for IPl > 1. By [3] one can reconstruct f(x)
for ix > 1. Let Ixl > 1 and 0 e [0, 2r]. Then the only singularities of f at x that are
reconstructed in a stable manner are those for 0 with g(O, x. O) in the data set that
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is, for Ix. 01 > 1. Other singularities of f are not stably detected. This can be seen
from the reconstructions in Figs. 1 and 2.

Lewitt and Bates [13], Louis [15], and Natterer [20] have developed good recon-
struction algorithms that use exterior data. The author has developed an exterior
reconstruction algorithm which employs Perry’s singular value decomposition [23] and
a priori information about the shape of the object to be reconstructed. Reconstruc-
tions for "medical" phantoms are in [26] and those for industrial phantoms are in
[27], [28]. Exactly those singularities that are supposed to be stably reconstructed
are clearly defined. In the author’s algorithm, singularities that are not "visible" are
smeared; reconstructions will now be given.

Figure 1 shows an object with outer radius M 1.5 on a rectangular grid. The
two bigger circles have density 1.5 and the two smaller 1.375. The annulus has density
one. The reconstruction in Fig. lb is gotten using the author’s algorithm with noiseless
data. The reconstruction in Fig. lc is from the same algorithm but using data with
slightly less than 1% L noise. Data are taken over lines using 100 values of p and
256 of 0 [26]. In both reconstructions, the principle (3.3) is illustrated. However,
the reconstruction with noise, Fig. lc, shows some algorithm limitations as well (and
reminds one that algorithm limitations independent of the principle can be important).
The slightly darker areas in the background in Fig. lc are the result of amplified high
polar Fourier coefficients due to the noisy data.

FIG. la. Rectangular coordinate display of the phantom [26] (similar to the phantom in

[20]).

Figure 2 shows polar coordinate displays for x (r, ) with e [zr/8, 3zr/8] on
the horizontal axis and r E [1, 1.10] on the vertical axis (r- 1.10 at the bottom) [28].
To provide sufficiently fine radial resolution, the scale in r is magnified by a factor
of 7.85. The phantom in Fig. 2 is supposed to represent a rocket motor with fuel
of density 1.7 inside the circle of radius r 1.052, an insulator of density 1.1 from
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FIG. lb. Rectangular coordinate display of the reconstruction without noise of the
phantom in Fig. la [26].

FIG. lc. Rectangular coordinate display of the reconstruction with noise of the
phantom in Fig. la [26].
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1.052 < r < 1.056, and a shell of density 1.5 and outer radius r 1.093. The defect
rests against the inside boundary of the insulator and extends for 0.06 radians and is
0.0014 units thick (it is seen tangentially by only three detectors). It is centered at r/4
radians and has density zero, The reconstruction is done with 1% multiplicative L
noise. Data are collected in a fan beam with 200 rays from p 1.0 to p 1.10 that
emanate from the source in evenly spaced angles. The source and fan beam rotate
around the object in 512 equally spaced angles.

FIc. 2. Polar coordinate display of rocket motor (phantom left, reconstruction
with noise right) [28]. The "wedge" near r 1.10 (at the bottom of the display) occurs
because the center of the rocket is offset slightly from the center of the coordinate system.

Because some wavefront directions are not stably detectable by limited angle data
or by exterior data, inversion for these problems is highly ill-posed (see the example
in [6] and the inverse discontinuity result in L2 of [19]).

Reconstructions in Figs. 1 and 2 illustrate the principle (3.3). In the reconstruc-
tion in Fig. 1, the "sides" of the circles are blurred (corresponding to singularities
normal to lines not in the data set), but the "inside" and "outside" boundaries of the
circles are well reconstructed. This occurs despite the fact that only a few lines in the
data set are tangent to the inside boundaries. The reconstructions of Fig. 2 are good
(even though the problem is, in general, highly ill-posed) because all singularities are
perpendicular to lines in the data set. This is true, even though the defect is very thin
and short in extent.

4. The X-ray transform with sources on a curve in R3. The standard
parameterization will be used for the.divergent beam transform in R3. Let w E S2

and x E ]l3, then the ray r(w, x) (x + twit >_ 0} is the ray parallel to w and starting
at x. The divergent beam transform of f Cc(R3) is

(4.1) Df(w,x) f(x + tw)dt,
o
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the integral of f over the ray r(w,x). Typically, the sources for the divergent beam
transform are points on a smooth closed curve % The divergent beam transform is
defined for f e L(R3 \ 7) L1 functions of compact support in R3 \ 7) [9] (and even
continuous on :,(R3 \ ), [7]).

Inversion of the divergent beam transform is a limited data problem because data
are given only over rays with sources on % Moreover, typically, X-rays are taken
only over an open connected set, t, of rays with sources on . In general, as long as
some ray in the data set is disjoint from supp f, then the part of f seen by the data
(that is, supp f f t-Je ]) is uniquely determined (see [9] and the generalization [2,
Thin. 2:2]). Our theorem for the X-ray transform is as follows.

THEOREM 4.1. Let / be a smooth curve in R3 and f E ,(3\/). Let xo supp f
and o e T$o(R3) \ 0. Then any wavefront set of f at (x0; 0) is stably detected from
data D] with sources on / i] and only i]

the plane 7, through xo conormal to o, intersects / transversally.

If data are taken over an open set of rays with sources on
to xo must be in the data set for (4.2) to apply. In these cases, f is in H8 microlocally
near (x0; 0) if and only if the corresponding singularity of Df is in Hs+I/2.

The exact correspondence of singularities analogous to (3.2) can be obtained from
the microlocal diagram (3.1.1) and the proof of Proposition 3.1.1 of [2]. Theorem 4.1
follows from [7] as well.

The global version of condition (4.2)--every plane meeting supp f intersects
transversally--is called the Kirillov-Tuy condition. This condition is required for the
inversion methods of girillov [12l and Tuy [32]. Under this condition, Finch [61 proves
that f H if Df H+I/2 for s _> 1/2 (and our theorem implies this fact for all s).

Typically, X-ray sources are placed on a circle surrounding the object to be re-
constructed. Theorem 4.1 shows the singularities that are not detected by such data:
singularities (x0; 0) conormal to planes 7 not meeting the circle transversally. There
are many such singularities--the more undetected singularities, the farther x0 is from
the plane of C. Finch [6] and others have noted that inversion with sources on one
circle, C, is highly unstable. By analyzing the singular values, Maass shows that
inversion is more stable for nonplanar curves such as two parallel circles or curves
oscillating on a cylinder [17]. Condition (4.2) is another way to understand why in-
version of data with sources on such nonplanar curves is better posed than for sources
on one circle--in general, if the curve is nonplanar, more singularities can be detected
stably from the given data.

Proof of Theorem 4.1. The microlocal assertion of Theorem 4.1 is a paraphrase
of the comment about "type II complexes" below the statement of Proposition 3.1.1
of [2]. That comment is equivalent to the fact that if x0 e (w, y) for some y e and
0 is conormal to w then WFf at (x0; 0) is detected by divergent beam data unless
0 is conormal to at y. This is equivalent to condition (4.2). The statement about
microlocal Sobolev spaces is valid because D is an elliptic Fourier integral operator of
order -1/2 and so, if a singularity of f is detected by data Dr, then the singularity of
Df is 1/2 order smoother than the corresponding singularity of f. This can be proven
just as the analogous statement in Theorem 3.1 is proven.
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HOMOGENIZATION OF DEGENERATE WAVE
EQUATIONS WITH PERIODIC COEFFICIENTS*
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Abstract. In this paper the authors discuss homogenization of hyperbolic equations involving
periodic coefficients which are degenerate relative to a certain direction. The general scheme by which
effective equations are obtained is as the reiterated homogenization. The first step of the process
leads to equations describing the oscillatory behavior in the direction of the propagation. Next,
space averaging in the degenerate direction gives the result. The process in the second step produces
nonlocal effects.

Key words, homogenization, hyperbolic, oscillations, periodic media
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1. Introduction. The main purpose of this report concerns the study of the
propagation and the interaction of oscillations for a class of degenerate wave equations
in periodic microstructure. Many problems of wave propagation in composite media
are modeled by equations of type: pO2u- div(kgrad u) + 00u f, where p is
the fluid density, k is the bulk modulus of the medium, 0 is the viscous damping
coefficient, f refers to an external force, and u stands for the pressure. The coefficients
p, k, and 0 are highly oscillating, depending on two spatial variables usually referred
to as macroscopic and microscopic variables. Let > 0 be the length scale which
characterizes the heterogeneities of the medium. Under usual assumptions on p, k,
and , discussions about effective equations can be found in Bensoussan, Lions, and
Papanicolaou [8] and Sanchez-Palencia [18]. Our interest here is in the case in which
the components of the anisotropic matrix k are taken to be negligible, i.e., small
compared with 2, in certain direction of the domain, so that waves propagate only in
the orthogonal direction. The matrix k is, therefore, of degenerate type, the classical
homogenization results fail; see [7].

The outline of this paper is as follows. In 2, we discuss the equation

(1.1) ( ) )x Y 02ue-div k y, gradue Y
0 =I

for t E]0,T[, (x,y) e , where T > 0, Rn O, O is an open subset of nm,
supplemented with initial conditions

Here and below points in Rn are denoted by x and points in (.0 are denoted by y. We
denote by Yk the unit cube in Rk and by Lr(Yk) (respectively, L2per(Yk)) the space
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of functions e L(Rk) (respectively, Loc(Rk)) such that is Y-periodic. The
local variables related to Yn-periodicity (respectively, Ym-periodicity) are denoted by

(respectively, r). Assuming some hypotheses regarding the data p p(x,
k k(, y, r) and f f(x, , y, ), we want to describe the asymptotic behavior of
the solution u of (1.1), (1.2), more precisely to derive the effective equation satisfied
by the weak limit u of (u) as e goes to zero.

The homogenization process we use will be carried out through two distinct steps
following the reiterated homogenization principle; see Bensoussan, Lions, and Papan-
icolaou [8]. The first one gives the behavior when considering oscillations E Yn in
the direction x of the propagation. The main tool is the method of oscillatory test
functions introduced by Tartar [19], [20]. To a subsequence of solutions (u) of (1.1),
(1.2), one can associate a function U- V(t,x,y,, r) which represents its oscillatory
behavior. We shall use a characterization in periodic microstructure due to Nguetseng
[16]. One can find other developments related to this subject in Allaire [2], E [10],
and Nguetseng [17]. The representation U U(t,x, y, r]), which does not depend on
the microscopic variable thanks to the compactness property in the direction x, is a
solution of the family of wave equations, parametrized by (y,

(y,) 02t U divx ((y, )gradxU) ](t, x, y, ), t e ]0, T[, x e Rn,

(1.4)

Here (y, r]) fy. p(, y, r]) d, ](t, x, y, r) fy f(t, x, , y, r]) d, and (y, r]) is the
homogenized matrix with respect to oscillations for fixed y and y.

Since u(t,x, y) fy V(t,x, y, ) dr], the next step consists of averaging (1.3) with
respect to r. By Laplace and Fourier transforms of (1.3), (1.4), we reduce the averaging
problem to characterize some weak limits as in the study of parametrized families of
hyperbolic problems discussed in [5]. We distinguish two cases. The first one describes
the situation where k is an isotropic tensor; we follow the pattern given in [3]. The
result is obtained using an integral representation for Nevanlinna-Pick’s holomorphic
functions; see Ahiezer and Krein [1], Donoghue [9], and Amirat et al. [3]. For an
anisotropic tensor , we apply Radon transform to (1.3), (1.4) as discussed in [5]. This
reduces the problem for ]I(n in a similar problem for R. The resulting one-dimensional
equation may be averaged within the framework mentioned above. Integration over the
frequency domain together with use of inverse Radon transform give the homogenized
problem. We mention here the strong interaction of the oscillations of the coefficients
p and k as well as the source term f. The lack of compactness produces nonlocal
effects described by integro-differential effective equations. Note that the choice of
the dependence of the coefficients p and k in (1.1) is essential in the second step. To
conclude this section, we address the question of existence and uniqueness results for
the effective equation.

In 3, we examine the hyperbolic-parabolic equation in ]0, T[ x f:
(1.5)

) (p x, 0t2u-div k x, gradu /-,y,- Ou-f t,x,-,y,

(1.6) u [oa 0 in ]0,T[xO,

(1.7) (0, (0, e a,
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where f fx (.9, fx is an open bounded set in l’ with smooth boundary 0f, and
p _> 0 is allowed to vanish. First, averaging in the direction of propagation yields the
damped wave equation

(1.8) (x) OU div((x) gradU) + (y, 1) OtU ](t, x, y, 1),

(1.9) Uloa.=0 in]0,T[xO, U[t=0=c (x)OeUle=o=X(x) inn,

where (y, /) fy. (, y, 1) de, X(x) fy. VIp(x, ) de. Next, the effective equation
is obtained using the Dunford-Taylor’s integral and the characterization of weak limits
used in the preceding section. For this problem, there is no interaction between
oscillations of the coefficients p and k with the damping coefficient 0. The nonlocal
effects are due to oscillations of the damping and source terms. The main key results in
2 and 3 leading to effective equations are valid only for equations where periodicity
occurs in coefficients.

The last section is devoted to some similar problems involving the nonperiodic
microstructure. We first analyze, for the sake of completeness, the propagation of a
parametrized family of acoustic waves in a bounded domain :
(1.10) Ou a(y) Au O, Ion= O, u I=o , Ou I=o .
We end the section by studying the damped wave equation

(1.11)
p(x) 02t U divx(ke(x)gradzu) + O(y) Otu O,
ulon.o=o, ul-0=, 0ul,=0=/.

We apply the same argument to show that there is no interaction when the damping
coefficient does not depend on the direction x of the propagation.

A part of these results has been announced in [6].
2. A degenerate wave equation. Let O be an open subset of Rm (m > 1)

and T > 0. Setting f Rn x (.9, n _> 1, we consider the following Cauchy problem in
]0, T[ xf:

(2.1) p(x, y)02tu divz(k(x, y)gradzu) f(t,x, y),

On the data p, k, f, a, and/3 we make the following hypotheses. We suppose

(2.3) (xp(x, y)= p -, y,- for almost every (x, y)

where p e C(O; per(Y, x Y,)), that is, p e C(O;L(R= x R’)) and p(.,y,.) is
Yn x Ym-periodic for every y E O, and

(2.4) 0 < p_ _< p(, y, /) _< p+ a.e. in Y= x (.9 x Y,;

the tensor ke is symmetric and satisfies

(2.5) . .(, )= ,, (,,, , y, for almost every (x, y) e a,
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where, for i, j 1 to n, the components ki,j belongs to C((9; Lper(Yn x Ym)) and

for y E (9, almost everywhere for (,7) E Yn Ym, k- and k+ being two strictly
positive real numbers. The source term f is assumed to satisfy

fe(t,x,y) c(x,y) f(t,x,y) for almost every t e]O,T[,(x,y) e 12,

c(x, y) ----c , c_ <_ c(x, y) <, c+ for almost every (x, y) 12,

where c C Lpr(Yn Ym), and f C L2(]0,T[). Concerning the initial data, we
impose

(2.8) a C L2(O; HI(Rn)), / c L2(t).

It is well known that problem (2.1), (2.2) admits a unique solution; see Lions-
Magenes [13] and Mizohata [14], for instance. Specifically the following assertions hold
true:
(2.9) For each > 0, there is a unique solution to(2.1), (2.2) satisfying

u C C([0, T]; L2(O; HI(Rn))) N C1([0, T]; L2(t)).
The sequence (u)>o is uniformly bounded in

L(0, T; L2(O; HI(Rn))) N Wl,(O, T; L2()).

Let u be a weak limit, as -- 0, of a subsequence (u)>0 of solutions of problem
(2.1), (2.2). We want to establish an effective equation satisfied by u. The way to
construct that equation is like the process of reiterated homogenization. One first
homogenizes with respect to , while keeping y and 7 as fixed parameters, and next
with respect to the direction 7, which can be seen as a degenerate direction in (2.1).

2.1. Averaging with respect to . A formal expansion for the solution u of
(2.1), (2.2) is obtained by the ansatz

where U(t, x, , y, 7) and Uj (t, x, , y, 7) J _> 1 are periodic in and 7. Following the
usual procedure, we substitute (2.11) into the governing equation (2.1) and collect
equal powers of . The coefficient of -2 gives

(2.12) dive (k(, y, 7) grade U) 0,

which implies that U does not depend on . Hence U U(t,x, y, 7). Taking (2.12)
into account, the order -1 yields

(2.13) div(k(, y, 7)(gradzU + gradcU1)) 0.

For the zero order, we have

(2.14)
dive (k(, y, 7) grade U2) c(, 7) f(t, x, y) + p(, y, 7) 02t U

dive (k(, y, 7) (gradzU + gradcU1))
dive (k(, y, 7) gradU1).
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Thus, averaging (2.14) with respect to , one obtains a wave equation for U:

(Y, 7) OU divx((y, 7) gradxU) 6(r/) f(t, x, y)

for t El0, T[, x E ]Rn, y O, and r Ym, provided with the initial conditions

(2.16)

Here () fy c(, 7) d, (y, 7) fy P(, Y, 7) d, and k(y, 7) is the homogenized

tensor associated with (k(x/, y, y))>0, for fixed y and 7. Specifically (l,j), for
1,j 1,...,n with

klj(y, 7) kl,j(, y, 7) 4- ki,j(, y, Y)-Xl(, Y, 7) d.
i--1

The function Xl Xl(, Y, /), with mean value (Xl(’, Y, 7)) fy Xl(, Y, 7) d 0 is
calculated explicitly by solving the cell problem

(2.18) -dive (k(, y, 7)[el + grade Xl(, Y, /)]) 0, e Yn,

el being the/th vector of the canonical basis of R. Notice that as k(, y, ),/(y, 7) is
also a symmetric tensor. To justify the above procedure, we shall pass to the limit in
the variational formulation of (2.1), (2.2) with appropriate oscillatory test functions;
see Bensoussan, Lions, and Papanicolaou [8], Murat [15], Sanchez-Palencia [18], and
Tartar [19], and use the following convergence result due to Nguetseng [16].

THEOREM 2.1. Let (v)e>0 be a uniformly bounded sequence in Loc(g). Then,
there is a subsequence, still denoted by (v)e>0, and a function V in the space Loc(RN;
L2per (YN such that

(2.19) v(x) x, - dx
N e---O N YN

V(x, ) (x, ) dxd

.for any smooth function (x, ) with compact support in x and periodic with respect
to the variable . If in addition (Ox, ve)e>o is uniformly bounded in 2 NLloc(ll ), then

(i) the function V V(x, ) does not depend on the variable ;
(ii) there exists a function V1, VI Vl(x, ) with V and 0,V1 in L2oc(RN;

n2per (YN)), such that

(2.20) O,v(x) x, - dx
N ’--40 N YN

(0,V 4- 0, V)(x, ) (x, ) dx d.

2 N L2per (YN)), thenRemark 2.2. if v(x) v(x,x/) in (2.19), where v c Lloc(R
obviously V(x, ) v(x, ).

Remark 2.3. If (v)>0 is a bounded sequence in L2(]N) converging in the sense
of equation (2.19) to V V(x, ), then (v)>0 converges weakly in L2(RN) to v(x)

Let us return to problem (2.1), (2.2). We are going to prove the following result.
THEOREM 2.4. Let (u)e>0 be the sequence of solutions of (2.1), (2.2) under

assumptions (2.3)-(2.8). Then (u)>0 converges in the sense of (2.19) to a function
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U(t,x,y, ) solution of the family of equations (2.15) parametrized by (y,/) e
Ym with prescribed initial conditions (2.16).
Proof. Let denote the Laplace transform in t. We set for p E C with ep > 0

,(p, , u) c(,(., , u))(p), g(p, x, y) :(f(., x, y))(p) a.e. in ft.

Taking the Laplace transform of (2.1), (2.2), one obtains

(2.21)
p2 ps(x y)vs divx(M (x, y)gradxvs) c(x, y) g(p, x, y)

+ p(, )(p(,) + (, )).

We now fix p E C with !lep > p0 > 0. The variational formulation of (2.21)
reads

f(p2
ps(x y) vs Cs + ks(x, y)gradzvs gradzs) dx dy

fn{c(x,y)g(p,x,y) + ps(x,y)(po(x,y) + (x, y))} s dxdy

for any test function Cs. In the sequel qo stands for a function in :D(f). Choosing
Cs(x, y) e qo(x, y)w(x/e, y/e) in (2.22), with w a smooth and Yn x Ym-periodic
function, we have

lim Is 0,
s---*0 f.where Is 99 ks(x, y) gradvs. gradw , dx dy.

On the other hand, Theorem 2.1 asserts that there is a subsequence (still denoted by
(.vs)s>o), Y Y(p,x,y, rl), Y in L2(12;L2per(Ym)), V1 Vl(p,x,,y,7), VI, and O,V,
in L2(f; L2per(Yn Ym)) for i= 1 to n, such that

f
lim Is /
s--*O J X Yn X Ym

99 k(, y, r/) (gradxV + gradcV) gradCw dx dyd

Hence

(2.23) div(k(,y,r/) (gradzV + gradcV)) 0 in the sense of distributions.

Next we take bs(x, y) (x, y)w(y/e) in (2.22), with w a smooth Ym-periodic func-
tion, and pass to the limit as e --. 0. In view of Theorem 2.1, we get

p2/n P(’ y’ 7) qo Y w(rl) dx dy de
xYn XYm

(2.24) + k(,y,7) (gradV + gradcV).gradqaw(rl)dxdyddy
xYn xY.

fo (c(,rl)g+p(f,y,)(pa+))qaw(rl)dxdyddrl.
xYn xYm

Relation (2.24) says that V and V1 satisfy in :D( x Ym)

(2.25)
P2 (y’ 7) V divx (L k(’ Y’ 7) (grad’V + gradcV1) d)

(,1 (p(,1 + (, 11 + () (p, , ).
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As in the classical framework of the homogenization theory, one can display from
(2.23) V1 in terms of V, and substituting it into (2.25) leads to

(2.26)
p2 fb(y, y) V divx ((y, y) gradx.V)

5(y, ) (p a(x, y) + f(x, y) + 5(n) g(P, x, y).

Taking the inverse Laplace transform in (2.26), which is meaningful, there is a function
V- V(t,x,y,y) in L2(IO, T[O Y,; HI(Rn)) solution of

(2.27) (y, ) 02 U div((y, ) gradxU 5(y) f(t, x, y),

(2.28) o,u(o,

for t El0, T[, x E ltn, y (9, and y Ym. Since the function U is uniquely determined
by (2.27), (2.28), the whole sequence (ue)>0 converges weakly in the sense of (2.19)
to U. Theorem 2.4 is thereby proved.

2.2. Averaging with respect to /: effective equations. Let u be the zero-
order moment of function U defined in Theorem 2.4, i.e.,

(2.29) u(t, x, y) =/y. U(t, x, y, ) dy, .t el0, T[, (x, y) e f.

Thanks to Theorem 2.1 and Remark 2.3, the sequence (ue)e>0 of solutions of (2.1),
(2.2) converges as e --, 0 to u weakly in L2(]0,T[x). The homogenization of (2.1),
(2.2) is now reduced to the averaging of (2.27) and (2.28) in Ym. We shall then discuss
such averaging subsequently. This problem enters in the framework of homogenizing
parametrized families of wave equations. In order to be self-contained we summarize
here the characterization of a weak* limit, obtained in [3], [4], which will be used
throughout this paper.

Let (a) and (be) be two sequences in L(O), not necessary in the periodic setting,
satisfying

0 < a_ <_ he(y) <_ a+, 0 <_ be(y) <_ b+ a.e. in O.

Let A--]a_, a+[. We consider the sequence (e) defined by

be(y) (z a(y))-1 for all z e C \ A and for almost every y e O.

Suppose
a a, and be *" weakly* in L((.0),

where b(y) >_ b_ > 0 for almost every y O. Define the coefficient d as

ae be *- 3 weakly* in L(O).

The following lemma makes precise the weak* limit for a subsequence of (e).
LEMMA 2.5. There exists a parametrized family of nonnegative measures day(.),

supported, for almost every y , in A such that .for a subsequence

(2.30) (.,z) *- (-,z) in L(O) weak*for all z -,
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with

(2.31) (y,z)--(y) (z--(y) L(z- A)-lday()t))
-1

We shall refer to day as the parametrized family of measures associated with
sequence (ae, b). The measure day is defined by its moments fA Ak day(A), which are
explicitly given in terms of the limits of (a), (be (a)k), k > O. Let T(y) fA day(A).
One has T(y) >_ 0 and T(y) =-- 0 if and only if the sequence (a(y)) converges strongly.
Let duy be the family of Young measures associated with (). The support of duy is
contained in [0, b+] x [a_, a+] and for all z E C \ A, we have

lim (- z) (duy(#, ) # (z )t)-l).
e--*O

We can state the following result.
LEMMA 2.6. For almost every y O, the measure day is related to the measure

duy by

(2.32) day(A)(z ,)--1 Z d(y) b(y) # (z )- dty(#, )
,b+[A

-1

.for all z C \ A. Furthermore, the family day depends mesurably on y.
Proof. Relation (2.32) is established in [4], [5]. On the other hand, we know from

Tartar [20] that the Young measure dy depends measurably on y O. Then, from
(2.32), using Cauchy’s formula we deduce that y - day is also weakly measurable.

Let us now return to the averaging problem. According to whether the tensor k
defined by (2.17) is isotropic or not, the effective equations are obtained by different
ways. We shall distinguish the following situations.

2.2.1. Case of macroscopic isotropy. In this subsection, we suppose that the
tensor (y, /) given by (2.17) is isotropic. For convenience, we denote also by (y, r/)
the scalar coefficient of the isotropic matrix. Consider the problem

(2.33)
o u(o, u),

for t e]0, T[ (x, y) e , 1 e Ym. Let (t, , y, /) fR exp(-2irx) U(t, x, y, 1) dx,
the Fourier transform in x of U, and V(p, , y, /) :(U(., , y, r/))(p), the Laplace
transform in time of U. Then for p C with Nep > p0 > O,

(2.34)

Here (p, f, y, r/) (p- + 4r2lfl a(y, 1))-1, g(p, , y) .(](., , y))(p), a(y, 1)
(Y, I)/(Y, 1) and b(y, 1) 5(l)/(y, 1). Owing to (2.4) and (2.6), one has

k_ k+(2.35) O<a_ <a(y,l) <a+ a.e. inOYm, witha_=--, a+----.
p+ p-



1234 Y. AMIRAT K. HAMDACHE AND A. ZIANI

Let v(p, , y) fv, V(p, , y, r/) dr From (2.34), we get

where the overbar will denote the spatial averaging over the period Ym. Notice that
for fixed E Rn and p E C with ep > p0 > 0, we have

y -1

b--(p,,y) lim b (y, y (y, eY-)) -1 in Lo(O) weak*.

Since we do not impose any condition on positiveness of coefficient c(x, y) in (2.7),
we must be careful in applying Lemma 2.5, which holds only when c does not change
sign. Otherwise, we break up the coefficient c in ce (x, y) c_ (x, y) c (x, y), where
c_ and c are, respectively, the positive and negative parts of c. As 5+/-(r/) _> 0,
therefore,

+ (y) b+ (y, r/) dr/_>
c+

P+
with + --/v.. 5+(r/)dr/> 0.

Let A -]a_, a+ [, d(y) fvm a(y, r/) dr/. Lemma 2.5 asserts that there exist three fami-

lies of nonnegative measures day, dau+ and da associated, respectively, with sequences
(a(y, y/))e>o, (a(y, y/)b+(y, y/))e>0, and (a(y, y/s)b_(y, ))>0, parametrized by
y O and supported in A, such that

b+ (p, , y)

+(y) 2 + 4r2112 3+(y) (4r2112)2 (p2 + 40r2112 A)-I dau(A)

where

d+ (y) + (Y)
a(y, r/) b+ (y, r/) dr/.

Let us now introduce functions ul u (t, x, y), u+ u+ (t, x, y), and u_

u_ (t, x, y) such that

(e.as) a + a.

Using the inverse Laplace and Fourier transforms, it follows from (2.36), (2.37), and
(2.38) that Ul, u+ and u_ satisfy, respectively,

(2.39)
Axu (s, z, y) dz ds 0,02tUl -(y) AxUl M(t s,x z,y) 2
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Ou+ 3+/-(y) Au

M(t s, ,) A+/-(s,z,)dzds +() I(t’,),

u+ t=o 0, Otu+/- t=o 0.

Here the kernels Mn, Mn are given by

M=(t,x,y) A dau($)E=(t,x,A), M(t,x,y) A da(A)$n(t,x,A),

where =(-,., ) is the elementary solution in R= of the wave operator 0t2-$ Ax, E A.
We have thus proved the following.
THEOREM 2.7. Let (u)e>0 be the sequence of solutions of (2.1), (2.2) under

assumptions (2.3)-(2.8). In the case of macroscopic isotropy, (ue)>0 converges weakly
in L2(]0,T[) to u Ul + u+ -u_, where ul and u+ are characterized by (2.39)
and (2.40), respectively.

COROLLARY 2.8. Assume that in (2.3) and (2.6), respectively, the functions p
and c do not depend on the l-variable, that is, p p(, y), c c(). Hence, as --. O,
the sequence (ue)e>0 of solutions of (2.1), (2.2) converges weakly in L2(]0, T[) to u
satisfying
(2.41)

(y) 02t u -(y) Axu M=(t s, x z, y) A2u(s, z, y) dz ds 5 f(t, x, y),

I=o , Ou I=o .
Here (y) fy p(, y) d, 5 fy= c() d, -(y) fy. [(Y, I) dl and day represent
the parametzed measure associated with (k(y, y/s))>o.

Remark 2.9. The one-dimensional ce enters in the above pattern. The coeffi-
cient reduces to

k(, ) k(,,)"
Remark 2.10. The Dunford-Taylor integral representation allows to extend the

result for boundary value problem when the variable x E C_ Rn; see 4.
We establish now the existence and uniqueness result for equations of type (2.39),

(2.40), or (2.41). Consider, for instance, (2.39). Introduce the auxiliary function wl

defined on ]0, T[ h by wl (t, x, y, )t) f Aul (s, x (t s), y) ds. So (2.39)
becomes the system

We can write (2.42) as an abstract evolution problem in the form

(2.43)
U" + A U F,
u [=o u0, u’ I=0
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The prime sign stands for the derivative with respect to time t, U (u, w), U0
(ao, 0), and U1 (al, fl). The operator A is formally defined by

(2.44)

Let d#(y, ) dy da(A). From Lemma 2.6 d# is a nonnegative valued measure
on (9 h. Introduce then the Sobolev spaces L2(O A) L2(O A; d#(y,A)),
][]I L2(f) x L2(O x A;L2(Rn)) and V L2(O;HI(]n)) x L2(O x A,H(Rn)).
Relatively to the scalar product associated with a variational formulation of (2.43),
one has

(AU, U) -d(y) lgradxul2 dx dy + /L A dau(A) lgradxwl2 dx dy

2 / A gradxu gradw da dx dy.

Let 7 > 0. Since 2 Igd" gradwl _< ((1 + -)/A)Igdl + (A/(1 + 7))IgraGwl,
it implies that

Taking (2.32) into account, one observes that

d(Y) A-ldau(%) (limk,e_.,o ae(y)l )
-1

a-1 _> a_.

It follows that

(y) (i + "y) L )-lday(%) -’Y E(Y) + (I + "y)-(y) _> -’y a+ + (I + /)a_.

Since a_ > 0, we can choose /> 0 such that

"_ min -- a+ + (1 +-) a_,
1 +-

Thus

(AU, U) > "- (Igradul (.) + Igradxwl = )L(OA,L2(Rn))

Inequality (2.45) says that A is V-elliptic. Hence, following Lions-Magenes [13,
Thm. 8.1, p. 287], for U in , U0 in V, and F in L2(0, T; ]HI), there exists a unique
function U satisfying (2.43) and such that

U e L2(0, T; V) and U’ e L2(0, T; IBI).

Then we have established the following.
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THEOREM 2.11. Problem (2.42) admits a unique solution U (Ul, Wl) satisfying

Ul e L:(O,T;L:(O;HI(Rn))), Wl e L2(O,T;L(O x A; HI(Rn))),
OtUl E i2(O,T;i2(ft)), Otwl L2(O,T;L2(O x A; 52(f))).

Existence and uniqueness results for (2.40) and (2.41) can be handled in a similar
manner. We conclude that the weak limit u Ul + u+ -u_ of sequence (u) of
solutions of (2.1), (2.2) is well defined by (2.39), (2.40), and (2.41).

2.2.2. Anisotropic case. The same basic approach as developed in [5] will be
applied. First, we split up the solution U of (2.27), (2.28) into the superposition of
solutions U1 and U2 of the subproblems

(y, ) 02tU1 divx(k(y, r/) gradxU1) 0 in ]0, T[ xft x Y,,

OtUl (O, x, y, ) (x, y) in ft x Ym,

(y,y) O2tU2 -div(k(y,y)gradU2) 5() f(t,x,y) in ]0, T[ xft x Ym,

U2(0, x, y, n) O, OtU2(O, x, y, ) 0 in ft x Ym.

As before, we set a(y, ) (y, y)/(y, ) and b(y, ) 5(y)/(y, ). The tensor
a(y, ) satisfies

a_ 2 a(y,) a+ 2 V Rn, Vy O, a.e. for Ym,

with a+ and a_ in (2.35). To avoid complications in notation, we restrict ourselves
to the ce 0 5(y) c+. Then, according to the representation formula using Radon
transform, we construct equations satisfied by the zerorder moment ui of Ui, i 1, 2,
for which we just describe the procedure and refer to [5] for the details. We essentially
use the isometry

(2.48) (-0)n" L2(Rn) L(R x Sn-1;]cnldr).

Here Sn-1 denotes the unit sphere in Rn, cn (2ir)-=+1/2, is the usual meure
on Sn-, (.) stands for the Radon transform, and the subscript o stands for even
functions. Let, for i 1, 2,

One can establish that fii, i 1, 2, satis, respectively,

0 (U).0 +f0l(t, ,, U, )d,() 0,
JA

(2.51)
02t ft2 3(y) w w 02r ft2 + L 02r2(t’ r, w, y, A) da2, (A) (y) ](t, r, w),

Ot S= A0 +0 O,
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where

Lb(y) b(y,y)dy, -5(y) a(y, rl) dy and d(y)
(y)

a(y, rl) b(y, rl) &?.

For all fixed w E S’-1 ad ,, i 1 2, are the measures associated, respectively, with
the sequences (a(y, y/e)w.w)>o and (b(y, y/e)a(y, y/e)w.w)>o in the sense of Lemma
2.5. Moreover, let dulu be the Young measure associated with the sequence (a(y, y/e)).
Then one has the relation

(2.52)
(da,(A), (z ,)-1)

((dv(T), (z I + T))w,w) ((dvlu(T), (z I + T)-)w,w)-
Here T stands for a matrix describing the oscillations of a(y, y/e). From (2.52), we
deduce that, for any holomorphic function g in C,

(dlu(" ")’ g(’)) =- sn-1 (daly’(’)’ g(’)) dw

is well defined and du(., .) is a family of nonnegative measures, with support contained
in A Sn-l, parametrized by y E (9. Hence, the inverse Radon transform gives the
homogenized equation. Let d2u(., .) be the corresponding measure associated with
da,.

We summarize this result in the following theorem.
THEOREM 2.12. Assume that c, , and f have compact supports in the direc-

tion x. Then, there exist two families of nonnegative measures d(., .), i 1,2,
parametrized by y (9, supported in A Sn-, such that the sequence of solutions
(u)>0 of (2.1), (2.2) under assumptions (2.3)-(2.8) converges to u u + u2 weakly
in L2(]0,T[f). The functions u and u2 are solutions through auxiliary functions
Wl --w(t,x,y,A), w2 w2(t,x,y,)), (t,x,y) e]0, T[ f, / e A, of the following
systems:
(2.3)

02t Ul divz((y)gradu) cn f dEu(),w) (-02)n(w) O,
JAxSn-

(92tWl )i AxWl -- Azu 0, t @]0, T[, (x, y) E Rn O, A A,

Ul I=o , wx I=o 0, 0_ I=o Z, CtWl {t--O 0,

02t u2 divx(3(y)grad,u2)

cn f d2u(A,w) (-02r)n(w2)Ir=.= (y) f(t,x,y),
xSn-.

Otw Aw: + Au 0, t el0, T[, (z, y) e R O, ; e A,

,21,=o=O, o1,=o=O, o,1=o=O,
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COROLLARY 2.13. Assume that in (2.3) and (2.6), respectively, the functions p
and c do not depend on the l-variable. Then, the weak limit u satisfies

(y) O2tw-AAxw+Au=O, te]O,T[, (x,y) eRnx(9, AeA,

u I =o I =o o, I =o Z, I =o o,

where (y) fy= p(, y) d, fy c() d, -(y) fy.. (Y, I) dl and dEu is the

measure associated with ((y, y/e)).
Finally, we state the following.
THEOREM 2.14. Under hypotheses (2.3)-(2.8), problem (2.53)(respectively, (2.54))

admits a unique solution U (u,wl) (respectively, U (u2,w2)) satisfying for
i= 1,2

ui e L2(0, T; L2(O; HI(Rn))), wi e L2(0, T; L2g(O A;
Otu, e L2(O,T;L2(2)), Otwi e n2(O,T;n2g(O A; n2(t))).

Thus, the weak limit u ul + u2 of sequence (u) of solutions of (2.1), (2.2) is well
defined.

Proof. Consider, for instance, system (2.53). Thanks to the isometry (2.48), it
suffices to prove the existence and uniqueness for system (2.50). We can associate with
system (2.50) an abstract formulation of type (2.43). Here the operator A is formally
defined by

Following the proof of Theorem 2.11, we introduce d#(y, w, A) dy dalu,,,,(A) dw
and the Sobolev spaces L2g(O x Sn-1 X A) L2(O X Sn-1 X A; d#(y,w,A)), H
L2() xL2g(OxSn-I x A; L2(R+)), and V= L2(OxSn-I,HI(R+))xL(OxSn-I x
A; HI (R+)), where R+ x Sn-I x O. One h

(AU, U)= -d(y)w w ]Orul2 dr dy dw + A Ada,(A)]Orw]2 da,(A)drdydw

2
h
OruOwda,() dr dydw.

For /> 0, one deduces that

(AU, U) > ((y)w w (l + 7) fA )i-1 da,(A)) ]gradzul2 dr dydw

L Ada,(A)Orw2 dr dy.+1-4-7
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From (2.52), one observes that

(y)w W -1 dryl,w()0- iIa (y,
It follows that

(y)w w (1 -b /) J^ A-ldaul,(A) >_ --/d(y)w.w --b (1 -t- a_

_> -a+ + (1 + -)a_.

Thus, for some 7- > 0,

(AU, U) >_ "),_ (10ul2()+ IOrWl2L(OXS,-l xA,L2(R+)))
This completes the proof.

3. An hyperbolic-parabolic equation. Let O be an open subset of R’, m _>
1, T > 0, and let flz be an open bounded set in In with smooth boundary 0fz. We
set f fx x O. We consider the following Dirichlet problem:

(3.1) p(x)O2u -divx(ke(x)gradxu) -bO(x,y)Otu f(t,x,y) in ]0,T[ xf,

(3.2) u ]onx 0 in ]0, T[x O,

(3.3) u [t=0 a in ,
(3.4) Otu [t=o =/ in ft.

On the data p, k, 0, f, a, and 3 we assume that the following hypotheses hold.
Let

pe(x) p x, a.e. in 12x,

with the function p belonging to C(fz; Lpr(Yn)), and satisfying

0

_
p(x, )

_
p+ Vx e 12 for almost every e Yn,

(3.6)
where we impose that (x) -/y, p(x, ) d >_ p_ > O.

The matrix k is symmetric, with entries

(3.7) ki,j(x) ki,j x,- a.e. in f, i, j 1 to n,

where ki,j E C(Dx; Lp%r (Yn)), and satisfies

(3.8)
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k_ and k+ being two strictly positive real numbers. The damping coefficient is defined
by

(3.9) y, a.e. in ,
where 0 e C(O; Lper(Yn x Ym)), and

0 <

_
_< (, y, ) _< + Vy e O for almost every (, v]) E Yn Ym.

In the sequel we set A -]0_,+[. We take the source term f as in (2.7) where we
impose for the case of exposition

(3.11) O_<c

On the initial data, we suppose

(3.12) a e L2(O; H(x)), / e L2().

Observe that (3.4) gives a condition on Otu I=o only on the set where p(x) O.
Hence (3.1) is an equation of hyperbolic-parabolic type. In the standard case where
there is no dependence on the variable y e O, this class of equations has been con-
sidered in Vragov [21], and thehomogenization is carried out in Bensoussan-Lions-
Papanicolaou [8]. Under assumptions (3.5)-(3.12) problem (3.1)-(3.4) admits a unique
solution in a weak sense; see [13], [14]. More precisely, we have

(3.13) For each e > 0, there is a unique solution to (3.1)-(3.4) satisfying

u e L(0, T; L2(O; H0 (fix))) N C([0, T]; L2()).

(3.14) The sequence (u)>0 is uniformly bounded in

L(O, T; L2(O; H) (t))) ffI HI(O, T; L2()).

Furthermore

-gOtu is bounded in L2(]0, T[).

The proof of (3.13)-(3.15) is standard. It relies on the following a priori identity of
energy

for all t e (0, T).
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Remark 3.1. Since (u) belongs to C([0, T]; L2()), (3.3) has a meaning. From
(3.5), (3.6), (3.13), and (3.14) it follows that p Otu belongs to L2(0,T; L2(t)) and
Ot(p Otu) belongs to L2(0, T; L2(O; H-l(x))). Thus

belongs to CO ([0, T]; H-1 (fl)).

We know from [13, Lem. 8.1, p. 297] that

L(0, T; L2(t)) gl C0([0, T]; H- (gt)) c C8([0, T]; L2()),

where C8([0, T]; L2(12)) denotes the space of functions v defined in [0, T] with values in
L2(), such that for any w in L2(t) the function t f v(t) w dx dy is continuous on
[0, T]. Therefore pe Otu belongs to Cs ([0, T]; L2 (2)), and consequently the function

t (x/w) (vfOtu) dx dy

is continuous on [0, T] for any w such that vW E L2(). This implies that the
initial condition (3.4) has a meaning. Obviously the condition p Ou I=o is
also well defined.

In order to derive effective equation describing the oscillatory behavior of (u),
we shall proceed as in 2.

3.1. Averaging with respect to . Taking y E (9 and Ym as fixed param-
eters, we define
(3.1S)

5(r]) f c(,, y)de’, )(y, )--f 0(, y, y)de, and X(x)=

Let also (x) be the homogenized matrix associated with the sequence (k(x, x/e))>0.
We now state and prove the following result.
THEOPEM 3.2. Let (u)e>0 be the sequence of solutions o.f (3.1)-(3.4), under

assumptions (3.5)-(3.12). Then, there is a unique function U V(t,x,y,) in
L2(]0,T[ O Ym;H(tx)) such that (u)>0 converges, as O, to U in the sense
of (2.19). For almost every (y, ) e (9 Y,, the function V(.,., y, ?) is the solution of

(x) 02t U div(/(x) gradU) + (y, ?) OtU () f(t, x, y)

.for t ]0, T[, x t,

(3.20) U I=0 c in t,

(3.21) (x) OtU ]t=o X(x) / in .
Remark 3.3. Assume that in (3.5) the function p is independent of and p 0.

Then, it follows from (3.21) that OtU t=o is given over the whole domain 12x. There
is some sort of increase of the initial data comparing with (3.4); see [8].

Proof. It is very close to that of Theorem 2.4. Without going into further de-
tails, let us outline the procedure. Let v(p,x,y) (u(.,x,y))(p), g(p,x,y)
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(f(.,x,y))(p) and fix p E (2 with ep > po for some real p0 > 0. Therefore, by
Laplace transform, (3.1)-(3.4) becomes

(3.22)
p2 pe(x ve div(ke(x)gradxve) + pOe(x, y)ve

c(. U)a(. . U)+ (()+ e(. U)).(. U) + V/() Z(x. U).

(3.23) ve [Of O.

Consider the variational formulation of (3.22), (3.23):

(3.24)

for any test function Ce. Arguing like before, we take successively in (3.24)

Ce (x, y) (x, y)w 7’ 7 and Y

with E :D(f), w a smooth Yn x Ym-periodic function and send 0. Thanks to The-
orem 2.1, there exists a subsequence (still denoted by (ve)e>o), and V V(p,x, y, rl)
V1 V(p,x,,y,r]), V in L2(f’t;L2per(Ym)), V and 0V in L2(;L2per(Yn x Y,)) such
that

(3.25) div(k(x, )(gradV + gradcV)) O,

(3.26)
p2 (x) V divx (/yn k(x,) (gradV + gradcV)) d + p(y, ) V

(p (x) + (y, rl) a(x, y) + X(x) (x, y) + 5(l) g(p, x, y).

in the sense of distributions. Displaying from (3.25) V in terms of V and introducing
the homogenized tensor k(x) of (k(x,x/))e>o gives

(3.27)
p2 fb(x) V div((x) gradV) + p(y, rl) V

(p tb(x) + (y, ,)) a(x, y) + X(x) (x, y) + 5(rl) g(p, x, y).

Taking the inverse Laplace transform of (3.27), one deduces that there is a function
V U(t,x,y, rl) in L2(]0,T[ xO x Y,;H](flx)) such that (3.19), (3.20), and (3.21)
hold. Moreover, the function U is uniquely determined by (3.19)-(3.21). Hence the
whole sequence (ue)e>0 converges weakly in the sense of (2.19) to U. The proof of
Theorem 3.2 is then complete.

3.2. Averaging with respect to . Nonlocal effective equations. Let u
be the zero-order moment of the function U defined in Theorem 3.2

(3.28) u(t, x, U) =/y. U(t, x, y, 1) d,, t > O, (x, y) e f.
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Clearly, the sequence (u)>0 of solutions of (3.1)-(3.4) converges as e --. 0 to u
weakly in L2(]0,T[f). In order to get an equation for u, it remains to average
(3.19) with respect to r/ e Ym. Let Y(p, x, y, r/) .(U(.,x,y,r/))(p), the Laplace
transform in time t of U. Then for p E (2 with ep > O, V satisfies (3.27). For
fixed p E (2 with ep > po, introduce the unbounded operator An with domain
D(Ap) {v e H0(flx) Ap v e L2(x)} defined by

(3.29) Ap v p2 (x) v div((x) grad,v).

For almost every (y, r/) e O x Ym, (An +p O(y, r/)) is a one-to-one operator from D(Ap)
onto L2(f). Then, from (3.27) we deduce

(3.30) V(p, ., y, r/) (A, + p(y, r/))-i (h(p, x, y, r/))

with h(p, x, y, r/) (p (x) + O(y, r/)) a(x, y) + X(X) (x, y) + 5(r/) g(P, x, y). According
to Dunford-Taylor’s integral (see Kato [12]) we can write

(3.31) (A, + p(y, r/)) -1
-1 r (z p(y, r/)) -1 (Ap / z)-1 dz.
2i ,

Here

{ z }
with p a closed curve in the right half plane e z > 0 containing the real interval
A. Thanks to Fubini’s lemma and Lemma 2.5, averaging in Ym of (3.31) is easily
obtained. There exist two parametrized families of nonnegative measures_day and da2
associated, respectively, with the sequences ((y,y/))>o and (5(y/)(y,y/))>o,
with support contained in A such that for all z Fp and almost every y E O,

(3.32) z p(y, r/)) -1 ar/-- z p-(y) p2 (z p A) -1, da())

( L )-’(3.33) /y, 5(r/) (z p(y, r/)) -1 dr/- 5 z p-d(y) p2 (z p,k) -1 da2(A)

where 0(y) fy. O(y, r/)dr/, "5 fy, 5(vl)dr/, and (y) fr. (y, r/) 5(r/) dr/. Intro-
duce for i 1, 2, the functions Vi(p,x, y, r/) such that

(3.34)
Vl(p,x,y,r/) (A, +p(y,r/))-1 ((p(x) + (y,r/))a(x,y) + X(x) (x,y)),
V2(p,x, y, r/) (Ap + p(y, r/)) -1 (5(r/) g(p,x, y)).

First, it follows from Dunford-Taylor’s integral that

(Ap + p(y, r/))-l(h(p, y)) dr/
(3.35)

(h(p, .,y))
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for any function h(p,., y) in L2(z). Using the relation

P(Y, n) (z p(y, ?))- -1 + z (z p(y, 7))-,(3.36)
we also obtain

O(y, ) (Ap + pO(y, y))-(h(p, ., y)) dy
(3.37) --I

(An +p(y)_p2 L(Ap _p)-I dtTy2()) (h,(p,.,y))

with h.(p,., y) ((y) p fA(A + p)- da(A))(h(p,., y)). Similarly, we deduce
from (3.33) that

(Ap + p(y, ))-l(h(p, y) (y, )) d
(3.38) --I

= (Ap+p(y)__p2 (Ap+pA)-lda(A)) (h(p,.,y)).

Now let v(t, x, y) fy V(p, x, y, ) dy and v,(t, x, y) fy (p, x, y, ) dy for i 1, 2.
The functions v(p,., y), i 1, 2, belong to H(fix) and v Vl +v2. Also let introduce

v and v such that

v (A + p)-l(pv1 + ), V (A + p )-l(pv2).

Therefore, from (3.35), (3.37), and (3.38) one eily deduces that (v, v2, v, v) satis
the following system of equations:

An vx + p(y) v p v da(A) p ((.) + (y)) a(., y) + X(’) (’, Y),

Ap v + p v p Vl a,

Av + p3(y) vz p v da(A) g(p, ., y),
An v + p v p v2 O.

The inverse Laplace transform, with the notation u -(v), w -(v), gives

(x) Ou div((x)gradu) + (y)Otu . OtWl da(A) O,

(x) Ow div(k(x)gradw + Otw Otu O,
(3.39) u oxO 0,

w lt=o=O, Otw lt=o=O infl,

(3.40)

(x) 02 u2 div((x)gradu2) + -(y) Otu2 ./^ Otw2 da2u(A) O,

(x) 02 w2 div(k(x)gradw2) + ) Otw2 Otu2 - f(t, x, y),
U2 IOxO O
u2 I=0 O, Ou2 It=o 0 in

w2 I=0 0, 0tw2 I=0 0 in .
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Thus we obtain the following.
THEOREM 3.4. Let (u)>0 be the sequence of solutions of (3.1)-(3.4) under as-

sumptions (3.5)-(3.9). Then, (u)>o converges weakly in L2(]0, T[xfl) to u u +92,
h ad , pti,y, dd by (3.39) d (3.a0).

Remark 3.5. If in (3.11) the function c does not depend on the y-viable, then the
corresponding sequence of solutions of (3.)-(3.4) converges weakly in L2(]0,T[x)
to u solution of the following system:

(x) Ou divz((x)gradxu) + (y) Otu . Otw da(A) f(t, x, y),

(x) Ow div(k(x)w) + Otw Otu O,
(3.41) u Ioxo 0,

wt=0=0, Otw]t=o=O inD.

Remark 3.6. Existence and uniqueness results for (3.39)-(3.41), may be esta
lished by the same technique in Theorem 2.11.

Remark 3.7. If the function changes sign, we proceed in 2.
4. Pametrized families in the nonperiodic microstructure. Let T > 0

and Dx x O, where is an open bounded set in Rn with smooth boundary
and O is a domain in R.

4.1. Pametrized family of acoustic waves. We consider in this section
the propagation of a parametrized family of acoustic waves:

o (u)a 0, t e ]0, T[, (, u) e O,
(4.1) u [oo 0, t e ]0, T[,

u[t=0=, Otu[t=o= inDxO.

Here (a) is a sequence in L(O) that satisfies

a(y) eA a.e. inO, A=]a_,a+[, 0<a_ a+,
(a.2) .

a a in L(O) weak*.

The initial data are taken such that

(4.3) L2(O;HJ()), L(O; 52()).
We state and prove the following result.
THEOREM 4.1. Suppose (4.2), (4.3) hold. Then, along a subsequence, there exists

a parametzed family of nonnegative measures dan, with suppo in A, such that the
sequence (u) of solutions of (4.1) converges in/(0,T; 52(0; H())) weak* and
in HI(O,T;L2(O;H(D))) weak to u solution, in the sense of distbutions, of the
following system:

Ou (y)Au + . du(A)Aw(A 0 in ]0, T[ xDx x O,

Ow AAxw + Axu O in ]O,T[ xD x A,
(4.4) ulon 0, w 10xOxh 0 in ]0,T[,

ut=0=a, Otu [t=o in D,
wt=0=0, Otw ]t=o O in D x h.
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Remark 4.2. In the case of the Cauchy problem (tx ]Rn) the function u satisfies
in ]0, T[IRn (9 the following nonlocal wave equation:

02u-(y)Axu+ dsMn(t-s,x-z,y)A2u(s,z,y)(x)dsdz-O,

The kernel Mn(t,x,y) is given by Mn(t,x,y) fh dau(A)$n(t,x,A), where Sn(’,-, A)
is the elementary solution in ]Rn of the wave operator 02 A Ax, A E A.

Proof of Theorem 4.1. Let denote the Laplace transform in time and ve(p, x, y)
(ue(., x, y))(p). Then, for fixed p E C with ep > po > 0, ve is the unique solution
of the Dirichlet problem

p2ve_ae(y) Ave--F ingtxO, velon--0,

where the source term is given by F(p, x, y) p a(x, y) + (x, y). Since the function
F(p,., .) belongs to L2(O; L2(tx)) then, according to the regularity properties of el-
liptic equations, ve(p, .,y) belongs to L2(O;H)(gt)N H2(tx)). So, let us introduce
the unbounded operator A in L2(t.) defined by

Au- -Au with domain D(A)- H(t)N H2(ft).

Hence, from (4.6), one deduces that for almost every y O,

(4.s) ve(p,., y) (p2 + ae(y)A)-lF(p,., y).

Using the Dunford-Taylor integral representation, one has

(4.9) ( --1 Jfr (p2_ ae(y)z)-I (z + A)-1 dz) (F(p,., y)),ve(P’"Y)--
2zr ,

where

{ p2 }Fp zC;
z

with 1-’p a closed curve in the right half space e z > 0 containing the real interval A.
Consider now for fixed z in Fp the sequence (He (., p, z)) defined for almost every y (9

by He(y,p,z)- (p2_ ae(y)z)-. Thanks to Lemma 2.5, there exists a parametrized
family of nonnegative measures dau(.) supported, for almost every y O, in A such
that for a subsequence,

He(.,p,z) *" H(.,p,z) in L(O) weak*,

with

(4.10) H(y, p, z) 2 z-d(y) z2 (p2 z)- dau(A)

Hence, for a subsequence,

ve(p, ., .) v(p, ., .) in L2(O; H](tx)) weak,
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and

-1 Jfr H(y,p,z) (z + A)-l(F(p,.,y)) dz a.e. in O.(.) (,.,)

Plugging (4.10) into (4.11) and using Dunford-Taylor’s integral, we find

(4.12) v(p,., y) 2 + a(y) A A(p2 + ,kA)-A da(,k) (f) (p,., y).

We now introduce the new function w.(p,x, y, A) defined for ep > po > O, A E A
and for almost every y E O by

(4.13) w.(p,., y, A) (p2 + AA)-Av(p,., y).

Clearly w. is the unique solution of the Dirichlet problem

(4.14) p2 w. AAw, -Av in 2 x 0 x A, w. IOxOxh O.

Equations (4.12) and (4.4) imply that (v, w.) is a solution for p C, ep > Po of
the following system:

p2 v -5(y)Av + f dau(k) Aw. F(p, ., y) in t,
(4.15) p2 w. Aw. + Axv 0 in tx x O x A,

v Ioo 0, w, Iooo 0.

Let w(t,x, y, A) be defined in ]0, T[xf x (9 x A by its Laplace transform w.:

(4.16) (w(.,x,y,k))(p) w.(p,x,y,k).

One deduces from (4.15) and (4.16) that (u, w) is a solution of system (4.4) and proves
the theorem.

Remark 4.3. We can study, along lines similar to 2 and 3, (4.1) with a source
term of type

l(t,,) () j’(t, ),
(4.17)

f L2(]0,T[t), 0 < c_ <_ c(y) _< c+ a.e. in O.

4.2. A damped wave equation. This second part is concerned with the study
of some kind of interaction of oscillations by the homogenization process in the damped
wave equation for which the damping acts on the transverse variable y O. We
consider the Dirichlet problem

(4.18)
p(x) 02 u div(k(x) gradxu) + O(y)Otu O,
ulo,o=O, ult=0=a, Oult=o=Z,

where a e L2(O;H)(flx))and e L2(O;L2(f,)). We assume that p belongs to
L(f) and k is a symmetric tensor with components in L(f,) satisfying, for
almost every x fix,

(4.19) o < p_ < p(x) < p+,
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with 0 < k_ <_ k+. Suppose also that

(4.21)
in L (x) weak*,

in the sense of homogenization [15], [19].

The sequence (Oe(y)) is in L(O) such that

0 < 0_ _< O(y) <_ 0+ a.e. for y E O,

0 *" in L(O) weak*.

Let p E C with ep > p0 for some p0 > 0. We denote by H the unbounded
operator in L2(x), with domain D(H,)= {v e H(); H,v e L2(x)} defined by

(4.23) H,(v) p(x)p2v- divx(k(x)gradxv), v e D(H,).

Taking the Laplace transform in time of (4.18), the function v(p, x, y) (u(., x, y))(p)
is then the unique solution of the equation

(H, + p Oe (y)) v Fe (p, x, y) + e(y) a(x, y),

where Fe(p,x, y) pe(x)(pc(x, y)+ (x, y)). Arguing as in the proof of Theorem
3.4, we must pass to the limit in the following two sequences: (H + pOe(y))-t(F)
and (H, + pOe(y))-t(Oe(y)a). The resolvent operator (H, + pOe(y))-, defined for
ep > p0, have the following integral representation:

(Hi +
-1 r (z- pOe(y))- (H + z)- dz.
2zr

p

Here

{ z }rp z C;p
with v a closed curve in the right half plane e z > 0 containing the real interval
Thanks to Lemma 2.5, one has, for a subsequence

(4.24) (z poe(.))- *" z p(.) p2 (z p A)-t da.(A) (F)

in L(O) weak*, where day(.) is a parametrized family of nonnegative measures
associated with (0e). From (4.21), (Re) converges weakly in L2() to F, where
F(p, x, y) -fi(x) (pc(x, y) + 3(x, y)). We claim that, for all z

(4.25) (H + z)-t(F(p,., .)) -, (H + z)-t(F(p,-, .)) strongly in L2(f),

where Hp is the homogenized operator of H given by

.(4.26)
D(Hv) {v C H0(flx); Hvv C L2(fl)},

Hv(v -fi(x)p2v -divx(k(x)grad,v) for v e D(Hp).
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For z E Fv, let X be the solution of

(H, + z)x F inft,xO, Xlo=xo=O.

The sequence (X) lies in a bounded set of L2(O; H()). Thus, for a subsequence,
(X) converges weakly in L2() to X. For a given function o, defined in , let us
denote by its extension which takes the value zero outside . For hy given in ]Rm,
we set

8h,,(x, y) (x, y + hy) (x, y).

Clearly, he(p,., y) is, for almost every y E ]Rm, the unique solution of

5h(p,.,y) lo =0,

and satisfies the standard estimate

115h,e(P, ", Y)IIH](a) <-- C 15hF(p,., Y)IL2(a) for almost every y e ]Rm,

where C > 0 is independent of e and hy. One easily deduces that, for hx ]Rn,
hy ]Rm, Ihxl small,

I (p, x + h,, y + hy) e(p, x, y)12dx
O

with C > 0 independent of e, h, and hy. Thus the sequence (Xe) is compactly
imbedded in L2(x O). Hence, there exists a subsequence (still denoted by Xe) such
that Xe - X strongly in L2(). Using the standard arguments of the homogenization
theory, see Murat [15] and Tartar [19], one verifies that X(P, ", Y) is the unique solution
in H0() of the homogenized problem

-(x) p2 X -diva(k(x)gradx) + z X F(p,., y) for almost every y e O.

This proves (4.25). Consequently, for all z E Fp,

((z--pOe(y))- (H, +z)-l(Fe) z pO day(A) (z p)-

weakly in L2(). Let e L2 (f) fixed and define

me(z) ./o (x, y)(z-p9e(y))- (H, + z)-(Fe(p,x, y)) dx dy,

/o (_ )_1m(z) (x,y) z p(y) day(A) (z p ))-i (Hp + z)-If(p, x, y) dx dy.

We have proved that me(z) --o re(z) for all z e Fv. In order to apply the domi-
nated convergence theorem to the sequence (frp me(z)dz), see Folland [11, p. 157]
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for instance, let us prove that me(z) is bounded by an integrable function on Fp. The
strong convergence of the sequence (H + z)-l(Fe) in L2(f), the energy estimate

I(Ug + z)-(F)lL() <_ C IFIL(),

with C independent of e and z, and the dominated convergence theorem yield

l(H, 4- z)-(F)lL.(cO dz -- fr i(Hp -t- z)-(F)lL(a.o) dz.

Since Fp is a closed curve in C containing A, A =]0_, 0+[, there exists r > 0 such that

(z- pOe(y)) _> r > 0 for all z E Fp and for almost every y E (9.

Using the Cauchy-Schwarz inequality, one gets

r

From the dominated convergence theorem, it follows that, for all $ L2(f),

m(z) dz fr re(z)dz.
P P

This convergence means that the sequence (fr(Z- pO(.))
converges weakly in L2(2) to

fr, (z p-(.) L da.(A) (z p A)-) - (Hp + z)-(F) dz.

We finally use Dunford-Taylor’s integral to deduce the following weak convergence in
L2(f):

(4.28) (H, + pOe(.))-(F") Hp + pO(.) p2 (gp + Ap)-X dao(A) (F).

Consider now the sequence ((H, + pO(y))-(Oe(y)c)). Using (3.36) and Lemma 2.5,
one proves that, for a subsequence,

(4.29) (n q"POe(’))-l(Oe(’)t:r’)
2 7r ,

G(p’z’’) (Hp’I" z)-I(t) dz

in L2 (f) weak, where

G(p, z, y) -1 + z z p-(y) p2 (z p,)- dau(,)

This can be written also as

(1G(p, z, y) z p-(y) p2 (z pA)--dau()
P (-(Y) + P fa(z P,k)-l dau(A))
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By using the Dunford-Taylor integral formula, one gets

1
+

P
in L2 (ft) weak,

and
(4.30)

( )-’_1 G(p, -Hp, y) Hp + p-(y) p2 (H, + p)O-1 day(ik)
P

(h(p, Hp, y)),

where h(p, Hp, y) -(y) -p fA (Hp + ip)- day(A). From (4.28)-(4.30) we deduce
the following result.

THEOREM 4.4. Let u be the solution of (4.18), under assumptions (4.19)-(4.22).
Then, along a subsequence, there exists a parametrized family of nonnegative measures
day, with support in A, such that the sequence (u) converges, as e -o O, weakly* in the
space L(0, T; L2(O; H](gtx))) and in H(0, T; L2(O; H(tx))) weak to u solution, in
the sense of distributions, of the following system:

(4.31)

where t E ]0, T[, x , y (9,) A.
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REGIONAL BLOW UP IN A SEMILINEAR HEAT EQUATION WITH
CONVERGENCE TO A HAMILTON-JACOBI EQUATION*

VICTOR A. GALAKTIONOVt AD JUAN L. VAZQUEZt

Abstract. The authors investigate the asymptotic behaviour ofblowing-up solutions u u(x, t)__> O to the
semilinear parabolic equation with source

ut uxa: + (1 + u) log2(1 +u) for a: 5 R, t > 0,

with nonnegative and radial symmetric initial data u0 (l:cl) that are nonincreasing in [a:l. Any nontrivial solution
u to this problem blows up in a finite time T > 0. It is remarkable that the blow-up behaviour of u as
approaches T can be described by the exact blow-up solutions of the quasilinear Hamilton-Jacobi equation

u (u)2
-F (1 + U)log2(1 + U),

I+U
with the same blow-up time T. These explicit profiles are only approximate solutions for the problem. The
authors prove that the blow-up set B ofthe solution satisfies meas (B)_> 2r, and under some additional hypoth-
esis on the initial function it is shown that B is just the interval [-r, r] and the rescaled blow-up shape consists
of one hump with formula cos2 (c/2). The proofs rely on the knowledge of a family of explicit solutions, the
method of intersection comparison, some dynamical systems ideas, and a stability analysis for solutions of the
Hamilton-Jacobi equation.

Key words, semilinear heat equation, regional blow up, asymptotic behaviour, Hamilton-Jacobi equation

AMS subject classifications. 35K55, 35K65, 34E10

1. Introduction. In this paper we consider the Cauchy problem for the semilinear
heat equation

(1.1) ut u + 1 + u)log2(1 + u) for :c E R, t > 0,
(1.2) u(z, O) uo(z) for z E R.

We assume that the initial function u0 E Loc(R) fq L (R) is radially symmetric, u0
uo(lxl), nonnegative, uo >= O, and nonconstant. Our main results also assume that uo is
nonincreasing as a function of Ix[ > 0. The final section deals with periodic solutions.

Problem (1.1)-(1.2) has a unique classical solution u u(lxl,t) > 0 defined in
some maximal time interval [Frl]. Since the heat source Q(u) (1 + u) log:(1 + u) in
the right-hand side of (1.1) satisfies Q(u) > 0 for u > 0, Q(u) u + o(u) as u --- 0
and fo dz/Q(z) < oc, the solution blows up in a finite time T, 0 < T < oc (cf. [Fu]):
u(x, t) is a classical solution of (1.1) in R (0, T) and

(1.3) sup u(x, t) -- oc as t T.
xEl:t

Much work has been devoted in recent years to understanding finite-time blow up
for equations of the form ut u+Q(u). Four major problems arise in this context and
have been studied by different authors; see the books [BE] and [SGKM] for extensive
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references. They are: (i) existence of blow up in terms of the initial data, (ii) the form
of the blow-up set

(1.4)
B B(uo) =- {x E R Sx, -, z and tn --* T such that

u(x,t) --. oc as n --. oc },

(iii) the rate of divergence of u(x, t) as t --. T for points x B, and (iv) the shape of
the solution at t T, after scaling out this rate. The aim of the paper is to answer these
questions for the solutions of (1.1) for different choices of initial data.

The simplest form of blow up is global flat blow up, i.e., the solution blows up in
the whole space with no spatial structure. This blow-up form can always be obtained by
starting with a constant initial function, and the precise profile u u(t) is obtained by
integrating the ordinary differential equation (ODE): ut Q(u). It is remarkable that
precisely the opposite situation occurs for many blow-up equations for suitably concen-
trated initial data, say when u0 is bell-shaped with one maximum and compact support:
then blow up occurs at an isolated point, single-point blow up. Other solutions many
blow up at a finite number of points. This happens, for instance, in the most studied
cases Q(u) up with p > 1 and Q(u) exp(u). See, for instance, [FM], [CM], [V].

Since no blow up occurs for Q(u) up with p 1, it is interesting to understand
the limit situation p 1. In this direction the family of equations

(1.5) ut uxx + (1 + u)log(1 + u), /3 > 0

was introduced in [GKMS] in 1979 (see also [Sam], generalizations in [G1], and the
references of [SGKM, Chap. IV]). The case/3 2 has a particular interest since it serves
as a limit case for the blow-up behaviour as we explain below.

Indeed, qualitative and numerical methods described in the above references had
suggested that for suitably concentrated initial data blow up occurs in problem (1.1),
(1.2) in a bounded domain, i.e., we have the so-called regional blow up. Moreover, these
studies pointed out that the behaviour of the solution to (1.1), (1.2) as it approaches blow
up should be described by some solution of the quasilinear Hamilton-Jacobi equation

(u)(1.6) ut 1 + u + (1 + U)log2(1 + U) for x E R, t q (0, T),

of the form

(1.7) U(x, t) exp { (T t)- (x)} 1.

By substituting (1.7) into (1.6) one can obtain that the function _>_ 0 solves the first-
order quadratic ordinary differential equation

(1.8) (yx)2+y2_y=O inR.

In this paper we give a rigorous proof of these facts for the class of solutions that are
radially symmetric in the space variable z and nonincreasing in Izl > 0, Let us briefly
describe the main ideas and results: in studying the blow-up behaviour of (1.1) it is con-
venient to introduce the transformation

(1.9) u(x, t) ev(x’t) 1,
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which yields the following equation for the function v(x, t):

(1.10) vt v + (v) + v for x R, t > 0.

In view of the expected behaviour (1.7), we also introduce the rescaled function

(1.11) O(x, r) (T t)v(x, t),

where 7" -log(T- t) (so that, in particular, the new time 7" -- oo as t -+ T). The
function O(x, r) solves the Cauchy problem

(1.12) Or e-rOxx + (Ox)2 + 02 O for x E R, r > r0 logT,

(1.13) O(x, ro) Oo(X) Tlog(1 + Uo(X)) for x E R.

After describing in 2 a family of 2rr-periodic blow-up solutions constructed in [GP3],
which satisfy (1.10) but blow up in the whole space and are essential in later comparison
arguments, we proceed in 3-8 to study solutions with radially symmetric and nonin-
creasing initial data. Thus, in 3 we establish a sharp estimate for the supremum of O as
r --+ oo sup 0(., r) --+ 1 (Proposition 3.1 and 3.2). Section 4 is devoted to proving a
semiconvexity result, of the formO => -C for r large (Proposition 4.1), which together
with the previous estimate implies that single point blow up cannot occur.

Regional blow up means that u(x, t) oo as t --+ T in a set of nonzero finite
measure. We have already introduced the blow-up set, where u diverges. Amore precise
divergence is obtained on a possible smaller set,

(1.14)
B, B,(uo) =- {x R" Stn T such that

u(x, t) --+ oo as n --+ oo }.

Obviously, B. C_ B. By the monotonicity results of [GP1] and [GP4],/3. can also be
defined as follows:

(1.15) B, =_ {x e R u(x, t) - oo as t --+ T}.

B. is called the monotone blow-up set; see [G3]. We establish in 5 that the minimal
configuration for blow up corresponds to the particular profile

{ cos2 if xl <
(1.16) G(x) - rr,

0 otherwise.

This implies that the blow-up set consists of an interval of length at least 27r. Moreover,
B. _D (-Tr, 7r). Conversely, we obtain in 6 localization of the blow-up set in terms of the
number of intersections of u0 with respect to the explicit solutions of 2 (Theorem 6.1).

In order to better understand the blow-up phenomenon we have to study the stabi-
lization of the function O(x, r) as r --+ oo to a solution y(x) of the stationary equation
(1.8). This is done in 7 and 8 where we prove that under a strict condition (which is
satisfied, for instance, by suitably bell-shaped initial functions with support in (-Tr, 7r);
see condition (7.26)) the blow-up set is exactly [-Tr, 7r] and 0 converges as 7" --+ oo to the
function G. In these proofs we consider (1.12) as a perturbation of the Hamilton-Jacobi
equations

(1.17) g,. (g)= + g= g in R x (0, ),
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and apply the asymptotic results for small perturbations of autonomous dynamical sys-
tems of [GV] and some stability analysis of the viscosity solutions of (1.17). In fact, we
will need an improvement of the result of [GV] which simplifies its application.

Many solutions have nonminimal blow up. Solutions with more than one hump can
have a nonconnected blow-up set. As an example we consider in 9 z-periodic solutions
with period 2mTr, m as integer, since we can use the techniques developed in the radially
symmetric case. We construct solutions whose blow up consists of the union of intervals
of the form [(2km 1)Tr, (2km + 1)Tr], k E Z, with a corresponding union of copies of
G(x) as an asymptotic profile. We have refrained in this paper from using more general
situations for the sake of brevity. We hope to treat some of them, in particular examples
of two-hump blow up, in a forthcoming article.

As a final comment on related equations, let us mention that the exponent 2 of
our equation is critical for the blow-up behaviour of (1.5). Thus, the Cauchy-Dirichlet
Problem has been studied in [GP2] for > 2, and single-point blow up is shown to occur
using the method of [FM], while [L] shows global blow up for I < < 2 for the same
problem. This leaves 2 as the only case with regional blow up. On the other hand, it
is interesting to remark that in the case E (0, 1) studied in [GKS1], though solutions
are global in time, the asymptotic profiles as t o are given as the solutions of the
Hamilton-Jacobi equations, Ut (Ux)2/(1 / U) / (1 / U) logt (1 / U), which parallels
(1.6).

Let us also recall that regional blow up has been observed for several models of
quasilinear heat equation, like

(1.18) ut (u’) + up

for m > I and p m; see [SGKM, Chap. IV] and [G3]. The present model seems to be
the only known case of a semilinear heat equation with regional blow up.

2. Explicit solutions. Equation (1.10) admits an explicit solution, 2r-periodic in x,
of the form (cf. [GP3], [G2])

(2.1) v.(x, t) qo(t)[(t) + cos(x)],

where the functions o(t) and (t) satisfy the system of ordinary differential equations

(2.2) o’ -o + 2o2, ’ o + 02 for t > O.

There exists a one-parameter family of nonnegative blowing-up solutions (2.1) having a
given fixed blow-up time T (0, ). To see this we observe that system (2.2) is equiva-
lent to the following first-order differential equation

de qo + qo2

(2.3) dqo 2q92-qo go > O, > 1.

Equation (2.3) admits a one-parameter family of trajectories with the asymptotic be-
haviour (see [G2])

log p
(2.4) ’g, 1 +

2qo + #+o()o asqoo,

where # R is a parameter describing this family. Given a certain/z, namely, on a given
trajectory, fing the blow-up time T > 0 is equivalent to fixing an initial point (o0,0)
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on the trajectory, corresponding to t 0. It follows from the detailed study of the
system (2.2) that for fixed T > 0 there exists a constant #7" such that for any # >= #a, the
explicit solution v, v, (z, t; T, #) with blow-up time T is well defined and nonnegative
in R x (0, T), while for # < #T the initial value of v, has changing sign. In terms of the
functions o(t), (t) the constant #T is such that b0 1 and 0 > 0. This implies that
the corresponding initial function has the form

(2.5) v,(x, 0; T, #T) qo0[1 + cos(x)] => 0 in R.

Clearly, for # >/zr we have b0 > 1; hence

(2.6) 0) +

is positive in R. In any case v, (x, t; T, #) > 0 in R x (0, T) for # _>_ #7". Integrating the
first equation of (2.2) with the help of expansion (2.4) for # >_ #T we obtain the following
asymptotic behaviour of the explicit solutions near a fixed blow-up time t T:

(t) 1/2(T- t)-l[1 1/2(T- t)l log(T- t)l(1 + o(1))],
(t) 1 + (T t)l log(T t) l(1 + o(1)) as t T.

Therefore, as t --, T,
(2.7)

v,(x,t; T,#)= (T- t) -1 os2 ()+ sin2 ()(T- t)l log(T-

1
+ 4

1+ 21og2-4# ()) ]4
sin2 (T t)(1 + o(1))

At the maxima x 27rk, k 0, 4-1,..., where cos (x/2) 1, we have as t --. T

(2.8)
sup v. (x, t; T, #) v. (27rk, t; T, #)
xElq,

(T t)-l[1 + 1/4(T t)(1 + o(11)].

At the minima x 7r + 27rk, k 0, 4-1,..., where cosZ(x/2) 0, the behaviour as
t T is quite different:

(2.9) inf v,(x, t; T, #) v,(Tr(2k + 1) t; T, #)1/2l log(T t)l(1 + o(1)).
xER

For the rescaled explicit solution

(2.10) 0, (x, T; T, #) =-- (T t)v, (x, t; T, #), 7- log(T t),

we have as 7-

1
(2.11) O.(x,’r; T,#)--cos ()+ sin ()7-e- + O(e-),

(2.12) 0,(0, T; T,#)=-- 1 + 1/4e-(1 + o(1))--, 1,

(2.13) 0,(+r, T; T,#)=-- -Te (1 + o(1))- 0.

Notice that 0, (x, T; T, #) converges to G(x) as T for Ixl cf, [G2].
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3. Lower and upper bounds. As a first step in controlling the blow-up behaviour of
the solution, we derive in this section upper and lower bounds for the supremum in z of
the rescaled solution 0 defined by (1.11). We begin with the lower bound.

PROPOSITION 3.1. For every 7" > 7"0 there holds

(3.1) sup O(z, 7")=_ 0(0, 7-) > 1.

Proof. Equation (1.10) admits a blowing-up solution of the form

(3.2) (t) (T- t) -1,

with the same blow-up time, T, as u. Then for any t [0, T), (t) intersects in z the
solution v(z, t). Indeed, if for some t to [0, T) we have (t0) => v(z, to) in R, then
by using the Strong Maximum Principle [Frl] we arrive at the conclusion that must
blow up before v does. This is in contradiction with our assumption. Hence,

(3.3) sup v(x, t) > (t) for t E [0, T),

thus completing the proof.
Notice that we do not use any special assumptions on z,0 in proving the result. The

proof is based on intersection comparison with a solution which is constant as a function
of z, and so (3.3) remains valid in much more general situations, e.g., for any arbitrary
nonnegative initial function satisfying u0 0 as [a[ --+ oo. Then u(a:, t) --+ 0 as [z[ --+

for any fixed t (0, T), and (3.3) yields the lower estimate suppert 0(a:, -) > 1 for

We proceed now with the upper bound. This estimate is much more difficult to
obtain.

PROPOSITION 3.2. Let uo be radially symmetric and nonincreasing as a function of
A " --+ oo there holds

(3.4) sup O(z, 7-) 0(0, 7-) < 1 + 27-e-r.

Proof. It consists of several steps. We shall use some ideas of the method of station-
ary states (cf. [SGKM, Chap. 7] and also [GKS2]).

Step 1. Stationary solutions. We begin with some simple properties of the stationary
solutions of (1.1). Thus, we look at solutions U(z; A) of

(3.5) U+(I+U)log2(I+U)=O forx>0 and x<0,

(3.6) U(0; A)= 0, U(0; A)= A,

where A > 0 is an arbitrary constant. We easily show that a positive solution of (3.5),
(3.6) exists in a finite interval {Ixl < x0(A)}, where the endpoint x0(A) > 0 is the point
x at which U(4-x; A) reaches the zero value. We let U(x; A) 0 for Ixl -> x0(A). Since
U(x, A) is monotone for x > 0 and x < 0, we have the inequality

(3.7) Uz _>_ -(1 + U)log2(1 + U) _>_ -(1 + A)log2(1 + A).

By integrating twice we obtain the lower bound

(3.8) U(x; A) >= U_(x; A) =_ (A- 1/2(1 + A)log2(1 + A)x2)+,
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and, in particular,

(3.9)
2 ) 1/2

zo(A) => z.(A)
(1 + A)’log2(1 + A)

Multiplying (3.5) by U and integrating over (0, z), 0 _<_ z < z0()0, yields the identity

(3.10)
(U) 1/2(1 + ,k)2[log2(1 + )) -log(1 + A) + 1/2]

--(1 + U)2[log2(1 + U) -log(1 + U) + 1/2]2

By integrating (3.10) we obtain that

(3.11) z0() -- 0 as , x.

It also follows from (3.10) that for every fixed m > 0 and z’ z’(,, m) > 0 on the level
set {z R U(z; ),) m}; then

(3.12) U(z’;

Step 2. Intersection comparison. The result given below is true for a wide class of
quasilinear heat equations with source; see [SGKM, Chaps. 6, 7] and [GKS2].

LEMMA 3.3. There exists ,. > 0 large enough such thatfor any > .,
(3.13) t) _> in rt t) >_

Proof. For a fixed t E [0, T) denote by N(t; ) the number of intersections in {Izl
x0(,) } of solutions u(x, t) and U(x; ), or, in other words, the number of sign changes
in {Ixl =< x0(A)} of the difference w(x, t; ) u(x, t) U(x; )).

By a standard smoothness result for semilinear heat equations we may conclude that
u(x, t) is smooth enough for arbitrarily small t > 0. It then follows from (3.11) and (3.12)
that for every A > . large enough there exist exactly two intersections for t t small
enough, i. e.,

(3.14) N(tl; ,k) 2 for ,k > ,,.
Since U(+x0(A); A) 0 and u(x, t) > 0 in R x (0, T), by a well-known intersection
propertywe conclude that N(t; ) does not increase with time (cf. [A], [GP1], [M], [Sat]).
Hence by (3.14) we deduce that

(3.15) N(t; A) _< 2 for t E (tl, T), , > ,..
We now prove that if tx (tt, T) is such that u(0, tx) A, then

(3.16) N(tx; ) O.

If on the contrary, N(tx; )) > 0 (more exactly, N(tx; )) >= 2 by symmetry), then one
can see that for any small 6 > 0 the inequality N(tx; A 6) => 4 holds, contradicting
(3.15).

Thus (3.16) implies that u(z, t) > U(z; A) in R, and hence (3.13) holds by com-
parison. [3
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As a consequence of Lemma 3.3 we obtain a control of the LX-norm near the blow-
up time.

LEMMA 3.4. As t - T the integral Ilu(., t)llLl(n. diverges. Moreprecisely, we have

(3.17)
IlU(’, :t)llLl(l:t) IIU(’; ’t/,(O,))llL,(p,, IIU-(’;

-,()1=(o,)= 22/3 u(O, t)
3 log u(O, t) (1+o(1))--oc.

Though relation (3.17) is not exact in view of the precise asymptotic results that
follow, it gives a correct idea of the relative growth of the L1 and sup-norms.

Step 3. Ordinary differential inequality ]:or an energy function. We now introduce the
local weighted energy

(3.18)

where

12

S(t) (x)u(x, t) dx,
-/

lcos(x)>O in ( 7r
(3.19) (x) -,
so that " _= - and

r/2

(3.20) (x) dx 1.
J-/2

An energy estimate is obtained as follows. We multiply (1.1) by (x) and integrate over
(-r/2, r/2) to obtain

(3.21)
dE > -E + (x)(1 + u)log2(1 + u) dx,
dt -/2

valid for t (0, T). Now using Jensen’s inequali for the convex function (1+u) log2 (1+
u) and (3.20) we have

(3.22)
dE > -E + (1 + E)log2(1 + E).
dt

(Inequalities of the e (3.22) have been used by many authors for proving global (in
time) nonestence of solutions; see, e.g., the first such result in [K] and references in
[S6].)

By integrating (3.22) over (t, T) and using the fact that E(T) (see (3.17)) we
arrive at the estimate

(.) r t < az
astT.

( (1 + ) og ( + )
Now using the fact that

dz 1
1 +-(1 + o(1))

(1 + log (1 + ogp a o
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as p oo, we obtain the following estimate for E.
LEMMA 3.5. As t T we have

(3.24) T-t< 111 1(1+o(1))].log E(t)1 + logE(t

Step 4. End ofProofofProposition 3.2. By using (3.13), (3.8), and (3.9) we conclude
that as t T,

E(t) >_ (x)U(x; u(O, t)) dx >= (x)U_(x; u(O, t)) dx
-/ J-.()

2
1

(0,t))llL(rt).

It then follows from (3.17) that as t T,

12=/a u(O,t) (1 +o(1)).(3.25) E(t) >
4 3 logu(0,t)

Together (3.24) and (3.25) yield the following inequality

T- t < 1 [ loglogu(0, t)(1 + o(1))](3.26) logu(0,t) 1+ logu(0,t)

as u(0, t) o. This inequality can be transformed into

(3.27) logu(0,t) < (T- t)-[1 +(T-t)llog(T-t)l(1 + o(1))]

as t T. The last estimate yields (3.4).
4. Semieonvexity. In the next five sections u0 is radially symmetric and nonincreas-

ing in Izl. We may also assume that u0 is not constant. The analysis of the asymptotic
behaviour is best done in terms of the variable 0 introduced in (1.11). As is usual in
Dynamical Systems we introduce the w-limit set of the solution O(x, r) as follows:

(4.1)
w(Oo) {f E C(R): j-o such that O(., 73) --, f(.)

as j - uniformly in any compact subset of R }.

A key estimate in controlling the x-limit and in preventing single-point blow up is the
following.

PROPOSITION 4.1. For any e > 0 there exists a constant a > 0 such that

(4.2) (__ ) aO(z, r) >= + e
(r 7"1)

in R x (rx, o), where rl ro + 1.

Proof. The function z 0 solves a semilinear parabolic equation in R x (r0, oo):

(4.3) z e-rz + 20z. + 2z2 + (20- 1)z + 2(0)2.

By Proposition 3.2 there exists a constant re > rx such that

(4.4) II0(’, r)lloo 1 + e for r > r.
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Then it is easily seen that the function

(4.5/ .(r) + e + (7- 7"1) < 0

will be a subsolution of (4.3) in R x (1, ), namely,

(4.6) z’ _< 2.2 + (20- 1). for - > 7-1

if

(4.7) a(2a- 1)
( n)2 2.(1 + -II0(’, )11) + (X + 2)-na 0

for T > T1. By using (4.4) we have that (4.7) holds for T > T, and (4.7) will be also valid
for T1 < T <= T if a > 0 is large enough.

As a straightforward consequence of Proposition 3.2 and Lemma 4.1 we obtain a
control on the derivative

COROLLARY 4.2. There exists a constant C > 0 such that

(4.8) 10(a:, r)l <= C in R x (rl, cx).

5. Lower bound for the blow-up set and the asymptotic profile. We begin here the
analysis of the asymptotic profile of the solution as t --, T. This analysis starts with a
simple consequence of our semiconvexity result, Proposition 4.1.

LEMMA 5.1. If f E w(0o), then

(5.1) f > 1/2 a.e. in R,

and, in particular,

a.e. inR.

Notice that, since (5.1) is true for every f E w(00), then necessarily

v(x,t) >= (T-t)-1 1-- + +o(1)]
in R as t --* T. This implies a first lower estimate of the blow-up set:

(5.3) [-2, 2] C B, hence meas(B) >__ 4.

Although, according to the Introduction, these estimates will not be optimal in predicting
the asymptotic shape, it is interesting to note that exactly (5.3) has been proved in [L]
for the initial-boundary value problem by a completely different approach.

A sharp lower estimate is as follows.
THEOREM 5.2. If f w(Oo), then

(5.4) y() _> co or I1 <- ,
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so that

(5.5) +o(1) in{l l_<_

Itfollows that (-Tr, 7r) c_ B,, so that meas(B,) >_ 27r.
Proof Step 1. By the results of 3 we know that the maximum value of the variable

0(., t) tends to 1 as t T. By Lemma 5.1 we also have a first estimate from below for
all elements of the w-limit, namely,

f(0)=l, fxx>__l and f> (l-Z?) a.e. inR.
2 \ -/ +

Step 2. The Hamilton-Jacobi equation. We next analyze the equation satisfied by the
solution 0 after some limit process. This turns out to be a Hamilton-Jacobi equation.

Fix an arbitrary sequence T such that 0(., T) f(.) 6 w(O0) as j .
Using Propositions 3.2, 4.1, and Corollary 4.2 in passing to the limit as T T + S

in the linear and nonlinear terms of (1.12) we conclude that 0(., T + s) g(., s) as
j o locally in L([0, o) (c(R)), where 9(z, s) satisfies the following nonlinear
Hamilton-Jacobi equation

(5.6) g=(g)+g-g forxR, s>O,

with initial data

(5.7) g(x, O) f(x) in R.

Step 3. Explicit solutions. Equation (5.6) with quadratic nonlinearities admits a fam-
ily of explicit classical solutions, 2r-periodic in z, given by

(5.8)
x -s) (2 + ae-)-xg.(x,s; a)= (2cos2 ()

for x E R, s > O, where c > -2 is a fixed constant. If a O, then g. is the classical
stationary solution of (5.6):

(5.9) g. (x, s; O) cos2 --G,(x),

where G,(x) G(x) for Ixl 5 see (1.16). For a > Owe have g,(x, s; a) >= G,(x) and

g, (x, s; a) -- G, (x) as s

from above, uniformly in R. On the other hand, it is easy to see that when a E (-2, 0)
then g,(x,s; a)= 0 for x +/-x,(s; a)and g,(x,s; a) > 0 if Ixl

andx,(s; c) 7rass . We also notice that ifc (-2, 0), then g, (x, s; a) <= G,(x)
and

(5.11) g, (x, s; c) --* G, (x) as s

from below uniformly in R.
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Step 4. Final estimate. It follows from (5.2) that there exists a E (-2, 0), which does
not depend on f, such that

(5.12) f(x) >= g_(x, 0; a) in R,

where

g_(x, s; a)= [g,(x, s; a)]+ for I1 5 r,

(5.14) g_(z, s; a)= 0 for Ixl > 7r, s > 0,

is a viscosity solution of the Hamilton-Jacobi equation (5.6) (cf. [CL], [CELl), and hence

(5.15) g(x, s) >= g_(x, s; a) in R x (0, o).

Then by (5.11) we have that for any small e > 0 there exists s > 0, which is independent
for f, such that

(5.16) g(x, s) >= G(z)- e for Ixl r

(recall that G G, in the interval Ix[ =< 70. Since {T } is an arbitrary sequence, we
conclude that (5.16) holds for arbitrary f w(Oo), whence (5.4) follows.

Remark. The lower estimate (5.4) can be also proved by an analysis similar to one
given in 4. This can be done by using, instead of (4.3), the equation for the function
w 0x + 0. This equation has the form

(5.17) wr e-wz + 20zwz + (w 0)(2w 1) + (0z)2 + 02 0.

To derive a lower bound of w(x, T) as T O we need a special estimate of the term
(0)2 + 02 0 in the right-hand side of (5.17).

6. Localization. In order to obtain upper bounds on the size of the blow-up set we
shall make the additional assumption that v0 has a finite number of intersections with an
initial function of the form (2.6): v, (z, 0) v, (z, 0; T, #), with the same blow-up time
T > 0 as u and # => #T (which means that v, (z, 0) is nonnegative). It is easily seen that
there exists a wide class of initial function with this property, in particular among the
functions with compact support (see also Proposition 7.4 below). For a fixed t E [0, T)
we denote by N(t) the number of intersections of the solution v(z, t) and the particular
solution v,(z, t) v,(z, t; T, #) >= 0with the above initial data. By symmetry N(t) is an
even number. We then get the following estimate.

THEOREM 6.1. Let T be the blow-up time ofa solution u, and, with the above assump-
tions and notation, let

(6.1) N(0) 2k < .
Then the solution is uniformly bounded in set oftheform

(6.2) K {(x, t) Ixl >= , 0 =< t < T} with xl > Lk,

where Lk 7r(k + 2) if k is an odd number, and Lk 7r(k + 1) if k is even (Lk is a precise
minimum for the function v, ). Consequently,

(6.3) B C_ [--Lk, Lk].
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Proof. To begin with, we need the following result.
LEMMA 6.2. Assume that as t --+ T

(6.4) v(x, t) >= (T- t)-l[1 + 0(t)]

for =< Then

(6.5) O(t) < (T- t)2 as t T.

Proof. By (3.24) we know that

(6.6) T-t< 1 [ 1 1(1+o(1))]log E(t)
1 +

lg2 E(t)
as t T. On the other hand, it follows from (6.4) and the definition of E, (3.18), that

(6.7) E(t) >= exp[(T- t)-1(1 + 0(t))]- 1 as t T.

Then (6.5) is a direct consequence of (6.6) and (6.7). [:]

As a consequence of Lemma 6.2 and (2.8) we have the following consequence.
COROLLARY 6.3. For t T there holds

(6.8) t) < t).

We continue the proof of Theorem 6.1 with the following.
LEMMA 6.4. For t T we have

(6.9) v(+L, t) <= v.(+L, t) =_ inf v.(x, t).
x I:t

Proof. Hypothesis (6.1) implies that

(6.10) N(t) <= 2k for any t e (0, T).

By Corollary 6.3 we have that if Ixl => 27r and t T, then

(6.11) v(x, t) < sup v.(x, t) v.(+27r, t).
xEl:t

We conclude that (6.9) holds. Indeed, if it is not valid and for t T,

(6.12) v(=t=Lk, t) > v.(=t=Lk, t),

then from (6.11) and (6.12) and using the spatial 27r-periodic structure of the explicit
solution (2.1) we have the estimate N(t) >= 2(k + 1), contradicting (6.10).

We are now ready to consider what happens in the domain D {(x, t) x >
Lk, t0 < t < T} with to -- T. Observe first that since v(Ix[, t) is increasing in
estimates (6.9) and (2.9) imply that for to T we have

(6.13) v(x,t) <= 1/2llog(T- t)l(1 + o(1))

in D. Consider the function u(x, t) ev(x,t) 1. It solves in D the problem consisting
of (1.1)with initial condition

(6.14) u(x, to) a(x) for x > Lk,
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where a is bounded and nonnegative: 0 =< a(z) <= C. It also satisfies a boundary condi-
tion for to -<_ t < T of the form

1
(6.15) u(z0,t) h(t) < 1.

=T-t

Without loss of generalitywe may shift the axes and take Lk to 0. The outer analysis
of our solution relies on the following result.

LEMMA 6.5. Let u(x,t)be a solution of (1.1)in D {(x,t) :x > 0,0 < t < T},
which is nonincreasing as a function ofxfor all t > O. If u(x, O) is boundedfor x >_ 0, and
there exists a constant c > 0 such that

(6.16) u(O, t) < 1

for 0 < t < T, then u(x, t) is bounded uniformly on sets of the form K {(x, t) x >=
xl, 0 <= t < T} with x > 0 arbitrary.

Proof. It proceeds via a two-step comparison argument. We obtain a first bound
from above for u(x, t) by comparing it with the solution of the equation

(6.17) 1 z + (T- t---- lg
with initial data C, a bound for u(x, 0) in (0, ), and boundary data c/(T t) 1.
Moreover, we may apply the superposition principle to the linear equation (6.17) and
split into +, where 1 is a solution of (6.17) with zero initial and boundary data,
and solves the homogeneous heat equation ()t () with same initial and
boundary data as . By comparison with a solution that depends only on t, the function

can be easily estimated as

(6.18) (x,t) < log3
c

_log3 c

T-t

As for, by the results of [SGKM, p. 166] we can control the profile near the time T in
the form

(6.19) 2(x, t) < C + C2x-2 for some C1, C2 ) 0.

It follows that for x >_ x’ > 0 and as t T,

(6.20) (x, t)+ 1 < c loga
T-

The second step of the iteration consists in using (6.20) to modify (6.17) for the majorant
into

(6.21) tt=ftzx+c log3
T-t

lgz c log3 T-t
posed in D’ {(x,t) "x > x’, 0 < t < T} with corresponding initial and bounda
conditions. We now get a finite estimate for both components of fi defined as before.
Indeed, fi is uniformly bounded in D’ since the last term in (6.21) is now integrable;
is bounded for x > xl if xl > x’ by the same reason as in (6.19).

With this proof of Theorem 6.1 is complete.
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7. Minimal asymptotic behaviour. We are interested in giving a precise description
of the shape of the solution at blow up. Under a stricter intersection condition on the
datawe establish in this section that the blow-up profile ofour solution isjust the minimal
configuration (1.16). Our result is the following.

THEOREM 7.1. Let as above vo be radially symmetric, nonincreasing in Izl, and assume
moreover that it has two transversal intersections with a member v, (z, 0; T, #) => 0 of the
explicitfamily (2.1), which has the same blow-up time T as vo. Then as t --+ c,

(7.1) { <

o for >

uniformly in I
Remark. We will give below in Proposition 7.4 direct conditions on v0 so that this

intersection hypothesis holds.
Proof Step 1. Perturbation analysis. As explained in the Introduction the variable 0

introduced in (1.11) satisfies (1.12):

O+ e-O + (0) + 0 0

for z E R, - > -0 log T. This can be considered as a perturbation of the Hamilton-
Jacobi equation

(HJ) 9., (gz)2 + 92 _g for x E R, s > 0.

We want to describe the asymptotic behaviour of our solution of (1.12) in terms of the
asymptotic behaviour of (HJ). More precisely, we want to apply Theorem 3 of [GV],
which has to be conveniently adapted. [GV]’s result says that if three certain conditions
to be discussed below are satisfied, then the w-limit ofthe solution 0 to (1.12) is contained
in some part of the w-limit of (HJ). In fact, we will need an improvement of that result
and will show that, under our assumptions, such part is just the function G.

The first two steps in [GV] consist in proving that the orbits under consideration for
(1.12) are compact in an appropriate topology and that, whenever a sequence 0(., - + s)
converges locally in s to a function 9(’, s) as 73 --+ c, this 9 is a solution of (HJ). By
the estimates proved in 4 we conclude that such facts are true and that the convergence
takes place in Lo ([0, ) C(R)).

Step 2. Stationary w-limitsfor (HJ). The last hypothesis in Theorem 3 of [GV] consists
in showing the following:

(i) that the set f of all w-limits of solutions 9 of (HJ) obtained in this way consists
of stationary solutions; and

(ii) that it is nonvoid, compact and uniformly stable in the sense of Lyapunov for the
flow generated by (HJ).

We first observe that the solutions of (HJ) we are considering take as initial data

(7.2) 9(x, O) f(x) in It,

where f(-) lim 0(., -) is an element of w(Oo) satisfying

(7.3) f f([[) is nonincreasing in Ix],
(7.4) If! <= C in R,

in R.(7.5) f(0) 1, fzx => -
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It is easily seen that the whole set of stationary and symmetric solutions g g(Ix]) of
(HJ), which are nonincreasing and tend to zero at infinity, is the one-parametric family
of functions S {(x; a), a => 0}, where for a fixed a _>_ 0,

(7.6)

(x, a)= 1 for I1 < a,

(Ixl a) fora < ixl < a/r,y(x; a) cos2
2

(x; a) 0 for

Nore that G(x) y(x; 0). We have the following.
LEMMA 7.2. The w-limit ofg, solution of(HJ), with initial data f satisfying (7.3)-(7.5),

consists ofstationary solutions, i.e.,

(7.7) w,(f)

_
S {(x; a), a _> 0},

where w. denotes the w-limit along theflow of (HJ).
Proof. We consider an arbitrary solution g(x, s) of problem (HJ), (7.2), where the

initial function f(x) satisfies (7.3)-(7.5). Set

(7.8) a sup{xlf(x 1} => O.

By Theorem 6.1 we have a < , f(x) I for Ix[ _<_ a and f(x) < 1 for Ixl > a. We shall
compare g(x, s) with the explicit solutions g. of the Hamilton-Jacobi equation given in
5.

We now introduce a modification, ga, of the function g_ given by (5.13), (5.14). It is
defined for a _> 0 and a E (-2, 0) as

ga(z,s; )=

ffa(X, 8; Ol) [g,(lX a, 8; 0)]_4_

g(x,s; a) 0

for I1 <- a,

fora =< I1 <- a+Tr,
for I1-> a + 7r, s _> 0.

For any value of the parameter a E (-2, 0), the function ga(X, t) ga(X, t; a) thus
defined is a subsolution of (HJ). By using estimates (7.5), which imply that

(7.9) f(x) >= [1 1/4(Ixl- a)2]+ for Ixl > a,

we deduce that there exists a value of the parameter a (-2, 0), which does not depend
on f, such that, fng this a,

(7.10) f(x) >__ ga(x, 0) in R.

Then by comparison (cf. [CEL], [CL])

(7.11) g(x, s) >= ga (x, s) in tt x (0, ).

Similarly, we find a strictly positive super-solution ga of (HJ) of the form

ga(x,s; a,,k)= 1

ga(x, s; ,, ),) g.(Ixl- (a + ), s; a)

for Ixl =< a + ,
for Ixl > a + , => 0,
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with parameters a and A > O. One can see that for any arbitrarily small ), > 0 there
exists a+A > 0 such that

f(x) _< f(x, O) in R,

and, therefore, by comparison

g(x, s) <__ f (x, s) in R x (0, ).

It follows from (5.10) and (5.11) that

(7.12) ga(X, s) -. (x; a), -, a + a)

as s o uniformly in R. Using the fact that y(x; a + A) y(x; a) as A 0 uniformly
in R completes the proof of the lemma.

Step 3. The reduced f-limit set. The last condition we still have to check in order
to apply Theorem 3 of [GV] is the uniform stability (in the sense of Lyapunov) of the
f-limit set of (HJ). Unfortunately, such an assertion is false for the set S and the current
topology. However, a careful inspection of the proof in [GV] show that we only work
with a reduced f-limit set, which we define as "the set of w-limits which actually occur as
solutions of (HJ), (7.2) when the initial datum f is an w-limit of (1.12)." Consequently,
we only have toprove that this reduced set has the desiredproperties.

LEMMA 7.3. The reduced ft-limit set consists only ofthe specialprofile G.
Proof. Let v, (z, t) v, (z, t; T, #) be the special solution referred to in the state-

ment of the theorem. The proof of this lemma is based on a careful study of the compar-
ison between our solution v and the special solution slightly delayed in time, v,(z, t +
e), e > 0 small. We carefully control the relative situation of both solutions at z 0 and
z +Tr. If an w-limit is not G, then we show that the intersection count is violated as
tT.

Let N(t; e) be the number of intersection in z at time t _>_ 0 of the solutions v(z, t)
and v,(z, t + e) with initial data vo(z) and v,(z,e). Our assumption is that N(0; 0) 2.
By transversality and continuous dependence, the same is valid for the functions v0(z)
and v, (z, e) provided e is small enough. This means that

(7.13) N(0; e) 2 for any small e => 0,

and hence by the Strong Maximum Principle we have

(7.14) N(t;e)=<2 fort[0, T-e),

if e > 0 is small enough. Notice that (7.14) with e 0 automatically implies the lower
bound

(7.15) v(0, t) > v, (0, t) for t [0, T).

Assume now that the assertion of the lemma is not true and that there exists a se-
quence tk T such that

O(x, tk) =- (T tk)v(x, tk) f(x)

as k ---} o uniformly in R, and the function 9, solution of (HJ) starting from f, tends
in its turn as s c to some h G. By Lemma 7.2 we have h (x; a) for some
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a > 0. Therefore, we conclude from a simple triangular argument that there exists
another sequence, that we denote by t, such that

(7.16) O(x, tj =_ (T tj )v(x, tj) y(x; a).

Notice that the corresponding explicit solution v,(x, t) satisfies (cf. (2.11))

(7.17) 0, (, t) ( t),(, t) - (; 0)

as j oc uniformly in R, and

(7.18) (z; a) > (z; 0) for 0 < I1
so that

(7.19) (; ) > o (; o),

and

(7.20) (0; a)= (0; 0)= 1.

Fix arbitrary j such that s T tj > 0 is small enough and set e s/2. Then by
(7.17), (7.16), and (7.20) we have that

(7.21)
v,(0, tj + ) (T- tj )-1 2s-1

> 8-1 v(O, tj).

The time displacement e is used here. Using (7.17), (7.19), and (2.9) we get if s > 0 is
small enough the inequality in the converse direction at x

(7.22)
v,(+Tr, tj + e)

_
l log(T- tj e)l _= log

< 8-1 (-t-?r; a) "_ v(+Tr, tj).

One can see also that

(7.23) v,(+27r, tj + e) > v(4-27r, tj).

Estimates (7.21)-(7.23) imply that for the choice of t t and > 0 given above we
have that

N(tj; e) >= 4,

which contradicts (7.14) for t t. Hence a 0, which completes the proof. [3

Step 4. Stability of G. To end the proof we have to show that for every e > 0 there
exists 6 6(e) > 0 such that if g(., s) is a solution of (HJ), (7.2) such that

(7.24) d(f, G) < 6,

then

(7.25) d(g(., s), G) < e for every s > 0
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(we denote by d(., .) the distance associated to L (R)). We can repeat the comparison
arguments mentioned in Lemma 7.2, using the subsolution and supersolution g. This
completes the proof of Theorem 7.1.

To end the section we give explicit conditions under which the intersection assump-
tion of Theorem 7.1 is fulfilled, as promised above.

PROPOSITION 7.4. Let vo v0(Ixl) be a radially symmetricfunction, decreasing in Izl.
Assume, moreover, that there exists a constant m E [0, v0(0)) such that

(7.26) Vo(X) <= -1/2(vo(O) m) sinx

for any x [0, 7r] such that vo (x) > rn. Then the number ofintersections ofvo(x) with any
positivefunction v, (x, O) oftheform (2.6) and satisfying

(7.27) vo(O) > max{v,(x, 0)} > mn{v,(x, 0)} => m
is two and they are transversal. Moreover, if v0(0) is large and m small enough we can
choose the parameters qoo and o in (2.6) so that v,(x, t) has the same blow-up time as v,
and (7.26) holds.

Proof. The initial function , (x) v, (x, 0; T, #) has the form (2.6) for # >_ #T, i.e.,

(7.28) vo(o + cos

where 0 > 0, 0 >= I are constants. According to (7.27),

(7.29) M inf, (x) qOo(o 1) >= m,
and

(7.30) M2 sup,(x) qOo(o + 1) < vo(0),

where m is as in (7.26). One can see that under hypothesis (7.26) the function vo(x)
intersects an arbitrary function of the family , (x) exactly at two points. In fact, at any
intersection point x > 0 we have

--!v, (x) -qoo sin x > v(x),

since vo (0) m > M2 M 2qOo.
Finally, in order for v, to have the same blow-up time T as u, and according to the

analysis of 2, the data qOo and o have to satisfy a certain condition, namely, the point
(qOo, o) must lie on some curve situated in the region {0 < qOo < oc, 1 < o < cx}. This
condition is clearly compatible with (7.29), (7.30) if m is small and vo(0) large. Then
there are infinitely many choices.

8. Minimal blow-up set. We have established minimal asymptotic behaviour in
terms ofthe variable 0 in the preceding section. Unfortunately, due to the factor (T-t) in
the change ofvariables (1.11), this does not automatically imply that u remains bounded
outside of the minimal set [-Tr, 7r]. This section is devoted to establishing such a result.

THEOREM 8.1. Assume that vo satisfies the conditions ofProposition 7.4. Then B =_

Remark. In view ofTheorem 5.2, it follows that meas (B,) 27r, so that the solution
actually converges to infinity as t T at any point of the interval -Tr < z < 7r; see (8.1)
below. The actual asymptotic behaviour at z +Tr is an open question.
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Proof. The proof consists of a preliminary analysis of what happens near
(boundary analysis) plus an analysis of the situation for Izl > r. This latter outer analysis
follows Lemma 6.5. To begin with, by Theorem 7.1 we know that as t T,

(8.1) O(x, t) =_ (T t)v(x, t) --+ C(x)

uniformly in It. The special solution with the same blow-up time selected as in Proposi-
tion 7.4 satisfies

(8.2) O, (x, t) (T t)v, (x, t) --, G, (x)

as t T uniformly in It. For a fixed t e [0, T) and arbitrary A _> 0 small enough
we denote by N(t; A) the number of intersections in x of the solutions v(x, t) and this
v,(x A, t) having the same blow-up time T as v. Then, since by Proposition 7.4 each
intersection of the initial functions vo(x) and v, (x, 0) is transversal, by continuity of the
function v, (x A, 0) with respect to A we conclude that there holds (cf. (7.13))

(8.3) N(0; A) 2 for any small A _> 0.

Hence (cf. (7.14))

(8.4) N(t; A) =< 2 fort 6 [0, T),

if A _> 0 is small enough (notice that (7.26) yields that (8.4) is valid for arbitrary A >= 0).
We now perform the boundary analysis. We prove that the solution v(x, t) is small

enough as t T in a right neighborhood of the point x 7r. (By symmetry, the same is
true for a left neighborhood of x -70.

LEMMA 8.2. Let A0 > 0 be small enough. Then, as t -- T,

(8.5) v(Tr + A0, t) =< v,(Tr, t) 1/21 log(T t)[(1 + o(1)).

Proof. We use an interesting technique of intersection comparison with shifting in x.
Let x xo(t) > 0 be the unique positive intersection point of the solutions v(x, t) and
v, (x, t). Notice that since both solutions are analytic functions in the x variable, each
intersection point is isolated for 0 < t < T, [Fr2]. If xo(t) <= 7r as t T, then using
(7.15) and (8.4) with ,k 0 we deduce that v(x; t) <= v, (x, t) for x >_ 7r, and hence (8.5)
is valid even with A0 0.

Suppose on the contrary that there exists a monotone sequence tj T, such that

(8.6) xo(tj) > 7r for j 1,2,

Then by the Strong Maximum Principle [Frl] we have that

(8.7)

Hence,

(8.8)

v(x, t) > v, (x, t) for Ixl r.

5 6(t) sup{A > O v(x, t) >_ v,(x , t) for Ixl =< 7r} > 0.

It follows from (8.1) and (8.2) that 5 0 as j .
Compare now for a fixed j large enough the functions v(x, tj) and v,(x 6, tj).

First, we conclude that

(8.9) v(x, ti) > v, (x 6, ti) for x e [0, 7r).
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Otherwise, if (8.9) is not valid so that, by the definition of 6, there exists some interior
tangency point z z (0, 70 of these functions, at which

(8.10)

we arrive at the contradiction with (8.4). Indeed, under conditions (8.10) by additionally
"shifting to the right in z" the function v. (z 6, t), we deduce that for arbitrary 0 <
u << 6 the number of intersections grows,

(8.11) N(tj; 6 + ) >= 3,

contradicting (8.4) with t tj, A 6j + v.
Thus, (8.9) holds. From the definition of 6 given by (8.8) we conclude then that

necessarily

(8.12)

and, therefore, (8.4) implies that

(8.13)

Since {t } is arbitrary, by using the fact that 6(t) --. 0 as t T we have that for any
small A0 > 0 there exists to E (0, T) such that (8.5) holds for t E (to, T). [3

It then follows from (2.9) that for t --, T,

(8.14) v(x0, t) =< -1/2 log(T t)(1 + o(1)),

where x0 7r + A0. The proof that u is uniformly bounded on sets of the form K
{(x, t) x => x, 0 =< t < T} with x > x0 is done by applying Lemma 6.5. Since A > 0 is
arbitrarily small, the proof of Theorem 9.1 is thus complete.

9. Periodic solutions. The techniques developed in the preceding sections can be
easily adapted to some other situations. We consider in this section the case of periodic
initial data with period a multiple of 27r, namely,

(9.1) +

withm and integer. Let us take the interval Im [-mr, mr] as the basic period. We also
assume that u0 is symmetric in 1,,, nonnegative, and nonincreasing for 0 < x < mr. We
also ask u0 not to be constant in order to avoid trivial cases whose behaviour is different
from the one we want to study here. Notice that we can think of the solution of the
Cauchy Problem for (1.1) in Q R x (0, T) under these initial data as the solution of
the Neumann Problem posed in Qm =Im X (0, T) with boundary data

(9.2) u(4-mTr, t) 0 for t > 0.

To begin with, the explicit solutions u. considered in 2 are still solutions of this problem.
Moreover, for any solution of the Neumann Problem we have the following:

(i) If t is fixed the solution u(z, t) is a symmetric function of z, decreasing for 0 <
z < mTr. Hence, the maximum is always taken at z 0. The Maximum Principle applies
and the intersection number in 1,, is still a nonincreasing function of time;
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(ii) Estimates (3.1) and (3.4) of 3 hold. The proofs are unchanged;
(iii) The same is true for semiconvexity results of 4 and the minimal profiles of 5;
(iv) Theorem 6.1 and the other results of 6 are valid, though statements (6.2), (6.3)

are void if mTr _< L.
Thus, we obtain the next theorem.
THEOREM 9.1. Let ube a solution of(1.1), (9.1), (9.2) with m >_ 4, Assume that uosat-

isfies the intersection condition N(O) 2 with some nonnegative initial data u,(z, 0; T, #),
# > #T. Then

(9.3) B D I, C_ [-3r, 3r].

Proof. Our assumption is that v0 log(1 + u0) satisfies

(9.4) N(0) 2,

where N(t) denotes number of intersections in I, of the functions v(x, t) and v,(x, t).
As before it follows that

(9.5) N(t) <= 2

for every 0 < t < T. As in Corollary 6.3 we have v(+27r, t) < v,(+27r, t) for t T. This
and (9.5) imply that

(9.6) v(3r, t) < v,(37r, t) 1/21 log(T t)l(1 + o(1))

as t T. Since the solution v(x, t) is nonincreasing in x > 0 we conclude that for t T
and 3r <__ x __< mTr,

(9.7) v(x, t) __< log(T "t)l.

We now apply Lemma 6.5 to conclude that v is uniformly bounded for mTr => z _> Zl >
37r and 0 < t < T. D

(v) Under stricter conditions on the initial data we obtain, as in Theorem 7.1, the
following.

THEOREM 9.2. Let m >= 3 and let v0 log(1 +uo satisfy the conditions ofProposition
7.4in I,. Then

(9.8) B I [-Tr, 7r].

Proof. We have (9.4) and then (9.5). Arguments similar to those given in 7 and 8
show that, similar to (9.6) in the preceding result, the inequality v(Tr, t) =< v, (Tr, t) is valid
after slightly shifting in x and t the explicit solution v, (x, t). In this waywe can apply the
arguments of Theorems 7.1 and 8.1. rq
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ON THE NODAL SETS OF THE EIGENFUNCTIONS OF CERTAIN
HOMOGENEOUS AND NONHOMOGENEOUS MEMBRANES*

CHAO-LIANG SHENt

Abstract The author finds conditions for the existence of eigenfunctions whose nodal sets consist of one
line segment or two perpendicular line segments. Using nodal sets of eigenfunctions, a sufficient condition is
found for the density function of a nonhomogeneous annular membrane that is a radial function. The author
also shows how to use the nodal sets of eigenfunctions of some particular type and the corresponding eigen-
values to determine the density function of the annular membrane if its density function is a radial function.

Key words, nonhomogeneous membranes, density functions, eigenvalues, eigenfunctions, nodal sets,
nodal domains

AMS subject classifications. 35B05, 35P99

1. Introduction. Suppose fl is a simply connected plane domain which is symmetric
with respect to the z-axis. Does the fixed membrane problem

(1.1) A+A=0 inf,, =0 onOf

have an eigenfunctionwhose nodal set is the portion of x-axis in fl? Iff is also symmetric
with respect to the y-axis, does (1.1) have an eigenfunction whose nodal set consists of
the portion of x-axis and the portion of y-axis in the domain f? These questions shall
be answered in 2.

In 3 we consider the nonhomogeneous membrane problem over an annulus R
in 1:

(1.2) Aqa + Ap(x, y)qo 0 in R, qa 0 on Oft,

where the density function p(x, y) is a positive continuous function. We are interested
in the question of determining the density function p(x, y) by knowing the nodal sets of
sufficiently many eigenfunctions and the corresponding eigenvalues. We prove that if
(1.2) has infinitely many nodal sets of the eigenfunctions that are circular-nested, then
the density function p(x, y) must be radial (Theorem 3.1). Furthermore, if the density
function p in (1.2) is radial, then, using some results in [5], we show that sufficiently many
circular nodal sets are enough to determine the density function p (Theorem 3.3).

2. Existence of eigenfunctions whose nodal sets consist of straight lines. Let f(z)
be a continuous function on the interval a <= z <= b, f(a) f(b) O, f(z) > 0 for
a < x < b. We shall use the notation fI to denote the region {(x, y)} E 1R2 a < x <
b, -f(x) < y < f(x)}. In this paper we shall assume f is nice enough for ff to have
smooth boundary. We use the notation N(qo) to denote the nodal set of an eigenfunction
qa of (1.1) on f, which is the set {(x, y) E f" (x, y) 0}. The notation E4($) is used
to denote the four-dimensional domain whose closure is

(2.1) E4(f) {(x, Yl, Y2, Y3) e ]4"a =< --< b, yl2 + y2
2 -+-y] =< If(x)]2}.

If the even function g(x) is continuous on the interval -a =< x =< a, strictly positive
in the interior, and vanishes at +a, we shall use the notation E(fla) to denote the six-

Received by the editors December 24,1991; accepted for publication (in revised form) December 2, 1992.
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dimensional domain whose closure is defined as follows:

(2.2)
E() {(,,;,,) e" + + <

yl
2 + y + y] -< [g((x2 + x + x)/2)]2 }.

We shall use the notation Ax;ul,u2,u3, Axl,.,3;u,u.,ua to denote the four-dimensional
and six-dimensional Laplacians, respectively:

The following simple results shall be used later. Since they follow easily from calculation,
we omit the proof.

LEMMA 2.1. (1) Suppose thefunction v(x; yi, y2, y3) depends only on x and y +y +
y. Then

(2.3) A;u,u.,u v A,uv(x, y) + 2vu(x’ y)
Y

where y2 y + y] + y], V(x, y) v(x; yl, y2, y3), Vy Ov/Oy, and A,u is the two-
dimensional Laplacian in x, y.

(2) Suppose the function W(Xl, X2, X3; yl, y2, y3) depends only on x2 x2 + x2 / x
and y := y + y + y. Then

(2.4) 2wz 2wyAx,,;,u.,u w A,uw(x, y) + -x y

where w(x, y) w(xl, x2, x3; yl, y2, y3).
In [4], the author had used a method to compare two eigenvalues by knowing the

nodal sets of the corresponding eigenfunctions. One of the key points of the method is
to construct a four-dimensional domain from ftf by revolving ff about the x-axis. We
use the same idea to prove the following theorem.

THEOREM 2.2. For the region ff the eigenvalueproblem (1.1) has an eigenfunction o
whose nodal set is theportion of x-axis in ff, i.e., N(o) { (x, O) a < x < b}.

Proof. On the four-dimensional domain E4(gtf) we consider the following eigen-
value problem:

(2.5) A,;u,u,uav + #v 0 in Ea(fS), v 0 on 0Ea(f/,).

Let vl be the first eigenfunction of the eigenvalue problem (2.5) such that Vl (0; 0, 0, 0)
1. Using the fact that the first eigenvalue of (2.5) is simple, and the fact that E4(ftf)

a 3is axially symmetric, we see that for any three-dimensional rotation A q],=,
Vl (X; Yl, Y2, Y3) Vl (X; 3 3 3-]=l alkyd, ’]:i=l a2y, Y]=l a3y). This implies that vl de-
pends only on x and yl

2 / y2
2 + y. Let y2 yl

2 + y2
2 + y. Again we use the notation

Vl (x, y) to denote Vl (x; Yl, Y2, Y3). Then Lemma 2.1 tells us that

(2.6) Ax,,yVl #iVi.
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Let qo(x, y) yvl(z, y). Then it is clear that qo(x, y) 0 on 0fI, qo(x, 0) 0 for
a < x < b. Furthermore, by (2.6),

Aqo yA,yv + 2(v)y
--#lyVl

i. e., #l is an eigenvalue and qo is an eigenfunction of (1.1), which has the stated prop-
erty. U

Following a similar idea we have the next theorem.
THEOREM 2.3. Let g(x) be an even function which is continuous on -a <= x <= a,

g(a) g(-a) O, and g(x) > Ofor all -a < x < a. Then,for fg, the eigenvalueproblem
(1.1) has an eigenfunction whose nodal set N() {(x, 0) -a < x < a} U {(0, y)

< <
Proof. On E6(ftg) we consider the following eigenvalue problem:

(2.7) A,.,;u,u,uw + vw 0 in E(fa), w 0 on 0E6(fa).

Let Vl, Wl denote the first eigenvalue and the first eigenfunction withw (0, 0, 0; 0, 0, 0)
1, respectively. Then, using the simplicity of vl, we have

Wl(Xl,X2,x3;Yl,Y2,Y3)

for all three-dimensional rotations [aij], [bij]. This implies that w(Xl, x2, x3; yx, yg., Ya)
depends only on x: x + x + x, and y y + y + y. Denote this W by Wl(X, y).
Then, by Lemma 2.1 we have

(2.8) A,Wl x y

Now we define (x, y) xywx (x, y). Then

=o
o) =o

(o, v) o

on Of,
for-a < x < a,

for-g(O) < y < g(O).

Furthermore, by (2.8) we have

Az,y xyAx,yW + 2X(Wl)y + 2y(’Wl)z
VlXyWl

Vl).

Thus is the desired eigenfunction. [3

3. Nonhomogeneous annular membranes with radial density functions. Let R be
the annulus r) < X2 -- y2 < r, 0 < ro < rl. Suppose (A, o) is an eigenpair of (1.2) such
that the nodal set of o consists of concentric circles centered at the origin (0, 0). We shall
call the nodal set a circularnodalset, o a circulareigenfunction, and A a circulareigenvalue.
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If (A, q3) is an eigenpair of (1.2) such that the nodal set of q5 is of the form {(r cos 0, sin 0)"
r "rl,q3, , "r1(),3, or r0 < r < rl and 0 0, +kTr/m(), k 1, 2,..., 2m(q3) }, where
r0 < r, <... < rt(), < r, 0. and the integers l(), m()are deteined by the
eigenNnetion , thenwe call such an eigenNnetion a circular-nested eigennction, and
the corresponding eigenvalue a circular-nested eigenvalue. For an eigenNnetion of
(1.2), we use mesh () to denote the mmum of the diameters of its nodal domains.
roughout this section we shall assume the densi nction p(z, ) in (1.2) is a positive
continuous Nnction. We have the following inverse spectral theorem.

EOREM 3.1. If (1.2) has infinite many circular-nested eigennction such
that limx mesh () O, then the densinction p(z, ) is a radial nction, i.e.,

u) +
oof. By assumption, the nodal domains of are of the form (in polar coordi-

nate):
() () On + < 0 < 0 +[(ni)(i,k) (r,O) r < r < -i+1, m(j) m(j)

() _() r()where r0 r0 < ’rx < t(j) r, k 0, 1,..., 2m(nj) 1; the integers l(nj),
m(nj), the angle 0, and the radii _(n)ri are determined by.

If the densi function p is not radial, then there est an r., r0 < r. < rl, and
0., 0.. such that p(r. cos0., r. sin0.) > p(r. cos 0.., r. sin0**). Since lim. mesh

() 0, there est indices nj, i, kx, kz, k kz, such that (r., 0.) is in closure of
I()(i, k), (r., 0..) is in the closure of I()(i, k), and

(3.1) p(x,y) > p(xz,y) for all (x,y) in I()(i,k),
all (x, y) in I(’ (i, kz).

Let A (I(’) (i, k,)) be the first eigenvalue of

Au + Apu O, I()(i,k,), u 0 on0I()(i,k,).
Then (3.1) implies A (I(’ (i, k < ,’ [(n i, k2 ), which is absurd, since both ofthese
first eigenvalues are equal to A, the eigenvalue of (1.2) corresponding to . is
completes the proof of Theorem 3.1.

If we ow that the densi function of (1.2) is radial: p(x, y) p(r), r (x +
y2) 1/2, then (1.2) has infinitely many eigenfunctionswhich are radial, and hence, circular.
ese eigenfunctions are eigenfunctions of the following eigenvalue problem:

(3.2) u"(r) + + p(r)(r) 0, (r0) (rl) 0.

tr et, a In r0, fl In r, v(t) u(r). en (3.2) is transformed into the following
eigenvalue problem:

(3.3) v"(t) + P(t)v(t) O, v(a) v() O,

where P(t) etp(et). t v(t) be the nth eigenfunction, be the nth eigenvalue
of (3.3). We will denote x) < x) <... < x21, the nodal points of v in the open
inteal (a, ), and we denote x) a, x) , I, [x)l, x)]. en by the
variational formula for , and the monotonici principle for the comparison of the
eigenvalues, we have

2 2<n <(3.4) =] [min(P,
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where max(P, I) (respectively, min(P, I)) denotes the maximum (respectively, the min-
imum) of P on the interval 1, and III denotes the length of the interval I. The following
lemma was proved in [5].

LEMMA 3.2. For 6 > O, there exists no(6) such that I  ,kl < k 1, 2,..., nfor all
n TtO.

Using Lemma 3.2 we can prove the following theorem.
THEOREM 3.3. Suppose that R is an annulus as above, and we know the densityfunc-

tion p in (1.2)/s radial. If we can "hear" infinitely many circular eigenvalues and we can
"see" the circular nodal sets ofthe corresponding eigenfunctions, then we can determine the
densityfunction p.

Proof. By assumption we know infinitely many eigenvalues #, of (3.3) and we know
-(’) Then by (3.4),the corresponding nodal points

Lemma 3.2, and the fact that P(t) is uniformly continuous on [a, ], for x [a, ], if
I,,() is the closure of the nodal domain of v, which contains x in its interior or has
x as its right end point, we then have

1
P(x) 7r

2 lim- II,() "
Hence P(x) is determined, so is p(r). D

We note that recently the problem of determining the coefficients of a Sturm-
Liouville equation from the nodal sets of the eigenfunctions has attracted some atten-
tion (see [2], [3], and [5]). In particular, for the string equation with Neumann boundary
condition, y" + Ap(x)y O, y’(O) y’(L) 0, if the density function p(x) has inte-
grable second derivative, then it was shown by Hald and McLaughlin [2] that p(x) can
be determined uniquely up to a multiplicative constant by a dense set of nodal points of
eigenfunctions. Their idea is to transform the string equation via the Liouville transform
into an equation ofthe form z"+(A-q)z 0. Then they use the asymptotic behaviour of
the nodal sets of the eigenfunctions of the latter to achieve their goal. Besides, Hald and
McLaughlin also developed some interesting numerical methods for the inverse nodal
problems. Our approach to the inverse problem of the eigenvalue problem (3.3) is dif-
ferent from theirs. We look at the nodal sets of the eigenfunctions of (3.3) directly, and
we need eigenvalues.

Combining Theorems 3.1 and 3.3 we see that the appearance of infinitely many
circular-nested eigenvalues such that the meshes of the nodal domains shrink to zero
implies the density function p is radial. Then the appearance of circular nodal sets de-
termines the density function p.

The following example shows that only the appearance of infinitely many circular
nodal sets does not guarantee that the density function is radial. That is, to determine a
radial density function, we need the appearance of both of circular and circular-nested
eigenvalues and nodal sets.

Example. For (x, y), which lies on the circle x2 + y2 r2, r > 0, define z x + iy,
here i (- 1) 1/2, and define

Z .q.. Z-1
(3.5) w=w(z)=

2
=u+iv, u=Rew, v=Imw.

Then (u, v) lies on the ellipse Er defined as follows:

U2 V2 }(3.6) Er (u,v)" [(r + 1/r)/212 + [(r-1/r)/2]2
1

Note that for r > 0, the loci ofE are (1, 0), (-1, 0), i.e., E are confocal. Conversely,
if E is an ellipse with loci (+1, 0), then E is of the form E. For 1 < a < b, via the
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map w(z), the annulus R(a, b) {a2 < x2 + y2 < b} is transformed into the dou-
bly connected domain E(a, b) bounded by two confocal ellipses, Ea and E. Via w(z)
eigenvalue problem

(3.7) Ap + Aqo 0 in E(a, b), qo 0 on OE(a, b),

is transformed into the following nonhomogeneous annular membrane problem:

(3.8) A+A{ I1 1/z’ }4 b 0 in R(a, b), b 0 on OR(a, b).

Suppose 0, are chosen so that

2
cosh2 1 2

For (x, y) E(a, b) we introduce the elliptic-coordinate (, rl) by the following formulae:
x cosh cos r/, y sinh sin r/, where 0 < < , 0 =< < 27r. Then the functions

(3.10) (,r/; q)’= {[ Ce0(, q) [ Fey0.(, q_)
Ce0(0, q) ] ] } ce0(r/, q)

[FeYo(0, q

where q is determined by the following transcendental equation:

(3.11) Ceo(l, q) FeYo(l, q)
0

Ceo(o, q) FeYo(o, q)

are eigenfunctions of (3.7) in elliptic coordinates, ce0, Ce0, and Fey0 are Mathieu func-
tions and modified Mathieu functions of the second kind (for definition and relevant
properties; see [1]). Since ce0(r/, q) > 0 in the interior of the elliptic annulus for the q
determined by (3.11), the nodal set of I,(, r/; q) are those of, such that

Ceo(,, q) FeYo(,, q)
0o

Ce0 0, q) FeYo 0, q)

These nodal curves , correspond to concentric circles in Euclidean coordinates.
Thus the nonhomogeneous annular membrane problem (3.8) has infinitely many circular
eigenfunctions, but the density function of (3.8) is not radial.

Thus the appearance of infinitely many circular eigenvalues does not guarantee that
the density function of a nonhomogeneous annular membrane is radial.

Acknowledgments. The author wishes to thank the referee of this paper for refer
ring him to the interesting paper of Hald and McLaughlin.
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ON THE ZEROS OF SOLUTIONS TO
GINZBURG-LANDAU TYPE SYSTEMS*

PATRICIA BAUMANt$, NEIL N. CARLSON?, AND DANIEL PHILLIPS?

Abstract. The authors consider minimizers of a nonlinear functional whose Euler-Lagrange
equation includes the Ginzburg-Landau system. For a certain class of Dirichlet data, it is proved
that a minimizer has exactly one zero which necessarily has winding number d=l. Moreover, the same
result holds for solutions of the corresponding parabolic system at all sufficiently large, fixed values
of time, under certain conditions on the initial and boundary values.

Their result on minimizers supports several theories from physics (concerning interacting bosons,
for example). These theories predict that stable solutions with isolated zeros (called vortices) exist,
and each zero of a stable solution has winding number :t=l.

Key words. Ginzburg-Landau system, vortices, zeros

AMS subject classifications. 35J55, 35Q40

1. Introduction. Let f be a bounded simply connected domain in ]I2, and let
/X(X) f --* I2 be a solution to the diagonal system

(1.1) o v,(lul ), u.

If G’ (I/dl 2) (I/all2-1), this is the Ginzburg-Landau system used in both the theory for
interacting bosons [Gr] and the theory of super-conductivity [G-L]. Here the squared
modulus I/dl 2 plays the role of a density. Denote by F(/X) the set of zeros of/X, namely,
F(/X) {Z e fl"/d(X) 0}. The above theories predict the existence of solutions for
which F(L/) consists of isolated points called vortices. Moreover, it is expected that
each vortex of a stable solution has winding number +1.

In this paper we consider the variational problem associated with (1.1), subject to
a particular class of Dirichlet data. We prove that an energy-minimizing solution has
exactly one zero that necessarily has winding number +/-1. This result then supports
the theories described above.

To state our results more precisely, assume that f is of class C2, for # fixed
with 0 < # < 1. Let Y(s) for 0 <_ s < L be a one-to-one parametrization of 0fl
with respect to arclength. Consider Dirichlet data, 0, in C2,(f; 2). Expressing the
image, o(Y(s)), of 0f in polar coordinates, we have

o(Y(s)) (r(s) cos 0(s), r(s) sin0(s)).

We assume that o satisfies

(1.2) r(s) > O, O’(s) # 0 for 0 < s < L and IO(L)- 0(0)1 2r.
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Thus the image, 0(0f), bounds a starlike region with respect to the origin in
such that 0(Y(s)) crosses each ray, --/90, exactly once as s increases from zero to
L. We assume that the nonlinearity, G, satisfies

IG’(T)I < cxz for some A > O.(1.3) G

Consider the variational problem of minimizing the functional

(1.4) J()

in the cls { e W,2(D; R2) 0 on 0D}. Our main result is the following.
THEOREM. ff is a minimizer of J(.) in , then F(H) consists of one point.

(See Theorem 2.3.)
In general, the most one can say about F() for a given continuous vector field

with 0 on 0D is that its Brouwer degree satisfies d(, D, 0) 1. Thus, our
result states that a minimizer h the simplest structure of this type possible.

An interesting ce is with D B1 (0) and 0(X) X. It is known that there
exists a separable solution of (1.1) with boundary values, 0, namely,

U.(X) R(IXl)(X/lXl),

with R(0) 0, R(1) 1, and 0 < R([X]) < 1 for JX] in (0,1). See [Ab]. It is
not known, however, if HR is a minimizer of J(.) in all of . Thus the fact that a
minimizer h one zero is new even in this ce.

The stationary result can be used to investigate the pattern of the zero set it
evolves with time for the nonlinear heat equation studied in IN]. Consider the system

(.5) t, AU- G,(lUI)U for X e a, t > 0,

L/(X, t)--Co(X) for X e 0a, t > 0,

U(X, 0) U0(X) for X e ft.

It is known that if0 M, then there is a unique solution (t), which is clsical
for t > 0. Setting m infce J() we have the following.

THEOREM. There is a constant 6 > 0 such that if J(o) m+, then F((t))
(X(t)}, where X(t) is a C cue in for all t suciently large. (See Theorem 3.3.)

If G(T) is real analytic, with fl and 0 sufficiently smooth, then more can be said.
A result of Simon states that there is a constant 1 > 0 such that if J(0) m + 6,
then U(t) M in C2(fl; 2) t , where is a minimizer. We use this to
prove the following.

THEOREM. X(t) X as t , where (X} F(U). (See Theorem 3.6.).
Thus in this setting there is large-time dynamic stability for the pattern of F((t))

near the minimum ener level.
Notation. When the context is clear we use the following abbreviated notation:

2. Minimizers and their zeros. We first summarize the existence and regu-
larity results related to the variational problem.
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LEMMA 2.1. There is at least one minimizer .for J(.) in
/d (u, v), is a solution of

A minimizer,

o,
(2.1) Av G’(llgl2)v 0 in ,

(u, v) 0 on

Any weak solution, hi, of this system in Wl,2(ft) is of class C2,(ft) and

(2.2)

Proof. Since G satisfies the conditions in (1.3), the general theory of variational
problems implies the existence of a minimizer,/d, in M. See [G, Chap. I]. Since ft c N2

and b/E W1,2 (f), it follows from the Sobolev imbedding theorem that/d E Lp(f) for
any p < oo. From this and (1.3), J(/d+O) is differentiable in for any (I) Ccl(-;,I[2).
Thus/4 is a weak solution of (2.1).

Now let/d (, v be any weak solution of (2.1) in W1,2(ft). By (1.3), (2.1), and
the Sobolev imbedding theorem A and A are in Lq(ft) for any q < oo. Hence by
elliptic estimates,

_< C(llUllwl,.-(a),

for all q sufficiently large. Thus Ag, A C,(f), and (2.2) follows.
For a ]R and L/= (u, v), a minimizer for g(.) in fld, set

w(X) -u(X). sin a + v(X)- cos a.

Define the nodal set of wa by

g, {X e a 0}.

Note that for any pair hi, O2 with 0 _< a < a2 < r, the set of zeros of/d is just
F(b/) Nal Q Na=. Thus as a varies, F(b/) is the subset of N that remains fixed.

We shall prove (in Lemma 2.2) that for each a, Na is a smooth imbedded curve
which enters and exits ft at distinct points of OFt. Following this, we prove that the
curves, Na, have exactly one point in common.

LEMMA 2.2. For each a, Na is a C imbedded curve in f.
Proof. First consider Na C? Of. From (1.2) we have Na C? OFt {P1,P2}. Using

the notation from (1.2) if Y(s) P and Y(s2) P2, we can assume without loss of
generality that 0(81) O if- 7r and 0(s2) a. Now

w (Y(s) r(s). [- cos 0(s). sin a + sin 0(s). cos a].

Hence

0
-sWa(Y(s)) --r(81). 0’(81) # 0

81
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and

# o.

Thus there are neighborhoods O1 and 02 of P1 and P2, respectively, so that Ne" V Ol
and Ne" 3 02 are CI curves intersecting c9 at PI and P2.

Next we examine Ne" in . Note that we" is a C2, solution of

Aw G,(lU]U)w. 0 in ,
where G’(IUl2) is continuous. By Hartman and Wintner’s classical results (see [H-W,
Thins. 1-2 and Cot. 1]), the set

Ke" =_ {X f we’(X) 0 and Vwe’(X) O}

is locally finite. Our previous analysis near 0 then implies that Ke" is either empty
or is a finite subset of ft. It follows from [H-W] and our analysis near 012 that Ne"
consists of a finite number of C arcs along which Vwe" 0 except at their endpoints
in fl; moreover, the arcs may intersect only at these (interior) endpoints. Exactly two
endpoints of these arcs are in 0fl, and the rest make up Ke’.

Finally, we note that at least four distinct arcs in Ne" meet at each point in Ke’.
This follows from Hartman and Wintner’s analysis of we" near X0 in Ke’: Indeed, they
show that for some integern there is a homogeneous harmonic polynomial, Hn, of
order n so that

we’(X) Hn(X Xo) o([X Xo[n) and

Vwe’(X) VH,(X Xo) o([X

(See (5) and (5’) of 1 in [H-W].) It follows that the nodal set of we" has the same
structure near X0 as that of the harmonic function, H,(X- Xo).

We claim that Ke" 0. If not, fix X0 in Ke’. Let C1, C2, and C3 be three distinct
maximal (piecewise C1) curves in Ne" with endpoints at X0. If none of these curves
returns to X0 or self-intersects or intersects one of the other two curves, then all three
curves must reach 0f. But this is impossible by our analysis of Ne" near 0f. Thus
there exists a nontrivial subdomain De" C with ODe" C Ne’. Using a rotated basis
for the image, we can represent H by H(X) (we’(X), we’+ (X)). Let

U
(-w.,

in f- De,,
in De’.

Then/A e 2t4 and J(/d) J(/A). Thus/4 is also a minimizer and (by Lemma 2.1)
/d E C2,(f). But this is possible only if Vwe" _-- 0 on ODe’, which contradicts the fact
that Ke" is a finite set. This proves that Ke" 0. The same argument implies Ne" does
not contain a closed loop. Hence Ne" is connected.

It follows that Vwe" 0 on Ne" and Ne" can be parametrized by arclength as a
smooth imbedded curve in f with endpoints {P1, P2}. [3

The set, F(L/), is nonempty since d(/g, f], 0) +/-1. In the following theorem we
construct a homotopy from No to N,, passing through each Ne" for 0 _< a _< r. By
analyzing the points contained in all the Ne" we prove that F(/A) has just one element.
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THEOREM 2.3. Let bl be a minimizer .for J(.) in fl/[ where 0 satisfies (1.2).
Then F(/) (X0} .for some Xo in t.

Proof. Let (P1, P2} NoCOt and assume without loss of generality that/g(P1)
(u(P),O) with u(P) < 0 and (P2) (u(P2),0) with u(P2) > 0. The points, P
and P2, partition 0f into two arcs, (0t)- {X E 0ft "v(X) <_ 0} and (Off)+
{X O’v(X) >_ 0}. Starting at P1 and moving along No, let X0 be the first point
reached in F(/g). Since X0 Na for all a, it follows from Lemma 2.2 that each Na
can be parametrized by arclength, X X(T, a), such that

a(c) < T < b(c), a(a) < 0, X(a(a),a) e (0fl)-, b(a) > 0,
ox

=1 and X(0, a)=X0.

Set 7) ((T, C)" a(c) _< T _< b(c), 0 _< c _< r). We split the proof into three parts.
Part 1. We first show that X e C1(7)), and that a(c) and b(c) are in C([0, r]).

Without loss of generality, assume that

OX
(0, O)= (Owo (Xo) Owo (Xo))

By Lemma 2.2 and the equicontinuity of (Vwa(X)" 0 _< _< r}, we have

inf{IVw,(X)l" X e N and 0 _< a _< r} > 0.

Thus from the theory of ordinary differential equations, it follows that X(T, a) solves
the initial value problem

Since w,(X) is a C2 function of a and X it follows that X(T, a) e C1(7)).
To show that a(a) is C1, let Q1 e 0t with Q X(a(a),a). Choose (I) so

that the equation, (I)(X) 0, defines Of] in a neighborhood of Q and V(I)(Q1) 0.
In the proof of Lemma 2.2 we showed that the tangential component of Vw(Q1)
does not vanish. It follows that V(I)(Q)-(OX/OT)(a(a), a) O. Thus the equation
(X(T, a)) 0 implicitly determines T a(a) as a C function of a near al. Hence
a(a) e C1([0, r]). In the same manner, we have b(a) e C([0, r]). Thus X(T,a) is a
C homotopy defined on the piecewise smooth domain 7).

Part 2. By construction, X(T, 0) F(b/) for T < 0. Here we show that for all a
in [0, r] and T < 0, X(T, a) q[ F(/4). In particular, X(T, r) q[ F(L/) for T < 0.

Set
-5 sup{a "X(T,13) q F(b/) for T < 0 and _< a}.

There are three possibilities. The first is that there exists < 0 such that X(,-5)
F(/4). Since F(/g) C N for all a, we have X(, -5) e N for all a < -5. By construction,
for each a < -5 there exists T(a) e (0, b(a)) with X(T(a), a) X(,-5). By continuity
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this implies that for some T* e [0, b(a)], we have X(T*,-5) X(,-5). But N does
not self-intersect (by the proof of Theorem 2.2). Hence this case is impossible.

The second possibility is that -5 < r and X(T,-5) F(/g) for all T < 0. In this
case, there must be a sequence, {T, a}, with an -5, Tn T 0, and Z(Tn, an) in F(L/).
By continuity, X(Tn, an) --* X(O,-5) Xo. Moreover, since F(/g) c N, there is a
sequence {tn} with tn > 0 so that X(tn,-5) X(T, ). Necessarily, tn$ O. Consider
the vectors

Tn

and

Since X E Ci(D) both sequences tend to (OX/O’)(O,-5) as n --, oc. But for each n
the angle between the two vectors is r. Hence (OX/OT)(O,-5) O. This contradicts
the fact that IOX/OT[ 1.

The only remaining possibility is that -5- r and X(T, r) F(/) for T < 0.
Part 3. Now X(T, 0) and X(T, r) are each parametrizations of No in opposite

directions. Since X0 is the first point in each direction along No that is in F(/), we
conclude that F

Remark. The idea of Using a homotopy of nodal curves based on the result of
Lemma 2.2 was motivated by an argument, of Payne in [P] where he shows that in a
convex domain in R2, an eigenfunction for the first eigenvalue of the Laplacian has
one critical point.

COROLLARY 2.4. Let bt be a minimizer .for J(.) in fld. The curves {u 0}
and {v 0} cross only at F(b/) {X0} in 12. In fact, there is a constant c > 0
independent of bl such that ldet V/4(X0)] _> c.

Proof. If there is no such lower bound, then there exists a sequence of minimizers
{/4} with L/(X) 0, and det V/gn(X) 0. From the uniform bound (2.2) for
minimizers, it follows that there exists a minimizer,/g, and a subsequence, {hcJ }, such
that b/J --./ in 62(), Xg x0 e -, (x0) 0, and det V/(0) 0. Let a be
such that [- sin a, cosa]. V/(X0) 0. Consider the function a -sin a +cos a.

We have V(0) 0 and (.0) 0. This is impossible by the proof of Lemma
2.2.

3. The time dependent problem. In this section we consider the set of zeros
of solutions to the parabolic problem,

u, zxu- a,(lul )u x e > o.
(3.1) L/(X, t) Co(X) for X e 0, t > O,

b/(X, O) b/o(X) for X e 12,

where 0 C C2,(;R2) and b/0 C J4 { C W1’2(";]12) )0 Oil 0’}. We
prove that for 0 as before and for certain initial data, 0, the zero set of/g, namely,
r(/4(t)) (X e " he(X, t) 0), consists of.exactly one point for all t sufficiently
large. (See Theorem 3.3.)

We begin by stating existence, uniqueness, and regularity results for this problem.
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THEOREM 3.1. Assume 0 E C2,(f) and bto /1. There exists a unique
solution, hi(t) =_ bl(X, t), of (3.1) in C([0, oc); W1,2(f; JR2)). The solution is classical

for t > 0 and

(3.2) Ilbt(t)llc2,,() <_ MI for t >_ 1,

where M depends only on fl, Iz, G, J(blo), and I1011c2,.(5). Moreover, if k > 3,
G 6 Ck+([0, c)), f is of class Ck,,, and 0 6 Ck,"(; R2), then hi(t) 6 Ck,"(fl; R2)
for each t > 0 and

(3.3) IIb/(t)llck,.() _< M2 :for t >_ 1.

The constant, M2, depends only on f, #, k, G, J(blo), and [[ol]ck,.().
Proof. Let 1) be the unique solution of A]) 0 in f, 1) 0 on 0f. Set

L/(X, t) L/(X, t) ])(X). By elliptic estimates, ]) e C2,z(f) and II)llc,,() <_ M
for some constant M as above. Moreover, if f is Ck,z and 0 E Ck’z(f) for k _> 3,
then IIVIIc,.() < M2 for some constant M2 as above. Thus the theorem follows if

we prove that there is a unique solution, b/(t) --/g(Z, t), in C([0, 00); W1,2(f)) of the
boundary value problem

(3.4) u, zxu G’(lu + vl ) (u + v)
A/,/+ F(b/),

u(x,t) =0,

u(x,o) So(X)-v(x)

for X f,

for X 6 0f,

for X fl,

t>0,

t>0,

and that b/is classical and satisfies (3.2) and (3.3).
To prove existence and uniqueness of solutions to (3.4), we apply semigroup theory

as in [HI. Fix p >_ 2 and note that F() _= -G(I + )12)( + ]2) is locally Lipschitz
continuous from W’P() =_ W’P(fl; R2) into Lp() =_ LP(fl;]2). Let A" W’P()3
W2,p() - Lp() be defined by A() -A. Then A Ap is a densely defined,
positive, self-adjoint operator on X =_ Lp() and A- is a compact operator. The
operator A/2 is defined on X/2 =_ D(A/2) W’P().

Consider the equations

/,=-AM+F(/4) inLp(f) fort>to_>0,
(3.5/

 (to)

If/0 W’P(), then the existence-uniqueness result of Henry (see Theorem 3.3 of
[HI) states that there exists tl > to such that (3.5) has a unique solution on (to, t).
Here, such a solution is defined as a mapping b/, in C([to, t); Lp(gt)) such that b/(t)
W0’P() f W2,p() D(A), O/Ot exists, t -, F(l(t)) is locally Shlder continuous
on (to, tl),

to+p

IIF(b[(t)llLp()dt < cx) for some p > 0,
J to

b/(t0) =/go, and/g satisfies (3.5) in LB() for to < t < t.
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Applying the above result with p 2, to 0, and
unique solution of (3.5) in C([O,t);L2(D)) for some tl > 0.

We first prove that t cx. Choose t2 _> tl such that (0,t2) is the maximal
interval of existence-uniqueness of the solution in L2(). Fix p > 2, and let K1 denote
constants depending only on f, p, #, G, J(/Ao), and I1ollc,.(5). By standard energy
estimates (see (3.11)),

J(bl(t)) <_ J(//(0)) for all t in (0,t2),

where//-/ + ]). Since W’2 (f) c Lp(f) for all p _> 2, we have

(3.6) [[L/(t)[]L(12) _< g. [[//(t)l[Wo,(

_< K. (J(L/(0))+ 1) _< K

for all t in (0, t2). By (1.3) and the above inequality, we have

(3.7) [[F(b[(t))[[L(12) --[[G’(I( -+- ]))(t)[2) (/ q- ))(t)[IL(12 _< gl

for all t in (0, t2). Now/(T) e D(A) Il/l’2"0 (’)f’l W2,2 (f) C W0’p(f) for any T in

(0, t2). Thus by the existence-uniqueness result in [HI,

(3.8) hi(t) e-A(t-T)IA(T) / JT e-A(t-)F(bl(s))ds

in W’P(f) for all t in (T, T), where T < T < t2 and T depends on 12, p, F, T, and

//(T). By a result of Alikakos (see [A1, p. 285]), it follows from (3.6)-(3.8) that

(3.9) [[/d(t)l[w,( _< g for T < t < T,

and we may take T t2 tl cx:).

Finally, to show that/4 is classical, we note that by (3.9) with p po > 2,

I]//(t)[ILoo(n _< g for all t > 0,

where K1 is independent of t. It follows from parabolic estimates (see [L-S-U, Chap. 2,
Lem. 3.3 and Chap. 4, Thms. 5.2 and 9.1]) that b/is classical and

[[b/(t)[Ic.,( _< M for t _> to > 0,

where M depends only on K and to. Moreover, if k _> 2, G Ck+l([0, oc)), f is of
class Ck,u, and o Ck"(f), then/4(t) e Ck,’(f) for t > 0 and

[[/A(t)[[c,,( _< M2 for t _> to,

where M2 depends only on to, k, f, #, G, g(//o), and I[[[c,().
DEFINITION. If C C2(f; R2) and > 0, set

’e {V e C2()" [IV-//[[c:() < e for some b/e ’}.

Fix 0 in C2,,(f) such that 0 satisfies (1.2). Let S be the set of all minimizers of J
in JA. By Theorem 2.1, S is a bounded subset of C2(f). We shall need the following
lemma concerning
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LEMMA 3.2. There exists e > 0 such that if 12 E $s, then r0) _= {X E f
12(X) O} is a single point.

Proof. From (2.2) and Corollary 2.4, there exist positive constants C1 and C2
(independent of b/) such that if/g 8 and {X0} F(/4), then

II/dllc() <_ C and det V/g(Xo)I >_ C2.

It follows that if el is sufficiently small (depending on C1 and C2), l) ,sl, and
) -/gllc2() < el, then

C1
IlVllc.<> 2C1 and detVY(X0)l _> --.

By the inverse function theorem there are positive constants, rl and r2, independent
of 12, such that Brl (Xo) C f, Y is a diffeomorphism from Br (Xo) onto its image, and
Br.(l)(Xo)) c )(Br (Xo)). Setting e2 min (el, r2/2), we have

0 =/g(Xo) e Br.(lg(Xo)) C ]2(Br, (Xo)) if 12 e & and IlU- Vllc.() < .
Next we note that there exists r/> 0 such that

(3.10) inf lU(X)l > r/ for all L/in 8,
XC=-Br (Xo)

where {Xo} F(L/). Indeed, if (3.10) fails then by compactness there is a member of
S with more than one zero.

Now set e min (e2, r//2). If 12 e Ss, it follows that 12 76 0 in f- Bx (Xo)
whenever L/ e 8, lll2- L/llc(g < e and {No} F(L/). Moreover, VlB(Xo)is a

diffeomorphism and 0
For the remainder of this section, we assume (in addition to our hypotheses on

o) that L/o e JM and U(X, t) is a solution of (3.1).
Let/g(t) L/(., t). Our next result states that if J(/Zo) is sufficiently close to the

minimum energy level, then r(u(t)) is a single point for all t sufficiently large.
TnOM 3.3. Let m infcea J(). There exist positive constants 6 and T

(depending only on a, o, andblo) such that if J(blo) <_ m+6, then r(u(t))= {x(t)}
for all t >_ T, where X(t) is a C

Proof. Let

co(L/o) {V L/(t,) --. ]2 in C2(a) for some sequence tn

By Theorem 3.1, {b/(t)" t _> 1} is precompact in C2(). Thus co is nonempty and for
each e > 0, there exists T(e) > 0 such that {b/(t)" t >_ T(e)} C cos. Multiplying (3.1)
by bit(t) and integrating gives

(3.11)
1 1J(L/o).lutldx dt + - J(bl(t)) -From this and the argument of Theorem 1.1 in [L-P], it follows that co(0) is made up

of solutions to (2.1).
Given > 0 assume that J(/40) N m + . From (3.11)., J0)) _< m + i for any 1) in

co(/g0). By (2.2) and compactness, it follows that for each e > 0 there exists 1 > 0 such
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that if l) solves (2.1) and J(])) _< m+61, then ]2 e ,. Consequently, if J(/40) _< m+61,
there exists T T(f,b/0, e) such that if t _> T, then//(t) E 2. By Lemma 3.2 if
t _> T, we have F(/l(t)) {X(t)} for some X(t) in f and det V//(X(t), t) 7 0. Since
bl(X(t), t) 0, the implicit function theorem ensures that X(t) is C1 and

dX
-[vu(x(0,

dt

A result of Simon IS] implies that if G(T) is real analytic for T _> 0 and if0 and f
are sufficiently regular, then//(t) converges to an equilibrium solution,/g as t - x.
We use this result to prove that X(t) --+ X as t --. cx, where (X } F(/4). (See
Theorem 3.6.)

Simon’s work is done in the Sobolev space Wk,2(f), where k is large enough so
that

IlVllc -( ) _< c. IlVllw - , (a) for all 12 in Wk-3,2(a).

Since f c N2 it suffices to take k 7.
LEMMA 3.4. Assume that G(T) is real analytic for T >_ O, is Of class C7,,

and 0 E CT’"(f; N2). There exists a solution, bl, of (2.1) such that Ll(t) -- bl in

C() as t -Proof. We apply Corollary 1 from [S]. This asserts that/4(t) -- L/ in WT,2(f)
as t --+ oc, provided it is known that for some sequence, {tn}, with tn -- oc, we have
b/(tn) --. L/ in WT,2(f) and L/ solves (2.1). To prove this condition, note that
by Theorem 3.1, {//(t) t _> 1} is precompact in CT(f); hence it is precompact in
WT,2(f). In addition, the proof of Lemma 3.3 ensures that any limit point of this set
is a solution of (3.1).

A further result of Simon is that the only equilibrium solution near a minimizer
is another minimizer. From this we obtain the following.

LEMMA 3.5. Under the hypotheses of Lemma 3.4, there exists > 0 such that if
lgo JM and J(blo) <_ m + , then blc(X) =_ limt-obl(X,t) is a minimizer.

Proof. Assume that no such 6 exists. Then there are sequences, {L/n0(X)} and
{/An(X, t)}, such that//no 3d,//n(X, t) satisfies (3.1) with/0(X) =//n0(X),

1
J(Ltno) Nm+- and m<J(/4) forn=l,2,...,

n

where/4(X) _= limt-cbln(X,t). By (2.2) and (3.11) we may assume (by considering
a subsequence) that/4 --+ 1) in C2,,/2(), where l) is a minimizer. By Theorem 3 of
IS], there exists a > 0 such that if

then J(g) m, which is impossible, rn
From Theorem 3.3 and the above lemmas, we obtain the following.
THEOREM 3.6. Assume that is of class C7,, G is real analytic in [0, cx)), and

0 C7’"(; N2). There exists > 0 and a point X in f so that if J(blo) N m + ,
then

(i) (t) --/go in C2(f) as t - oo;
(ii) F(L/(t)) {X(t)} c f for all t sufficiently large;
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(iii) X lim_o X(t) and F(//) {X}.
Proof. By Lemmas 3.4 and 3.5, (i) holds for a minimizer,//oo. Condition (ii)

follows from Theorem 3.3, and then condition (iii) holds by continuity and Theorem
2.3.
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SUBHARMONIC SOLUTIONS FOR SOME SECOND-ORDER
DIFFERENTIAL EQUATIONS WITH SINGULARITIES*

ALESSANDRO FONDA, RAOL MANSEVICH:, AND FABIO ZANOLIN

Abstract. The existence of infinitely many subharmonic solutions is proved for the periodically
forced nonlinear scalar equation u" + g(u) e(t), where g is a continuous function that is defined on
a open proper interval (A, B) C ]. The nonlinear restoring field g is supposed to have some singular
behaviour at the boundary of its domain. The following two main possibilities are analyzed:

(a) The domain is unbounded and g is sublinear at infinity. In this case, via critical point theory,
it is possible to prove the existence of a sequence of subharmonics whose amplitudes and minimal
periods tend to infinity.

(b) The domain is bounded and the periodic forcing term e(t) has minimal period T 0. In
this case, using the generalized Poincar-Birkhoff fixed point theorem, it is possible to show that for
any m E 1, there are infinitely many periodic solutions having mT as minimal period.

Applications are given to the dynamics of a charged particle moving on a line over which one
has placed some electric charges of the same sign.

Key words, periodic solutions, subharmonics, repulsive singularities, saddle point theorem,
critical levels, twist maps, generalized Poincar6-Birkhoif theorem

AMS subject classifications. 34C15, 34C25, 58E05, 70D05

1. Introduction. A scalar equation of the form

u,, +

can be viewed as a model for a system with one degree of freedom subject to an inter-
nal force given by the nonlinear restoring field g(u) and an external time-dependent
perturbation represented by e(t).

In this paper we are interested in situations where g(u) is a field having one or
more singularities, all of which are of repelling type, and e(t) will be supposed to be a
periodic forcing, with period T > 0. We prove the existence of subharmonic solutions
of (1.1), i.e., periodic solutions whose periods are integer multiples of T.

A simple physical model for this type of equation can be given by the dynamics
of a charged particle moving on a line, over which one has placed some electric charges
of the same sign. Since we consider only trajectories which do not collide with the
singularity points, we can reduce our study to two different cases: the case of one
singularity, with the particle moving on one side, and the case of two singularities,
with the particle in between.

In 2 we deal with the one-singularity case. This case has been already considered
by Lazer and Solimini in [17] (see also [14], [18]). They proved the existence of at least
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one T-periodic solution of (1.1) for the model described above. Under some general
assumptions on g, we will show that, besides the T-periodic solutions, there is a whole
sequence of subharmonic solutions whose minimal period is an arbitrarily large integer
multiple of T. The proofs of the results of this section will use variational arguments
providing critical points of saddle type for the action functional.

The forced two-singularities case for (1.1), as far as we know, has not been consid-
ered explicitly in the literature. Some work has been done for systems with a potential
well (see [2], [1], [4]), but without a forcing term.

In 3, we will consider this case. Using a generalized version of the Poincar6-
Birkhof fixed point theorem we will prove that, for any fixed period which is an

integer multiple of T, there are infinitely many periodic solutions with such a minimal
period.

To be more specific, we will consider g(u) to be defined on an open interval (A, B),
which may be bounded or unbounded. This will permit us to deal simultaneously
with various different qualitative situations. Intuitively, we may think of the extreme
points A and B of the domain of g as "singularities" for the field g. With this in
mind, it is reasonable to look for conditions on g such that g grows faster than linear
at the singularities. Such requirement is satisfied when A (respectively, B) is finite,
and lim__.A+ g(x) --c (respectively, lim_s-g(x) +o) while, for A
(respectively, B /cx), we will assume that g(x)/x +c as x --, A+ (respectively,
x - B-).

In this setting, the search of T-periodic solutions and subharmonic solutions in
the case A -(x and B +(x has already been considered in several papers starting
with Morris [19], [20] who proved in [20] the existence of infinitely many subharmonics
of any order for e smooth and g(x) 2xa. Extensions of Morris’s result were obtained
in [9], [7] for any g continuous and such that g(x)/x -+ +o for x --+ =t=(x, using
a generalization of the Poincar6-Birkhoff fixed point theorem due to W. Ding [9].
Namely, the existence of fixed points for the iterates of the Poincar6 map associated
to (1.1) is obtained in [8], by showing that there are circular annuli in the plane (u, u’)
where the twist condition at the boundaries (which are circumferences) is satisfied.

In [5] Del Pino and Mansevich considered the case AE ]R and B +c for
a variant of (1.1) motivated by a problem in nonlinear elasticity. They proved the
existence of infinitely many T-periodic solutions using the more refined version of
W. Ding’s theorem in [10], where fixed points of an area-preserving homeomorphism
twisting the boundaries of an annulus are obtained for annuli with star-shaped bound-
aries. Note that in this case, the singularity in A modifies the geometry of the planar
flow and now the twist property has to be checked on the boundary of some annular
regions which are "deformations" of circular annuli through a non-Euclidean metric.
For another recent application of the Poincar6-Birkhoff theorem to (1.1), see also [6].

In 4, we apply our results to the dynamics of an electric charge moving in a
Coulombian field with one or two singularities.

2. Sublinear case and one singularity. We consider the equation

(2.1) u" + g(t, u) e(t),

where g l x (0, +c) is a Caratheodory function, T-periodic in its first variable,
such that for every positive constants r < R there is a v vr,R E LI(0, T) with
Ig(t, x)l <_ (t) for almost every t e [0, T] and all x e Jr, R]. Moreover, e: ]R --+ I is
locally integrable and T-periodic (T > 0). We denote by the mean value of e(t), i.e.,- (l/T) f[ e(t) dt.
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THEOREM 2.1. Let F (0, +) --. ]I( be a continuously differentiable function
satisfying the following two properties:

(kl) lim
F(x)

x-+ X2
O,

(k2) lim F(x)= +.
x-,0+

Assume that

(k3) g(t, x) <_ F’(x),

and

(k4) g(t, x)sgn(x 1) _> -h(t),

.for all x > 0 and almost every t E [0, T], where h LI([0,T],R+). If, moreover,

I joT l fo0
T

lim inf g(t x) dr,lim sup g(t, x) dt < <
-.+o

(k) T -0+

then (2.1) has a sequence (xk)k> of positive kT-periodic solutions whose minimal
periods tend to infinity.

We first define a truncation function. Thus, for r > 0, let us define gr R x ]1( -- Ras follows:

gr(t, x) { g(t’ x) ifx_>r;
g(t,r) ifx<r.

PROPOSITION 2.1. For every k N there exist positive rk, Rk such that for any
s (0, rk] and any kT-periodic solution u of

(2.2) u" + gs(t, u) e(t),

we have that rk <_ u(t) <_ Rk for all t R. In particular, any kT-periodic solution of
(2.2) with s rk is a solution of (2.1).

Proof. Without loss of generality, we can assume that 0 (just subtract to
both sides of (2.2)).

We argue by contradiction. Fix k N and assume that for every n E N, there
are s, (0, l/n) and a kT-periodic function u= that satisfy

(2.3) g + .. (t, u,) (t),

and such that {us(t) It ell(} [l/n, n].
In the following, we denote by I1" Iq the usual Lq-norm on (0, kT).
We claim there existsa d >_ 1 such that for every n there is t(nl) [0, kT] with

un(t(n1)) e [1/d,c.
Indeed, suppose for instance that, for a subsequence, maxun c E [-oc, 0].

Since

kT

(2.4) 0 gs. (t, un(t)) dt,



SUBHARMONIC SOLUTIONS 1297

by Fatou’s lemma we have

kT

fO
kT

0

_
limsup[g(t, un(t))x[>8] + g(t, sn)x[<8]] dt

_
limsupg(t,x) dt

n--}oo

contradicting the Landesman-Lazer like condition (kh). A similar contradiction is ob-
tained if we let min un --. -t-oo, and the claim follows.

From now on we fix the constant d _> 1 such that (according to (k3) and (ks)),
F’(x) > 0 for each x e [d,

Next, let us prove that there exists a positive constant R such that maxun

_
R

for every n. We will use some ideas from [22]. By contradiction, assume there exists
a subsequence, still denoted by (un) for which max un --* +cx. Then we can find an

interval [an, n], containing a point t with un(t(n2)) max
kT and

d

_
un(t)

_
Un(t(n2)) for all t

For t e [an, fin], we have that (2.3) can be written as

un vn + e(s) ds

Since vn(t) f:. h(s) ds is decreasing in this interval, using (2.5) we obtain

(2.6) maxun -d <_ kT(vn(n) + Ilelll +

so that, for n large enough, vn(an) > Ilelll. On the other hand, again from (2.5) we

find that vn(t(2)) _< Ilelll. Thus there exists a t(3) e (an, t(2)] such that vn(t(3)) Ilelll.
For t in the interval [Cn, t(n3)] we have

[ 1 ]d
F(un(t))+ (vn(t)- I1111)d-

> (F’(,(t)) (t, ,(t)))[v,(t) -Ilelll] _> o.

Thus F(un(.))+ 1/2(vn(’)- Ilelll)2 is increasing in this interval and hence

F(d) + 1/2(vn(an) I111)2

From assumption (kl) we find that for any e > 0 there is C’ > 0 such that

F(u)_eu2/C’ for every u_>d.

Hence
F(d) + 1/2(vn(n) tlelll)u ,e(u(t(a))) +C

_(maxun 2 -+-
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Now choosing small enough and calling on (2.6) we obtain a contradiction
when n --. x. Thus, we have proved that there exists R > 0 such that maxun _< R
for every n.

Next, from (2.4) and sn <_ lid we have

and we obtain that lgs. (’, un (.))111 _< 2C; hence

Now define [Ts. (t, x)"= gs (t, x)- h(t). Then (2.3) can be written as

u + (t, un) e(t) h(t).

Set

and

F’(x)A. (x) F’(sn)
if x _> s
if x <

r/. (x) min {0, fs. (x)}.
Since h(t) >_ O, we have that, for x _< 1, s. (t,x) <_ 1. (x). Assume next there is

a t(n4) > t(n1) such that u(t)) < 1In. Then there are t(n5) < t such that [t(n5),t(n6)]
is contained in [t(nl),t(na)], and such that un(t(n5)) l/d, Un(t(n6)) 1In and 1In <_
un(t) <_ lid for all t e It(n5), t(n6)]. Note that t(n6)- t(n5) _< kT.

Then, multiplying (2.7) by (un -Cl) and integrating over [t(5), t(n6)], we get

-t)1
(u(t(6)) C)

1
(u(t(5)) C)+ ]tis- - 8. (t, un(t))(u(t) C1) dt

< ec (ll lll +

Thus, since (u -C1) <_ 0 and Ws. (un(t)) <_ O, we obtain

-tt)
].(u.(t))u(t) dt _< ]ti) .(un(t))(u(t)- C1) dt <_ C,

where C := 2C(C + Ilell + IIhll). Setting Hs,(x) f/drl,,() d (a primitive of
r.), i follows tha

H. (l/n) H. (u.(t))) Hs. (u.(t(5))) _< (.

But

l/n

H. (I/n) _> F’(x) dx >_ F(1/n) F(1/d) -J1/d
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and hence we have a contradiction. Thus the proposition is proved.
Proof of Theorem 2.1. We consider (2.2) with s rk, i.e.,

At this point we are in the same situation as in the proof of Theorem 2.5 in [12]. This
is why we prefer to give only the main lines of the proof, the details being available
from [12]. We take rk sufficiently small, so that (l/T)f[ g(t, rk) dt < , and in such
a way that rk --+ 0 as k -+ oo. Denoting by Grk a primitive of grk with respect to its
second variable, we have that for every k we are in the situation of [12, Thm. 2.1].
Thus we can apply the Saddle Point theorem to the functional Ck HT --+ ] defined
by

1 )Ck(u) (u’)2 G, (t, u) + eu dr,

whose critical points correspond to the kT-periodic solutions of (2.8). We find that
for each k there is a Pk > 0 sufficiently large and a critical point uk of Ck such that

Ck(Uk)- inf max
er [--pc,p]

where Fk {’ e C([--pk,Pk],HT "y(=kpk) =kpk}. By Fatou’s lemma, we have

lim inf sgn(x) joT fo g (t, xs) ds dt > T,

and since f[ Grk (t, x) dt x f[ f gk (t, xs) ds dr,

T

lim inf Gr (t, x) dt xT +oo.

Reasoning next as in the proof of [12, Thms. 2.1 and 2.5] (see also [11]), we can show
that

(2.9)
1

lim =-k(Uk)=--oo.
k---oo

Now we can prove that the minimal periods of the kT-periodic solutions uk tend to
infinity as k --+ oo. If not, for a subsequence there would be a subsequence with a
common period, say kT. Noting that from Proposition 2.1 the set of kT-periodic
solutions of (2.8) is bounded in HkT independently of k > k, we get a contradiction
with (2.9). [q

As a consequence of Theorem 2.1 we have the following (cf. [12, Cor. 2.6]).
COROLLARY 2.1. Suppose g" x (0,-boo) --+ ] to be continuous, and that

(ml) lim
g(t, x) O,

x-,+cx) X

(m2) limsup xg(t, x) <_ c < O,
x--0+
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uniformly with respect to t. If moreover

lim inf g(t, x) dr,(m3) e <

the conclusion of Theorem 2.1 holds.
If we substitute (ka)-(k5) with the more restrictive sign condition

(k) lim sup g(t, x) _< Cl < < c2 _< lim inf g(t, x),
x-*0+

uniformly with respect to t, it is possible to get more precise information about the
subharmonic solutions of (2.1), as follows.

THEOREM 2.2. Assume (kl), (k2), (k3), and (k). Then there exists an integer
m* E N such that for every m >_ m*, equation (2.10) has at least one positive periodic
solution having minimal period roT.

The proof of this statement is omitted since it can be achieved via the generalized
Poincar-Birkhoff fixed point theorem arguing as in [8] (proof of Theorem 1.1). On
the other hand, we prefer to present a different application of this theorem to the case
of two singularities in the next section.

Remark 2.1. It is possible to see that, in Theorem 2.1, we can replace conditions
(k4) and (k5) by

(k) there is a d >_ 1 such that g(t, x)sgn(x 1) > E for all x e (0, l/d) U (d, +x);

(k) lim (G(t,x)- x) dt +;

where G is a primitive of g with respect to the x variable. We are then led to the
following.

COROLLARY 2.2. Assume that g(t,x) g(x) and that the following conditions
hold:

(jl) lim 0;
x--+cx) X2

(j2) There is a d >_ 1 such that g(x)sgn(x 1) > e for all x e (0, l/d) (d, +);
(j3) lim G(x) lim (G(x) ex)

x-*0+ x-*Too

Then the same conclusion of Theorem 2.1 holds.
Remark 2.2. By a suitable change of variables, we can easily restate the analogous

version of the results of this section in the case where g(t, x) is defined on ]R (A, +oc)
or on ]R (-oc, B), the singularity being at A 6 ]R or at B 6 R, respectively.

3. Superlinear case and two singularities. Consider again equation

(3.1) u" + g(u) e(t),

where g (A,B) -- 1 is continuous and e ]R - R is T-periodic (T > 0), with
e Loc.

Here we suppose that
-oc < A < B <

and fix any c E (A, B).
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Our goal is to prove the existence of infinitely many subharmonics of any order
for (3.1) with (u(t), u’(t))lying in the open strip

$ := (A, B) x R

and giving a precise statement about the nodal properties of u(t) c.
To this end we consider also the equivalent system

(3.2) u’ v

where E(t) :- f (e()- ) d and (l/T)f[ e(t)dr. Note that E" - is
continuous and T-periodic with mean value zero. Let G be a primitive of g; e.g., the
one defined by

G(x) g(s) ds.

To describe our result, we assume further the next conditions.

(il) lim a(x)= lim a(x)=
x--A+ x--*B-

(i2) lim
g(x)

lim
g(x)

) .--.- (. )

Remark 3.1. Note that condition (i2) reads as follows:
If A -c, then limx-o g(x)/x +cx), while if A E R, then limx_A+ g(x)

If S +cx), then lim_.+o g(x)/x +cx), while if B E R, then limx_s- g(x)

We also observe that (il) is always satisfied at A -c or at B /c when (i2)
is assumed.

Finally, we remark that (i2) is independent upon the choice of the point c (A, B).
We further introduce the following terminology (see, e.g., [15, p.17]).
For f O --+ , ( -+ f(c), with c O, where (O,-<) is a directed set, we write

if, for every compact set ]C C $, there is (: O such that f() ]C, for all c O
with

The case in which e(t) is a constant, and hence E(t) =_ O, can be completely
analyzed in terms of energy levels arguments. Indeed, we can prove that if F(z0) is
the orbit of

u’ v, v’ -g(u) +
with (u(0), v(0)) z0, then, for z0 --. 05, F(z0) is a periodic orbit with minimal period
tending to zero. Therefore we assume henceforth that e(t) on a set of positive
measure, so that E(t) is nonconstant and it has a positive minimal period. Without
loss of generality, we can suppose that T is the minimal period of E(t).

Now we are in position to state our main result.
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THEOREM 3.1. Assume 01) and (i2) and let m > 1 be any fixed integer. Then
(3.1) has infinitely many periodic solutions with minimal period roT. More precisely,
for each m > 1, there is an integer vn > 0 such that .for every p E N with p prime
with m and p > vn, equation (3.1) has at least one periodic solution u urn,p(’), with
minimal period mT and such that u(t) -c has exactly 2p simple zeros in the interval

OS, -0

t e [0, mT].
Remark 3.2. Note that if we are interested only in the existence of T-periodic

solutions, then we can apply the above theorem taking m 1, and we-find v such
that for every p 6 N with p > [ there is at least one T-periodic solution up(.) with
up(t) c having exactly 2p simple zeros in the interval [0, T).

This remark is true even in the case when T is not the minimal period of E(t);
however, in such a situation, we cannot guarantee that the periodic solutions we find
have T as minimal period.

The proof of Theorem 3.1 is based on W. Ding’s generalized Poincar6-Birkhoff
fixed point theorem [10] which provides fixed points for the Poincar map (and its
mth iterates) associated to system (3.2). To do this, we need to have such an operator
well defined. Hence, a first requirement is to have the uniqueness of the solutions
for the Cauchy problems associated to (3.2). This difficulty can be overcome by a
standard smoothing of the field g as briefly described in [23]. Of course, then it will
be necessary to prove that the fixed points related to the approximating equations are
all contained in the same annulus in order to pick up a sequence of these fixed points
converging to a fixed point representing the initial value of an mT-periodic solution
to (3.2). Here we do not follow such a program which has been already accomplished
with all the details in various preceding papers. Accordingly, from now on, we assume
the uniqueness of the solutions for the Cauchy problems associated to,system (3.2)
leaving the interested reader to complete the missing details following, e.g., [7].

We also remark that if we assume condition (il)-(i2) then we have that the same
is satisfied for the function g(x) -. Hence, calling.g(x) what was written before as
g(x)--g and e(t) instead of e(t)--, from now on we can assume, without loss of
generality, that

(io) e(t)dt 0

holds. Notice that system (3.2) takes now the form

(3.3) u’ v + E(t), v’ -9(u).

Our first step is to prove the global existence in the past and in the future of the
solutions to (3.3). In this direction we have the following result which is proved under
some more general conditions than in Theorem 3.1.

PROPOSITION 3.1. Assume (i0), (i) and suppose that there are constants a,b
with A < a < b < B such that

(3.4) g(x) < O for A < x < a, g(x) > O for b < x < B.

Then any noncontinuable solution z (u, v) of (3.3) is defined in (-cx, +oc).
Proof. From 01) it is clear that G(x) >_ Groin > -oc, for all x e (A, B).
Let r/: (A, B) --. R, be a C function defined as follows (cf. [16, p.120]): /(x)

-IIEIIoo for x e (A,a), r/(x) ]IE]I for x e (b,B), and /increasing in [a,b]. We
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thus have that 0 _< rf(x) _< L, for all x in (A,B), where L, is a suitable constant
depending on the function

Now, define V" (A, B) x --+ by

.= + +

It is clear that for any D > 0 there is a compact set BD contained in such that

(x, y) 6 , \ BD implies that V(x, y) > D.

Next, let z(t) (u(t), v(t)) be a solution of (3.3) defined in a maximal interval (c, ),
with a < to < and z(to) E 8. For t E [to, ), we have

d
d-V(z(t)) -[y’(u)(v + y(u)) / g(u)]u’ / [v / y(u)]v’

-y’(u)[v + rl(u)] 2 / y’(u)[v + ri(u)] [-y(u) + E(t)] g(u)[y(u) E(t)].

Noting that -g(x)[vi(x) E(t)] _< 0 for all x e (A, a) t2 (b, B), we find that there is a
constant Ro > 0 such that -g(x)[ri(x) E(t)] _< Ro for all x (A, B) and t R.

Thus
d
d-V(z(t)) <_ L,[v + (u)]2 + 2Ei,v + (u) + Ro

3.
Lv[v + y(u)]2 + R1,

where R1 is a constant depending on IEl[o and R0. We obtain

d
---V(z(t)) < 3L,V(z(t)) + RI.dt

We claim that/ must be +oc. Otherwise from the last inequality and Gronwall’s
lemma,

V(z(t)) <_ [ R-v + V(z(to))] exp(3Lu(-t0)):-constant "-R2.

Then
z(t)BR, for all tE[to,).

But, this contradicts the global continuation theorem and the claim is proved.
Global continuability to the left follows from the above argument and by changing

t to for to t in (3.3).
According to Proposition 3.1 and the uniqueness assumption for the Cauchy prob-

lems, we have that any solution to (3.3) is uniquely defined on (-x), +oc) by its initial
conditions.

Remark 3.3. It is obvious that hypothesis (i2) implies the existence of suitable
constants a and b with

(3.5) A < a < c < b < B

such that (3.4) holds. Henceforth (3.4) and (3.5) (as well as (i0)) will be constantly
assumed in connection with (i2).
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We define now the compact set

b] x [-IIElloo, IIElloo]

and observe that (c, 0) 6 A/[. A corollary of Proposition 3.1 is the following.
PROPOSITION 3.2. Assume (il) and (i2). Then for every compact set 1C C , and

each m N, there is a compact set 13 B(tg, m) c , with lC c B such that for each
solution z (u, v) of system (3.3), the following inference holds:

z(O) B = z(t) tg 1C Vt e I-roT, mT].

In particular, .for each m N, there is a compact set Tm with fl/[ C Tm C , such
that

(3.6) z(O) T, = z(t) tg A/[ Vte [-roT, roT]

holds .for any solution z to (3.3).
By the second part of Proposition 3.2 and (3.6) we have that given any solution

z(’) (u(-), v(.)) of equation (3.3) with z(0) rim, it follows that if t e [0, roT] is
such that u(t)-c 0, or, respectively, v(t) 0, then u’(t) # O, respectively, v’(t) # O.
Then, according to [5], we can define the rotation number ,(u) as

Cm(u)-kr+ lim tan-l(v(t) )_ lim tan-1 v(t_) )
where k is the number of zeros of u(t) -c in (0, roT). Geometrically, Cm(u) represents
the total angle the vector from the origin to the point (u(t)- c, v(t)) describes as t
goes from zero to mT, positive angles measured clockwise.

On the other hand, if z(0) rim, then z(t) (c, 0), for all t e [0, mT] and
therefore we can use polar coordinates with center in (c, 0) to express z(t) via Priifer
transformation as

u(t) c + p(t)cos O(t), v(t) p(t) sin O(t).

By standard facts,

(3.s) -O’(t)
g(u(t))(u(t) c)+ v(t)2 + E(t)v(t)

+

and by the definition of the rotation number, we have

(3.9) 0(0) O(mT) Cm(U).

We recall that, from Proposition 3.1 and the uniqueness of the solutions to the
Cauchy problems associated to system (3.3), we have that for every z0 (x0, y0) ,
there is a unique solution z(t) z(t; z0) (u(t; z0), v(t; z0)) of (3.3) with z(0) z0,
which is defined on R. Hence the Poincar map

(zo) := z(T; zo)
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is defined and it is continuous on . By the Liouville theorem it follows that is
an area--preserving homeomorpism of the strip q onto itself. Clearly, all of these
properties of hold true for any of the maps

Ck:S__S, Ck(z0):-z(kT;z0), keZ.

In particular, we note that z0 is the initial point of a roT-periodic solutions z(.) of
(3.3), with m E N, if and only if z0 is a fixed point of the mth iterate Cm of the
Poincar map .

A consequence of Proposition 3.2 which is crucial for the next application of the
Poincar6-Birkhoff theorem is given by

0)) 0)) e

Finally, we set

V (z0) :=

and observe that the map

27r
for z0 e 8 \ T,

m dom, D 8 \ T, --* R

is continuous. Notice that if u(.; zo) is roT-periodic, then

(3.11) #mu 2m(z0),

where #mU is the number of zeros of u(t) c in the interval [0, roT). In this case, the
simplicity of the zeros of u(t) c implies that #,u is always an even number.

With the above notation, we can prove the next result.
PROPOSITION 3.3. Assume (il), (i2). Then

I’m(z0) +o as z0 ---+

Proof. In order to simplify the notation in the proof, we choose c (a + b)/2.
From assumption (i2) and (3.5), for any constant R > 0 we can find two numbers,

d and d+, with
A < d[ < a < c < b < d+ < B

such that
g(x)(x c) 3R(x c) for all x (A, d] U [d, B).

Moreover, we can sume without loss of generality, by taking d smaller and d
larger, if necessary, that

nm C (d, d) x .
Thus, for x e (A, d] U [d, B), and by choosing R (211EIl/b a)2, we have

1 1
g(x)(x c) + y2 + E(t)y 3R(x c)2 + y2

1 b- 1
2R(x- c)2 + + R IIEII

1.+
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Now let us take "R > 0 so that

g(x)(x c) >_ 3n(x c)2 R for all x e (A, B).

Thus, for every x e Ida, d+], we obtain

1 2g(x)(x- c) + y2 + E(t)y >_ 2n(x- c)2 + y

provided that
In conclusion from this last argument, from Proposition 3.2, and from (3.8) we

have that for all m e N, for all R > 0, there is a compact set VV(R, m) D [d, d] x
[D,D+] such that

and if z(0) e S \ >V(R, m), then z(t) Ida, d+] x [D,D+] for t e I-roT, mTl, and

> +
+

Thus, if z(0) @ YV(R, m) and t e I-roT, mT], we obtain

2R cos2 O(t) / 1/2 sin2 O(t)
_> 1,

that implies
0(0) dO

>mT
(roT) 2R cos2 + 1/2 sin2

(see [3] for analogous computations). Using the fact that

dO 2r

2R cos2 0 + 1/2 sin2 0 /

and recalling that
O(O) O(mT) < k + 1,

2r

where k denotes here the integer part of m(z(O)), we obtain

k + 1 >_ mT-/2r
and hence

m(z(O))

_
(mTy/-/27r) -1.

Letting R go to /cx), we end the proof of the proposition.
At this point we have all the tools to prove Theorem 3.1.
Proof of Theorem 3.1. We define the function

1 2+

and observe that from 01) and (3.4) it follows that there is a constant Lm > 0 such
that, for each L >_ Lm, the set W-I(L) is a simple closed curve which is star-shaped



SUBHARMONIC SOLUTIONS 1307

with respect to the point (c, 0) and it is contained in , \ Tm. Then, for any rl, r2
with Lm

_
rl < r2, we ca consider the annulus

,4- ,4(rl, r2):-- {(x, y) e ,lrl <_ W(x, y) <_ r2} W- ([r, r2])
and the inner disc

) (rl)*- {(x,y) ( . W(x,y) < rl} W-l((-(:x),rl)).
By the choice of rl and r2 we have that the boundary of A is the union of two simple
closed curves 0-,4 and 0+,4, named respectively the inner boundary and the outer
boundary of ,4, such that

oD 0-,4 W-l(rl)
is star-shaped around (c, 0). Moreover, as 7) D Tm, from (3.10) we obtain

0) e

Now we argue as follows.
At first we fix any constant r r(m) >_ Lm and, using the continuity of m,

define

g := int [max{,(zo) zo e o(r)}],

where int[] denotes the integer part of the number E R.
Second, we choose any number p E N, with p prime with m and

(3.13) p > n.
Then, using Proposition 3.3 and the continuity of m, we can find another constant
R R(m, p) with R > r such that

(3.14) min{,(zo) Iz0 e W-(R)) > p.

Now we observe that (3.12), (3.13), and (3.14) imply that on the boundaries of the
annulus

,4 A(r, R),
the twist condition

m(Z0) < p for z0 0-,4, m(Z0) > p for z0 0+,4

is satisfied.
Thus we have met all the conditions in order to apply W. Ding’s generalization

of the Poincar-Birkhoff fixed point theorem [10] and hence we can conclude that the
map ’ has a fixed point say z* belonging to the annulus ,4. Furthermore, we alsom,p

obtain

Z(3.15) m(re,p) --P.

The continuity of m implies that m (z0) is bounded for z0 belonging to a compact
subset of S \ 7m, thus, as

Z* ---
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for p-- +c, we have
Z*m,v0 as p--,

This last property, in connection with Proposition 3.2, finally implies that

os

uniformly with respect to t [0, roT], where (u*, v*) z* is the solution to (3.3)
stating at z* z* at the time t 0.mp

Our lt goal now is to prove that the solution we find does have minimal period
mT. To this aim it is sufficient to prove that

z* for each l<k<m-1

holds.
Assume by contradiction (cf. [7, 6]) that there is some k with 1 < k < m such

that z* z* is a fixed point of Ck Then, by (3.9) (3.11) and the definition ofmm,p

we obtain that
xl g N, g < p" k(z*) .

Observing now that
z*,

we have
pk m.k(z*) gm

which yields
m k
p g’

a contradiction with the assumption that p is prime with m.
In conclusion, we observe that if the local uniqueness of the solutions for the

Cauchy problems associated to (3.3) is not guaranteed, we have to repeat the above
argument for a sequence of approximating equations of the form

u’ v + E(t),

where g, (A, B) ll is smooth and g, --. g uniformly on compact sets. It is
possible to check that, for n sufficiently large, all the fixed points of the iterates of the
Poincar6 operator of the approximating equations belong to the same annulus .A and
the rotation number m of all these fixed points is the same and equal to p. Hence
we can pass to the limit for a subsequence and get a fixed point of Cm (which now
could be a multivalued function). For the missing technical details concerning such
an approximation approach, we refer the reader to [7, 6].

At this step, all the assertions in Theorem 3.1 are justified and the proof is now
complete. [3

4. Examples. In this section we consider two examples for the applicability of
our main results.

First, we examine the case with one singularity at a point A E R.
Example 4.1. Let an electric charge Q be placed at the fixed point A E R and

suppose that y > A (or y < A) denotes the position of an electric charge q, having
the same sign of Q, which lives in a one-dimensional space.
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The Coulombian force h acting on q at time t is given by

h(y(t)) qQ y(t) A
ly(t) AI3

y(t) A
:- to ly(t AI3

where t is a suitable constant and to0 aqQ > O.
Let e R --. R be a T-periodic external forcing term acting on the system. We

assume that e E Loc and denote by f[ e(s) ds the mean value of the func-
tion e.

Then the Newton law for the dynamics of the charge q yields the following dif-
ferential equation (unitary mass is assumed).

(4.1) y"(t) h(y(t)) + e(t).

Now, from Theorem 2.1, we have the following proposition.
PROPOSITION 4.1. Equation (4.1) has periodic solutions if and only if O. If
0 (respectively, > 0), all periodic solutions of (4.1) lie in (A, q-oo) (respectively,

(-oo, A)), and besides having at least one T-periodic solution, (4.1) also has subhar-
monic solutions with minimal period mT, for every sufficiently large integer m.

Proof. We rewrite (4.1) as

(4.2) ,(t) + ((t)) (t),

with u(t) y(t) A and g(x)"= -h(x + A). Let G be a primitive of g, e.g.,

Note that

()(4.3) lim g(x) o, lim 0

and that

(4.4) lim g(x)sgn(-x) lim a(x)
x--*0 x--*0

At first we claim that 0 is a necessary condition. This follows from [17].
Namely, assume for instance that (4.2) has a T-periodic solution fi(t), with fi(t) > 0
for all t E R. Integrating both sides of (4.2) on the interval [0, T], we obtain

- a((t))dt (t) dt .
Since g(x) < 0 for all x > 0, we obtain . < 0. Analogously, if (4.2) has a negative

solution, has to be positive. Thus the claim is achieved.
Now, we suppose . < 0, According to (4.3) and (4.4) all the assumptions of

Theorem 2.2 are satisfied and we conclude with the result. If . > 0, we can reduce by
a change of variables to the previous case (see Remark 2.2).

Next we present an example with two singularities.
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Example 4.2. Let Q1 and Q2 be two electric charges placed at the fixed points
A E ]R and B E ]R with A < B. Suppose that u, with A < u < B denotes the position
of an electric charge q where we assume that Q1, Q2 and q have all the same sign.

Now the Coulombian force acting on q at the time t takes the form

qQ1 qQ2
l(u(t)) (u(t) A) (u(t) B)

N,I 2

(u(t) A)2 (u(t) B)2’

where hi aqQi > 0 for i 1, 2.
Let e" lR --, R be a T-periodic forcing term as above and consider the differential

equation

,(t) t(u(t)) +

We assume also that f(e(s)- ) ds is not constant. Then from Theorem 3.1 we have
the following proposition.

PROPOSITION 4.2. For every m

_
1, equation (4.5) has infinitely many roT-

periodic solutions lying in (A, B), all having minimal period roT.
Proof. We write (4.5) as

(4.6) +

with 9(x):= -l(x). Note that

lim
x-.A+

lim g(x) +oc

and
lim G(x)= lim G(x)= +o,

x-*A+ x--,B-

where, for a fixed c (A, B),

a(x)- g(s) ds tl 2 1 2

x-A B-x c-A B-c"

Since e(t) is T-periodic and nonconstant, its minimal period equals to T/V, for
some N. We apply now Theorem 3.1 and have that for every m >_ 1 equation (4.6)
has at least infinitely many periodic solutions having mT m/(T//) as minimal
period.

Remark 4.1. Since the nonlinearities in the above examples are locally Lipschitz
continuous, arguing as in [21] we could claim that for any subharmonic solution we
found there is a second one with the same minimal period and the same number of
zeros, which is not a shift of the previous one.
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Abstract. In this paper the boundedness of minimal periods of linearly stable cycles for discrete,
strongly order-preserving semigroups (F)nN in bounded subsets of an ordered Banach space is
proved. It is further shown that this bound is not increased by small perturbations of F0. Of
particular interest is the case where the only linearly stable cycles of F0 are fixed points. Employing
a recent result of Polbik and Terek, the typical convergence of relatively compact orbits and for
perturbed systems then follow. The results are applied to classes of time-periodic reaction-diffusion
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1. Introduction. In the recent paper [PT1], Polik and Terek address the
question of the typical asymptotic behavior of orbits in strongly monotone discrete-
time dynamical systems. In contrast to the continuous-time case, where a rather
complete description of the typical behavior of trajectories is available (see [Hill, [Hi3],
[Ma], [STll, [ST2], [Sm], IT2], [P1], [P2], [Mini, or the introduction of [PT1] for a brief
discussion of these results), [PT1] seems to be the first paper that provides an answer
to this question for a rather general class of smooth (C1,a) discrete systems. The
authors prove that a typical trajectory (i.e., a trajectory emanating from a residual
set of initial conditions) of such a discrete system converges to a linearly stable cycle.
(Here cycle refers to the orbit of a periodic point, and linearly stable means that
the spectrum of the linearization of an appropriate iterate of the mapping lies in the
closed unit disc in C; see 2 for the precise definition.) This result applies to dynamical
systems generated by the period map of many types of periodically forced differential
equations, including scalar parabolic equations and cooperative systems of parabolic
equations on bounded domains, and to cooperative systems of ODEs.

It is known that, unless severe restrictions (like those in [AH1], [AH2], [AHM],
[Hsl], [Hs2], [Wl], [Wb]) are imposed, the result of [PT1] cannot be improved as to
assert typical convergence to fixed points rather than to cycles. Counterexamples can
be found in [DH], IT3], IT4]. However, an improvement is possible. We show here that
one can establish typical convergence to a fixed point for a certain iterate F of the
mapping F0 in question. This is true at least for any bounded set in the state space
(with m depending on this set). Specifically, we prove that for any bounded set B,

*Received by the editors September 25, 1991; accepted for publication (in revised form) Decem-
ber 1, 1992.
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the set of minimal periods of linearly stable cycles contained in B is bounded. This,
in conjunction with the result of [PT1], implies the above improvement.

We obtain boundedness of the minimal periods of linearly stable cycles (below
such periods are called stable periods) as a by-product in proving a certain perturba-
tion result. Roughly speaking, this result says that for any bounded domain B, the
maximal stable period of F0 in B is not increased by a small perturbation of F0. More
precisely, if F, s E R, is a family of mappings, satisfying the hypotheses of 2, then
the maximal stable period of F0 (in B) is not less than the maximal stable period of
F for any sufficiently close to zero.

This result is of particular interest in case F0 does not have stable periods greater
than 1 (i.e., all linearly stable cycles are fixed points of F0). It is well known (see [Hs2,
Prop. 9.4]) that this situation occurs when F0 is a time-t map of a strongly monotone
semiflow. Thus our perturbation result can be applied to small time-periodic pertur-
bations of autonomous equations that generate a strongly monotone semiflow (see 5
for an example). Moreover, there are several different classes of discrete dynamical
systems that are known not to have higher stable periods. We discuss two such classes
and their perturbations in 5.

Our main results and some immediate consequences are stated in 2. Section 3
gives a preparation for the proofs of the main results which are then carried out in 4.

2. Statement of the main results. In the whole paper X is a strongly ordered
Banach space with norm I1" II and order cone X+. By an order cone we mean a closed
convex cone such that X+ (-X+) (0}, and X being strongly ordered requires
intX+, the interior of X+, to be nonempty. For x, y E X we write

x

_
y ify-x X+,

x<y ifx_y and xy,
x<<y ify-xintX+.

The reversed signs are used in the usual way. A mapping h X --, X is called
monotone if x _< y implies h(x) <_ h(y).

We can now formulate our hypotheses.
(H) For each J, where J [-i, 5] is an interval in R,F X -. X is a

compact monotone mapping such that the following properties hold:
(a) F" (e, x) - F(x) g X X is of class C;
(b) F0 X --. X is of class C,e (C with locally O-HSlder continuous derivative),

0 (0, 1], and it is one-to-one. For any x E X the differential dxFo Fg(x) is a
strongly positive operator (i.e., v > 0 implies dxFov 0).

Notice that compactness of each F (by which we mean that each bounded set
is mapped onto a relatively compact set), in conjunction with (H)(a), implies that
F" J X -- X is a compact map.

Below, several results of [PT1] are applied to F0. To justify this, we make a few
comments on the hypotheses imposed on F0.

The standing hypotheses of [PT1], see p. 340, are identical to our (U)(b) without
the assumption of F0 being one-to-one. There is another hypothesis, existence of
continuous separation along any compact set invariant under F0 (see [PT1, p. 344]),
which (or whose weaker form) is used at various places in [PT1]. However, as was
shown in [PT2], this hypothesis follows from (H)(b)--the injectivity assumption is
essential for this. We can thus use the results of [PT1] freely.

For the formulation of our results we need some more definitions. Let h X -, X
be a C-map (below we always consider h F0 or h F). A point x X is a
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periodic point of h if hk(x) x for some natural number k, which is then a period
for x. If it is the minimal period, i.e., if h’(x) x for m 1,..., k- 1, we call x
k-periodic. A k-periodic point x is said to be linearly stable if the spectrum of the
operator dxh is contained in the closed unit disc in C. Note that "linearly stable"
refers only to the location of the spectrum and such a point may be unstable for the
dynamical system defined by h. A more precise expression would be "linearly stable
or linearly neutrally stable." For brevity, we use the former expression throughout.

Let B C X. We say that k is a stable period for the restriction hl/ if there is
a linearly stable k-periodic point x of h such that the orbit O(x, h) := {hn(x) n
O, 1,...} {hn(x) n O, 1,... ,k- 1} is contained in B. If B X we simply say
that k is a stable period for h. Similarly as for the orbits O(x, h), we always indicate
to which map the dynamical notions refer. We, e.g., write

w(x, h)"-- (y e X there is a sequence nj --. -+-cx) such that hut (x) --+ y)

for the w-limit set of x with respect to h.
Our main theorems can now be formulated as follows.
THEOREM 1. Let (H)(b) hold. Let B c X be a closed bounded set. Then there

exists a constant m such that the set of stable periods of Fo[B i8 bounded above by m.
THEOREM 2. Let (H) hold. Let B C X be a closed bounded set. Suppose that all

the stable periods of FoIB are bounded above by m. Then there exists a o > 0 such
that for any E [-i0, 0] all the stable periods of FIB are bounded by m.

The following result is an important particular case of Theorem 2.
COROLLARY 3. Let (H) hold. Suppose that all linearly stable periodic points of

Fo are fixed points of Fo (i.e., there are no stable periods for Fo larger than 1). Then,
given any closed bounded set B, there exists a o > 0 such that for any [-i0, 0]
all linearly stable periodic points of Eels are fixed points of F.

Of course if it is known a priori that all periodic points ofF lie in a fixed bounded
set, then the statement of this corollary holds for B X.

Theorem 1 allows for an improvement of the result on generic convergence to
cycles proved by Polik and Terek [PT1, Thm. 5.1]. This result says that in any
open bounded set g positively invariant under F0, there is an open dense subset of
points whose w-limit sets are linearly stable cycles. This and Theorem 1 (applied to
G) immediately give the following.

COROLLARY 4. Let (H)(b) hold. Let be an open bounded set positively invariant
under Fo (i.e., Fo C ). Then there is an m such that the set

{x e G w(x, Fo) is a cycle of period at most m)

contains an open and dense subset of .
Here cycle of period k means the orbit of a k-periodic point.
Finally, we formulate a theorem which implies that in the class of mappings

satisfying (H)(b) generic convergence is an open property. A point x X is said to be
convergent for h if h(x) converges, as n +cx, to a z X. Another way to say this
is that the orbit O(x, h) is relatively compact and w(x, h) consists of a single point z,
which is necessarily a fixed point of h.

COROLLARY 5. Let (H) hold. In addition suppose that (H)(b) holds with Fo
replaced by F for any [-, ]. Let be an open bounded set such that for each

[-, ] all the orbits O(x, F), x g, lie in a ball D independent of , Finally,
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suppose that all linearly stable periodic points of Foi-5 are fixed points.
exists a o > 0 such that for any E [-i0, i0] the set

(x x is convergent for F}

Then there

contains an open and dense subset of .
This result follows from [PT1, Thm. 5.1] applied to Fe and from the fact that all

stable periods of Fe for e near zero equal 1 (cf. Theorem 2).
An important example of F0 which satisfies the requirement that all linearly

stable periodic points are fixed points is the time-one map of a strongly monotone
(continuous-time) semiflow [Hs2, Prop. 9.4]). Thus Corollary 5 can be applied to small
nonautonomous time-periodic perturbations of an autonomous differential equation
generating a strongly monotone semiflow. A different type of application we present
in 5 establishes generic convergence for equations which are perturbations of some
equations taken in a special class where generic convergence is known to hold. Such
perturbations are allowed to fall outside this special class.

The proofs of Theorems 1, 2 consist of the following two steps: (I) localization,
(II) local bifurcation.

In the first step, the localization, we prove that any sequence Pn of linearly stable
periodic points of FenlB with -- 0 (in particular one can take e 0) contains a
subsequence pnj such that

dist(O(p,

Here z is a linearly stable periodic point for F0 and dist is as in (4.3) below. So for
this subsequence, the orbit of p is as close to the orbit O(z, Fo) as we wish if j is
large enough.

In the second step, we then consider such a local situation and prove that for
large j the minimal period of Pn cannot be larger than that of z. This will conclude
the proof of Theorem 2 and also the proof of Theorem 1 because this shows that there
cannot be a sequence of stable periods for F01B converging to +o.

In the first step investigation of a "limit set" of O(pe, Fe) as --, 0 and Lyapunov
exponents for points in this limit set are the crucial ingredients.

The second step is just a combination of the center manifold theorem and the
Krein-Rutman theorem.

We carry out the two steps after the following preliminary section.

3. Preliminaries. In this section we fix notation and prove or recall some basic
assertions needed in the sequel. Let h X -- X be a Cl-map. If x X and the orbit
O(x, h) is relatively compact, then the w-limit set w(x, h) is a nonempty, compact set
invariant under h. If h has strongly positive differentials, i.e., dxhv h(x)v >> 0 for
any x X, v > 0 (which is the case for h F0), then w(x, h) is an unordered set.
More precisely, there are no two points z, y w(x, h) with z < y. This is a general
property valid for any strongly monotone mapping, that is a mapping which takes
related points x < y onto strongly relaxed points h(x) << h(y) (see [Wl], [Wh], [Hi2]).
A mapping h with strongly positive differentials is strongly monotone. To see this one
just observes that for any x < y the curve {h(x + s(y x)): s e (-1, 2)} is at any
of its points z tangent to dzh(y- x) >> 0, hence any two distinct points on this curve
are related by

A consequence of this unorderedness property of the w-limit sets is that if x is
a periodic point for a strongly monotone map h, then O(x, h), which equals w(x, h),
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does not contain two related points. This property of periodic points remains valid
under the weaker assumption that h is merely monotone (not necessarily strongly).
This can be proved as follows; cf. [Hi4, Prop. 0(a)]. Suppose that x is a k-periodic
point of h and that O(x, h) contains two related points, i.e.,

hm+rx < hmx

for some m e {0, 1,...} and r e {1,...,k-I}. Then by [Hi2, Prop. 6.1], w(hmx, h)isa
cycle with the minimal period at most r. This is a contradiction because w(hmx, h)
O(x, h) and r is less than k, the minimal period of x.

Unorderedness of cycles will be later used for h Fe. We will also use the fact
that if h is C1 and monotone, then dxh is a positive linear operator for any x. Indeed,
for any v > 0 one has

dxhv lim
h(x + sv) h(x) >0

8--*0+ 8

by monotonicity of h and closedness of the relation >_. This of course implies that
d,h" is positive for any x E X and n 0, 1, 2,

For any x E X, v 6 X we define

(3.1) )(x, v, h) limsup

and
A1 (x, h) sup A(x, v, h).

vEX
v=/=O

We call A1 (x, h) the first Lyapunov exponent of x (with respect to h). This is a slight
abuse of language because in general one does not know if A (x, h) A(x, h, v) for
some v (which is a Lyapunov exponent in the usual terminology). For h F0, the
hypothesis (n)(b) implies that ,kx (x, F0) ),(x, v, F0) for any v > 0 (see [PWl, 3]; for
a general background in Lyapunov exponents see [M1], [M2]).

If x is a k-periodic point of h and h is compact (as is the case for h Fe), then

(3.2)
1

Al (x, h) log spr(dzhk),

where spr(dhk) is the spectral radius of dhk. Moreover,

(3.3) (x, h) A(x, h, v),

where v is an eigenvector (or the real part of an eigenvector) corresponding to any
eigenvalue # with Ibtl spr(dxhk). These properties follow from the equality

dhmk+r dhrdhmk (dhr)(dxhk)m

obtained by the chain rule and periodicity of x. Indeed, substituting (3.4) in (3.1)
with n km / r, m {0, 1,...}, r (0, 1,..., k 1} and using the fact that r varies
in a finite set, we obtain

1
A(x, v, h) _< log spr(dhk)
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for any v 0. Therefore, Al(x, h) is not larger than this logarithm. On the other
hand, if v is the real part of an eigenvector as above, then

log II(dhk),v[IA(x, v, h) _> limsup

1 1>_ log I/t[ log spr(dhk).

This and (3.5)imply (3.2) and (3.3).
By (3.2), a periodic point x of h is linearly stable if and only if

A1 (x, h) _< 0.

Below we consider only compact mappings h F, and we use the latter equivalent
definition of linear stability.

We now introduce the notion of a regular point of the strongly monotone compact
map F0. We say that x E X is regular if

A(x, v, F0) lim
log IIdFvll

n---,+o n

for any v > 0, i.e., A1 (x, F0) A(x, v, F0) is the limit, not just the superior limit, for
any v > 0.

We conclude this section by proving the following "continuity" property of the
first Lyapunov exponent.

LEMMA 3.1. Let (H) hold. Let K C X be a compact set invariant under Fo.
Suppose that

(3.6) At (z, Fo) > 0 for each z K.

Then there exist a 61 > 0 and a neighborhood U of K with the following property: If
e e [-61,61] and y e U is such that O(y, F) C U, then $l(y, F) > O.

Proof. Fix a vector w :>> 0. By [PWl, Proof of Prop. 4.5] (see formula (4.2) of
[PT1]), for any z K there is a u such that

(3.7) dzFw >> 2w.

We now show that (3.7) implies the following claim.
There exist a 61 > 0, a neighborhood U of K, and an integer-valued bounded

function y u(y) defined on U such that

dvF[w >> 2w whenever y U, e E [-61,61], and u u(y).

To prove the claim we first fix a z K. Let u be as in (3.7). Since (e, y) -- dvF[ is
continuous and (3.7) is an open relation, there is a 6(z) > 0 and a neighborhood U(z)
of z such that

dvF[w >> 2w for any y e U(z), e e [-6(z), 6(z)].

Taking a finite cover of K by such neighborhoods and letting U be the union of the
cover and 1 the minimum of the corresponding 6(z)’s, we find a function (y) on U
as desired.
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Now we verify that U and 1 just constructed have the properties asserted in
Lemma 3.1. Fix s E [-51,/f] and y E U such that O(y, F) C U. Let

y := F2(y), n O, 1,...,

and define the sequence nk, k 1, 2,..., as follows:

:= (u),
n+ := n + u(y,, ).

This makes sense since yn U for any n. By (3.8) we have

(3.9) duFlw >> 2w.

Using the chain rule we further obtain

(3.10) duFn+w du,F’duFw,
where k (y). Since each dvn F’ is positive, from (3.9), (3.10) we obtain by
induction with respect to k that

(3.11) duFw
_

2kw.

Let m be an upper bound for (y), y U. Then

and hence

This and (3.11) lead to

k >_ nk/m.

(3.12) (e-’Y)nduFnw

_
w >> 0,

where

Inequality (3.12) implies that (e-’r)n [[dyFwl[ stays bounded away from zero (oth-
erwise, by closedness of the relation _<, it would follow that w 0). This implies

(y, v, F) > 7 > 0,

and consequently,
Al(y, F)

_
A(y,w,F) > O,

as claimed. [:l

4. Proofs of Theorems 1 and 2. The proofs have two common steps as out-
lined in 2. Throughout the section we assume that (H) holds.

I. Localization. Let B c X be a closed bounded set. Let n, n 1, 2,..., be
a sequence in J [-5, 5] converging to zero. To minimize the number of indices we
shall use the notation

F, F,,.
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Suppose that for n 1, 2,..., pn is a kn-periodic point of Fn such that

(4.1) O(p,, Fn) C B

and

)l(Pn, Fn) (_ 0 (i.e., Pn is linearly stable).

The aim of localization is to prove that there exists a linearly stable periodic point z
of F0 and a sequence ny + such that O(z, Fo) c B and

(4.3) dist(O(p,#,Fn#), O(z, Fo)) --* 0 as j +o,

where
dist(A, M) sup inf Ila YlI-

aEA YEM

In order to find such a z, we first study properties of the "limit set" A defined by

.= (J
q>_l n>_q

LEMMA 4.1. Under the above assumptions and notation the following properties
hold’.

(i) A is a nonempty compact set and A c B;
(ii) A is invariant under F0;
(iii) dist(O(p, F,), A) -- 0 as n --, /oc.

.Proof. As mentioned in 2, (H) (a) implies that F J. X --, X is compact.
Therefore, clF([-5,’5] B) is a compact set in X. Since O(pn, Fn) C B and, by
periodicity, O(pn, Fn) Fn(O(pn, Fn)), we have

U O(pn, F) C F([-5, 5] B).
n>O

This implies that clJ,>_q O(pn, Fn),q
_

1, is a nested family of compact sets and,
as such, it has nonempty compact intersection. Since all the orbits O(pn, F) are
contained in B and B is closed, A is also contained in B. This proves (i).

To prove (ii), first observe that A can be equivalently defined by

A (z E X :there are two sequences ny, my of positive integers such that

and F (Pn "--

The verification of (4.5) is left to the reader. (The reader has certainly noticed the
analogy to the proof of properties of w-limit sets of orbits.)

We prove that F0(h) c h (positive invariance). Let z E A, and let ny, my be the
sequences as in (4.5). We prove that Fo(z) h by showing that

m+l(Pn -- Fo(z) as j --* +c

This follows from the triangle inequality and the following convergence properties:

FoF ’ Fo(z) -0 o
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and
+ FoF ’? FoF;’? --, O.

The former convergence is just by continuity of F0, while the latter one follows from
the fact that all points F. (pn) lie in the compact set clF([-5, ] B). Note that it
is a straightforward consequence of the continuity of F [-, 5] X --, X that

Fn(z) F(en, z) --* Fo(z) as n - oo

and that the convergence is uniform for z in a compact set.
To prove that A c F0(A) (negative invariance) one proceeds as follows. Given

z A, nj, mj being the corresponding sequences, one considers the sequence

F (Put).

It is well defined since p is periodic. This sequence lies in a compact set, hence
passing to a subsequence one may assume that it converges to a y A. It is then easy
to see that Fo(y) z. This completes the proof of (ii).

Property (iii) follows directly from (4.5) and the fact that O(pn, Fn), n 1, 2,...,
are contained in a compact set. [:]

Our next aim is to find a linearly stable periodic point of F0 in A.
First we find a 5 E A with A1(5, Fo) _< 0. Existence of such a 5 follows easily by

property (iii) of Lemma 4.1 (in case of nonexistence, Lemma 3.1 applied to K A
would give a contradiction to (4.2)).

Next, consider the orbit 0(5, F0). By invariance of A, we have 0(5, Fo) C A. So
0(5, F0) is relatively compact, and consequently the w-limit set w(5, F0) is nonempty,
compact and invariant under F0. Moreover,

dist(F(5),w(5, Fo)) -- 0 as n -- +oc

(see, e.g., [Ha]). Obviously

w(2, Fo) c clO(2, Fo) c A.

Now, since

F0) F0) < 0,

there is a z w(5, Fo) with AI(z, F0) _( 0 (otherwise Lemma 3.1 applied to K--
w(5, F0) gives a contradiction to (4.7)).

In fact, there must be a regular point z w(5, Fo) with Al(z, F0) _< 0 (see [PT1,
Prop. 4.6]). Proposition 4.4 of [PT1] now yields that w(5, Fo) O(z, Fo) and z is a
periodic point of Fo.

We have thus shown that A contains a linearly stable periodic point of Fo. To
complete the localization we need the following result.

LEMMA 4.2. Let z be a linearly stable periodic point of Fo. Then for any neigh-
borhood V of O(z, Fo) there exist constants p > 0 and o > 0 such that for any
e [-50, 50] and for any y X satisfying [[y z[[ < p one of the properties holds:

(i) O(y, Fe) C V; or
(ii) There are positive integers r, m such that F[+my >> F[y.
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Before giving the proof we show how this lemma implies localization. Let z E A
be a linearly stable periodic point of F0. Then O(z, Fo) C A, by invariance of A.
Further, by (4.5), there are sequences nj --. +cx and mj such that

Let V be any neighbourhood of O(z, Fo), and let p,0 be as in Lemma 4.2. For
j sufficiently large (so that IIF’ (pn#) zll < p and e,# e [-0, 60]) we obtain by
Lemma 4.2 that either

(4.8) ), c V

or else

(4.9) r+m rF( Pn >> Fpn

for some r, m > 0. But we know that (4.9) is impossible because the cycle O(p=#, F#)
cannot contain two related points (cf. 3). Hence (4.8) holds for all j sufficiently large.
Since the neighborhood V is arbitrary, this readily completes localization. It remains
to prove Lemma 4.2.

Proof of Lemma 4.2. First we show that it is sufficient to consider the case when
z is a fixed point of F0. Indeed, replacing F by Fk, k being the period of z, we still
have (H) satisfied and, obviously, z is a linearly stable fixed point of F0. Now, if V
is a given neighbo_rhood of O(z, Fo), there exist a 62 > 0 and a neighborhood of
z such that w V and e [-62, 62] imply that Fd (w) Y for j 0,1,..., k- 1.
From this it is clear that if we find p > 0 and 0 corresponding to Q as required in
Lemma 4.2 With F replaced by Fk, then the same p and 60 min{62, 0} are the
Constants required in the original assertion. We thus proceed in the proof assuming
that Foz- z.

Let a neighborhood V of z be given. We want to find constants p and 60. In
order to see how small these constants must be, we first derive an equation for the
deviation from z of an orbit O(y, F) with some fixed y and . Denote

y0 Y,

y F y,

tn Yn Z.

We have

hence

u=+x Gy= Foz
Foy= Foz + Gy= Foy=;

(4.10) u=+l Au, + g(u=) + H(e, u=),

where

(4.11)
A Fg(z),

g(u) [FO(z + su) F)(z)lu ds,
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(4.12) H(e, u) F(u + z) Fo(u + z).

The idea of what follows is to show that if u0 is close to zero and e is small, then either
un stays small, so that Yn stays in V, or else the "positive component" of un gets so
large compared with u0 that un and u0 are related (hence yn and y0 are related). This
requires some estimates in the flavor of [PT1, Proof of Prop. 3.5]. First we need some
properties of spectral projections corresponding to the Krein-Rutman decomposition
of the spectrum of A. By the latter we mean the decomposition

a(A) (#1} U a2,

where #1 exp(Al(z, F0)) is the principal eigenvalue of (the strongly positive and
compact operator) A and a2 a(A)\#l. The corresponding invariant decomposition
of X has the form

(4.13) X X1 @ X2,

where X1 is spanned by an eigenvector v >> 0, which we further assume to be nor-
malized, Ilvll 1, and X2 X+ {0}. Moreover, the spectrum of the restriction
A2 AIx2 is contained inside the unit circle in the complex plane. We can thus find
constants M >_ 1,/ E (0, 1) such that

(4.14) IIAII _< M/n, n 0, 1, 2,

Let P X - X1 and Q I- P X --, X2 be the spectral projections associated with
the decomposition (4.13). For u E X we write

u Pu, u2 Qu.

The following property holds true. Let R denote the ball of radius R around zero in
X.

SUBLEMMA. There exist constants C1 > 0 and (x (0, 1) such that .for any u X
and any R > 0 the relations

(4.15) Ilu211 <_ ClllUlll and Ilull >_ R

imply that u is strongly related to ]aR, that is, either u >> aR or u << aR.
Here u >> BaR means that u >> b for any b ]aR (and similarly for the reversed

sign). The proof of the sublemma will be given later.
Equipped with this sublemma, we can now find constants p and i0 corresponding

to the given neighbourhood V of z such that the conclusion of Lemma 4.2 holds.
First we choose a number R e (0, 1] so small that the following properties hold.
(a) For any u e X with Ilull < R one has z + u e V.
(b) There is a constant C2 such that

(4.16) II OF(e, z + u)
0e I1-<C2 for anyuwithllull_<R and e[-5,i].

(To achieve this, one just uses the fact that F is C1 and [-5, ti] is compact.)
(c) Certain estimates (see (4.25) below), which involve only C1 from the sub-

lemma and certain constants depending only on the operator A and the function g
(see 4.11) are satisfied by R. Having such an R we choose a p with

(4.17) 0 < p < min{R, [IIQI]3M(1 + C-I)]-IR}.
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To define the constant 0, we first observe that, by (4.12),

(4.18) h(e) sup IIH(e, u)l < e sup
OF(e, z + u)

hence, by (4.16),
h(e) --, 0 as e--, 0

Choose 60 > 0 so small that e E [-60, 60] implies

(4.19) h(e)M[IQI[ y/3t: < -/3.
k=0

Here M > 1 and/ E (0, 1) are as in (4.14) and

(1 + C-I)-IR.

With p and 6o chosen in this way, we claim that if e [-60,60] and Ilu011
Ily- zll < , then the following alternative holds (with the notation as above). Either

(i)’ Ilunlt < R, n 0,1, 2,..., or else
(ii), there is an n such that Ilull _> R and Ilu.ll < Clllu.ll.
By the choice of R, (i)’ implies assertion (i) of Lemma 4.2. Since Iluoll IIY-zll <

p < erR, (ii)’ implies (ii) (here we use the sublemma). So we are done, provided we
prove that the alternative holds. To do that we assume that (ii)’ does not hold, i.e.,
for any n,

(a.20) Ilull < c-Xllu2ll or Ilu.II < R.

We prove that (i)’ holds. By (4.20) and the inequality Ilu-[I < Ilu[I + liu2ll it is
sufficient to prove that

(4.21) Ilull < (1 + Cl)-iR

for k 0, 1, 2, Observe that (4.21) holds true for k 0 by the choice p. Indeed,

(4.22) I111 < IIQII IIoll < IIQIIp < (3M)-1 < "
Suppose (4.21) holds for k 0, 1,..., n- 1. We prove that it holds for k n. This
implies that (4.22) holds for all n 0, 1, 2,

Applying the projection Q to both sides of (4.10) we obtain

u,+ A2u2 + Q[g(un) + H(e, u,)].

The variation of constants for this equation gives

n--1

(4.23) u2 , 2 Q[g(uk) + H(e, ut:)].A2 Uo + E A--I
k--O

By (H), the function IIg()ll ll=ll-- is bounded on any bounded set. So there is a
constant C3 such that

(4.24) sup Ila(=)ll <
I111<
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(Since R is in the bounded interval [0, 1], C3 depends only on g.)
Now we have prepared everything for an estimate of [[u2l[. By (4.23) and (4.14)

n-1

Ilu2nl[ _< M/3n][ul] + y] M3n-k-l[]Q[[ (]lg(uk)[[ + I[H(e, uk)[[).
k=0

By our induction hypotheses (cf. (4.20)) and (4.21) we have [[ukll < n for k
0, 1,... n- 1. We can thus apply (4.1S), (4.19), and (4.24), which yield

I[u2[I <_ M[[u[[ + RI+M[[Q[[C3 y] 13k + .
k=O

Recall that, by the choice of p (see (4.22))

M[[u[[ < -.
So if R is so small that

oo
1

(4.25) (1 +CI)ROMIIQ[[C3k < 5’
k=O

we have the estimate

This completes the proof of the alternative. It remains to prove the sublemma.
Proof of the sublemma. Define C1 to be a constant such that

1
(4.26) v + x >> v for any x with [Ix[I

Such C1 exists because the eigenvector 1/2v is in intX+. Put a C1(1+C1)-1. Observe
that if [lu[[ >_ R and [lu2[[ _< Cl[[ul[I, then

hence

II II > a(1 + C)-.
Suppose that (4.15) holds. For definiteness also assume that u1 > 0 (the case u1 < 0
is analogous). Then by (4.15) and (4.26),

_> R(1 + C1)-11/2v.

Now, by (4.26),
1
5v >>

Therefore,
> R(1 + C)-11/2 >> R( + C)-’c, .

Having completed localization we pass to the second step.
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II. Local bifurcation. Our aim here is to prove the following proposition.
PROPOSITION 4.3. Let z be a linearly stable k-periodic point of Fo. Then there

exist a 2 > 0 and a neighborhood V of O(z, Fo) such that for any E (-2,i2) all
cycles of F contained in V have the minimal period k.

Proof. By continuit_y o_f F, there are 2 > 0 and a neiflhborhood of O(z, Fo)
such that for any E (-i2, 2) all cycles of F contained in V have the minimal perio_d
at least k. Next we prove that such cycles have the minimal period at most k, if
and V are made sufficiently small.

Similarly as in Lemma 4.2, we reduce the proof to the case when z is a fixed point
of F0. To see that it is sufficient to consider this case, one only has to realize that
the following consequence of continu.ity of F holds: Let V beta given neighborhood of
the k-periodic point z such that Fz cl for j 1, 2,..., k- 1. Then there exist
a 3 > 0 and a neighborhood V of O(z, Fo), such that for any (-i3, i3) and any
cycle O(y, F) of F contained in V, the set O(y, F) N r is a cycle for F. With this
observation it is easy to see that the assertion of the lemma follows provided we prove
the assertion with F replaced by Fk, assuming that z is a fixed point of Fok. Notice
that Fk also satisfies (H). Thus we may proceed, assuming that z is a fixed point of
F0.

Consider the spectrum a(A) of the (compact strongly positive) operator A
F(z). We have

a(A) {/z,} U a,

where #1 exp(A1 (z, F0)) and a2 C {/ e C’l l < }. We distinguish between the
two cases

#1<1 and #1=1.

(Recall that #1 <_ 1, since z is linearly stable.) If #1 < 1, there is an equivalent norm

II" I[a on X such that [IAlla < 1 (see, e.g., [Io, Chap. I]). Since F is C1, there exists a ball
around z in (X, [1" I[a) such that for all sufficiently close to zero, F is a contraction

on fig. Therefore, all cycles of Fe in B are fixed points of F. In the case #1 < 1 we
are done. Let us now consider the case #1 1. To prove the assertion, we apply a
center manifold theorem. This will give us a neighborhood V of z such that for each e
close to zero, any invariant set of F contained in V lies on a one-dimensional locally
invariant manifold of F. Moreover, the restriction of F to this invariant manifold is
conjugate to an increasing map on an interval. There are thus no periodic points of
F, except for fixed points, on this invariant manifold and consequently there are no
periodic points of higher period in the neighborhood V. This implies the assertion.

We give more details concerning the reduction result (which certainly is familiar
to experts in the bifurcation theory).

To find the invariant manifolds for all e, we consider the standard suspension,
i.e., the mapping

G’(e, x)-+ (, F(e, x))" (-i, i) x X - (-i, 5) x X

(cf. [He, 8.5]; [Io, Chap. V]).
By (H), G is of class C1. Obviously, (0, z) is a fixed point of G. The spectrum

of the linearized (at 0, z)) operator (vl, w) (vl, dzFow + rldoF(., z)) is the same as
the spectrum of A dzFo, except that 1 is now a double eigenvalue (it has geometric
multiplicity 2 if doF(., z) R(I- A), the range of I- A, otherwise it has geometric
multiplicity 1 and algebraic multiplicity 2). The eigenspace corresponding to the
eigenvalue 1 has the form span((1, w), (0, v)}, where v is the positive eigenvector of A
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and w is a vector in X. By the center manifold theorem (see [He], [Io], [Sh], [MM],
[CL]) there exist a 62 > 0, a neighborhood V of z, and a C1 submanifold of X of
the form

where al and r2 take values in R and X, respectively, are of class C1 and of order
O([e[ + Is[) as e -- 0, s -- 0, and the following properties hold: For any (e, x) E W
the iterates Gn(e,x),n 0,1,... stay in W as long as they stay in (-2,2) x Y.
Moreover, any cycle of G contained entirely in (-2, 62) x V is contained in W.

Let us be more precise about the references. The center manifold theorem in the
form we need is stated in [Io, Chap. V] and [He, 8.5]. In [He] the application of this
theorem to parametrized mappings (using the suspension as above) is also described
(cf. also [Io, V.3], where F(e,z) =_ F(z) for any e is assumed). However, in this
references higher regularity of F is required. One has to combine these results with
[Sh, Thm. 3.2], where C-regularity of the (global) center-unstable manifold (in our
case just the center manifold) for a C-mapping is provided (see also [CL], which is
slightly less general).

Now the special form of G implies that for e E (-2,2) the e-section of W,
We {x: (e,x) e W} {z + ew -b 8v q- :r2(e, s): ]8] < 2}, is a one-dimensional C1-

submanifold of X, which is locally invariant under Fe (more precisely, Fe(x) We if
x We and Fe(x) V) and which contains any cycle of Fe lying in V. Now, since the
critical eigenvalue which gives rise to these invariant manifolds (that is, the eigenvalue
of dzFo on the unit circle) equals 1, by continuous dependence of the eigenvalues on
parameters, we may assume (making 2 and V smaller if necessary) that the restriction

Felw, is orientation preserving. As such, this restriction cannot have periodic orbits,
except fixed points. We conclude that for e E (2, 2), any cycle of Fe contained in V
is a fixed point of Fe. This completes the proof of Proposition 4.3.

III. Completion of the proofs. First we complete the proof of Theorem 2.
Let B be a closed bounded set. Let m be a bound on stable periods of Fols. Suppose
the conclusion of Theorem 2 is not true. Then there exist sequences en [-, ], pn
X, kn {1, 2,...} such that en O, pn is a linearly stable kn-periodic point of Fn
Fen with O(pn, Fn) C B and kn > m, n 1, 2, .... Using localization and Proposition
4.3 (where z is the k-periodic point found by localization, hence O(z, Fo) C B and
k <_ m by assumption) we immediately arrive at a contradiction.

Next, suppose that for a given closed bounded set B, the conclusion of Theorem
1 fails. Since there is no bound on stable periods at Fols, there is a sequence pn
of linearly stable periodic points of F0 with O(pn, Fo) C B such that the minimal
period kn of pn approaches +o as n --. +o. Using localization (with e _= 0) and
Proposition 4.3 we again arrive at a contradiction.

5. Applications. There are several standard classes of periodically forced equa-
tions whose period maps have the smoothness, compactness, and strong monotonicity
properties we require of F0 (cf. [Hi2], [Hs2]). Moreover, in many cases the back-
ward uniqueness guarantees that the period map is one-to-one. Thus Theorem 1 and
Corollary 4 are applicable for a general scalar semilinear or quasilinear equation or a
cooperative system of reaction diffusion equations. We do not consider these general
classes here. Our concern in this section is to show some applications of Corollaries 3
and 5. We consider three types of problems where nonexistence of linearly stable sub-
harmonic solutions (i.e., solutions whose minimal period is a nontrivial multiple of the
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period of the equation) can be established. All these equations are small perturbations
of problems for which the nonexistence is known to hold.

Example 1 (perturbation of an autonomous equation). Consider the parabolic
equation

(5.1) ut Au + f(x, u) + g(, t,x, u), t > 0, x e n,

where f C RN is a smooth bounded domain, E R a parameter, and the nonlinearities

f" R --, R and g" R R R --* R satisfy the following assumptions.
(A1) f is of class C2.
(A2) g is of class C1.
(A3) g is r-periodic in t, T > 0, i.e. g(., t + T,.,-) g(’, t,-, .).
(A4) There are constants C1, C2 > 0 such that

for any , t, x, u.
(Ab) L limsupl,l__. f(x, u)/u < #1, uniformly for x E . Here #1 is the first

eigenvalue of-A on under the boundary condition

(5.2) Bu o,

where the boundary operator B is either of Dirichlet type

or of Neumann type

(b 0f --, R+ being a C2-function and n a smooth outward pointing and nowhere
tangent vector field on 0f).

We consider the boundary value problem (5.1), (5.2) in the context of analytic
semigroups.

Let Y Lp(f) with p > N, and let Y, _> 0, be the scale of fractional power
spaces associated with the Lp-realization of-A and the boundary condition (5.2) (cf.
[He]). Choose a with (p + N)(2p)-1 < < 1. Then X Y is Continuously
imbedded in Cl(f); hence it is strongly ordered by the pointwise ordering (see [Hi3],
[Hs2]). By [He], (5.1), (5.2)is well posed on X. More specifically, (A1), (A2)imply
that for any u0 X, (5.1), (5.2) has a unique maximal solution t -. u(t, .,, uo) in
C([0, s), X) N C1([0, s), X) satisfying u(0,., , u0) u0(.). By (A4), (Ab) this solution
is global, that is, s /cx [Aml], so the period map F "uo F(uo)"- U(T,., , Uo)"
X --* X is defined everywhere on X. It is well known (see [He], Ins2]) that all the
smoothness, compactness, and monotonicity properties required in (H) are satisfied
by the family F; [-, i] (for any i > 0). Finally, by backward uniqueness, F
is one-to-one. Thus (H)(b) is satisfied for F0 (and also for F if g is assumed more
regular, say C2).

Now fix a i > 0 such that 5C1 + L < #1. We want to apply Corollary 3 to the
family F, [-5, i]. For any e [-5, 5] we have

limsup(f(x,u) + g(,t,x,u))/u <_ lelC + L _< tiC1 + L </1,
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uniformly for x 2, t e [0, T].
This estimate implies that there is a constant C3 > 0 such that for each E [-i,

all periodic solutions of (5.1), (5.2) satisfy the a priori estimate

 0)llx <

Indeed, using standard comparison arguments (cf. [KW], [Am2]) one constructs a time-
independent subsolution in -intX+ and, similary, a supersolution in intX+. This can
be done in such a way that any multiple by a scalar factor _> 1 is again a sub/
supersolution. We thus have unbounded continua of subsolutions and supersolutions.
The standard sweeping principle implies a uniform a priori bound on periodic solutions
in Loo. By bootstrap arguments [Am2], we obtain the desired a priori estimate in X.

Thus for E [-i, i] all the cycles of F lie in a ball D independent of .
Finally, since F0 is the time- map of a Cl-strongly monotone semiflow, all linearly

stable periodic points of F0 are fixed points of F0 corresponding to equilibria of the
autonomous problem (see [Hs2, Prop. 9.4]).

We have thus verified all the hypotheses of Corollary 3. We infer that for
sufficiently small there are no linearly stable periodic points of F except for fixed
points. Consequently, (5.1), (5.2) has no stable subharmonic solutions. If in addition
to (A1)-(A5) one assumes that g(, t, x, u) is of class C2, then the F also satisfy the
hypotheses of Corollary 5. As a consequence we obtain that for I1 sufficiently small,
the following convergence property holds: For any bounded set { c X there is an
open dense subset of { such that O(uo, F) is convergent for any u0 e .

Various generalizations of this example are possible. Firstly, the Laplacian may be
replaced by a general uniformly elliptic operator of second order with C2 coefficients.
Assuming appropriate growth conditions one may allow f and g to depend also on

u.
We now mention two further examples. Without going into details, we present

periodically time-dependent equations which do not admit linearly stable subharmonic
orbits, and discuss admissible perturbations of such equations.

Example 2 (perturbation of a spatially homogeneous equation). Let be a smooth
convex domain in RN. Consider the problem

u Au + ](t, u, Vu), > 0, x e ,
(5.3) 0---U-U 0 on 0,On

where n is now the unit outward normal vectorfield on 0. The function f
RN

__
is assumed to be of class C2 and T-periodic in t. It has been observed in

[PT2] that there are no linearly stable subharmonic solutions. This follows from the
fact that any stable kT-periodic solution, k {1, 2,...}, is spatially homogeneous (see
[Hs2, Thm. 23.4 ]). Therefore, it satisfies the T-periodic one-dimensional ODE

ut f(t, u, 0),

which does not have subharmonic solutions.
Consider now the perturbed equation

(5.4) ut Au + f(t, u, u) + g(t, x, u,

with a small spatial inhomogeneity ( is a small parameter). Under appropriate
smoothness and growth conditions one can again check that the period map Fe on X
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(with X as in Example 1) satisfies (H). Thus there are no stable subharmonic solutions
of (5.3), (5.4) for small lel, and "most" solutions converge to a T-periodic solution.

Example 3 (perturbation in one space dimension). Consider the one-dimensional
problem

(5.5) ut uxx / f(t, x, u, ux), t > O, 0 < x < 1,

(5.6) ux(t, O) =-- ux(t, 1) --= 0,

where f is of class C2 and T-periodic in t (other boundary conditions are also admis-
sible). It has been proved in [BPS] that any bounded solution approaches, as t
a T-periodic solution. In particular, there is no subharmonic solution.

We now perturb (5.5) by a nonlocal term,

ut uxw + f(t, x, u, u) + e2V(x) 12(x)u(,x)dx,

where C(x) >_ 0 and u(x) >_ 0 are C1 functions of x E [0,1]. These sign restric-
tions assure that the strong comparison principle applies to (5.6) and (5.7). Un-
der appropriate growth conditions the period map of this equation satisfies (H) with
X H2(0, 1)f H0(0, 1) (see [PW2]). Using Corollary 3, one obtains that there are
no stable subharmonic solutions of (5.6), (5.7) if e is sufficiently small. By [PT1] this
implies that "most" orbits of the period map are convergent.
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STRICTLY NONAUTONOMOUS COOPERATIVE
SYSTEM WITH A FIRST INTEGRAL*
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Abstract. The authors consider the nonautonomous cooperative system

dxi/dt- Fi(t, Xl,... ,xn) (i 1,... ,n)

in the nonnegative orthant in the real n-dimensional Euclidean space, which has the first integral
with positive gradient. The authors guess that every solution to such a system either converges to
an asymptotic state (for the almost periodic (or periodic) case, this state is an almost periodic (or
periodic) solution) or eventually leaves any compact set. They partly prove this conjecture.

Key words, cooperative systems, nonautonomous systems, almost periodic (or periodic) so-
lution, first integral, Lyapunov function, uniformly stable, skew-product flow, w-limit .set
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1..Introduction. The autonomous gross-substitute system forms a mathemat-
ical model for the classical law of supply and demand in economics, which has been
studied by many economists [9] and has the property (P1)" every bounded solution
converges to an equilibrium. Such a system is a special class of cooperative systems.

Cooperative (or competitive) systems are a class of dynamic systems 5c F(x),
x E U C Rn, which satisfy Conditions OFi/Oxj _> 0 (_< 0) for i : j. Recently,
systems of this type received much study (see references in [3]-[5] and [15]), since they
have wide applications in biology and chemistry (for example, see [6], [17]). In [3]-[5]
Hirsch proved many important results about such systems, one Of .which is that, .for
systems that are cooperative and irreducible, almost all (with respect to the Lebesgue
measure) points whose forward orbits are bounded approach the equilibrium set. But
in general, the property (P1) that every bounded solution converges to an equilibrium
or to a closed orbit is not true. A construction of Smale [13] shows that any dynamics
is possible for such systems. Hence, one tries to find some special classes of systems of
that type for which the property (P1) is true. In [14] Smillie established a particular
class of cooperative systems for which the property (P) is true. In [7] Mierczyfiski
found another class of cooperative systems, namely, strictly cooperative systems with
a first integral, having the property (P) which generalized the result in [9]. Other
relevant results can be found in Arino [19] and the references cited therein.

As we know, nonautonomous systems are more realistic and more general in math-
ematical modelling. For example, if one considers the seasonal effects in economics,
it is important to study time-dependent or nonautonomous gross-substitute systems,
which are a special class of nonautonomous cooperative systems. For the case of pe-
riodic (almost periodic) cooperative systems, the property (P2) that every bounded
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solution converges to a periodic (almost periodic) solution is important. Smith [16]
generalized the result in [14] to the periodic case: the property (P2) holds. Nakajima
[8] and Sell and Nakajima [12] studied the nonautonomous gross-substitute systems
for which the property (P2) is true.

In this paper we study the periodic (almost periodic) cooperative systems with
a general class of first integrals. For such systems, whether the property (P2) is true
remains unknown. We conjecture here that such a property continued to hold.

We partially answer the above conjecture in this work. Under some conditions,
we are able to show that this conjecture is indeed true. Our results generalize those
of [8] and [12]. Without loss of generality, we concentrate our study on the almost
periodic case.

We adapt the idea similar to that in [12]" by using a Lyapunov function, we
show that any "positively compact" solution Of the above system (defined in 2) is
asymptotically almost periodic. The first integral used in [8] and [12] is ’i1 xi, for
which there are many properties which played a very important role in [8] and [12].
But since we consider more general first integrals, these properties fail to be true. As
we shall see, we introduce a new class of first integrals to construct proper Lyapunov
functions and apply the theory of cooperative systems to obtain the desired results.
These Lyapunov functions play important roles in this work.

The paper is organized as follows. In the next section, we present some defini-
tions and preliminary lemmas. In 3 we prove the main result, which partly gives an
affirmative answer to the conjecture. In the last section we give an example.

2. Definitions and preliminary lemmas. Let Rn denote the real n-dimensional
Euclidean space with norm Ixl ’i--ln ixil for x (Xl,.. ,Xn) e Rn and set R+
{x E R’x _> 0}, R {x E Rn "x _> 0}, 0R_ (x R "x 0 for some i} and

Rn \R,.IntR= +\.. +
We denote x < y if xi < yi for each i, and x _<i y if x y, xi yi and xj _< yj

for j i. By (., .), we mean the usual inner product in Rn.
Let H" Rn -. R be a C function. We denote grad H(p) as the gradient of H+

at p, which is the vector ((OU/Oxl)(p),..., (OH/Oxn)(p)). We denote Int H-(h) as
the set {x Int R_ H(x) h}.

Let F R Rn -- Rn be a vector field. A first integral for F is a func-+
tion H R -. R+, of class C, such that grad H(p) 0 at each p R_ and
(grad H(p), F(t, p)) =_ O.

The system of ordinary differential equations we consider takes the form

(2.1) d-- F(t,x,... ,xn) F(t,x), x R, 1 <_ i <_ n,

where F(t,x) (F(t,x),... ,Fn(t,x)) is defined and C1 on R R. Throughout
this paper, we assume that F(t, x) satisfies the following conditions

(A1) If x _<i y then Fi(t,x) < F(t, y);
(h2) There exists a first integral H for F such that grad H(x) > 0 for x E R and

U(0) 0;
(i3) F(t, x) is uniformly almost periodic in t; or
(h3), F(t, x) is periodic in t with period w > 0.
Remark. (hl) implies that (2.1) is cooperative. Also, the assumption that U(0)

0 is not necessary.
Define the translate Fr by F(x,t) F(x, T + t), where R. By the hull,

we mean the set " C1 {F T R}, where the closure is taken in the topology
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of uniform convergence on compact sets. It is known that is an almost periodic
minimal set [2], [11], [18]. It is easy to see that every G E " satisfies the conditions
(A2), (A3) and that if x _<i y then G(t, x) <_ G(t, y).

Recall that a mapping r W R --. W is a flow if r is continuous, r(w, 0) w
and r(r(w, s), t) r(w, s + t) for all w e W and s, t e It, where W is a topological
Hausdorff space. If W is a product space W X Y, then a flow r is said to be a
skew-product flow if r has the form r (o, a), or

u, t) u, t), t)),

where a Y T --. Y is itself a flow on Y. For each x Rn and G ’, we denote by+
o(x, G, t) the maximally defined solution of x’= G(x, t) that satisfies o(x, G, 0) x.
It is known that

=(z, G, (v(z, a, a.)

describes a (local) skew-product flow on R x " [10].
A solution o(x, F, t) of (2.1) is said to be uniformly stable if it is defined for all

t _> 0 and for every e > 0 there is a i =/i(e) > 0 such that

Io(x, F, T + t) o(y, F, T + t)l <_ e for all t _> 0

whenever T _> 0 and [o(x, F, T)- 0(y, F, T)[ _< 5 [101.
Let V(x, y) R x Rn

+ -. tt satisfy the following conditions.
(i) V(x, y) > 0 for all x, y Rn with x 7 y;
(ii) V(x, y) 0 if and only if x y;
(iii) limlx_ul_.+oo V(x, y) +o.
Then we say that V is positively definite.
We shall use the following lemma, which is easily verified.
LEMMA 2.1. Let o(&, F, t) be a positively compact solution, i.e., o(&, F, t) remains

in a compact subset of Rn .for all t >_ O. Assume that there is a positively definite
function V(x,y) on I:t x I?e such that for all x,y l and G , one has
D+V(o(x, G,t), o(y, G,t)) g O, where D+ denotes the right-hand derivative. Then
o(, F, t) is uniformly stable.

Theorems 2 and 5 in [10] yields the following theorem.
THEOREM 2.1. Let r be the skew-product flow (2.2) on R x generated by

system (2.1). Let o(]c, F, t) be a positively compact uniformly stable solution of (2.1)
and let f denote the w-limit set of the motion r(&, F, t). Then f is a nonempty
compact connected distal minimal set. Furthermore, if for some G J the section

a(a) e a) e a}

has only finitely many points, then f is an almost periodic minimal set, and for each
(x, G) e 12 the solution o(x, G, t) is almost periodic in t.

The definition of a distal set can be found in [10].
Recall that a compact invariant set M is minimal if and only if every trajectory

is dense in M. If 12 is minimal, then for x, y e f(F), (x, F) e f, (y, F) e 12. There
is a sequence tn --* +o such that o(x,F, tn) --, y. Ft. F. Since {o(y,F, tn)} is
compact, without loss of generality, suppose that o(y, F, tn) z. Now Ft -. F and
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(z, F) G. Hence, if f is minimal, then for x, y ft(F), there is a sequence tn --* +c
such that (x, F, t) --. y and (y, F, tn) --. z, where z e t(F).

Let x(t) o(x, G, t), y(t) (y, G, t) be two solutions of the system x’ G(t, x).
Suppose that they are defined on a common interval I. For t I, we define the
following two subsets of (i" 1 < i <

P {i x(t) >_ y(t)}, Q (i x(t) < y(t)}.
3. Partial answer. In this section we study system (2.1) which has H(x) as a

first integral.
In the rest of this paper, we make the following assumption:

OH
(A4)

OxiOxj
> 0 for i Cj.

Define the function V(x, y)’R R_ --. R+ as follows:
n

Y(x,y) E Ig(x"’" ,xi_,xi, y,+,... ,y) H(xl,... ,xi-,yi, y,+l,...

Let

V+(x,y) E[H(x,... ,xi_,xi,yi+,... ,Yn) H(x,... ,x,-,yi,yi+,... ,y)],
P,

V-(x,y) [H(x, ,xi_,yi,yi+,... ,Yn) H(x,... ,Xi--l,Xi, Yi+l,... ,Yn)],

then V(x, y) V+ (x, y) / V-(x, y).
LEMMA 3.1. Let x(t) (x, F, t), y(t) (y, F, t) be two solutions of the system

(2.1) with a common interval I, then for t, t2 I with. t < t2, we have

<

Proof. We first prove that

(3.1) V+(x(t2),y(t2)) <_ V+(x(t),y(tl)).
Let zi(tl) max{xi(tl),yi(tl)}, z(tl) (zl(tl),... ,zn(tl)), then z(tl) > y(tl) and
z(t) > X(tl). Let z(t) (z(t),F,t- t) be a solution of (2.1), then (A1) and
Kamke’s theorem. (e.g., see [2]-[4] and [15]) yield that

z(t) >_ y(t) and z(t) >_ x(t) fort_>t,

i.e., z(t) >_ max{x(t),y(t)} (max{xl(t),y(t)},... ,max{xn(t),yn(t)}) for t _> t.
Thus, V+(z(t),y(t)) V(z(t),y(t)) H(z(t),... ,zn(t))- H(yl(t),... ,yn(t)) for
t _> t. Since H is the first integral for F, we have

(3.2) V(z(t),y(t)) V(z(tl),y(t)) V+(x(t),y(t)) for t _> t.
Since z(t2) _> max{x(t2),y(t2)}, the assumption (A4) implies that

(3.3) V(z(t2), y(t2)) _> V(max{x(t2), y(t2)}, y(t2)) V+(x(t2), y(t2)).
By (3.2)and (3.3), (3.1) follows.

Similar arguments show that

Y-(x(t2),y(t2)) <_ Y-(x(t),y(t.))
and the proof is thus completed.

Remark. Clearly, if V(x, y) defined above satisfies that limlz_ul_+o V(x, y)
+cx3i then V is positively definite.



COOPERATIVE SYSTEM WITH A FIRST INTEGRAL 1335

LEMMA 3.2. In (2.1), in addition to (A1), (A2), (A3) (or (h3)’), and (A4),
assume that limlx_ul_,+o V(x, y) +oc and .for every h 6 R+, there is at most one
bounded solution which is defined and belongs to H-1 (h) .for all t R. Then .for every
positively compact solution &(t), there exists an almost periodic solution (or periodic
solution) such that

(3.4) lim I&(t) (t)l 0.

Proof. Let &(t) o(&, F, t) be a positively compact solution and
limit set of the corresponding motion r(&, F, t) in R_ x ’. Let t(F) (x e R
(x, F) gl}, then Lemma 3.1, combining Lemma 2.1 and Theorem 2.1, implies that
t(F) consists of a single point y and the solution (t) o(y, F, t) is almost periodic.

Now we prove (3.4).
By Lemma 3.1, one has D+Y(&(t),(t)) <_ 0 for all t >_ 0. Thus, the limit

limt-,+o V(&(t), (t)) exists. Choose a sequence tn
(y,F) and (2c, F, tn) - z. Since Ftn --. F it follows that z 12(F) and so z y.
Thus lim_+ V(&(t), (t)) 0 and so lim__,+o

For y (yl,... Yn) Rn, we define

Sk(y) {x (x,... ,xn) e R xi <_ yi, i= 1,... ,k- 1, Xk < Yk

and xk+ > Yk+, Xi >_ yi for i k + 2,... ,n},

k-- 1,... ,n- 1.
n--1LEMMA 3.3. Let x(t), y(t) be two solutions of (2.1). If x(t) tJk= Sk(y(t)), then

dV(x(t),y(t))
dt

Proof. We consider the case x(t) e S(y(t)); for the other cases, the proofs are
similar.

If x(to) S(y(to)), then there is a 5 > 0 such that x(t) Sl(y(t)) for to -5 <
t < to + 5. Hence, for t 6 (to 5, to + 5),

V(x(t), y(t)) H(yl (t), yn(t)) + H(xl (t),
2H(x (t), y2(t),..., yn(t)).

Since H(xl (t), xn(t)) H(yl (t), yn(t)) constant, we have

dV(x(t),y(t))
dt

-20H(x (t), y2(t),..., y(t)) FI (t, x (t),..., x(t))

2E OH(x (t), y2(t),..., y(t)) Fi(t, y (t),..., y(t)).
=2

Notice that

OH(x (t), y2(t),..., yn(t))
F(t,x(t), y2(t),..., yn(t))

OXl

+ OH(l(t),(t),... ,,(t))Fi(t,x(t),(t),... ,,(t)) 0
i=2

Oy
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and so

dV(x(t),y(t)) -20H(xl(t), y2(t),..., yn(t))

x (F(t,x(t),x2(t),... ,x(t))- F(t,x(t),y2(t),... ,y(t)))

2E OH(x (t), y2(t),..., yn(t))

i=2
Oyi

(F(t, yl(t),y2(t),... ,y(t))- F(t,x(t),y2(t),... ,y(t))).

Now assumption (A1) yields that

dY(x(t),y(t))
<0. E3

dt

For any two points x, y R=, which are not related, i.e., that x < y or y < x
is not true, we always find a map P R R= such that Px S(y) for some
k e {1,... ,n- 1}.

Let T be the set of such maps. Since Rn is finite dimensional, T is finite. Define

Vp(x, y) V(Px, Py) for P e T,

and let W(x, y)- Y]PeT Vp(x, y), then we have
LEMMA 3.4. Let x(t), y(t) be two solutions of (2.1) with H(x(t)) H(y(t)). Then

dW(x(t),y(t))
dt

Proof. Let P E T. Consider the system

(3.5)
du
dt

Fp(t, u),

where u Px, Fp(t, u) P(F(t, p-lu)). It is easy to check that system (3.5) satisfies
(A1) to (A4). By Lemma 3.1 and Lemma 3.2, we have

D+Y(Px(t),Py(t)) <_ 0

n--1and if Px(t) k=l Sk(Py(t)) then dV(P(t),Pu(t)) < 0. Hencedt

D+Vp(x(t),y(t)) < 0

and
dVp(x(t), y(t)) n-i

< 0 for Px(t) U Sk(Py(t)).
dt

=1

For x(t), y(t) with H(x(t)) H(y(t)), (A2) implies that x(t) and y(t) are not related
and so we can choose P0 T such that Pox(t) Sk(Poy(t)) for some k, then the
above argument shows that

dVPo (X(t), y(t)
<0.

dt
Now

dW(x(t), y(t)) E dVp(x(t), y(t))
dt dt

PT

We are now in a position to prove our main result.

<0. El
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THEOREM 3.1. In (2.1), in addition to (A1), (A2), (A3) (or (A3)’), and (A4),
assume that limlx_ul_,o V(x, y) +x). Then .for every positively compact solution
&(t), there exists an almost periodic solution (or periodic solution) such that

lim ]&(t) (t)[ 0.

Proof. Let &(t) qo(&, F, t) be a positively compact solution and f the w-limit set
of the corresponding motion 7r(&, F, t) in R ’. Let 12(F) {x e R_: (x, F) e f}.
Suppose f(F) contains more than one point. Let x0, y0 E f(F) with xo y0 and
x(t) qo(xo, F, t), y(t) (yo, F, t) be the corresponding solution of (2.1).

Since x(t) and y(t) stay in a compact set in R_, they are defined for all t E R.
By Theorem 2.1, f is a distal set. Ellis’s theorem [1] implies that the product

flow on 2 f is the union of minimal sets. Hence there is a sequence tn --* +oc such
that x(tn) --* xo and y(tn) - yo.

Lemma 3.4 implies that there is a T R (say T > 0) such that

u(t)) _< < W( o, no) t _>

Letting tn -- -t-cx3, one gets the contradiction

W(xo, yo) lira W(x(tn), y(tn)) < W(xo, Yo).

For T _< 0, a suitable translation of x(t) and y(t) also yields a contradiction. Thus,
the proof follows from Lemma 3.2. [3

Remark. If we take H(xl,... ,xn) xl / / xn, it is trivial that (A4) is
satisfied. Hence the above result generalizes those of [8] and [12].

In the rest of this section, we suppose that (2.1) is periodic, i.e., (A3)’ is true and
(Ai), (A2) and (A4) hold. Define the Poincard map T’R_ -- R as follows

Tx (x, F, w).

Forx0 Rn+, definex0/R_ {x0+x" x R}. Then it is easy to prove the
following lemma.

LEMMA 3 5 Let xo Int Rn be a periodic point, i.e., the solution qo(xo, F, t) is._
periodic with the period w. Then xo + Rn is positively invariant under T, i.e. for+
x E (xo + R)- xo, Tx Int (x0 + R). Thus, xo is a unique periodic point on

xo + OR?.
LEMMA 3.6. Let xo IntR be a periodic point. Then, for every e > 0 there

exists > 0 such that for each h e [H(c) 5, H(c) + 5] fq [0, M), where M is the least
upper bound of the values of H, there is a periodic point Xh such that H(xh) h,
Xh > xo for h > H(xo) (respectively, Xh < Xo for h < H(xo)) and IXh xol < e.

Proof. We consider the case h > H(xo). Let ei (0,... 0, il, 0,... 0), then
from (A2), we have H(xo + ei) > H(xo). Let (1 min<i<n{H(xo + ei)- H(x0)},
then (A2) implies that U-X(h)fq (xo + pei) for all 1 _< i < u, p _> 0, and
h IS(x0), U(x0)+(ti/2)]. It is easy to see that U-X(h)(zo+rt?) is homeomorphic
to the (n- 1)-dimensional disk. Lemma 3.2 and the definition of H shows that T maps
H-(h) N (xo + R_) to itself. The Brouwer fixed-point theorem yields that there is
a periodic point Xh U-(h)fq (xo + R_) for all h [U(xo),U(zo)+ (t/2)]. Also
Xh XO.



1338 BAORONG TANG, YANG KUANG, AND HAL SMITH

Clearly, we can choose a point x > x0 such that for all x E H-(H(xo)+
(5/2))Cl(x0d-R), x < x. Then for all x U-(h) f(xod-R) with h
[H(xo),U(xo)- (5/2)], we have x0 _< x < xl. Let m min(OU(x)/Oxi" 1 <_ <_
n, x0 _< x _< x}. If we choose 5 < min(me, (5/2)}, then it is easy to conclude that
for h IS(x0), U(xo) d- ) [0, M), we have

Ix- x01 < e for x H-(h),

in particular, IXh- XOI ( e.
THEOREM 3.2. In (2.1) assume that the assumptions made in Theorem 3.1 are

true. Then the set of periodic points in Int Rn is connected./

Proof. It follows from Lemma 3.6 and Theorem 3.1.

4. An example. Consider the following three-dimensional system in 13"
+.

(4.1) &2

+
3 + x2 + x3

c(t)xl 2a(t)x2 + b(t)x3
3+x +x3
+
2/xl -t-x2

where a(t) > O, b(t) > 0,. c(t) > O, a(t), b(t) and c(t) are almost periodic. Clearly,
U(xl,x2,x3) (Ux)(2 + x2) + (1 + x)(1 + x3) + (1 + x2)(2 + x3) 5 is the first
integral and system (4.1) satisfies (A1), (A2), (A3), and (A4). Also,

is positively definite. Hence, we can apply Theorem 3.1 to system (4.1).
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ON THE INSTABILITY OF ARBITRARY BIORTHOGONAL
WAVELET PACKETS*

A. COHENt AND I. DAUBECHIES

Abstract. Starting from a multiresolution analysis and the corresponding orthonormal wavelet
basis, Coifman and Meyer have constructed wavelet packets, a library from which many different
orthonormal bases can be picked. This paper proves that when the same procedure is applied to
biorthogonal wavelet bases, not all the resulting wavelet packets lead to Riesz bases for L2(R).

Key words, wavelet packets, biorthogonal wavelets
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I. Short review of orthonormal wavelet bases. An orthonormal basis of
wavelets j,k(x) 2J/2(2x-k), j, k E Z, associated with a multiresolution analysis,
is completely determined by a 2-periodic function m0(). More precisely,

with

(1.2) ()---(271")--l/2H0(--J).
j--1

Here ^ denotes the Fourier transform, normalized by

1

x/ /dxe-’f(x)"

Conversely, given a 2r-periodic function m0, one can define (1.1) and (1.2); if m0
satisfies a few conditions, then the resulting will generate an orthonormal wavelet
basis. Which conditions? Let us assume that m0 is continuous (which is the case
in all useful examples). Then in order for (1.2) to converge, we need m0(0) 1. If
moreover Im0()- 11 _< Clla for some c > 0, then (1.2) converges uniformly on
compact sets. (This is not really necessary, but satisfied in all examples of even the
remotest interest.) Furthermore, orthonormality of the Cj,k implies that

(1.3) Imo()[2 + [mo( + .)[2 1

(see Mallat [14]). This is not sufficient to ensure orthonormality of the ,k, however;
to guarantee this orthonormality we need one more (necessary and sufficient) condition
on m0, of a more technical nature: there should exist a compact set K, congruent
with [-r, r] modulo 2r, such that

(1.4) inf inf [too(2-n)l > O.
Kn>_l
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If all these conditions on m0 are verified, then the Cj,k’S do indeed constitute an
orthonormal basis for L2(). Note that m0(0) 1 automatically ensures that
Im0(2-n)[ > 1/2 for sufficiently large n and all E g (because g is compact), so
that (1.4) is a constraint for only finitely many values of n. See Cohen [4] or Cohen
[5] for a proof of the necessity and sufficiency of this last condition; the condition can
also be recast in other forms [13], [5], [6]. A consequence of (1.4) is that (see Cohen

(1.5) inf [()[ > 0.

The orthonormal basis {j,k;j, k E Z} generated by can be interpreted within
the framework of a multiresolution analysis (see Mallat [14], Meyer [15]). Let V0 be
the space spanned by the functions (x- k), k e Z (which are also orthonormal).
Define V to be the space obtained by dilating V0 by 2J,

f e V f(2-j-) V0;

an orthonormal basis of V is given by {j,k; k e Z}, with Cj,k(x) 2J/2(2Jx- k).
Then

..cV_cV_ c Vo c V c V c ...,

N v (0}, U V L2(It).

Let Wj be the orthogonal complement in V+I of V.
orthonormal basis in Wj, and

Then (j,k; k E Z} is an

(1.6) Wj L2(R).

This is the standard decomposition of L2(R) into different "layers" of wavelets with
resolution 2-J. One can also choose to use only reasonably fine scale wavelets, and to
lump the coarser aspects together into one space, corresponding to the decomposition

(1.7)

2. Orthonormal wavelet packets. Given a 2r-periodic function m0 which sat-
isfies all the conditions in 1, one can define many other orthonormal bases, corre-
sponding to decompositions of L2(R) different from (1.6) or (1.7). They are all des-
ignated by the name "wavelet packets," first defined by Coifman and Meyer; for a
discussion of their properties and some applications, see the two papers by Coifman,
Meyer, and Wickerhauser in [16]. Their construction can be understood easily by
using the following lemma [8].

LEMMA 2.1 (the "splitting trick"). Suppose that the functions fk(x) f(x- k),
k , are orthonormal. Define fo, fl by

a =0,1,
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where mo is as above, ml() e-ie mo( +r). Then the functions f(x)
"1 fo ( z k) f (x) 2fl ( k) k e Z, constitute an orthonormal basis for
E Span{fk}.

Remark. Note that with this notation convention, f(x) 22fa () and not

fa(x).
Proof.

1. Since

d’(k-e) I]( + 2m)l2,

orthonormality of the f is equivalent to ’meZ I](+2m)[ =- almost everywhere.
2. Similarly,

(f, f)) 2 f dSI](25)12e2(k-)e

2 de2i(k-e) Z I/(2 -I- 27rm)[ 2.

Splitting the sum over m into even and odd m leads to

21m0()l2 $]( + 2n)l

+ 21m0( + r)l 2Y 1]( + 7r + 27rn)l2 __1,
n

proving that the f are orthonormal. Orthonormality of the f is proved analogously,
as well as orthogonality of fk and f.

3. On the other hand, if Y]k Ckfk I f[ for all g E Z a 0, 1, then

0 y[,Z Ckfk Z-k dei(k-2e)ma(),
k k

i.e. c() -k cke-ik is orthogonal (in L2([0,2r])) to the e-i2tma(),g e Z, a
0, 1, implying

c()ma() + c( + r)ma( + 7r) 0 a.e., j 0, 1.

Multiplying with ma(), and adding the two equations gives

0 () [Im0()l + m0( + r)l2]
+ ( +.) [o( + )0() 0()0( +.)] (),

proving that -]k ckfk O, SO that the {f[; g Z, a O, 1} span all of E. D
Modulo appropriate dilations, the splitting trick can of course also be applied

to spaces with an orthonormal basis generated by the regularly spaced translates
f(x ak), k Z of a single function, even if a 1.
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If the splitting trick is applied to V0, the space with orthonormal basis {0,k; k E
Z}, where f , then the corresponding functions f0, fl are exactly f(x) (x)
and f(x) (x); it easily follows that the splitting of V0 into the spaces generated
by the fg on one hand, the f on the other hand, is exactly V0 V_ W_. One
can, therefore, view the transition from (1.7) to (1.6) as a result of infinitely many
successive splittings, where at every step the 1 space with smallest index gets split
into two.

Starting with (1.7) one can of course choose to apply the splitting trick to many
subspaces other than V0, leading to many different orthonormal bases. Every one
of the functions generated in this way can be labelled by an overall dilation J, a
translation k, and a sequence e consisting of only ones and zeros, and ending in a tail
of all zeros. Concretely,

fg,k;(X) 2J/2(2Jx k)

with

if jmax is the largest index for which ejm.x 1, this can be rewritten as

The function fJ,t:; is the result Of jmax 1 splittings of Wjmax+J_ For every fixed
choice of a sequence of splittings the result is an orthonormal wavelet packet basis. In
applications to signal analysis, one can use entropy estimates to find the "best" basis
(Coifman and Wickerhauser [11]).

An important special case is where each Wj space is split exactly j times. The
resulting orthonormal basis functions are the integer translates of all the Ce, with e
ranging over all possible sequences of zeros and ones, with a tail of all zeros. This
orthonormal basis is, of all the wavelet packet bases, the closest to a windowed Fourier
transform.

3. Biorthogonal wavelet bases. There exist orthonormal wavelet bases with
compactly supported and . The 2r-periodic function m0 is then a trigonometric
polynomial. By imposing a factorization of the type

m() ( l + e-i )N2
one can construct and with arbitrarily high degree of smoothness [12]. One
inconvenience of these compactly supported orthonormal wavelets is that they are not
symmetric. One can restore symmetry by relaxing the orthonormality requirement.
In this case one works with two 2r-periodic functions, m0 and #to, satisfying

(3.1) mo()ho() + mo( + r)ho( + r) 1.
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There are similarly two pairs of scaling functions and wavelets, defined by

(3.2) H  0(2- 0
j=l j=l

The ,k and ,k now constitute dual Riesz bases; both and can be symmetric (or
antisymmetric) and have compact support (Cohen, Daubechies, and Feauveau [9]).
(Note that there also exists a different scheme of biorthogonal Riesz bases of wavelets,
in which and are symmetric or antisymmetric, and one of them is compactly
supported, while the other is not. See Chui and Wang [3] and Chui [1].)

This corresponds to m0 and h0 which are trigonometric polynomials. We shall
restrict ourselves to this case. In order for the whole construction to work, we need,
of course, to impose again some conditions on m0 and rh0. First, we need m0(0)
1 0(0); the infinite products in (3.2) then converge uniformly on compact sets.
We also need more technical conditions. One of them is similar to the orthonormal
case; i.e., we need that for some compact set K, congruent to [-r, r] modulo 2r,

(3.3) inf inf mo(2-)] > 0
jK n>O

and

inf inf ro(2-’)1 > O.
jEK n>O

Another condition concerns the spectral radius of two matrices derived from m0 and
h0 (see Cohen and Daubechies [7]). One consequence of (3.3) (the only one we shall
use here) is that

inf I()1 > 0, inf b ()l > 0
EK jEK

(see Cohen, Daubechies and Feauveau [9]).
The two pairs of scaling functions generate two multiresolution hierarchies,

cV_cV_cVcVcVc
C r_2 C "_1C /"0 C r1C ,r2 C ...,

(3.5) L2(]R) V0 @ Wj,
j=O

or

and the Wj Span{j,k; k C Z}, (or IV Span(,k; k c Z}) are still complement
spaces of the Vj in Vj+I (or in +1), though no longer orthogonal complements.
The two hierarchies are linked via the property that, for all j E Z,

+/-%.
We can again decompose L2(R) either

(3.4) L2(R) W
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where the direct sums are not sums of orthogonal spaces. If we define Qj to be the
(nonorthogonal) projection operator onto Wj associated with this expansion, then the
L2-norm Ilull 2 is still equivalent with j IIQjull2:

LEMMA 3. l. Let ,, (bj, be biorthogonal wavelet bases, as defined above, with

Then for all u E L2(R),

and

A/B IIQII: <_ Ilull : _< B/A IIQull :

Proof. We can write u Y]j,k Cj,kj,k. It then follows that Qju k Cj,kj,k,

The lower bound is proved analogously. D
A similar theorem holds, of course, for the splitting (3.5).
4. The biorthogonal splitting trick. A natural question is now whether wave-

let packets can be generalized to the biorthogonal setting. Let us first generalize the
"splitting trick."

LEMMA 4.1 (the "biorthogonal splitting trick"). Suppose that the functions
fk(x) f(x k) constitute a Riesz basis for their closed linear span E, with

(4.1) Alckl < ckfk < BZ Ickl’k

for all square integrable sequences (Ck)kg. Define f0, fl by

]() ,(1)](12), O, 1,

with mo as above, and ml() e-iho( / r). Then the functions f o

f(x) 2 f ( k), k e Z constitute a Riesz basis for E, with

(4.2) A’ [la[u + Iblu] [af + bf] B’ [[alu + Ibl],
k k k

where

B A (Mo_/tT/o)/2B’= B(max(Mo, 2t7/o)+ Ao)+
2
e (oo)1/A’= A-l(max(Mo,/17/o) + Ao)+ 2AB
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and

Mo sup [Imo()l2 + Imo( + r)l 2]

2t:/o sup 2 +  )12]
Ao sup Imo()ho( + r) mo( + r)rho()l

Remark. If the fk are orthonormal to start with, and if rho mo (orthonormal
filter case), then Mo -/1/o 1, Ao -0, B A 1, and the new bounds B’ A are
also equal to 1. The estimates below can also be used to prove bounds of the type
(4.2) where the constants B", A" are simply proportional to B and A respectively,
namely

B": B [max(Mo,/Qo) + (MohT/o) 1/]
(4.3)

A" A [max(Mo,2t:/o)+ (M0Jr0)l/2] -1

these "simpler" bounds are less sharp, in the sense that they do not collapse to 1 if
everything is orthonormal.

Proof.
1. For (ck)kez E 2(Z), we denote by c() the 2r-periodic function c()

,k Cke-ik L2([0, 2r]). Then
2 2

ckfk d
k

dlc()l2 I]( + 2k)l2,
k

SO that (4.1)is seen to be equivalent to A/2r k I]( + 2k)l2 B/2.
2. Define ] E by <], fk) $o,k. Then the ](x) ](x- ), E constitute

the dual Riesz basis for the fk. In particular,

and

2

__< A-1 E Icl
k

(Both can easily be derived from f () f()[E I]( + 2rk)]21-1.)
3. We start by proving that the J’, f span all of E. Assume that u E is

orthogonal to all the f[, Z, a 0, 1. Since the ]k constitute a Riesz basis for E,
we can write u -k Ck]k" We have then

0 (u, f[) f dc()f ()]()ma()e-2’,

+ +
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this impliesBecause m and c are 2zr-periodic, and e ]( + 2zr)f ( + 2r) 5-,

ma()c() + ma( + r)c( + zr) 0 a.e.

Multiplying with (), and adding the two equations (a 0, 1) leads to (again,
almost everywhere)

0 (e) [,o(e)o(e) + o(e + )o(e + )]
+ (e + ) [o(e + )o(e) o(e)o(e + )] (e),

which proves that u 0.
4. Next we derive an upper bound on -k [akfg + bkf]. With the notation

F() -]k I]( + 27k)12, we have

[akfg + bkf] 2 d[]()[2 Zake-2ikm() + bke-2ikml ()
k oo k k

2 d [a(2)l2 (F()mo()[2 + F( + )[mo( + )2)
+[b(2)[2 (F()]o( + r)[ 2 + F( + r)[o()[2)

2 d (2() Mo + 2
Im()( + ) too(( + )o(()

+ ()-(+

(- F()+ F( + r)+ Ib(2() Mo + 2
lmo(()o( + ) too(( + )o()

+ F()-F(+r)2 (Moo)1/2)]
[B(Mo + o)+ (Moo)/ I1

+ (o + o)+ (Moo)1/ Ibl,
which implies the upper bound in (4.2).

5. To derive the lower bound in (4.2), we introduce a dual family ]g, ], defined
by ](x)= 2]" (- k), with

/ () h(/2)/(/2),

where rh0() is as above, and rhl() e-imo( + 70. One easily proves (f/, ])
5a,rh,m. For a T 0, for instance,

(f2, ]o) 2 d.o(),o()f()f ()’(-)
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2r

7r- dmo()Cno()e2i(t-m)

7r- d m0()rh0() + m0( + r)rh0( + r) e2i(e-’)

6. The same arguments as in point 4, together with (4.4), prove that

II 12E ak] + bk]
k

_< [A-(max(Mo, AT/o) + Ao) +

A’-I E [lakl 2 / Ibkl2].
k

A-t _B- ]2
(M/1:/) 1/2 [la*l +

k

The lower bound in (4.2) now follows from a simple duality argument.

An immediate corollary is the following.
COROLLARY 4.2. We assume the same as in Lemma 4.1. If u uo + ul is the

unique decomposition of u E E into ua -]k Ckf, then

A B’ 2]B-S [lluoll 2 + Iluxll 2] _< Ilull 2 _< [lluoll 2 + Ilulll

Proof. By the same argument as for Lemma 3.1.

5. Biorthogonal wavelet packets. We can now apply the biorthogonal split-
ting trick to the spaces V0, Wj in the nonorthogonal decomposition (3.5). We start by
choosing, among V0 and all the Wj, an arbitrary subset of spaces to be split, and we
apply the biorthogonal splitting trick to all of them. We end up with a different de-
composition, in which all the "split" spaces are replaced by their two offspring. We can
then repeat the procedure: choose an arbitrary subset, and split again. Every splitting
corresponds to a replacement of the basis vectors as well. If, after L splitting steps,
the subspace W has undergone J _< L splittings, then the ,k(x) 2/2(2Jx- k),
k E Z, will have been replaced by .J 2(J-J)/2bg (2J-gx- l) en 0

3 ;et ,...,ek ;t(a) "ret ,...,ej

or 1, g e Z, with Jt ej () met (/2),... ,mej (2-g) (2-J). The following the-
orem tells us that as long as we confine ourselves to a finite number of splitting steps,
the result is still a Riesz basis.

THEOREM 5.1. Suppose we start from the decomposition (3.5), with
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(5.1)
k j,k kZ j--O kZ

Let us denote by gt the vectors obtained after L splitting steps, as described above
(the label A stands .for J, j, el,... ,eg and g.). Then the still constitute a Riesz
basis, and

(5.2) ALE I’TAI2 -The constants BL, AL are defined recursively by

Bo B, Ao A, o B/A, ao A/B,

and

(5.3)
BL L-1 [BL-1/-t0 -[- (BL-1 AL-1) P0]

AL aL-1 [A_l#o + (A B_I1) o] -1

with

L L-1 [BL-I#0 + (BL-1 AL-1)0] [AI_I#O -b (AI BI) o]
CL L-1 [A#o + (A_I sl) o] -1

[BL-I#O -b (BL-1 AL-1)/2o1-1
and

#o max(Mo, 21/o) + Ao
UO 1/2(Mo/1/o)1/2

(Mo,/1/0, Ao as defined in Lemma 4.1).
Proof.

1. We will work by induction on L, the number of splittings. Suppose that we
have gone through / splitting steps, resulting in a (nonorthogonal) decomposition of
L2(R), i.e.,

L2(R)-Et,m;
m

in each Et,. we have a Riesz basis F,m; k, k E Z. Assume that

2Ay lc., < m,k Cm,kFt,m; k
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and that for arbitrary u E L2(]R), u -]m Ut,m, with Ut,m Et,m, we have

We now choose an arbitrary subset of the (Et,m; m Z} of spaces to be split, and
we apply the biorthogonal splitting trick to each of them. If Et,n is a space that gets
split into E,n Elt,n, then for arbitrary

Ut’n 2 0 0 F,1 u0 uCn,kF,n;k -Jv y Cn,k t,n;k t,n -[- t,n
k k

applying Lemma 4.1 leads to

Bringing all these inequalities together, combining with (5.5), and relabeling the Ft,n; k
as Ft+l,m; k’, we obtain

at [A-I/zo + (A-1 B-1) Vo] -1 = <_
k

<_ t [Bt#o + (Bt At)0] I m, l =.
k

2. From Corollary 4.2 and (5.5) we also obtain

(5.7) = _< I1 11 = _< II ,e+ , ll =
m m

with

fit [Bt#0 + (Bt At)0] [A-[l#o + (A[ B[l) 0],
at [Bt#0 + (Bt At)0] -1 [A-[l#o + (A-[ B[l) u0] -1

(5.6) and (5.7) can be used for the next induction step.
3. To start it all (at L 0), we need (5.1), together with Lemma 3.1, which

leads to

Ao A, Bo B
ao A/B, Bo B/A.

Remarks.
1. If A B 1 and m0 rho, then Mo M0 1, A0 0, and AL BL 1

for every L; in the orthonormal case we recover the exact estimates for orthonormal
wavelet packets.

2. In the nonorthonormal case, BL and A increase very rapidly with L" one

easily checks that (5.2) and (5.3) imply that BL CM2L for large L. In Chui and
Li [2] a different technique is used to derive bounds similar to (5.2), with log BL
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const. L, i.e., only exponential growth for BL. The bounds of Chui and Li do not
seem to collapse to the optimal bounds 1 in the orthonormal case, however. They
also restrict themselves to the case where one chooses, at every splitting step, to split
every available subspace; this is probably not a crucial restriction. The estimates in
the next section show that BL grows at least exponentially with L.

3. For every possible choice of splittings, the dual basis of the resulting Riesz
basis can be constructed by applying e_xactly the same choice of splittings on the
original dual decomposition (with the Cj,k instead of the Cj,k), and using ?0,1
instead of m0, m at every splitting step. This follows from the constructions in 4;
see also Chui and Li [2].

6. Instability of arbitrary biorthogonal wavelet packets. If we choose to
restrict to at most L splittings, then the previous section tells us that we will still have
a Riesz basis, even though the constants involved may be large. In the orthonormal
case, a very beautiful special wavelet packet basis resulted from splitting every Wj
exactly j times. In this decomposition, the total number of splitting steps is not
limited, and Theorem 5.1 does not guarantee that the biorthogonal analog leads to
a Riesz basis. We shall show in this section that in fact we don’t have a Riesz basis
(except in the orthonormal case). Define, as in the orthonormal case,

where e (el,... ,N) is a sequence of length N ([e[ N) consisting of only zeros and
ones. We start by proving several lemmas about the .

LEMMA 6.1. There exists a constant C > 0 such that

(6.1)

for all N and e with [e N.
Proof.

1. Remember (see 3) that there exists a compact set K, congruent with [-r, r]
modulo 2r, so that [(()[ _> C2 > 0 for all ( e g.

2. We have

N

H
j=l

hence

N

j=l

N

H Im, 
j=l

N

II
j=l
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where we have used the congruency of K with [-Tr, 7r], and the 27r-periodicity of the

m. O
LEMMA 6.2. Define p() --Im0()l2 q-Iml ()12. Then for some C > O,

N-1

(6.2) I111 > c2N[ d5 H p(25),
eS Sll_<r j=0

where S is the set of all sequences e (e,... ,e) of length N and consisting of only
zeros and ones.

Proof. The proof follows immediately from (6.1) by summing over the 2N se-
quences e with lenh N, and by chging the integration variable. D

The following lemma will allow us to compute a lower bound for the right-hand
side of (6.2).

LEMM 6.3. Th fuio p() Imo()l Im()l satisfies

P()P( + ) .
Moreover, if mo o (nonohogonal case), then

p()p( + ) > ..
Proof.

I. We know (see 4) that

(6.3) o()o() +o( +)o( + ) .
By Cauchy-Schwarz, this implies

(6.4) [Imo()l + Io( + )i] [Io()I + Imo( + )I] 1

or

+ _> (uso +
2. Equality in (6.4) is only possible for those { for which

rh0() c()mo(), m0( -t- 7r) a()rh0( -t- 7r)
for some c(). For such ,
(6.5) ’rho()’rho( + ’) mo( + ’rr’)mo() O.

3. Suppose that (6.5) were true for all . If we extend the trigonometric poly-
nomials from z e-i on the torus to all z E C (extending Mo(e-i) m0()), then
the identity (6.5) would still hold for all z,

(6.6) lo(z)(-z-) Mo(z)-o(-z-) O,

where for A(z) -]n anzn, we use the notation A(z) -]n ,zn" On the other hand,
extension of (6.3) gives

Mo(z)Mo(z-x) + Mo(-z)lo(-z-) 1,

which means that Mo(z) andM(-z-) share no zeros. It then follows from (6.6) that
Mo(z) is zero whenever Mo(z) is. Similarly one concludes that Mo(z) is zero whenever
Mo(z) is. Since both are polynomials (up to multiplication by an integer power of z),
Mo ---/1/o follows.
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4. If vh0 m0, one finds therefore that the left-hand side of (6.5) is a nontrivial
trigonometric polynomial. It follows that (6.5) can only hold in a finite number of
j. Consequently, (6.4) is a strict inequality except in this finite number of j, which
implies that p()p( + r) > 1 almost everywhere.

We are now ready for the following theorem.
THEOREM 6.4. There exist C > O, A > 1 so that, for all N 6 N, N

_
1,

(6.7) IIll _> cv

Proof.
1. By Lemma 6.2, we only need to prove that

r N--I

f II (1 > c.
j=0

2. By Jensen’s inequality,

log d H p(2j) > dlog p(2j)
[=0

1
d logp(2) d logp().

j=o

3. Since p()p( + zr) > 1 a.e., it follows that

if 1 j"2r d logp() d log[p()p( + )] ff > 0.

Consequently,

w N--I
1 /_ df H P(2if) > en"
27r r j=0

Remark. The argument in this proof is borrowed from the proof of Theorem 3 in
Coifman, Meyer, and Wickerhauser [10].

This suffices to prove the instability claimed above. If the collection

C ((.- k); k e Z} U (e(.- k), k e Z and

were a Riesz basis for L2(R), then it would follow that the L2-norms of all these
functions could be bounded uniformly by some constant C. (A Riesz basis is the
image of an orthonormal basis under a continuous map.) In particular it would follow
that, for all N N,

IIll
_
c# c2g.

This is contradicted by (6.7); the collection C does therefore not constitute a Riesz
basis.
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AN ARITHMETIC CHARACTERIZATION OF THE CONJUGATE QUADRATURE
FILTERS ASSOCIATED TO ORTHONORMALWAVELET BASES*

ALBERT COHENi QIYU SUNS

Abstract. Let h {hn} be a sequence of complex numbers with finite length such that H(w)
hn exp(-2rinw) satisfies the identity In()l / In( / 1/2)1 1 and n(0) X, i.e., h is the im-

pulse response of a conjugate quadrature filter. In this paper, we give a characterization, by the real roots of
H(w), of the sequences h that generate an orthonormal wavelet basis in the sense of the theory developed by
Meyer and Daubeehies. This result leads to a counterexample to Pollen’s conjecture.

Key words, wavelet bases, conjugate quadrature filters, Pollen’s conjecture

AMS) subject classification. 42C05

1. Introduction and results. A conjugate quadrature filter (CQF) is a sequence
h {h,},z of complex numbers with finite length, i.e., there exists a positive inte-
ger N such that h, 0 for Inl > N that satisfies

(1) 2 hh-+2, 5(n) for all n,
m

and

(2) h, 1,

or equivalently, whose Fourier transform defined by

(3) H(w) E hn exp(-27rinw)

satisfies

(4)

and

IH(w)lz + IH(w + 1/2)l 1

(5) H(0) 1.

Here 8(m) i for m 0 and 8(m) 0 otherwise. Let V denote the set of sequences h
that satisfy (1) and (2). For every h in V, following the theory developed in [3], [6], and
[7], we construct two functions o and by

H(6) q3(w) H

and

(7) b(w) exp(-2riw)H w+
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which represent, respectively, the Fourier transform of a scaling function and a wavelet
function in the sense of tempered distributions.. We used the normalization [(w)
f f(x)e2irXdx here.

Lawton proved that for h in V, {,k(x) 2-/z(2-x k)},ez forms a tight
frame of Lz(IR) [4]. It is known that there exists h in.V such that {,k},keZ does not
form an orthonormal basis of Lz(IR). In fact, {,} is an orthonormal basis if and only
if {(x k)}kez is orthonomal. By Poisson’s summation formula, this is equivalent to

(8) Iqb(w k)lz 1 for all
k

We say that h generates an orthonormal wavelet basis if {j,k}j,keZ is of that type.
Hence to prove that h generates an orthonormal basis it suffices to prove that (8) holds
for b defined by the infinite product formula (6).

Mallat [6] proved, using the Lebesgue’s dominated convergence theorem, that if
H(w) # 0 for I1 --< x-

1/4’ then (8) holds for all w in IR. A compact subset K of ]R is said to
lbe congruous to [-, ] if and only if mes (K) 1 and for almost every n [-, ],

there exists a fl in K such that fl is an integer.
Cohen [2] extended Mallat’s result and proved that (8) holds if and only if there

exists a compact subset K of IR congruous to [-1, 1/2] and containing zero in its interior
such that H(2-) # 0 for all w K and positive integers j. This result can be expressed
in the following way: the identity (8) holds if and only if

(9) [b(- k)[ z 0 for all
k

We shall use this important property in the proof of the main theorem of this paper.
Lawton [4], [5] uses an eigenvector relationship between a linear operator on z (Z),

the set of square summable sequences, to characterize sequences h E V that generate
orthonormal wavelet bases.

Let R(H) be the set of real roots of H in (0, 1). In this paper, we shall characterize
these sequences by an arithmetic condition on R(H).

For relatively prime positive odd integers m and n, let Indz n be the least positive
integer k such that 2 1 (rood n) and define the number mi 2ira + n (mod 2n) for

_<_ i =< Indz n. In the next section, we shall prove the following result.
THEOREM 1. Let h V. Then thefollowingpropositions are equivalent:
(i) h generates an orthonormal wavelet basis;
(ii) There exist no relatively prime positive odd numbers m and n 1 such that

H(mi/2n) Ofor all I <= i <= Ind2 n;
N(iii) For all w in ]0, 1[, limN-+oo YIk=0 H(2w) 0.

Remarks.
The proof of Theorem 1 will use the property that the zeros of H() are isolated

points. This result can thus be extended to the case where h is an infinite sequence with
exponential decay.

Pollen [8] conjectured that if h does not generate an orthonormal basis, then there
exists an odd integer n >_ 3 and a sequence h in V such that H(w) (nw). Thus, H(w)
should vanish at all the points {m/2n[m is odd} R,. We shall construct counterexam-
pies to this conjecture by taking two relatively prime odd integers rn and n, m _> 1 and
n >= 3 such that the set {mi/2n, 1 (mi/2n)[1 <= i <= Ind n} t_J { 1/2 } is strictly included
into R,. We will then use the following constructive result.
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THEOREM 2. Let m and 1 be two relatively prime positive odd integers. Then
there exists an h V such that does not generate an orthonormal basis and R(H)
{m/2n, 1 -(m/2n), 1/2ll _-< i __< Ind2 n}.

Observe that H(w) 0 implies H(1 -w) 0 for a sequence h V of real numbers.
Both of the authors obtained the results above independently at about the same time.

2. Proof ofTheorem 1. (a) We start by the assumption that h does not generate an
orthonormal wavelet basis and show that H(w) vanishes on a set of points of the type
{m/2nll <= i <= Ind2 n}.

From (9), we know that for a certain wo in [0, 1], qb(wo + l) 0 for all in Z. Conse-
quently, for all in Z, we can define

(10) j(1) min{j > 0[H(2- (wo 4-1)) 0}

and

(11) ,(l) 2-(O(wo +/)(mod 1),

the associated root of H(w). Because H(w) has a finite number of roots in [0, 1], the
family {t,(/)}ez contains only a finite number of points. We shall proceed in four steps
to prove that this family contains the announced type of set.

Step 1. There exists a sequence {lk}k>O such that j(Ik+l) > j(lk).
We can construct this sequence recursively: take l0 0 and suppose that we have

defined the sequence up to lk. We then write

(12) nk j(lk)

and

(13) #k ’(Ik) 2-n(WO +/k)(mod 1).

We choose for lk+l the value

(14) lk+ l, + 2"*’-.

To check that nk+l is strictly superior to nk, we remark that for all n < nk,

H(2-’(wo + lk+)) H(2-’(wo + lk) + 2n-,*-x)
H(2-n(wo + lk)) 0

and

IH(2-’ (w0 4-/k+))[ IH(2-(w0 4- lk)+ 1/2)1
[H(lk 4- 1/2)l- 1 0.

It follows that nk+x j(lk+) is strictly superior to nk j(lk), and the sequence
{j (l) }tez contains an infinite number ofelements. We shall reuse the sequence/zk, which
satisfies

(15)

Step 2. The family {u(/)}tez contains only rational numbers.
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It suffices to prove that Wo is rational. Since there is an infinite number of j(1) and
only finitely many v(/), it is possible to find and l’ such that v(l) v(l’) and j(1) j(l’).
Consequently, 2-(t) (w0 + l) 2-(t’) (wo + l’) is an integer. It follows thato is a rational
number and so are the {v(/)}ez.

Step 3. v(1) can be written in an irreducible form as v(1) p(1)/2n(1), where p(1)
and n(1) are odd and n(1) > 1.

Let us prove that all the other possibilities are not coherent with the hypotheses.
If v(l) was an integer or a half integer, since v(1) 2-(t) (wo + l) and j(1) _>_ 1, this

would imply that wo is an integer. This is impossible since we have

(16) [(k)]2 -I(0)1= 1.
kqZ

Now, let us suppose that the denominator of v(1) is a multiple of 4, and let us con-
struct the sequence {tk}_> o as in step 1, with go v(1).

We can write go in an irreducible form:

(17) #o 2-po,
n

where po and n are odd and jo >- 2.
By (15), we then have

/ 2n-n go + 2,o_n_o Po + 2-lnn P

which is the irreducible form for # since p po + 2j-tn is odd and prime together
with n. It is dear that jl > jo and by iterating this process we have #k 2- (pk/n)
with jk > jk-. This clearly contradicts the hypothesis that the v(1) are finitely many
(modulo 1).

Finally, if v(1) had an odd denominator, we could write #o po/n, and this would
lead to

+

with j >__ 2, which is exactly the previous situation.
The only solution is v(l) p(1)/2n(1).
Step 4. Now we shall construct the set of zero of H(w) that has been announced.
First remark that the sequence #k can also be generated by taking

(18) #k+l 2nlc-n+’ (,k- 1/2).
For a given #o po/2n we have #o 1/2 (po n)/2n and #o + 1/2 (po + n)/2n.
Clearly, both po n and po + n are even, but since their difference is 2n, one of them
cannot be a multiple of 4.

Consequently, to preserve the arithmetic structure imposed by.the third step, we
shall take

1 (_) po-nisodd,#0- if
2

(19) #x

1(_) po + n
is odd.#0+ if

2
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By iteration we obtain a sequence of numbers:

with {pk+l } { pk + n pk n }2 2
2Z+ 1.

Remark that by choosing/0 in [-1/2, 1/2] rather than in [0, 1], the sequence uk will stay
in [-1/2, 1/2]. It is thus necessarily a cycle.

Let us now consider the shifted cyclic sequence

1 Pk + n qk
(20) 7k=#k+5= 2n n

By (19) we obtain

(21) 7k 27+1(mod 1),

which shows that 7k is a cycle for the transformation w 2w(mod 1). As a consequence,
there exists an odd number m < n such that, after reordering the cycle 7k (in the reverse
order), we have

2ira
(22) 7 (mod 1), 0 _< i _< Ind2 n.

It follows that H(w) vanishes on the set of point {mi/2n[1 <= i <= Ind2 n}.
We have thus proved (ii) =v (i).
(b) We now prove (iii) = (ii). Suppose that (ii) is not true and that H(w) vanish

on such a set. Then it follows that IH(’n)l 1, where {7} is the cycle given by (22).
Consequently, for all N > 0,

(23)
N

H H(2kT0)
k=0

and 70 m/n is in ]0, 1[, which contradicts (iii).
(c) Finally, we show that (i) =v (iii). Since is both compactly supported and square-

integrable, it is in L (]i) by the Cauchy-Schwarz formula. It follows that () has to go
to zero when

By (8), for all w in ]0, 1[, there exist an integer such that (w + l) # 0. Let us write
=+/#0.
We have

N-1

3(2Nwl) H H(2kwt)(wt)
k=0

N-1

H H(2kw)(wt)’
k=0

N-1and thus I-Ik=0 H(2kw) must go to zero when N - +o0, which implies (iii).
This concludes the proof of Theorem 1.
From this proof we see that the cancellation of H(w) at the points mi/2n is a nec-

essary and sufficient condition for the orthonormality to fail. (In fact one can prove that
the numbers v(1) are exactly the points mi/2n modulo 1.)
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3. Proof ofTheorem 2. Let us define

(24)

and let R be the complement ofR tO { 1/2 } in/. Recall that R {m/2nlm is odd}
is the set of all roots of 1 + e2’i’0’.

In order to construct a trigonometric polynomial H(w) that satisfies (4) and (5) and
vanished only on the set Rx tO { 1/2 }, we need to define

(25) P(w)= II
and for each w in R,

(26) Q(w) cos 27rw cos 27rw H [ea’i" ea’’’ 12"

Consequently, Q(w) vanishes on RUn {w, 1 wj } and we have Q(w) Q(1
> 0. It follows that we can find some strictly positive numbers ej such that

(27) R(w) I(1 + eZ’)/2l + sin2 2rwP(w) e:iQ:i(w

is a nonnegative trigonometric polynomial. Clearly, R(w) vanishes only on the set R
{ 1/2 } and one checks easily that it satisfies R(0) i and R(w) + R(w + 1/2) 1.

It suffices then to build a trigonometric polynomial H that satisfies IH(w)l2 R(w),
which exists by using the Riesz lemma. This concludes the proof of Theorem 2.

From this result we can construct counterexamples to Pollen’s conjecture. We can
take, for example,

(28) {1} { 1 7 11 13 15 17 19 23 29 /RI5 tO
30’30’30’30’30’30’30’30’30 = R15.
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AN ELEMENTARY APPROACH TO SOME ANALYTIC
ASYMPTOTICS*

NICHOLAS PIPPENGER

Abstract. Fredman and Knuth have treated certain recurrences, such as M(O) 1 and

M(n + 1) min (aM(k) + 3M(n- k))O<k<n

where min(a,/3) > 1, by means of auxiliary recurrences such as

J" 0 if 0 _< x < 1,
h(x)

l+h(x/cz)+h(x//) ifl_<x<

The asymptotic behavior of h(x) as x oo with a and 3 fixed depends on whether log a/logf
is rational or irrational. The solution of Fredman and Knuth used analytic methods in both cases,
and used in particular the Wiener-Ikehara Tauberian theorem in the irrational case. The author
shows that a more explicit solution to these recurrences can be obtained by entirely elementary
methods, based on a geometric interpretation of h(x) as a sum of binomial coefficients over a triangular
subregion of Pascal’s triangle. Apart from Stirling’s formula, in the irrational case only the Kronecker-
Weyl theorem (which can itself be proved by elementary methods) is needed, to the effect that if t9
is irrational, the fractional parts of the sequence 9, 2, 3t9,..., are uniformly distributed in the unit
interval.

Key words, asymptotic analysis, recurrence relation

AMS subject classification. 26A12

1. Introduction. The analysis of algorithms and data structures, as well as of
constructions for systems such as sorting and switching networks, often leads to recur-
rences. Because recursive algorithms, data structures, and constructions often involve
choices that should be made in an optimal way, the recurrences often involve mini-
mization. In their paper, Fredman and Knuth [FK] treat a large number of related
recurrences by a combination of combinatorial and analytic methods. The goal of the
present paper is to show how in many cases it is possible to replace the analytic com-
ponent of their solutions with elementary arguments. (Here the terms "analytic" and
"elementary" are used in accordance with the practice in number theory: "analytic"
refers to methods based on properties of analytic functions of a complex variable, espe-
cially residues or integral transforms, while "elementary" refers to the absence of such
methods. In particular, "elementary" does not refer to either simplicity or brevity.)
As a bonus, we shall see that our analysis leads to a more explicit and informative
solution in some cases. A preliminary version of our results appears as [P].

Of the recurrences treated by Fredman and Knuth, the one which best illustrates
our contribution is M(0) 1 and

(1.1) M(n + 1) min (oM(k) + M(n- k))
O<k<n"

*Received by the editors May 4, 1992; accepted for publication (in revised form) December 3,
1992. This research was partially supported by a Natural Sciences and Engineering Research Council
of Canada operating grant and a British Columbia Advance Systems Institute Fellowship Award.

fDepartment of Computer Science, University of British Columbia, Vancouver, British Columbia
V6T 1Z2, Canada.
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where a and/ are fixed parameters with min(a,/3) > 1. (This is the case "g(n) n0,"
dealt with in their 6.) By straightforward and elementary arguments, Fredman and
Knuth reduce the study of (1.1) to that of the function h defined by

0 if 0 _< < 1,h(x) l + h(x/a) + h(x/) ifl_<x<

The analysis of Fredman and Knuth proceeds by considering the integral trans-
form

oo h(t) dt
g(s)

of h, which, with the aid of (1.2), can be shown to be K(s) l/s(1 a-8 -/-8).
This function is analytic in the open half plane Re(s) > % where "r is the unique real
solution to

(1.3) a- +/-7 1.

Furthermore, K(s) has a simple pole at s /with residue C 1/(a-7 loga +
/3- log/3), as is easily calculated. This pole will ultimately give rise to a factor Cx
in the asymptotic behavior of h(x).

The behavior of K(s) on the remainder of the critical line Re(s) " depends on
whether log a/log/ is rational or irrational. If this quotient is irrational, the pole at
s V is the only one on the critical line, and a Tauberian theorem due to Wiener,
Ikehara, and Landau (Lemma 4.3 in Fredman and Knuth) leads to the conclusion that

(1.4) h(x) Cx

in this case. If the quotient log a/log/ is rational, K(s) has additional poles period-
ically disposed along the critical line. Application of Cauchy’s residue theorem leads
to the conclusion that

(1.5) h(x) D(x)x

in this case, where D(x) is a periodic function of log x whose period is determined by
the spacing between poles along the critical line, and whose Fourier coefficients are
determined by the residues at those poles.

In this paper we shall derive (1.4) and (1.5) in an elementary fashion. This new
derivation has the merit of giving a simple explicit formula for the function D(x) in
(1.5). We shall also want the solution to the related recurrence

h’(x) / 0 if 0 _< x < 1,1.6) 1 + oh(x/o) +/h(x/) if i _< x < oc.

By analogous elementary methods, we shall show that

(1.7) h’(x) C,x+l,

where C’ 1/(a- log a+l + 3- log/’r+l) in the irrational case, and

(1.8) h’(x) D’(x)x+,
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where D (x) is a periodic function of log x which will be determined explicitly in the
rational case.

Fredman and Knuth showed that (1.4) implies that

(1.9) M(n) An1+1"v,

where A is an explicitly determined constant in the irrational case. We shall show
that (1.5)and (1.8)together imply

(I.I0) M(n) B(n)nl+l/’v,

where B(n) is an explicitly determined periodic function of log n in the rational case.
(Once the form of the functions D(x) and D(x) are explicitly known, it is possible
to go back and derive these results by extending the analysis of Fredman and Knuth.
This would involve showing that certain Fourier series converge to certain periodic
functions. But since there is no general procedure for identifying a function from its
Fourier series, it does not appear to be possible to extend the analysis of Fredman and
Knuth without knowing what D(x) and D(x) are by some other method.)

2. The rational case. Our analysis begins with the observation that h(x) is
the number of words over the alphabet {(, having weight at most x, where the
weight of a word is the product of its letters. (We take the weight of the empty word
to be unity.) Indeed, if 0 _< x < 1, then there are no such words and h(x) 0. If
1 _< x < cx, then h(x) 1 + h(x/o) / h(x/), and any word for which the product
of the letters is at most x must either be empty (and there is 1 such word) or consist
of an a followed by a word for which the product of the letters is at most x/a (and
there are h(x/a) such words), or consist of an/3 followed by a word for which the
product of the letters is at most x/ (and there are h(x/) such words). Since there
are exactly (i+j) words that contain i a’s and j 13’s, we have established the following
explicit formula for h(x):

(2.1) h(x)= y (i+J).i
Taking logarithms in the constraint of the summation, we see that h(x) may be in-
terpreted as the sum of the binomial coefficients (i+J) in Pascal’s triangle over the
triangular subregion bounded by the inequalities i _> 0, j > 0, and

i log a + j log/3 _< log x.

Suppose that log c/log is the rational number p/q, where p and q are positive
integers such that gcd(p, q) 1. Then log, p/(p + q), loga f q/(p + q), and
if we set

(Ol)l/(pTq),
then (2.2) becomes

pi + qj <_ lode x.

Since p, q, i, and j are integers, we see that h(x) remains constant as x increases
except when lode x passes through an integer k when it jumps by

(2.3) S(k)= Z
piTqj--k

i
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We shall see below that S(k) has the asymptotic formula

(za) (c

where
a ff (a)’/(+q).

If we set S*(l) Y0<k<t S(k), it follows that

s,(g) (Ca log a) a
a-1

This formula gives the asymptotic value S*(l) of h(x) when x is a "magic" number
of the form x t. The asymptotic formula for arbitrary x follows from this and the
fact that h(x) remains constant between magic values of x. If we write logo x + A,
where l= [logo xJ (the integral part of logo x) and A {logo x} (the fractional part
of logo x), then

where

(Ca log a) a
rr--1

(Ca1- log a) at+:
a-1

P((logo x}) x’,

P(A)
Cry1-A log a
a-1

This establishes (1.5) with D(x) P({log x}), which is periodic in log x (with period
log ), as claimed.

It remains to establish (2.4). The major steps of the derivation are as follows.
First, we approximate the binomial coefficients (+J) (i+j)!/i!j! in (2.3) by applying
Stirling’s formula to their constituent factorials. If we separate the approximation
into algebraically varying factors and exponentially varying factors, we see that the
exponentially varying factors impart to the summand a peaking reminiscent of the
central limit theorem: the greatest contribution to the sum comes when i and j are in
the fixed ratio a-/fl-. This variation allows the terms of the sum not near the peak
to be neglected. The resulting truncated sum is then estimated by an integral; the
error in this estimation is at most the total variation of the summand, which (since
the summand is unimodal) is at most twice the largest term. The resulting integral

71.I/2can be transformed into the well-known integral f_ e- dy by adjoining
negligible tails. The result is (2.4).

Successive values of i and j differ by q and p, respectively; it will be convenient
to have an index whose successive values differ by 1. Thus we introduce the index m
satisfying

i qm, j k/q pro, i + j k/q (p q)m.

This index assumes values that are not necessarily integers, but are congruent to 1/q
modulo 1.

LEMMA 2.1.

(1 2rij ) m
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where

E(#) F(G(#)),
q2#

G(#)
1 (p- q)q#’

F() H()
p + q(1 )’

H(u) -ulog- (1 )log(1 ).

Proof. The estimate

1(i-J)--(l+O( )) li+jl/2\2rij] exp(i +j)H
i + j

is an immediate consequence of Stirling’s formula

n! ll + O l)) (2rn)l/2e-nnn

(see Knuth [K1, 1.2.11]). Define such that

i= (i + j), j (1 u)(i + j), ( + q( ))(i + j).

Then
1/2

i 2rij j

Define # such that

Then and # are related by

exp kF
i + j

q2
1 (p- q)q#’ # q2 + (p_ q)q"

This yields the assertion of the lemma, r
LEMMA 2.2. The function F() assumes its unique maximum (for 0

_ _
1) at

At this point

F(N) log a, F’(N) O, F"(N) N(1 N)A’

where
A pN + q(1 N)

and the primes indicate differentiation. Accordingly, E(#) assumes its maximum at

N

and at this point

E(M) log a, E’(M) =0, E"(M)
A3

N(1 N)"
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Proof. We shall let H(0) H(1) 0; this makes H(u), and therefore F(u),
continuous on the closed interval 0 < v < 1. These functions are in fact analytic in
the open interval 0 < < 1, and thus F() can assume its maximum only where its
first derivative vanishes or at an endpoint. We compute the first derivatives

H’(v) log(1 u) -logv,

F’()
H(v)(p- q)

+ q(1
+ +

Equating F’(u) to zero leads to the equation

(p + q(1 ))H’() (p- q)H().

This has the unique solution u N, where

N a-’ o’--P

so that
1 N -’ a-q.

This gives
F(N) log a,

which is obviously larger than F(u) at either of the endpoints. We compute the second
derivatives

1
H"(u) -u(1 u)’

F"(u)
2g(u)(p- q)2

+
H"(u)2H’(u)(p q) +

(pu + q(1 u)) 2 pu / q(1 )"

Since the first two terms of F"(u) are a multiple of F’(u), they vanish at u N,
leaving

1
F"(g) -N(1 N)A"

This derivation can be carried over to E(#), E’ (#), and E"(#) through the derivative

a’(.)
q2

(1 (p q)q#)2 (pu + q(1 u)),2

and the chain rule.
LEMMA 2.3.

1Z (1 +0 (+-)) (i-.I-j’ :t12

m \ 2rij ]

_--(1+0( (lg k)3/2k/2 ) ) -’ak

m
exp kE (-)

Here the sum over m, as described above, is over i > 0 and j >_ 0 such that i + j k,
with m i/q.
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Proof. The major steps of the derivation are as follows. The central peaking of
the summand will be exploited, allowing the tails of the summation to be neglected.
The decaudated sum can be ,simplified, since the algebraically varying factors behave
like constants in the remaining range of summation. The resulting sum will be esti-
mated with an integral, to which the tails previously removed will be restored. The
recaudated integral can be evaluated by standard methods.

Our sum is

where

i-b))(i-bjl/22rij]
Since E(#) is analytic at # M, it can be expanded in a Taylor series about this
point. The result is

E(#) log a- (#- M)2/52 + O((#- M)3),

where

5 I2N(1- N) )
We shall break our sum into three parts,

m m<a a<_m<_b b<m

where

a Mk_ (6N(1- N)klgk) /2

A3

b_ Mk + (6N(1- N)klgk)
1/2

A3

To estimate the sum over m < a, we observe that it comprises O(k) terms, each
of which is at most Wa. We have E(a/k) log a 3(log k/k) + O((log k/k)3/2) (by
the Taylor expansion). Thus

Wa=O V
and so

Similarly,

w =o
m(a

=o
b<m

and thus

w +o
m a<m<b
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For any term in the sum over a < m < b,

from which it follows that

i=- 1+0

j_(i-N)k(A1+O((1 k)1/2
and

Thus

where

and therefore

Wm_(l+o((logk)3/2 A
kl/2 )) (2rkN(I_N))

Vm exp-((m- Mk)2/52k),

akVm

(2.6) - Wm._(l+o((logk)3/2))( A3 )1/2kl/2 2rkN(1 N)
O’k Z Vm.

a(m(b a(m(b

Now
b

(2.7) Vm Vx dx / O(1),
a_m_b

since the total variation of the integrand is O(1). We shall express our integral as the
sum of three integrals:

Vx dx V: dx + V: dx Vz dx.

Integration by parts gives

Vdx O =0

Similarly

and thus

/a V dx 0

(2.s) Lb I_- (1)Vdx Vzdx +O
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Using the transformation

and the well-known integral

x Mk + ,kl/2y

exp _y2 dy rl/2,

we obtain

Working backwards through (2.8), (2.7), (2.6), and (2.5) yields the assertion of the
lemma.

The formula (2.4) follows from Lemma 2.3, since Clog a 1/A.
We should mention here that the special cases p q 1, where S(k) 2k, and

p 1, q 2, where S(k) Fk+ k+/vf (in which Fn is the nth Fibonacci
number and (1 -t- x/)/2; see Knuth [K1, 1.2.8, eq. (15) and Exer. 16]) are well
known, and the analysis just given can be regarded as a generalization of these cases.
Furthermore, that a 2 and a are algebraic in the examples just cited is not
accidental: the rationality of log c/log p/q implies that (- and/- are roots of
the polynomials (1- z)p zq and zp (1- z)q, respectively, whence (a)/(p+q)
is algebraic.

In 4 we shall also want the solution to the recurrence (1.6) for h(x) in the
rational case. Let us call the product of the letters in a word over the alphabet (c,}
the weight of the word. Then h(x) is the sum of the weights of all words whose weight
is at most x, and thus we have the explicit formula

The treatment of this sum is completely analogous to that of (2.1); the result is

h’(x) P’({logo x}) x+,

where

P’(A)
C’T-) log T

T--1

in which
T +1

This establishes (1.8) with D’(x) P’({loge x}).
3. The irrational case. When log c/log/ is irrational the analysis of the pre-

ceding section is not applicable, for as x increases new binomial coefficients enter the
sum one by one, rather than in the regularly spaced platoons of the rational case.
Furthermore, the order of their entry is very irregular, with small coefficients near
the axes being interspersed with large ones near the main diagonal. The analysis of
this section is based on a regularity of averages amid this irregularity of detail, as
expressed by the "ergodicity of an irrational rotation of the circle." We shall use in
particular the Kronecker-Weyl theorem, to the effect that if z9 is irrational, then the
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fractional parts of the sequence 0, 2, 30,..., are uniformly distributed in the unit in-
terval. (This theorem as stated was proved by Weyl [Wl]; Kronecker [K2] proved that
if is irrational, then the fractional parts of the sequence , 2, 3,... are dense in
the unit interval.) Weyl’s orginal proof (which is probably still the simplest proof) of
this theorem was based on Fourier series, which by some tastes might not be accepted
as elementary. A subsequent proof based on continued fractions (see Nivin IN, Chap.
6, 3]) is incontestably elementary however.

We shall say that a subset .=. of the unit interval is an "interval modulo 1" if it is
the image modulo 1 of an interval. (Thus [0, /2) t2 [1 /2, 1) is an interval modulo
1 of length .) The Kronecker-Weyl theorem asserts the following.

Let v be irrational. For every 0 < < 1 and 0 < y < 1, there exists a natural
number t such that, if .. is an interval modulo 1 of length and T is any set of t
consecutive integers, then at least (1 y)t and at most (1 + y)t of the integers i in
T are such that (iO} falls in ... (This theorem is often stated in the special case in
which T (1,... ,t}, but shifting T to T + u is equivalent to shifting .=. to - u
modulo 1, so the special case implies the general.)

Let e > 0 be fixed. Define the function he(x) by

(3.1) he(x)= E (i+J).i
Taking logarithms in the constraint of the summation, we see that he(x) may be
interpreted as the sum Of the binomial coefficient over the trapezoidal region bounded
by the inequalities i > 0, j > 0, and

(3.2) log x < i log a + j log < log x.

We shall see below that he(x) satisfies the asymptotic inequalities

(3.3) C’),e(1 e)e-ex < he(x)

as x - oc with fixed. (Here f(x) < g(x) means that limsupz_.o f(x)/g(x) <_ 1.) If
we set [log x/J + 1, then xe-le < 1, so we have

O<k</

It follows that
CTe(1 e)e-rexr

1 e-re
< h(x) < C7(1 + )xr

1 e-re
Since this holds for every > 0, we may let -- 0 and obtain (1.4).

It remains to establish (3.3). The proof follows the same general lines as that
of (2.4), but is complicated by the fact that the lattice points (i, j) are not equally
spaced in the trapezoid (3.2) as they were along the boundary of the triangle (2.2). Our
salvation comes from the Kronecker-Weyl theorem, which shows that though they are
not "equally spaced," they are "uniformly distributed." This will allow the trapezoid
(3.2) to be broken into pieces, each of which is sufficiently large so that it contains a
number of lattice points approximately proportional to its area, yet sufficiently small
so that the binomial coefficients associated with these lattice points are approximately
equal.
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Suppose that e < log and set 0 log a/logf, so that 0 is irrational. Let us
say that a natural number i is "lucky" if there exists a j such that i and j satisfy the
inequalities (3.2). Clearly there exists such a j if and only if (i0} falls in the interval
((log x e)/log f, log x/log fl]. (Since the length of this interval is /logf < 1, it
contains either no integers or one integer.) By the Kronecker-Weyl theorem, with

/log and , we may choose t such that among any t consecutive natural
numbers there are (1 + e)t/log lucky values of i.

For lucky i, we shall regard j as a function of i. We shall abbreviate i log a+j log
by k (which is not necessarily an integer). We shall abbreviate log x by (which is not
necessarily an integer), and k by A (so that 0 _< A < ).

Since we no longer have the parameters p and q, we shall use log a and log in
their stead. Thus we introduce m satisfying

i m log/3, j (1 A)/log/3 m log a, i + j (1 A)/log/3 re(log a log/3).

Let us say that a value of m is "lucky" if it corresponds to a lucky value of i. Hence-
forth, we shall take m to range over lucky values, and regard i, j, k, and A as functions
of m for these lucky values.

By analogy with Lemma 2.1, we have

i i+)) (i+ j 1/2

2rij ) expkE (-),
where

E(#) F(G(#)), F(u) H(u)
u log c + (1 u) log’#(lg)2

H() -logu- (1 )log(1 ).G(#)
1 (log a log) log’By analogy with Lemma 2.2, the function F(u) assumes its unique maximum (for

0_< u_< 1) at
N c-, 1 N -.

At this point

1
F(N) "),, F’(N) O, F"(N) ---’llv

where
A N log c / (1 N) log

Accordingly, E(#) assumes its maximum at

N
A log/’

and at this point

A3
E(M) , E’(M) O, E"(M) N(1 N)"

We now seek the analog of Lemma 2.3, which is the following.
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LEMMA 3.1.

In this lemma and all that follows, the constants.implicit in the O-terms may depend
on . The inequalities involving the O-terms are to be interpreted as follows: for every
> 0 and every choice of the O-term in the middle expression, there exist choices of

the O-terms in the outer expression such that the inequalities are satisfied for all x.

Proof. Since e _< k _< and E(#) < , we have

e-’eexplE _<expkE _<explE -Thus it will suffice to prove

1 + O ( (log/)3/2
1/21 )) (1- e)eXA

1 (i+j /2
(3.4) N 1 + O + exp lE

m

_< (1To((logl)3/2))ll/2 (1T)x
Choose t using the Kronecker-Weyl theorem so that, for any interval of length

e/log/ modulo 1, among any t consecutive integers i, there are between (1-e)et/log/
and (1 + e)et/log/ such that {ivY} falls in the given interval modulo 1. Set L
(t log/)/2. Set

Q= (6N(1 N)llogl) /2A3

and set

q=
2L

so that (2q + 1)L is the smallest odd multiple of L that is not less than Q.
Our sum is

IV,,,

where

Wm (1TO ( 1- + 1)) (i+j/2\2rij]
Since E(#) is analytic at # M, it can be expanded in a Taylor series about this
point. The result is

E(#) (# M)/ + O(( M)3),
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where

(2N(1 = N))
1/2

We shall break our sum into three parts,

Zw.,= Zw.,+ Z w.+
m m<a a(_m<5

where
a Ml- (2q / 1)L,
b Ml / (2q / 1)L.

We shall need the following approximation property of E(#). If m is of the form

m M1 + O((1 log/)1/2),

then (since Ik _< ) we have

--T =o

Furthermore, since E’(#) O(I# M[) in a fixed neighborhood of M, we have

I" (T)I- o 13/2

To estimate the sum over m < a, we observe that it comprises O(1) terms, each
of which is at most Wa. We have E(a/k) E(a/1)+ 0((10gl)1/2/13/2) (by the
approximation property with m a) and E(a/1) 7 3(log l/l) + O((log l/l)32) (by
the Taylor series expansion). Thus

W=O T-
and so

Similarly,

and thus

(*)w.=o -W,. 0 (x’-),

(3.5)
a<_m<b

For any term in the sum over a _< m < b,

m-Ml(l+O(()l/2))
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from which it follows that

and

Thus

where

And, therefore,

V, exp-((m- Mk)2/52k).

xVm,

(3.6) E Wm_(l+o((logl)3/2))( A3 )1/2 v..11/2 2r/Y(1 N)a_m(b a_m(b

To estimate this sum, we divide the interval [a, b) into 2q / 1 intervals, each of
length 2L:

E E Ev ,
a(_m<b

where Ir [M1 -t- (2r 1)L, Ml + (2r + 1)L) is the half-open interval of length 2L
centered at cr M1 -t- 2rL.

We shall need the following approximation property of Vm. If m and c are each
of the form

m, c Ml + O((1 log/)1/2),
and Im- c < L, then we have

=o

Furthermore, since (d/dm)log Vm O([#- M[) in a fixed neighborhood of M, we
have

Using this approximation property, we may replace the summand V, by the
constant V in the inner sum over m E It, so that

E Vm: (1+0 ((1g/)1/2))13/2
mElr mIr
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By the Kronecker-Weyl theorem, we have

(1 )25 _< I _< (1+)25
mGIr

for each r, since the lucky values of m in Ir correspond to lucky values of i in an
interval of length t. Thus we have

(3.7) (1-e)e2L Z V _< Z Vm <_ (1-+- e)e2L Z Vc.
--q<_r<_q a<_m(b -q<_r<_q

The sum ---q<_r<_q Vc may now be approximated by an integral, extended to an
infinite range of integration, and evaluated by an appropriate substitution, all as in
the proof of Lemma 2.3. The result is

1 (2rlN(i-N))
/2 (1)+o

Working bckwards through (a.r), (a.), (a.) yields (:}.4). r]

The formula (3.3) follows from Lemma 3.1, since 07 1/A. We observe that
the same method works to establish the asymptotic formula (1.7) for h’(x) in the
irrational case.

Though we have derived (1.4) and (1.5) by parallel arguments, there is an im-
portant difference between these derivations. We could have done the analysis in 2
to obtain an O-estimate for the error in (1.5); the most straightforward way of do-
ing this yields a factor of (1 / O((loglogx)3/2(logx)-/2)). No such sharpening is
possible for (1.4), however, since the Kronecker-Weyl theorem, in the form we have
cited, gives no estimate for the rate of convergence to the uniform distribution. The
same phenomenon arises for the analytic proof using the Wiener-Ikehara theorem, for
while convergence follows from the behavior of K(s) on the critical line and the right
half plane it bounds, the rate of convergence depends on how closely the poles in the
left half plane approach the critical line as their imaginary parts grow (see [W2], [I],
ILl). With either method, the missing information depends on how well the irrational
number log a/log/ can be approximated by rational numbers as the denominators of
these rational numbers grow. This is the crux of the difference: all rational numbers
are alike, but each irrational number is irrational in its own way.

Since we have not made any quantitative hypothesis concerning the irrationality
of log a/log/, we cannot expect to draw any conclusion about the rate of approach
in (1.4). If however we assume that [log a/logfl- p/q[ is bounded away from zero
by a function of q, the elementary method used here (as well as the analytic method
used by Fredman and Knuth) can be adapted to yield an explicit O-estimate in (1.4).

4. Conclusion. After deriving (1.4) and (1.5) in a new way, and obtaining ex-
plicit descriptions of the functions D(x) and D’(x) appearing in (1.5) and (1.8), we
shall exhibit in this section the consequences of these explicit descriptions for the
original recurrence (1.1).

Fredman and Knuth show, by elementary arguments, that

(4.1) i(n) 1 + (a +/- 1)W(n),

where W(n) is the sum of the weights of the n words having the smallest weights.
(Recall that the weight of a word over {,/} is the product of its letters.) By the def-
initions of h(x) and h’(x), we have W(h(x)) h’(x). Let us assume that log a/log/
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is rational. Recall that a value of x is "magic" if x for some natural number 1.
We have D(x) P(0) and P’(x) P’(0) for all magic values of x, and the asymptotic
formulas

(4.2) h(x) P(0)x

and

(4.3) h’(x) P’(O) x+l,

valid for magic values of x.
Let us say that a value of n is "magic" if n h(x) for some magic value of x.

Then (4.2) and (4.3) yields the asymptotic formula

(4.4) W(n) P’(O) P(O)
valid for magic values of n.

To extend (4.4) to arbitrary values of n, we observe that as n increases between
magic values, W(n) increases by the addition of equal weights. Thus the points of
the graph of W(n) between magic values of n lie on the chords joining the points of
the graph at successive magic values, and the formula for arbitrary n is obtained by
linearly interpolating between the values given by (4.4) for magic values of n. This
gives

W(n) P’(O)Q p(o p(o
where Q(A) (1 A + A)-, which establishes (1.10) with

which is periodic in log n (with period log a), claimed.
We have dealt in this paper with particular recurrences, (1.1) and (1.2), taken

from edman and Knuth. It is possible to extend the analysis straightforwardly to
a number of other recurrences of similar form, , for example, with initial conditions
imposed on an initial segment {0, 1,..., r} of the domain, rather than just at the
point zero, or with three terms on the right-hand side, rather than just two. We see
the contribution of this paper, however, residing more in its methods than in their
scope. The Wiener-Ikehara-Landau theorem used by edman and Knuth is of an
essentially "Tauberian" character, inferring the ymptotics of a sequence from that
of its sum. It is virtually equivalent in depth to the prime number theorem, whichw
in fact the application that motivated Wiener, Ikehara, and Landau. The arguments
used in this paper, however, are not only elementary, but also "direct" or "Abelian" in
character: they infer the ymptotics of a sum from that of its terms. These arguments
are much less delicate than the ones they replace, and they show the phenomena we
have studied to be less deep than h hitherto been supposed.
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Abstract. A technique of producing signals whose energy is concentrated in a given region
of the time-frequency plane is examined. The degree to which a particular signal is concentrated
is measured by integrating the Wigner distribution over the given region. This procedure was put
forward by Flandrin, and has been used for time-varying filtering in the recent work of Hlawatsch,
Kozek, and Krattenthaler. In this paper, the associated operator is studied. Estimates for the
eigenvalue decay and the smoothness and decay of the eigenfunctions are established.

Key words, time frequency localization, Weyl correspondence, Wigner distribution
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1. Introduction. It is well known that the time-frequency characteristics of
a square integrable signal cannot be arbitrary. For example, no such signal can be
both time and band limited. The Heisenberg uncertainty principle provides another
quantitive restriction on the joint time-frequency behavior of a square integrable signal.
These facts indicate that a signal cannot have all its energy concentrated in a finite
region of the time-frequency plane.

Nevertheless, in many applications it is important to use signals whose time-
frequency characteristics.are highly localized. Among other things, the work of Lan-
dau, Pollack, and Slepian [7], [8] produced a rigorous development of band-limited
signals that are as concentrated as possible within a prescribed timespan. More re-
cently, there has been interest in finding signals that are localized in general regions
of phase space via methods that keep time and frequency on an equal footing (see the
papers of Daubechies and Paul [5], [6]).

In this paper, we study a localization technique that uses the Wigner distribution
to measure the degree to which a signal is concentrated in a particular region. This
leads to a self-adjoint localization operator that is easy to study in terms of the Weyl
correspondence. Under the Weyl correspondence, a function of two variables--called
the symbol--is associated with an operator on functions of one variable. The symbol
of the localization operator is simply the indicator function of the given region in the
time-frequency space. The eigenfunctions of this operator with large eigenvaluesspan
a subspace that can be used to determine the component of a general signal that is
concentrated within the given region of the time-frequency plane: one computes the
projection of a general signal into this subspace. This procedure was put forward by
Flandrin [10], who derived a number of useful results, including Lemma 4 below. It
has since been developed in the context of time-varying filtering (see, for example, the
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papers of Hlawatsch, Kozek, and Krattenthaler [2], [3]). This paper is devoted to the
further study of the localization operator descibed above. The asymptotic properties
of the eigenvalues are studied and the fact that they are O(k-3/4) is established. In
addition, the eigenfunctions with nonzero eigenvalues are shown to have faster than
exponential decay in both the time and frequency domains. This, of course, leads to
a statement regarding the smoothness of these eigenfunctions. In particular, we show
that they are analytic. In the last section, some numerical examples are provided.

2. The Weyl correspondence. The basic properties of the Weyl correspon-
dence that we will need are collected in this section; for a thorough treatment, the
reader is referred to the book of Folland [1].

Let f, g E L2(]R). A general time-frequency shift of f is

p(T, a)f(t) erie2riqtf(t + T).

The cross-ambiguity function of f and g is

A(f, g)(T, a) (p(T, a)f, g)

/ eri’ae2ritf( + dt

f +

The value of A(f, g) at a particular point is the cross-correlation between a particu-
lar time-frequency shift of f against g. The ambiguity function is therefore a time-
frequency cross-correlation between two functions. The Wigner distribution is the
two-dimensional Fourier transform of the cross ambiguity function, thus giving it the
interpretation of a time-varying spectrum. The Wigner distribution can be written as

W(f, g)(, t) / e-2*f(t + T/2)g(t T/2) dT.

Several useful properties of the Wigner distribution are catalogued below.
THEOREM 1. Let jr, g L2(R). Then
(1) W(f,g)(,t) L2(]2) and IlW(f,g)ll 2 Ilfll211gll 2,
(2) w(f, g) c0( 2) and IIW(L g)llo _< Ilfllllgll,
(a) f) W(f
(4) W(], t)(, t) w(y, g)(t,-), and
(5) W(p(a, b)y, p(a, b)g)(, t) W(I, g)( b, t + a).
The Weyl correspondence uses the Wigner distribution to define a correspondence

between functions of two variables and operators on L2(R). It is defined, via duality,
by

(LsY, g) ]] S(, t)w(y, g)(, t) ddt,

where f, g L2(]R) and S(, t) is a function with appropriate decay properties. S(, t)
is the symbol of the operator Ls. The following theorem of Pool [9] is useful.

THEOREM 2. A symbol S(,t) L2(R2) gives rise to an operator Ls that is
Hilbert-Schmidt on L2(]). Moreover, the mapping S Ls is a unitary operator
from L2(R2) to the Hilbert-Schmidt operators on L2(R).
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LEMMA 3. LS is self-adjoint if S(, t) is real valued.
The following result was derived by Flandrin in [10], based on results of Janssen

[11]. We will follow the development in [1].
LEMMA 4. The eigenfunctions of the operator Ls corresponding to a radially

symmetric symbol S are:

Proof. Theorem 1.105 in [1] shows that

k. 2X/-Z j kL(k k [22(--1)k e-2,zl (47[z)
W(hj,hk)(,t)

2(-- 1)J e-2lzl2 (2Vr)k-J (4lzl2)

for j_> k,

for k >_ j,

where z t + i and L(ka) is the associated Laguerre polynomial. Set r Izl and note
that

(Lshj, hk} f/ S(r)W(hj, hk) ddt

s( l
for j # k,

for j k.

Hence

(1) Aj (-1)J4r S(r)e-2rr2L)(4rr2)rdr.

3. Localization via a cut-off. The localization operator we are concerned with
is Lx, where Xa is the characteristic function of some bounded domain in the t-
plane. We will assume that C I-B, S] I-T, T]. Note that

(Lxaf g} =//a W(f g).

L is self-adjoint since Xa is real valued. Pool’s theorem implies that Lx is Hilbert-
Schmidt. Hence there is an orthonormal basis 1, 2,... of L2(R) and real numbers
A1,A2,... such that Lx,k AkCk. The Hilbert-Schmidt norm of Lx, is IAkl 2
I1, the measure of Ft. We will assume that the eigenvalues are arranged in order
of decreasing absolute value. It is easy to check that the largest positive eigenvalue
corresponds to the maximum energy an L2 function can have within the domain
gt. The corresponding eigenfunction would then be a time function with energy as
concentrated as possible within gt. Our principal aim in this paper is to study the
decay of the eigenvalues of Lxa and the smoothness properties of the eigenfunctions.

Several properties of the associated kernel will be of importance.
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LEMMA 5. The kernel of the operator Lx, is given by the equation

K(s’ t) J Xa (’
s 4- t

and has the properties
(1) g(s, t) 0 if Is 4- t >_ 2T; and
(2) if the cross-sections of in the direction consist o.f at most M intervals,

<_ CM/(I I + 1).
Proof. The formula for the kernel is well known (see [1]). The kernel can be

written as

K(s,t) F t-s,
2

where

F(V/, t) e-2"in d.

Item (1) follows from the observation that e if Itl _> T. We now verify item
(2). By assumption, the cross-section is the union of at most M disjoint intervals:

uiL=l [ci,/i] for some integer L _< M. Therefore, one can estimate that

sin(Tr(/kIF(v/, t)l

_
e

< Z
2L 2M

since sin(Ax)/x <_ max(2, A)/(Ix 4- 1). The estimate only needs to be verified when
Is 4- t <_ 2T. In this case,

Is t + 2T > Is t + Is + t > 211.

Using this and the estimate for F(V/, t) yields

CM
IK(s’t)l <- -tl + 1

CM
2Is + 1 2T

for all large s. The estimate in the theorem follows easily by adjusting the constant
as necessary.

For domains with piecewise C boundary, we can show that Ak is 0(k-3/4).
The proof is a modification of Weyl’s classical work on the asymptotics of eigenvalues
of integral equations. The following lemma contains some useful standard facts about
the Weyl correspondence. Again we refer the reader to [1] for the proofs.
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LEMMA 6. (1) The operators corresponding to S(,t) and S(- o,t- to) are
unitarily equivalent.

(2) Suppose the symbols $1 (, t) and $2(, t) are related by an orthogonal change
variables. Then the corresponding operators are unitarily equivalent.
We will first prove that ,k is O(k-3/a) for domains of the following form:- {(, t) a(t) <_ <_ (t), t e I-T, T]},

where c(t), (t) are C1 functions with vanishing endpoint values. The kernel associ-
ated to the symbol Xa(, t) is

s)[f/ ))

Moreover, it is easy to check that K is a Lipschitz function whose gradient DK exists
almost everywhere (a.e.) and satisfies the inequality

(2) IDKI <_ C a.e.

LEMMA 7. If is of the form (,), then there are symmetric finite rank approxi-
mations

kN(s,t) EaQXQ,

where Q ranges over squares o.f the form

((,t) i/N <_ <_ (i / 1)/N,j/N <_ t <_ (j / 1)IN}, -N2 <_ i,j <_ N2 1

with the property that

(3) // IK(s, t) kN(s, t)12 dsdt

Proof. Set
1 //Q K(s, t) dsdt.aQ-- -The symmetry of the kernel K forces symmetry of kN. Let R 3Q. Then

y Dgl

using Poincar’s inequality [4]. Since K(s, t) is supported within the strip Is +t 2T,
(2) yields the estimate

(4) Ig(s, t) kN(s, t)]u dsdt < N*

The mean square error over the exterior of R can be handled follows:
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in view of Lemma 5. Putting (4) and (5) together yields the estimate in (3).
In view of Satz III of Weyl’s paper [4], we have

C

We will apply this inequality to N/2, where N [x/k- 1/2]. (Here [] denotes the
greatest integer function.) This yields

2C
4N2_1

Since the eigenvalues have been arranged in decreasing order, the left-hand side of the
above inequality is greater than or equal to 3N2A. This yields an inequality of the
form A _< C/N3. Clearly 1IN is O(1//). These remarks imply that Ak is O(k-3/4)
for domains with property (,). We now use a cut and paste argument to derive the
result for general f with C1 boundary.

LEMMA 8. If K’(s, t) and K"(s, t) are two symmetric real kernels in 52(R2) with

C C"

then the eigenvalues of g(s,t) g’(s,t) + g"(s,t) must satisfy the same estimate:

IAkl <_ Ck-3/a .for some constant C.
Proof. Satz I of Weyl’s paper [4] implies that

for all positive integers k. From this it is straightforward to verify that the eigenvalues
of K(s, t) have the required decay property.

THEOREM 9. If fl is a bounded domain with piecewise C1 boundary, then Ak is

O(k-3/4).
Proof. Clearly, such an f can be decomposed into a finite union of nonoverlapping

subdomains f U}f}, where each fk can be put into the form (,) after a rigid motion
in the plane. By Lemma 6, each Lxa has eigenvalues with the sought-after decay
property. Lemma 8 then implies that Lxa also has the same property.

This estimate is in fact sharp, at least for annular regions.
PROPOSITION 10. Let ((,t) :e _< (2-1-t2)1/2

_
R}, whereO < < R. Then

0 < lim sup k3/
k--o

Proof. According to Lemma 4, the kth eigenvalue is

The following classical asymptotic expansion for Laguerre polynomials, valid for
x e [e’, R’] with 0 < e’ < R’, will be essential [12, Thin. 8.22.2]:

x
cos (2(kx)l/2_7r1/2x1/ak1/aexp (--) Lk(x) ) (1 -t- Al(x)k-1/2 O(k-1))

+ +
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Applying this formula with x 4rr2 yields

I kl k-1/4Io(k) + k-3/411 (k) + O(k-5/4),

where

and

Io(k) 23/2rl/4 rl/2 cos 4(k)/2r- dr

/ (k) 23/2r/4 r/2A(4rr2) cos 4(kr)I/2r - dr

+ 23/2r/a r/2B(4rr2) sin 4(kr)/2r- - dr.

Consider the behavior of Io(k). Using a double-angle formula, we have

Io(k) 23/271/4 rl/2 cos(4(kr)/2r) dr + 23/27rl/4 rl/2 sin(4(kr)/2r) dr.

These are the Fourier cosine and sine integrals of the smooth function rl/2 on the
interval [e, R], evaluated as 4(kr)/2. As such, both integrals are O(k-/2). A similar
argument shows that the integrals in I1 (k) are O(k-/2) as well.

Finally, with a little more care one can show that

lira sup k/2Io(k) > O.

In fact, write the function r/2 g(r) + (r/2 g(r)), where g(r) is the linear func-
tion that interpolates between the endpoint values of rl/2 at e and R. The function
rl/2- l(r) is a Lipschitz function on the real line with support in [e, R]. Consequently,
the Fourier sine and cosine integrals of this function evaluated at 4(kr)l/2 are O(k-).
It is therefore enough to show that the integral

Ao(k)- eir/a g(y)exp(4i(kr)l/2r)dr

has the property that
limsup k/2Ao(k) > O.

This is easy to show directly.
For general domains, we obtain the weaker result that the sequence of eigenvalues

is not absolutely summable.
PROPOSITION 11. The series is not absolutely convergent.
Proof. It is well known that {W(k, )} is an orthonormal basis for 52(R2). The

equations w 5 imply that X AkW(k, Ck) in L2 (]2). On the
other hand, if Akl < cx), then AkW(k, Ck) would have to converge uniformly to
an element of Co(R2) (see Theorem 1, part (2)). This is clearly a contradiction.

We now examine the smoothness and decay of the eigenfunctions. We assume
that is an open set contained in a rectangle I-B, B] I-T, T] of which all cross-
sections in the and t directions consist of at most M intervals. We now examine an
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equation of the form Lx, A, where A is a nonzero real number and E L2(R).
Fubini’s theorem implies that

A(s) / K(s, t)(t) dt

holds for all s E IR\Z, where Z is some set of measure zero. Lemma 5 yields the
estimate

C f-sq-2T I(t)l dtI(s)l <_
1 -I-Isl

C-IIIIL <<- I1 + 1 Il + 1

for all s ]R\Z. This last estimate implies that L(]R). Now define

sup

Note that :(s) is even and decreasing in Isl. The quantity IA(s)l can now be estimated
as follows:

C f-s+2T I(t)l dtI(s)l _<
Isl / 1 J-8-2T

4CT-< Isl / l(Isl- 2T)

for all s e 0R\Z)[q {s’: Is’l > 2T}. Therefore, given any b > 1, there is an so such
that if Is[ _> [so[ and s e R\Z, then

(Isl + 2T) _< (Isl).
Iterating this estimate yields

(Isl + 2nT) <_ (11),
It is straightforward to check that

I(s)l _< Cb-181/(2T) Vs R\Z.

As a consequence, is smooth and has all its derivatives in L2.
Now, by Theorem 1, part (4), we have that

w(;, $,) =/f w(, ,)

where fi {(,t) (-t,) e f}. Hence Lxak Akk, and by the preceding
discussion is smooth and has all its derivatives in L2. Now for a given Sl,

dsn
8=81 =f()(27ri)n2risxd.
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Using the estimate analogous to equation (7) for with b >> 1, one has I()1 <-
Ce-a’ll. Then

1

s--sl

2C e-a’ 2r)n d< n-
< C r(n) C

n! 2n+l 2n+In"

Hence the power series of at s sl converges in some interval around sl. Because of
the symmetry in the role of and , the same observations hold for . The preceding
discussion is summarized in the following theorem.

THEOREM 12. Suppose is an open set contained in the interval [-B,B]
I-T, T] with the property that all its cross-sections in both the and t directions
consist of at most M intervals. Then

(1) .for any b > O, there is a constant Cb such that

I(s)l Cb{-blsl V8 and I()1 <- Cbe’-bll ,
and

(2) and are analytic and have all their derivatives in L2.
Note that (1) actually implies (2) in Theorem 12 by the Paley-Wiener theorems

[13], although we have chosen to give the elementary argument.
It is instructive to .consider the case when fl is a ball centered at the origin.

It is well known that, in this case, the Ck are Hermite functions (see Lemma 4).
The Hermite functions hi(t) in Lemma 4 will satisfy estimates of the form hi(t) <_
Ce-(-)t for any e > 0. It is directly evident that they will then satisfy the weaker
inequalities in Theorem 12. This theorem states that this weaker decay statement
holds for general regions in the time-frequency plane. We do not know whether these
estimates can be improved.

4. Numerical examples. For illustration purposes, we provide four numerical
examples of time-frequency localization. These examples are obtained by discretizing
the kernel in the integral representation of the operator given in Lemma 5. We consider
localization on domains of the form of a "zigzag," a disk, a rectangle, and a parallelo-
gram, as indicated in Fig. 1. Note that while the operators here are all Hermitian, so
that they have real eigenvalues, they do not generally have real eigenfunctions unless
their kernels are real. This is true if the symbol S(, t) satisfies S(-, t) S(, t). For
clarity of eigenfunction representation, projection domains were chosen to allow this
symmetry when possible.

Localization on the unusual zigzag domain (Fig. la) produces the unfamiliar
eigenfunctions in Fig. 2 (as these are complex, we have plotted their magnitude). Eight
samples per unit length are used, over the time domain [-8, 8]. Most of the energy is
concentrated in the desired region [-2, 2], although there is some leakage. Note that
the first three eigenfunctions have one, two, and three peaks, respectively. For the
case of the disk (Fig. lb), a plot of the eigenvalues is shown in Fig. 3. As noted in
Lemma 4, the eigenfunctions in this case are the well-known hermite functions. Next,
localization on the rectangle (Fig. lc) allows comparison to the prolate spheroidal
wavefunctions. The first nine solutions for the prolate spheroidal and Weyl operator
cases are depicted in Figs. 4a and b. Again, eight samples per unit length are used
over the time domain [-8, 8]. While there is energy leakage outside the desired domain



TIME-FREQUENCY LOCALIZATION VIA WEYL CORRESPONDENCE

Frequency

Frequency

x+1/4 Time
2

a) b)

Time

Frequency

2x+1/8

Time

2
Time

2x-1/8

1387

c) d)
FIG. 1. Localization Domains: (a) zigzag domain; (b) disk of area 50; (c) 4 x 2 rectangle; (d)

parallelogram.

[--2, 2], the amount differs in the two cases. The prolate spheroidal wavefunctions have

1Ix decay, while the Weyl eigenfunctions have exponential decay. This difference is
visible when one compares the last three eigenfunctions in each case. A plot of the
eigenvalues is also included.

Finally, we provide a simple illustration of these ideas in the context of filtering
Gaussian noise from a corrupted linear FM (chirp) signal. Figures 5a and 6a show,
respectively, the Wigner distribution intensity plot and the actual plot of the real part
of a linear FM chirp centered at zero frequency. (Although chirp signals used in radar
are not centered at zero frequency, that is immaterial for our purposes because of the
covariance of the Wigner distribution under time and frequency shifts (Theorem 1,
part (5).) In the discretization, 16 samples per unit length are used, over the time
domain [-2, 2]. No windowing is applied to remove the echo effect in these Wigner
plots, although we have found a simple cosine-squared window to be effective. Figures
5b and 6b show this signal after 0 dB Gaussian white noise has been added. To filter
the noise, we note that theoretically, the Wigner distribution of a chirp signal is a
measure concentrated along a diagonal line corresponding to the slope of the chirp.
In particular, a chirp can be. localized in any domain containing its time-frequency
support. As an elementary example of time-frequency localization, the noisy chirp
of Fig. 6b is projected onto the first two eigenfunctions (weighted according to the
eigenvalues) for the domain in Fig. ld. This results in the signal in Fig. 6c, with a
Wigner distribution as shown in Fig. 5c. A plot of the eigenvalues for this localization
operator is provided in Fig. 6d. In fact, the chirp in Fig. 6a is orthogonal to the second
eigenfunction, illustrating an interesting fact. Numerically, the chirp appears to be an
exact solution to the problem of localizing onto an infinite diagonal band domain. For
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FIG. 2. Magnitude of eigenfunctions 1-3 for localization onto a zigzag domain (Fig. la), with
a plot of eigenvalues sorted according to decreasing magnitude.

0.8.

0.6.

0.4

0.2

FIG. 3. Weyl eignevalue plot for localization onto a disk of area 50 (Fig. lb), sorted according
to decreasing magnitude.

more numerical examples of time-frequency localization, the reader is referred to [2],
[3].

It is interesting at this point to remark on a conjecture of Flandrin [10]" for
localization onto convex domains, the top eigenvalue is bounded above by 1. This
seems to hold (at least numerically) in our examples, even for Fig. la, which is not
convex. However, something like convexity is certainly necessary in general, since we
have nonconvex numerical examples where the top eigenvalue exceeds 4.
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FIG. 4a. Prolate spheroidical wavefunctions 1-9 for localization on a rectangle (Fig. lc), with
eigenvalue plot.
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0.6,

0.2

-0.2

FIG. 4b. Weyl eigenfunctions 1-9 for localization on a rectangle (Fig. lc), with a plot of
eigenvalues in decreasing magnitude.
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FIG. 5. Wigner distribution of (a) chirp signal; (b) chirp in 0 dB Gaussian white noise; (c)
filtered noisy signal.
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a) b)

eige,value

c) d)

Index

FIG. 6. Plots of the real part of (a) chirp signal, (b) chirp signal in 0 dB Gaussian white noise,
and (c) filtered noisy signal. (d) is an eigenvalue plot. The first two eigenfunctions, weighted by
their eigenvalues, are used in the filtering.
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Abstract. This paper considers the time-dependent slow flow of an incompressible viscous fluid
in a semi-infinite cylindrical pipe of smooth cross section. An exponential decay estimate in terms of
the distance from the finite end of the pipe is obtained from a second-order differential inequality for
a weighted energy integral defined on the solutions of the system. The decay constant depends only
on the geometry and the first positive eigenvalues for the fixed and free membrane problems for the
cross sectional geometry. The paper also indicates how to bound the total weighted energy.

Key words. Stokes flow, decay estimates
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1. Introduction. Although principles of Saint-Venant type, estimating the spa-
tial decay of solutions of various elliptic boundary value problems have been exten-
sively investigated in the literature of the past century (see [5], [8], and the references
therein), the study of spatial decay of solutions of time-dependent problems is of rela-
tively recent origin. The first work in this area appears to be that of Boley [3] in 1958.
For subsequent investigations on the spatial decay of solutions of parabolic equations,
also see the references cited in .[5] and [8].

In this paper, we investigate the slow flow of an incompressible viscous fluid
in a semi-infinite cylindrical pipe. At the finite end of the pipe, a time-dependent
velocity profile is prescribed, adherence is assumed on the lateral surface, and the
fluid is assumed to be initially at rest. We derive an explicit inequality which implies
exponential decay of a weighted energy expression as a function of the distance from
the finite end of the pipe. Of course, the solution will not exhibit spatial decay for
each t unless the net flow through the finite end of the pipe is zero for each t. The
case of nonzero net entry flow will be considered in a later paper.

The two-dimensional version of the pipe flow problem has been studied by Lin [9].
In this case, he was able .to eliminate the troublesome pressure term by introducing a
stream function. This feature does not carry over to the pipe flow problem here, so
different techniques must be developed for establishing the decay estimate.

It should be remarked that Elcrat and Sigillito [4] actually looked at the question
of spatial decay for the dynamical Navier-Stokes equations, but their method required
an assumption on an auxiliary function that is not generally satisfied. For decay results
in steady pipe flow, see the references cited in Horgan and Knowles [5] and the paper
of Ames and Payne [1].

The outline for this paper is as follows. We formulate the boundary value problem,
which describes transient Stokes flow in three space, and define the energy function
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24, 1993.
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in 2. After recording in 3 some auxiliary results that we shall use, we determine
a second-order differential inequality for the energy expression in 4 and 5. The
exponential decay inequality which follows from the differential inequality is given in
(5.34). In 6, we estimate the total weighted energy by techniques developed in the
body of this paper, and in 7, we make some concluding remarks.

2. Statement of the problem. Let R denote the interior of a semi-infinite
cylindrical pipe of an arbitrary, smooth cross section with generator parallel to the
x3-axis. The end (entrance) of the pipe in the x3 0 plane is denoted by Do and
comprises part of the boundary OR of R. We let

Rz {(Xl,X2,X3) (Xl,X2) e Do, x3 > z >_ 0}
denote the subdomain of R for which X3 > Z and let

Dz {(Xl,X2,x3) (Xl,X2) e Do, x3 z}
denote the part of ORz in the plane X3 Z

_
0.

The velocity field u (xl,x2,x3,t) for i 1,2,3 and the pressure p(xl,x2,x3,t)
for the time-dependent Stokes flow of an incompressible viscous fluid are assumed to
be classical solutions of the initial-boundary value problem:

(2.1) ui,t vAui -P,i in R x (0,
(2.2) ui, 0 in R x (0, z),
(2.3)
(2.4)
(2.5) ui 0 in R x {0},

(2.6) ti,Ui,j,Ui,t,p-- o(x1) uniformly in Xl,X2,t as X3 --+

where A is the three space Laplace operator, u is the constant kinematic viscosity, and
the comma (partial differentiation) and repeated index (summation) conventions are
used. In this work, Latin subscripts range over 1, 2, 3 while Greek subscripts range
over 1, 2 unless noted otherwise. We assume that the prescribed functions (entrance
profile) fi are continuously differentiable and vanish on ODo [0, oc) and that u 1
without loss of generality since we can rescale the time variable.

We define a weighted energy integral for solutions ui of (2.1)-(2.6) by (no sum-
mation on T)

(2.7) E (z, t) fot fRz (- z)[ui,jui,j + kui,ui,] dxdT

and note that

Oz [ui,jui,j + kui,ui,] dxdT,

OZ2 [Ui,jUi,j -+- kui,rUi,r] dAdT,

where k is a parameter to be chosen. Our aim is to obtain a second-order differential
inequality for E from which we can deduce an exponential decay estimate of the form

(2.10) E (z, t) <_ E (0, t) e-z, a > O,
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where 0

3. Auxiliary inequalities. We shall make frequent use of the Schwarz inequal-
ity and the arithmetic mean-geometric mean (AG) inequality in our derivation of the
second-order differential inequality we seek. In addition, we need the following three
inequalities.

Let S be a plane domain with sufficiently smooth boundary OS, and let v be a
sufficiently smooth function defined on the closure S of S.

1. If v 0 on OS, then

(3.1) lsv2dA<_sV,v,dA
where A1 is the smallest positive eigenvalue of

Aw+Aw=0inS, w=0 on0S.

2. If Ov/ On 0 on OS and fs vdA 0, then

(3.2) #29fsv2dA<_jfv,v,dA
where 2 is the smallest positive eigenvalue of

Aw+#w=O inS, 0--=0 onOS, wdA=O.

3. If 9 is a continuously differentiable function on N and fs 9dA O, hen there
exists a vector function v such that

(3.3) v,=g inS, v=0 on0S,

and a positive constant C depending only on the geometry of S such that

The first two inequalities are the result of the variational characterization of the
smallest positive eigenvalue of the respective eigenvalue problem, whereas the third
inequality is established in [2]. The latter inequality appears to have first been used
in [7]. The third implication above asserts the existence of a vector function va which
is, in fact, not unique. We require only the existence of such a vector function in our
derivation and not an explicit solution. We refer the reader to [1] for a brief discussion
about the constant C and to [6] for an explicit upper bound for the optimal C when
S is a star-shaped domain--an assumption we will make about the domain Do (see
Lemma 3 in 5).

4. Energy estimation--first part. We are now ready to derive the desired
second-order differential inequality for E. Our derivation consists of two parts. In this
section, we bound the more easily estimated terms and in the next section, we bound
a term complicated by the presence of the pressure function multiplied by the time
derivative of u3 and then determine the exponential decay estimate for the energy
expression E.

We consider the energy integral

(4.1) E (z, t) ( z)[ui,jui,j + kui,,ui,,] dxdT,
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where we recall that there is no summation on the T subscript and k is a parameter
to be chosen. On integrating by parts and using (2.1), we have

E (z, t) uiui,3dxdT ( z) ui [ui, + p,i] dxdT

+

We integrate by parts again and drop two spatial integral terms which are negative
to obtain the inequality

E (z, t) <_ uiui,3dxdT k ui:ui,3dxdT

-11 +I2+I3+Ia.

We now proceed to estimate the first three integral terms.
We use the Schwarz inequality, (3.1), and the AG inequality to obtain

Thus we can write

In a similar manner, it follows that

If we let k 1/A1 and choose al 1//, then we obtain

(4.4)

Due to the presence of the pressure function in the I3 integral, we proceed in
a different manner to bound this term. We first note that for any z* > 0, by (2.2)
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and (2.3),

=/ uadA,
z*

and thus the area mean value of U3 is the same over each section. Since u3 is assumed
to vanish at infinity, we conclude that this value is zero for all z >_ 0 and hence requires
that f3 satisfy

(4.5) f_ f3dA -0 for all t _> 0.
0

Under this assumption, there exists a vector function (see (3.3)) wa which satisfies

wa,a=u3 in De, wa-0 on ODe,
for each _> 0 and for which (3.4) holds.

Using the vector function w in I3, it follows that

I3-jo/l,,wo,oPdxdT
wop,odxdT

wo [Uo,- Auo] dxdT

Now by means of Schwarz’s inequality, (3.1), and the weighted AG inequality, we have

I3 <_
2x/’-1 0"2 ua,rua,rdxdT ’b wa,wa,fldxdT

0"2

T 0"3 ua,3ua,3dxdT T wa,3wa,3dxdT

1 1

1 1

+2 {a5 1 fD Ua’3ua’3dAdT + /D. Wa’wa’dAdT)
The integals of the ailiary function wa can be bounded in terms of u3 by means of
(3.1) and (3.4). Thus we can write
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wa,3wa,3dxdT

_
11 wa,3wa,3dxdT- )- (u3,3)2dxdT.

We now substitute these estimates into (4.6) and choose

so that

Finally, for I3 we have the estimate

vf 02E
2A Oz2"

The result of estimating the first three integrals in (4.2) is

(4.8) i1/ i2 + i3 <1+ x/ ( OE) v/- O2E
---d2z - 2AOz"

We now seek an appropriate estimate for the integral I4. As this involves a much more
complicated calculation, we compute the 14 bound in the next section.

5. Energy estimation--second part. We need to bound I4 in terms of
OE/Oz and 02E/Oz2 in order to derive the second-order differential inequality for
the energy expression E. To accomplish this, we introduce two auxiliary problems for
which only the existence of a solution will be required.

Let be a solution of the boundary value problem

(5.1) A u3,t in Rz, 0- 0 on ORz.

It is clear that

u3,tdx u3,tdAd O,

and since U3, --- 0 as X3 ---+ (:X:), it follows from the Phragmbn-LindelSf theory that
there exists a solution which vanishes together with its spatial derivatives as x3 --* oc.
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By means of , we can write

14 k pApdxdT -k ,p,dxd

k ,iui,.dxdr + k , (u,a ua,) dAdr

and by Schwarz’s inequality, we have

+ k grad.2 dsddT (ui,3 u,i)ui,dsdd

since ,, (,, ,,) 1/2 (v,, v,,) (u,, u,,).

In (5.3), gradso denotes the tangential component of the gradient of .
We must now determine suitable estimates for the integrals of in (5.3). We

develop these bounds in the following lemm. First, we deduce the following.
dA 0 as x3 , thenLEMMA 1 g fDa

(5.4) dA =O for all z k O.

Proof. By (5.1), we have

o:S......:s..,...:s..,....: (i....),
which implies that

dA + b.ax3
x3

Hence by hypothesis, the conclusion follows.
LEMMA 2. If , , 0 unifoly as x , then

(5.5) S ’’dxS(u’)dx’2
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Proof. For (5.5), we have

fttz o,i(P,idx fttz APdx

fR, ou3,tdx

from which he result follows. We noe tha we used (g.4) in applying inequality (.2).
We establish (g.6) by observing hat

,a [- ua,t] dz 0

implies the identity - ,i,idA ,3u3,tdx.

Then by Schwarz’s inequality, we can write

fD ,,:dA < ,i,idx (u3,t)2dx

and by applying (5.5), we obtain (5.6).
LEMMA 3. If , ,i 0 unifoly as x3 and if Dz is star-shaped with

respect to a point ogin) in Dz, then

(5.7) Igradl ee + (u,)ex,
D

where d diameter Do and ho min{xana} on OD.
Proof. We observe that from

n
x,,, [A ua,t] dx O,

one obtains the Rellich-type identity

xn grad]2 dsd (,3)2dx xa,u3,tdx2 D
through integrating by parts twice and using the boundary condition on . By
Schwarz’s inequality, the AG inequality, and (5.5), we have

xana Igradsl2 dsd + (u3,t)2dx,
2 D

from which (5.7) follows.
Our next lemma which is needed to estimate the sixth integral in (5.3) does

not depend on the ailiary function , but rather on the solutions of the systems
(2.1)-(2.6). We sert the following.
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LEMMA 4. For sufficiently smooth functions ui and p in the system (2.1)-(2.6),
the following identity holds:

lzjfo znaui,j (ui5 uj,i)dsd xuo,a (uf,3 u3,o)dA2 D

Pro@ By (2.1), we know

where ij is the Kronecker delta symbol. We integrate by parts in the first and third
inteals and obtain

0

Now since

a further integration by parts results in

(

(.

1+ , (, u#) ( za)

0R.

Since ui,kni ui,ink 0 on OD( for ( 0, the lt term in (g.9) can be written

Moreover, by (2.a), the firs wo integrals in (g.9) on the lateral boundary can be
combined so that

(a.10) ( zeal) u, (, ,)
D

1
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Consequently, solving (5.9) for the condensed term obtained in (5.10), we arrive at
the identity (5.8).

The appearance of the pressure function p in the identity (5.8) presents a further
complication that must now be handled. We define to be the mean value of p over
Dz, i.e.

V IDol
pdA,

where IDzl IDol is the measure of Dz. It follows that

(5.11) In [p ] dA 0

for each z _> 0. Further, we note that the last term in (5.8) can be replaced by

(5.12)

since

Since

/D xau3’apdA=/D xau3’a(P-)dA + /D xau3,adA

fD XaU3,a (p ) dA,

XU3,,dA =--2/D u3dA--0.

,,(u,, ,,) 1/2(,, ,,)(,, u,,),
from (5.8), (5.12), and Schwarz’s inequality, we have

uj (uij u,) dsd < d u,u,dA2 D

+ ( z) ,,dz ( z)

The need to bound the lt integral in (5.13) motivates our second iliary problem.
We consider the boundary value problem

0_
(5.14) 0n

-0 on0O, zS0,

0
.0 =p- in D,.

We note by (5.11) that the necessary condition for existence of a solution is satisfied
and recall that is defined up to an arbitrary constant. We choose the constnnt such
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that

lim JD dA=O.

Then from the Phragmn-Lindelhf theory, we know that there exists a solution
which vanishes exponentially as x3 -- c. In addition, has the following properties.

LEMMA 5. If is chosen as above, then for all z >_ O,

(5.15) /D dA O,

(5.16) /D ,3dA 0,

(5’17) ] ,3,3dx O.

Proof. The first property (5.15) follows by an argument similar to Lemma 1. For
(5.16), we see that

fDz ,3dA---/De ,33dAd-/D,dAd

,ndsd O.
D

The third property (5.17) follows from (5.16) since we can write

By means of the auxiliary problem (5.14) and property (5.17), we have

(p (p )e
[ (p ),,d

,[(, ,), ,le.

Then, in a manner similar o he derivation of (g.), we can write

(5.18) + ,.,.dA (u.,a ua,.) (u.,a ua,.) dA

We now seek estimates for the integrals involving the function . These e established
in the following lemm.
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LEMMA 6. The function satisfies

(5.19) ,a,adA /D (P )2 dA,

x/fi
(p )2 dA.

Proof. For (5.19), we observe that

,3Adx 0

implies the identity

,3 2dA - ,j ,dA O,

and hence

The second result (5.20) follows from (5.14), (5.15), (5,19), and the calculation

(1)1/2(/D )1/2/R ,itY,idX /Dz (P ) dA <- -2 /D ,,dA (P )2 dA

LEMMA 7. If Dz is star-shaped with respect to a point (origin) in Dz, then

(5.21) IgradstYl 2 dsd <_ oo d + (p )2 dA.
De

Proof. In a manner similar to the proof of Lemma 3, from

x,,Adx 0

we obtain the identity

xana Igradsl2 dsd xatY,a (p ) dA + (,3)2dx,
2 D

and hence the inequality

ho Igradsl2 dsd <_ - ty,a,adA + - (p_ )2 dA + ,,dx.2 De

Now by (5.19) and (5.20), the result follows.
We can use Lemmas 6 and 7 in (5.18) to obtain an estimate for the integral of
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(p_ )2 which is independent of pressure, namely,

(5.22) + (u.,a ua,.) (u.,a ua,.) dA

2 1 o

(ui,j uj,i) ui,dsd(

We are now ready to complete an estimate for the I4 ineal.
We regurn go inequaligy (g.a) and use ghe weighged AG inequaligN Lemma 2, and

Lemma a go obgain

ka[i ]
(ui, u,i) ui,jdsd(dr.

Since k 1/AI we choose

1 , 2 1/2, 7a all,
where 7 is a dimensionless constant to be determined, so thag

( 3 1 [1 ]) 1tIa N
2

+ + kui,.ui,.dxdT
(5.23/

+ g (u.,3 u3,a)(u.,3 u3,a)dAdT +.
where

J (ui5 u,i) ui,jdsd{dT.
De

The first term in (5.23) is estimable in terms of -OE/Oz. For the second term,
we write

A--7 (u.,3 u3,a) (ua,3 u3,)dAdT

(5.24) <- A--7 (1 + ) u,3ua,3dAdT

1

where is a constan go be suitably chosen. To esgimage the ghird erm in (g.2), we
recall (.la) and use the weighted AG inequality together with (g.22) on he lt term
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of (5.13) to obtain

where we have set

e=- d+

We now integrate (5.25) with respect to T, multiply by 2-/Alho, and then add
the resulting inequality to (5.24). Collecting terms, we have

(5.26)

We recall k 1/A1 and choose

Moreover, we choose r] to be the positive root of the quadratic equation

(5.27) r2 cr] 1 0,
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where

C
4d2 4d

+

so that the coefficients of the first two integrals on the right side of (5.26) are equal.
Thus, we can write
(5.8)

l 02E d(OE) 1

-1 Ua 3 u3’c) ua 3 u3’c) dAdT + - g < p-o-z2 + -z + -Ewhere

d 3
(1 +v])}(5.29) p- max --, -We combine inequalities (5.23) and (5.28) to obtain our estimate on 14, namely,

3
(5.30) Ia <

2x/.fi
-4-

2 [1 d2] d_22)( cOE I 02E 1

hgx/- -2 + -- +-- -z + P-z2 + -E"Consequently, by combining (4.2), (4.8), and (5.30), we obtain the second-order dif-
ferential inequality

02E OE
(5.31) E <_ gl-z2 -K20z’
where

K1 + 2p,

K2 2 (1 + x-) 3 4 d2

a 1 4a2 -4- 4b,
a 1 v/a2 + 4b.

Oz -z + k2E > O,

we conclude upon integration from z to oc that

OE
cz--+ k2E

_
0,

and hence that

E (z, t) <_ E (0, t) e-k2z.

Now since

where

We can rewrite (5.31) as

(5.32)
c32E OE
Oz2 a-z bE > O,

where a K2/gl and b 1/gl. Furthermore, we can write (5.32) in the form

(5.33) -z k z + k2E > O,
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This is the exponential decay estimate we set out to obtain.
We note that k2 depends only on geometry and the eigenvalues A1 and #2. In

fact, using A1 5.78/r2 and #2 3.38/r2 for a circular pipe of radius r, we find
k2 0.15/r. We note further that the decay constant k2 might be improved by a
more judicious choice of weights in our derivation above. To complete the energy
estimation, we will indicate a procedure for obtaining estimates on the total weighted
energy E (0, t) in the next section.

6. Bound for E(0 t). We now indicate how one can estimate the total weighted
energy. We shall not determine explicit constants in this estimation as we did in the
previous sections. Here we let ei designate positive constants that may be chosen
arbitrarily small and let ci denote computable constants that may depend on the ei
but which remain bounded if any of the ei tend to zero.

We first note from (5.31),

(6.1)
02E

(0, t) K20E (0, t)E (O, t)

_
Ki-z2

Moreover, from (2.9),

cO2E
(0, t) data + ui,3ui,3dAdTOz2 o

:data d-oot/DoUa,3ua,3dAdT-t-oot/Do(fa,a)2dAdT
since u3,3 -u,a -fa, on Do. Thus we must bound

(6.3)
OE

(0, t)Oz /Do ua,3ua,3dAdT

suitably to complete the estimation for E (0, t).
Consider the first term in (6.3). On integration by parts, we have

fu,3dAdT d- f3f,dAdT
o o

and that

(6.5)
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Thus, combining (6.4) and (6.5), we find

/o /o(6.6)
OE

(0, t) < data + el ua,3ua,3dAdT -- 2 (p )2 dAdT,(7Z
o o

where e and e are constants to be chosen appropriately.
We now observe that from (5.22) and (5.26), we can write

(p_ )2 dAdT data + cl ua,3ua,3dAdT
(6.7) o o

OE
c2 (0, t) + c3E (0, t).

By means of (6.6) and an appropriate (first restriction on) choice of e2, we have

(6.8) (p )2 dAdT data + c4 ua,3ua,3dAdT + cbE (0, t)
o o

Substituting (6.8) into (6.6), we obtain

(6.9)
0N

(0, t) < data + (el + ec) u,a,adAdr + ecE (0, t).

hus, combining (6.1), (6.2), and (6.9), we can write

(6.10) E (0, t) N data + e u,au,adAdr + ecE (0,

and i only remains o bound he middle erm on he righ side of (6.10).
o establish a bound for the second erm of (6.a), we consider the identity

On integrating by parts, we are led o

ui,3 (ui,3 u3,i) dAdT + ui,j (ui,s us,i dAdT
o 0

Since , -, on Do> we cn now write

f,a (p ) dAdT c8 (0, t),
o

or further,

7 u.,3u.,3dkdT [f3,.f3,. + f., (f-,n fn,-)] dkdT
o o

+
o
(I.’.)dAd.

o
(p )’ dAd .
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It follows from (6.8) and (6.9) that

foo/Do..a..adAd
_< daa + (eac + ea [el + ec]) u,a,adAdr + (eac + ec) E (0, t).

With an appropriate choice for e, e, and ea (a second restriction on e), we have

(6.11) u,3u,3dAdT data + (e3co + e2c) E (0,t).
o

We complete our estimation of the total weighted ener by combining (6.10) and
(6.11) and putting further restrictions on e2 and e3. Thus it follows that

(6.12) E (0, t) data,

we set out to show.

7. Concluding remarks. Instead of considering the slow flow of an incom-
pressible viscous fluid in a semi-infinite cylinder we did here, one might consider
the finite pipe problem. In this ce, if one sumes

u=0 atxa=,

for the pipe of lenh g, then the analysis of the preceding sections applies with ap-
propriate modifications.

One might also weaken the hypotheses which we imposed in order to obtain
sufficient decay at infinity for the semi-infinite pipe. It appears that

u, o(1). u,. o(1). [..u..] o (). o (x).
uniformly in x, x2, t x3 would be sufficient for the needed convergence.

Finally, the second-order differential inequality (5.31) could be handled differently.
Instead of (5.33), suppose we write

(7.1) + k2 kE O.

Then

Ne -k 0,

and integrating from 0 o z, we have

ON
(z t)- klN(Z,t) > e-k’ [0N (0,t)-Oz

Consequently,

(7.2)
OE

(z t)+ kE (z, t) < e-kz [ OE ]Oz ---z (O, t) + klE (O, t)

and we have established a bound for both E (z, t) and -OE (z, t)/Oz. Bounds for the
terms on the right side of (7.2) can then be established as in 6.

Acknowledgment. The authors are grateful to a referee who suggested a sim-
pler proof of Lemma 1.
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A DEGENERATE PSEUDOPARABOLIC REGULARIZATION
OF A NONLINEAR FORWARD-BACKWARD HEAT EQUATION

ARISING IN THE THEORY OF HEAT AND MASS EXCHANGE IN
STABLY STRATIFIED TURBULENT SHEAR FLOW*
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Abstract. The authors analyze an initial-boundary value problem for the equation

() +(),
where - is a positive parameter, 0, R R, 7 is nonmonotone, is strictly increasing and
uniformly bounded in R, and Io(p)l--O((p)) as p :t:o. The equation arises as a (new) model
for turbulent heat or mass transfer in stably stratified shear flows, in which case us is nonnegative,
o(p) > 0 for p > 0, and o(0)- o(+cx))- 0. Well-posedness is proved and, in the model case, the
qualitative behavior of solutions is studied. In particular it is shown that smooth solutions may
become discontinuous in finite time, and that such solutions converge to a piecewise constant spatial
profile as c. This behavior is in agreement with experimental observations and numerical
computations.

Key words, forward-backward parabolic equation, degenerate pseudoparabolic equation, ex-

istence, uniqueness, discontinuous solutions, large-time behavior, turbulent heat and mass diffusion,
stratification, shear flow, relaxation time

AMS subject classifications. 35K70, 35K65, 76F10, 80A20

1. Introduction. One-dimensional diffusion processes are modeled by the con-
servation law

(1.1) us + qx O, q -kux,

where q is the heat or mass flux, x is a spatial coordinate belonging to some real
interval, t > 0 indicates time, subscripts denote partial differentiations, and k is, by
definition, the diffusivity. If k is a given function k0 of u(x, t), ux(x, t), x and t, its non-
negativity does not imply the parabolicity of (1.1), since the product uxko(u, ux,x, t)
may be nonmonotone with respect to u.

In this paper, we study a mathematical model for heat or mass transfer in a stably
stratified turbulent shear flow, where the temperature, respectively concentration u,
satisfies an equation of the type (1.1) (we refer to 2 for a brief discussion of the
model). Under fixed external conditions the steady diffusivity, i.e., the diffusivity in
mechanical and thermal equilibrium, depends only on the value of the gradient:

(1.2)
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For the stably stratified turbulent shear flow, the effective temperature or mass dif-
fusivity k0 decreases very quickly at large values of the temperature gradient, respec-
tively concentration gradient, and a typical choice for k0 is

A
(1.3) ko(p) B + p2, (A, B > 0),

and therefore the product

(1.4) (p) pko(p)

is nonmonotone: (p) is increasing for 0 < p < c for some critical constant a > 0 (in
the model u is always assumed to be nonnegative), but (p) is decreasing for p > c.
More generally, we consider smooth functions which satisfy, for some a > 0,

(1.5)
v(0) 0

0<(p)_<(a) forp>0

(see Fig. 1).

FIG. 1. The function o(p) for p >_ O.

If we simply substitute (1.2) into the balance law (1.1), i.e., if we suppose that the
turbulence field governing the thermal diffusivity is an equilibrium one, the resulting
second-order partial differential equation

(1.6) ut p(u)

is not of forward parabolic type at points at which ’(u)< 0.
If is not monotone, (1.6) leads to initial-boundary value problems which may be

ill-posed. The ill-posedness does not necessarily regard the existence of solutions; for
example, HSllig [HI showed that if is piecewise linear, decreasing in a bounded inter-
val, and increasing elsewhere, there exist initial functions for which the corresponding
Cauchy problem possesses infinitely many solutions.

A natural approach to treat a problem where an equation of the type (1.6) arises
is to introduce some regularization which leads to well-posed problems. For example,
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P

FIG. 2. The function (p) for p

_
O.

one might add to the right-hand side of (1.6) the term 2Uxxt which yields a pseu-
doparabolic equation, or -e2uxxxx, which leads to a fourth-order parabolic equation.
However, an important consequence of Hbllig’s nonuniqueness result is that the dy-
namics of the solutions (which will, of course, strongly depend on the type of nonlinear
function under consideration) may critically depend on the sort of regularization
which we introduce. Indeed, in the case of a cubic nonlinearity (i.e., is decreas-
ing in a bounded interval, increasing elsewhere, and (+cx)- +cx), which arises in
the context of viscoelasticity, the two regularizations which we mentioned before lead
to different dynamics of solutions (we refer to the discussion in [NP]). This strongly
suggests that, more than ever, an eventual regularization should be justified at the
level of mathematical modeling. In other words, the regularization should be specific
for the given physical problem. We observe that also in numerical computations a
regularization appears, because difference equations are solved instead of differential
equations (cf. the numerical computations in [Po], [Dj] for our model), and also in
this context the consistency of the regularization with the physical model should be
investigated.

In our model the natural way to modify the problem is to reconsider the assump-
tion that the turbulence, which governs the diffusion coefficient and the flux, is in
equilibrium with the temperature gradient. Indeed, in 2 we shall explain that if we
take into account a small but positive time T of the relaxation of the turbulence field
to the temperature gradient, we obtain the equation

+
where is a smooth nonlinear function which is expressed through (see Fig. 2).
The properties of which are important for us are

’(p)>0 forp>0,
(1.8)

(0) 0, (-t-c) 7 < /cx.

Since ’(+cx)) 0, ’(p) is not uniformly bounded away from zero, and we call (1.7)
of degenerate pseudoparabolic type. In addition and satisfy the inequality

(.9) ’() > -’() or > 0,

which will play an important role below since it implies, roughly speaking, that the
last term in (1.7) is strong enough to control the possibly negative diffusion coefficient
’(ux). For the precise hypotheses on the data we refer to 3.
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Our main results concern the initial-boundary value problem

ut (ux)z + T(uz)xt in (0, 1) x R+,
(I) u(0, t) u(1, t) 0 for t > 0,

u(x, O) uo(x) for 0 < x < 1.

The lateral boundary conditions in problem (I) are no-flux conditions, but the mathe-
matical analysis which we shall present does not depend strongly on the choice of the
boundary conditions; in particular, a similar analysis is possible for the corresponding
Cauchy problem in which -oc < x < +oc.

The main results of this paper regard the well-posedness of problem (I), and
both the transient and the large time behavior of its solutions. Below we shall briefly
describe these results; for their precise statement we refer again to 3.

The uniqueness and the existence of a (generalized) solution will be proved in,
respectively, 4 and 5.

The qualitative transient behavior of the solutions depends strongly on the prop-
erties of the function and the threshold ( for the gradient u. Let us assume for
the moment that the initial function u0 is smooth and nondecreasing in the interval
(0, 1). In 6 we shall prove that ux >_ 0 in (0, 1) R+ and that, given x0 e (0, 1),

U’o(Xo) <_ = u(xo, t) <_ for all t > O.

In particular, if u _< c in (0, 1), then the gradient uz is uniformly bounded in (0, 1)
R+.

The situation changes drastically if u) is not bounded by c. In 8 we shall show
that there exists a smooth initial function such that the solution becomes discontinu-
ous within finite time. Of course this phenomenon is caused by the specific form of ,
but we observe that, due the the strong degeneracy of (p) as p - cx3, the regularizing
effect of the third-order term is not sufficient to prevent the formation of discontinu-
ities. In 7 we shall prove that, once a solution is discontinuous at some point x0, it
remains discontinuous at x0 for all later times t; more precisely we shall show that
the jump u(x+o, t)-u(x, t) is nondecreasing with respect to t (actually the growth of
the jump is the essential part of the result; the mere preservation of the discontinuity
could be guessed from earlier results [NP], IS] on pseudoparabolic equations).

In 9 we shall prove that, given u0, there exists a function q E BV((O, 1)) such
that u(., t) -- q almost everywhere in (0, 1) as t - cx, and the regular part of the
derivative q vanishes almost everywhere in (0, 1); the singular part of the measure q
does not necessarily vanish: if u is discontinuous at some point (x0, to), q will also be
discontinuous at x0.

Physically such piecewise constant asymptotic profiles correspond to the forma-
tion of stepwise temperature or salinity distributions in, for example, the ocean. On
the modeling level it was known for a long time that the nonmonotonicity of could
explain the formation of steps as t - x, but it was always tacitly assumed that
T 0, without paying attention to the mathematical well-posedness of the problem.
As a conclusion we may say that our assumption of positive relaxation time T guar-
antees well-posedness of the model and preserves the required qualitative behavior of
solutions.

Finally we discuss briefly some of the literature about degenerate and nondegen-
crate pseudoparabolic equations. For a first introduction to the subject and a list of
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references to early papers we refer to Chapter 3 in Carroll and Showalter [CS]. Among
the more recent papers we mention [BG], [BS], [dBP], IN], [NP], [P], [Pa], [RS], IS],
and [SR].

Of particular interest for us is the work of Padron [P], who considered the equation

(1.10) vt p(v) + TVt,
arising in population dynamics. The point is that behaves as in our case, and thus
(1.10) is the nondegenerate version of our problem if we replace v by us. He proved,
with techniques different from ours, an existence theorem and a result which sug-
gests the stability of delta-function-type solutions (which correspond to our piecewise
constant solutions).

DiBenedetto and Pierre [dBP] have studied a special class of degenerate pseu-
doparabolic equations which contains the equation

(1.11) (v TA((v)))t A((v))

if is nondecreasing. Equations of this form arise in the mathematical models of
capillary imbibition and were considered by Barenblatt and Gilman [BG]. Similar
equations arise in the theory of fluid flows in fissured or fractured porous media [BZK],
[BER], [BS], [Pal, [as]. We observe that (1.11) can also be viewed as the Yoshida
regularization of the (possibly degenerate)equation vt=A(p(v)).

Several papers in the literature are devoted to the maximum principle for pseu-
doparabolic equations [dBP], IS], [SR], IT]. In this context we observe that many of
our proofs are based on maximum principle techniques.

iovick-Cohen and eego [NP] (see also [N]) studied (1.10) (in arbitrary space
dimension) as a model for phase-separation in viscous binary mixtures, but in this
case the function has a cubic type of nonlinearity. The same sort of nonlinearity
arises in the context of viscoelasticity, but in this case the derivative with respect to
time is of the second order: (1.7), with ut replaced by utt and a linear function, has
been studied in [D], [AB], [A], [Pe], and [BHJPS].

2. A brief discussion of the model. For the sake of simplicity we shall only
consider the case of a thermally stratified fluid; the case of salinity (density) stratifi-
cation is obtained in a completely analogous way.

It is known (for references we refer to [BBdPPU], where a more detailed physical
discussion of the model is presented) that the mean potential temperature u(x, t) in
a statistically horizontally homogeneous turbulent shear flow satisfies the equation

(2.1) pcput -[- Ox O.

Here t is the time, x is the vertical coordinate, (I) is the turbulent heat flux (i.e.,
we only take into account heat diffusion due to turbulence, which is supposed to be
the dominant diffusion process), and p and Cp are, respectively, the fluid density and
its heat capacity at constant pressure: fluid properties which are assumed constant.
Defining the effective temperature diffusivity k by the relation

(e.:) k

we can rewrite (2.1) in the form

pCpUx

ut kux x
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Under equilibrium (steady state) conditions the turbulent temperature diffusivity k is
a function of the temperature gradient:

k

In turbulent shear flows in stably thermally stratified fluids the temperature gradient
ux is positive, and the main characteristic of such flows is that positive temperature
gradients suppress turbulence (this effect is caused by the action of buoyancy forces,
due to the presence of a strong gravity field). Therefore (see Fig. 3)

k)(p) < O forp>0

and
ko(p) -- 0 as p -- +oc.

FIG. 3. The steady heat diffusivity ko(p).

Previous investigators have observed that, formally, a sufficiently fast decay of
ko(p) as p --* +oc may explain the formation of stepwise temperature distributions,
a phenomenon which, for example, has been observed in the ocean. Their approach,
similar to the traditional derivation of the Fourier heat conduction equation and the
Fick diffusion equation, was to use relation (2.4) for closing (2.3), which leads to the
following equation for the potential temperature:

where

(2.6) (p) pko(p) for p _> 0.

An essential point is that at large values of p.the function ko(p) decreases so rapidly
that the function (p) at a certain value p a starts to decrease, and, moreover,
tends to zero as p - +oc. Thus, the graph of the function (p) has the shape which
is indicated in Fig. 1 (in the simplest case is increasing in (0, a) and decreasing
in (a, +oc)), and, for sufficiently large temperature gradients ux > a the coefficient
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in (2.5) becomes negative and (2.5) becomes a nonlinear backward heat conduction
equation.

Intuitively the negativity of for large values of the temperature gradient might
explain the formation of stepwise temperature distributions, and in this direction some
numerical experiments were performed [Po], [Dj]. However, as we mentioned in the
Introduction, it is plausible that the nonlinear backward-forward heat equation (2.5)
leads to ill-posed problems, and therefore the mathematical model should be modified.

To do so we have to take into account that (2.5) is only one of the equations of
a system of simultaneous equations governing the turbulence,, velocity, and temper-
ature fields. At this moment a generally accepted system of equations to describe
these fields is not available. However, it is clear that if in such system the value of
the temperature gradient is prescribed at a certain moment, the time T of adjustment
(relaxation) of the turbulence field to this value of the temperature gradient is per-
haps small in comparison with the characteristic time of the whole field, but strictly
positive. In the present model we average the relaxation time T over the whole field
and consider it as a constant, and we assume that moment t turbulence properties,
including the temperature diffusivity k, can be taken as equilibrium values related to
the temperature gradient at the moment t--T.

So, our hypothesis is that the current temperature diffusivity corresponds to the
equilibrium temperature gradient at the moment t--T:

t) t

Bearing in mind that the relaxation time T is small in comparison with the char-
acteristic time scale of the temperature field we obtain, developing (2.7) in a linear
expansion with respect to :

and

k ko(u 

Combining (2.5) and (2.8), we obtain the following equation for the temperature:

(2.9)

where the function : [0, +oo) --. [0 / oc) is defined by

(2.10) (p) sk)(s)ds -(p)+ ko(s)ds for p _> 0.

Since k0 is strictly decreasing, is strictly increasing in R+.
In addition we shall assume that

+o

ko(s)ds < +oc,

i.e., that k0 tends to zero sufficiently fast as p +cx), which implies that

<
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A typical graph of is shown in Fig. 2.
We conclude this section with some comments on the hypotheses which we shall

use in the mathematical analysis of the model. It follows from (2.10) that ’(0)=0 if
pk(p) --. 0 as p -- O, which makes (2.9) degenerate pseudoparabolic at points at which
ux 0. In the rest of this paper we shall ignore this degeneracy at zero. We expect
that this only leads to a mathematical complication, and we have preferred to focus
our attention to what happens for large gradients, for which becomes negative. In
addition, for small values of p the precise behavior of ko(p) is impossible to determine
from experimental data, because the measured quantity is the flux and to obtain the
diffusivity we have to divide the flux by the gradient. We observe that, once we assume
that ’(p) > 0 for all p and that o’(p) < 0 for large values of p, condition (1.9) implies
that I’(P)I <- kl’(p) for all p and for some constant kl. Finally we mention that we
shall use an additional condition on and (see hypothesis (H2a) in 3) to prove
the uniqueness of solutions. In the physical model this condition is satisfied for large
gradients if, for example, k0 is given by (1.3).

3. Basic mathematical hypotheses and main results. We use standard
notation for the following function spaces ( denotes a connected set in Rn): C(),
Ck() and C() denote the sets of, respectively, continuous real functions on
k times differentiable real functions on such that f(k) is continuous in , and real
functions on which have derivatives of arbitrary order; Lp() (1 <_p< oc) is the set
of measurable real functions on such that Iflp is Lebesgue integrable in ; L() is
the set of real measurable functions on which are (essentially) bounded in ; H()
indicates the Sobolev space which, roughly speaking, contains the functions u E L2()
such that the (generalized) first-order derivatives belong to L2() and u vanishes at
the boundary of (in the sense of traces); BV() is the set of real functions on
which have bounded total variation; Lp(O, T; V) (with V a Banach space with norm

I1" II) denotes the set of functions f: [0, T] V such that IIf(t)ll belongs to Lp(O, T).
Supplied with their natural norms, these sets are Banach spaces (C(), Ck() and
C(2) are Banach spaces if is closed and bounded). The subscript loc stands for
locally; for example, Loc( contains the functions u belonging to Lp(K) for any
compact subset K of , and fk - f in Loc(2) as k --, cx) indicates that fk - f in
LP(K) as k --. c for every compact subset K of .

First we list the several hypotheses on the data of problem (I), which we shall
use in this paper. From a mathematical point of view it turns out to be convenient to
define the functions (p) and (p) also for negative values of p.

(H1) e C3(R), ’ > 0 in R, is odd, and (+cx)) ", where 0<
(H2) e C3(R), (0) 0, and there exists a constant k > 0 such that

(3.1) I’1-< k’ in R;

(H2a) there exists a constant k2 such that

(3.2) 7 - - k2 in R;

(H3) uo e BV((O, 1)), and there exists a function w0 e H((0, 1)) such that

w0(x)--h-.olim(u(x+h)-u(x+))h
(3.3) lim (u(x / h)- uo(x-)) for 0 < x < 1

h--.0 h
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where uo(x+) denote the one-sided limits of u0 at the point x;
(A2) (+x)=0, 0<(p)_<(c) for 0<p<+oc for some a>0, and <0 in R-;
(A3) u0 is nondecreasing in (0, 1).
The hypotheses (H1), (H2), and (H3) will ensure the existence of a solution. The

more restrictive condition (H2a) on the behavior of (p) as p oc will be used to
prove uniqueness; we observe that it is satisfied in the interval [1, +oc) in the model
case in which and are determined by (1.3), (1.4), and (2.10). The assumptions
(A2) and (ha) axe natural in the context of the physical model, and will be used to
study the qualitative behavior of the solutions.

Hypotheses (Hi) and (H2)imply that o(q-oc) and qo(-o) exist and are finite.
Defining the function h [-7, 7] - R by

o-1(p) iflpl<?,
(3.4) h(p) :=

(+x)) if p +/,

where -1 denotes the inverse of and o -1 is the composed function p -(-1(p)), it follows from (H2) and (H2a) that h e C2((-’, 7))f3 C1([-1, 7]) and

(3.5) Ih’l _< kl

where we have used the formulas

h’(p) 7 o )-1 (p) and

and Ih"l < k2 in (-7,),

h"(p) - O /)-- (p) for -3’ <P<7.

We observe that the continuous function To(x) in hypothesis (H3) is nothing else
than (u(x)) at the points where lull < cx). In a similar way we replace the function
(ux(x, t)), which is only defined at points where u(x,t) is smooth, by a continuous
function w(x, t) in the definition of a solution. Throughout this paper we shall use
the notation

Q (0,1) (0, +oc) and QT (0, 1) (0,T],
where T > 0.

DEFINITION. A function u Q -. R is a solution of problem (I) if for any T > 0"
(i) u e L(QT) f3 Lc(0, T; BV((O, 1))) and ut e L2(QT);
(ii) there exists a function w E C(Q) such that Iwl < in Q,

w(x’ t) lhimo ( U(x + h’ t) u(x+’ t)

h-olim(u(x+h’t)-u(x-’t) for0<x<l and t>0,

w e L(O,T;H((O, 1))) and wt e L2(O,T;HI((O, 1)));
(iii) u and w satisfy the equation

(3.7) ut h(w)x + TWit in L2(QT),

where h" [-7, 7] -- R is defined by (3.4), and

(3.s) u(x, O) + TWo(X, O) SO(X) + "rWo(X) for almost every 0 < x < 1,

where u0 and w0 are determined by (H3).
In (3.8), the words "almost every" indicate that (3.8) holds in the interval (0, 1)

with the possible exception of a subset of measure zero.
Our first main result concerns the well-posedness of problem (I).
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THEOREM 3.1 (existence and uniqueness). Let hypotheses (H1), (H2), and (H3)
be satisfied. Then problem (I) possesses a solution u. If in addition hypothesis (S2a)
is satisfied, then the solution is unique.

In Theorem 3.1 we have not required the positivity of u. On the other hand the
positivity of ux was a crucial physical hypothesis in the derivation of the mathematical
model. The first part of the following result shows the consistency of this hypothesis.

THEOREM 3.2 (gradient estimates). Let hypotheses (H1)-(H3) and A2 be satis-

t) oI (I).
(i) If uo is nondecreasing in (0, 1), then we have u(x, t) nondecreasing with

respect to x.
(ii) If ux(xo, to)

_
c for some x0 E (0, 1) and to >_ O, then ux(xo, t)

_
for all

t>to.
(iii) If ux(xo, to) >_ for some x0 E (0, 1) and to > O, then ux(xo, t) >_ .for all

The interpretation of part (ii) is the following: a(p) has its maximum at p= a,
and, in the model equation, a is increasing in (0, a) and decreasing in (c, +c), i.e.,
the diffusion is positive at points where 0 _< u < a and negative where ux > a. As
we shall see below, the negative diffusion may lead to unboundedness of the spatial
gradient, but Theorem 3.2(ii) means that once ux

_
a at some point x0, then it

remains bounded by a at x0 for 11 later times.
Hypothesis (H3) allows discontinuous initial functions. It is consequence of the

following result that the discontinuities only can increase as time evolves.
THEOREM 3.3 (persistence of discontinuities). Let hypotheses (H1)-(H3) and

(A2)-(A3) be satisfied. Let u be the solution of problem (I), and let w be defined by
(3.6). If for some 0 < xo < 1 and to >_ O,

then

and

 (xo, to)

w(xo, t)= lot t > to,

(3.9) u(x+o, t) is nondecreasing in (to, +oc), u(x, t) is nonincreasing in (to,
It turns out that also smooth initial functions may lead to discontinuous solutions.
THEOREM 3.4 (formation of discontinuities). Let hypotheses (H1)-(H2a) and A2

be satisfied. Then there exist initial functions uo C1([0, 1]) which satisfy hypotheses
(H3) and (A3), such that the corresponding solutions of problem (I) are not continuous
in Q.

Finally we consider the large-time behavior of solutions.
THEOREM 3.5 (convergence to stepwise solutions). Let hypotheses (H1)-(H3)

and (A2)-(A3) be satisfied and let u be the solution of problem (I). Then there exists
a nondecreasing function q e BV((O, 1)) which satisfies

q’ 0 almost everywhere in (0, 1)

such that

u(x, t) -. q(x) as t -. oc for almost every 0 < x < 1.

If uC(Q), then q is nonconstant in (0, 1).
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4. Uniqueness. In this section we prove the second part of Theorem 3.1, the
uniqueness of the solution of problem (I).

Suppose that u and are two solutions with corresponding functions w and E
defined by (3.6). It is sufficient to prove local uniqueness, i.e., u almost everywhere
in QT for some T > 0.

The idea of the proof is to subtract the equations for (u, w) and (,) and to
multiply the resulting equation by a suitable test function in order to obtain an ap-
propriate integral estimate for the difference of the two solutions.

Let T > 0 be determined below. We define E L2(QT) by

T

(x,t) (w-)(x,s)ds,

where (w_ )(x, s) stands for w_x(x, s) (x, s). Subtracting the equations (3.7)
for, respectively, u_ and , multiplying by , integrating by parts over QT, and using
(3.8) and the fact that (x, T) 0 for almost every 0< x < 1, we obtain that

iQr(U

)(w- )zdxdt =fiQr (w- )2dxdt

sio (s" )+ (h(w) h()), (w )=(s, t)ds dxdt.
T

Splitting up the measure u, into its regular part u E LI(QT) and its singular part
us (see [a]), it follows from the nonnegativity of ffQr (uS -S)(w- ) that

(4.1)

where e > 0 is a constant to be chosen below. First we estimate I1"

11 _<eii_ ((h’(w__)(w__- )=)2 + (h’(w__) h’())22x) dxdt
T

(4.2) <_ek21 (w- )2dxdt + ek sup 2(x, t)dx
T [0,T]

sup(w- )2dt,
(0,1)

where we have used (3.5). Observe that, for any t [0, T],

sup (w__ )2(x, t) 2 sup (w_ )(w )(s, t)ds
O<x<l O<x<l

_< (w )2(x, t)dx + (w_ )2(x, t)dx.
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We use the second term on the left-hand side of (4.1) to estimate w- in L2(QT)
since w-- (u) almost everywhere in QT, we have

ux )(w- )dxdt >_
T supR , (w- )2dxdt,

T

and hence it follows from (4.1) and (4.2) that if we choose e > 0 such that

T
ek2 <_ - and --2 T 1

ek22 sup wx(x,t)dx _< max , 2supl\[0,11

then, for any T E (0, 1],

Choosing T E (0, 1] such that T2 _< 1/2eT, we find that

-T (w- )2dxdt +
T

2 supR’
(w- )2dxdt <_ O,

T

and the proof is complete.

5. Existence. To prove the existence of a solution of problem (I), we proceed
in two steps. The first one consists of approximating problem (I) by a nondegenerate
problem.

For any 0 < e _< 1 there exist functions 9, C(R), and u0 C([0, 1])
such that

’ 4- e _< <_ ’ 4- 2e inR, .’L(R),
isodd, --. in C3oc(R) ase--.0,

o, _<

where ki is defined by (3.1), and

< C,

inR, --p inCi3oc(R) ase-.0,

(((x))’) dx

u(0) u(1) 0, u0 -- u0 in Ll(0, 1) as e --- 0
for some C > 0, which does not depend on e, where we have set

p

(5.2) @(p) (s)ds for p e R.
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If condition (A2) is satisfied, we may suppose that

p,<O inR-, O<q,(p)<,(a) inR+,

and

(5.3) p, 0 in ()-1(,),),--OO).

We consider the approximate problem

, ,(u) + ,(u),
(I,) u(x, o) uo,(x)

ux(O,t) ux(1,t)=0

in Q,
forO<x< 1,
for t > O.

LEMMA 5.1.
solution

Let e > 0 and k 0, 1,2, Then problem (I) has a unique

,]I,o C2+k 1]u, e ,,,o ([0, +); ([0,)).

(The notation u, e I/l’rl’x,,
loc indicates that, if we set y=C2+k([O, 1]) with norm I1" II, the

functions u,(t) and u,t(t) belong to Y for art t >_ 0 and the scalar functions Ilu,(t)ll
and Ilu,t(t)ll belong to L(O, T) for any T > 0.)

Proof. We introduce the spaces

X {u e C2+k([0, 1]) u’(0) u’(1) 0},
Y Ck([0, 1]),

and we define the functionals G" X - Y and H" X --, Y by

G(u) u r,(u’)’ and H(u) ,(u’)’.

Clearly these functionals are uniformly Lipschitz continuous. In addition we claim
that G is invertible and that its inverse

G-1 Y - X is locally Lipschitz continuous.

First, we prove (5.5) for k=O.
Let Vl, v2 E Y and consider the problem

(II,,i) { ui, T,(u)’=, vi

ui(0) ui(1) 0,

in (0, 1),

where i 1, 2. By standard results on quasilinear elliptic equations and by the
maximum principle, there exists a unique solution ui E X of problem (II,i), which
satisfies

(5.6) max lu, < max Ivl and Ilullx < CIIvllY
[0,11 --[0,11

for some constant C that does not depend on vi.
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To prove (5.5), we consider the equation for z := Ul-u2"

’(I)" (’() ’,()) ,
Z T)e(?i)Zt’- T)et()UZ Vl V2,

where (x) is a number between u (x) and u’2(x). By the maximum principle

and thus

I’()z" + :’()’ [.,
T

from which (5.5) follows at once for k=O.
If k 1, (5.6) remains valid. The remaining part of the proof of (5.5) is bed on

a standard iteration procedure applied to the equation for the kth-order derivative of
Ul U2.

We rewrite problem (I) an ordinary differential equation in Y:

d
(H o G-1 [0, +),

(0) (u0).

The local existence of a unique solution w e C1([0, T]; Y) (for some T > 0) follows
from (5.5), and by (5.6) the solution can be extended globally: w e C([0, +); Y).
Applying (5.5) a second time, we find that

z’ X),u -() e oc ([0, );

and u is the unique solution of problem (I).
The second step in the existence proof is to show several integral estimates for u

which will enable us to let e 0.
LEMMA 5.2. Let u be the solution of problem (Ie), and let be defined by (5.2).

For any T > 0 there exists a constant C which does not depend on e such that

(s.s)

(5.9)

(5.10)

(5.11)

sup (ux)dx <_ C,
t[0,T]

sup (ux)2dx <_ C,
t[0,T]

/Q u2tdxdt <_ C,
T

’(u)u2tdxdt <_ C,
T

(u)2tdxdt <_ C,
T

sup (u)2dx <_ C,
t6[0,T]

(,tle: o()e.
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Proof. Multiplying the equation for ue by Ce(uex)x and integrating by parts, we
obtain that for t E (0, T]

o1( 1 ) 01( 1,(u,x) + T,(U,x)2 (X, t)dx- ,(Uo,) + 2T(,(U,)’)2 (x)dx

f f (u,)dxdt,

where kx is defined by (3.1). It follows eily from the conditions on , d u0, that
the second integral on the le-hand side is uniformly bounded with respect to e, and
(5.7) and (5.8) follow at once.

We multiply the equation for u by ua and integrate by parts:

u2,tdxdt + T (u,)uLtdxdt (I),(u,z) (x, T)dx +
T T

where we have set

,(p) qo(s)ds for p e R.

Since I ,1 <_ in R for some constant C independent of e, the right-hand side is
uniformly bounded, and we obtain (5.9) and (5.10).

Finally (5.11) follows from (5.8), (5.9), and the equation for u, (5.12) follows
from (5.7) and the inequality 2

_
C for some C independent of e, and integration

of the equation for ue implies (5.13).
Remark. Except for the estimate (5.11), all estimates of Lemma 5.2 can be

obtained if we use, instead of (3.1), the weaker inequality ’_>-k1 (cf. (1.9)).
In particular it can be shown that this condition is sufficient to prove existence of a
solution in the sense of distributions.

Now we are ready to construct a solution u of problem (I). It follows from (5.7) and
(5.9) that the set {u}0<<l is bounded in SVioc(), and it follows from a straightfor-
ward diagonal procedure that there exist u Llo (Q) and a sequence {en } converging
to 0 such that

u,.-u inLoc() asnoc.

We observe that (5.13) implies that

u(x, t)dx uo(x)dx for t _> 0.

Since uen(O,T;BY((O, 1))), this implies that ueL(QT).
In view of (5.8), (5.10)-(5.12), we may assume that there exists w

H(0, 1)) such that wt e Lo((0, +c); Hi(0, 1)) and

weakly in Ho(0) as n -- c.
It follows easily from the integral estimates (5.8), (5.10), and (5.11) for

that these functions are uniformly Hhlder continuous with exponent 1/2 in QT; thus
w C1/2(QT) and we may assume that

(u.z) w uniformly in QT as n oc.
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In addition [w[-<7 in QT. Indeed, if Iw[ >7+2r] at some point (xo, to)CQT for some
>0, then there exists a neighborhood U c QT of (x0, to) which does not depend on

n such that for all sufficiently large n,

1,, (u,)l > 7 + v/ in U;

this implies that
lue. > e-. (7 + r/) in U,

and since the term at the right-hand side tends to infinity as n-, (x) we obtain a
contradiction with the boundedness of ue in Boc(Q).

Property (3.6) follows immediately from the construction and continuity of w.
Using the equation for ue we obtain for any E C2(QT) the integral identity

]01(u + TW)(X, T)dx (uo(x)(x, O) + TWo(X)x(X, O))dx

=//QT (ut + wt- h(w))dxdt,

i.e., u and w satisfy (3.7) in the sense of distributions. In view of the regularity of u
and w, (3.7) is satisfied in L2(QT).

Next we prove a local regularity result for the limiting function w which we shall
use in 8.

THEOREM 5.3. Let hypotheses (H1), (H2), and (H3) be satisfied, let wo be defined
as in (S3), and let u be the solution of problem (I) constructed in this section, with
the corresponding function w defined by (3.6). Let K be a closed interval contained in

(x E [0, 1]: Iwo(x)l < 7. If wo H2(K), then for every > 0 such that K [0,] c
{(x,t) Iw(x, )l <

w e L((0, ); H2(K)) Cl C1+1/2 (K x [0, 1).

(Here H2(K) is the Sobolev space containing the functions u L2(K) such that the
generalized derivatives of u of first- and second-order belong to L2 (K).)

Proof. Let {uoe} be a sequence of C([0, 1])-functions, equibounded in H2(K),
such that uoe --* uo in LI([0, 1]) as e - 0. Let ue be the corresponding solution of
problem (Ie), and we =e(uex) -- w in C(QT) as -- O. Thus there exist d> 0 and

7 (0, 7) such that Iwel _< 7 < 7 in K [0, ] for every 0 < e < d. It follows easily from
(5.9) and (5.10)that

(5.14) uet(x t)dt E C(7’) for all x e K,

where C(7’) does not depend on e e (0, e’).
Multiplying the equation for ue by Ce(ue) and integrating over [0, t*], where

t* _< t, we obtain for every x K,

Te(Uex) t*) _-Te(Uex)i(x,O) + + kl e(uex)i(x,t)dt(x, <1 1

: (x, t)dt
1

+
o ut
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where kl is defined by (3.1). Combining this integral inequality with (5.14), we find
that the functions

(ux)x (0<e<e’) are uniformly bounded in K [0,].

From (5.14) and (5.15) it follows that (ux) are HSlder-continuous with respect to
t with exponent 1/2 uniformly with respect to x E K; indeed, it turns out that

To complete the proof we derive an estimate for (u) in L2(K). For this
purpose we consider the equation for v =u:

(5.16)

Multiplying (5.16) by ,(ve)xx and integrating by parts over K [0, t*], where 0 < t* <,
we have

where we have used (5.15), (5.10), and the fact that (v) is uniformly bounded away
from zero in K. It follows at once from this inequality that

(v)zz e L([0, ], L2(K)),

and the proof is complete.

6. Gradient extimates. In this section we shall prove the estimates for u
given in Theorem 3.2.

Proof of Theorem 3.2(i). It is sufficient to prove that if u _> 0 in (0, 1), the
solution u of problem (L) satisfies the inequality

ux _> 0 in QT.
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The proof is inspired by a method used by Novick-Cohen and Pego [NP]. Let
g R --, R be a smooth nondecreasing function such that

=0 ifs >_ 0,
g(s)

<0 if s<0.
Then

Jo" {=0 if p>0,
K(p) g(e(s))ds

>0 ifp < 0,
and in particular,

oo
g(u’o)d O.

Hence for all 0 < t _< T,

K(u)(,)d

-//
+// a(W(u) +(u))dd.

By the mean value theorem, the first term at the right-hand side is nonpositive.
Integrating the second integral by parts and using the equation for u, we obtain

K(u)(x, t)dx g’((u) + Te(u)t)utdxdt O.

This implies that K(u) 0 in QT and thus u 0 in QT.
Proof of Theorem 3.2(ii)-(iii). We set

(.1) (, t) u(, t)a, o 1, t o,

where is the solution of problem (I). Then

(6.2)
and

Substituting (6.2) into the latter erm of (6.a), we have

(.4) () ()
By

(.) (0, t) (1, t) 0 fo t

hence, applying for fixed t the mimum principle o he ordinary differential equa-
tion (6.4) in for zt, we find that

zt N m ()(, t)

In view of (6.a) this means

(.) ()
ixing=0 in (6.6) we obtain an ordinary differential inequality for u(o, t), which
is uniform with respect to e ne the value u=, and heorem a.2(ii)-(iii) follows
at once.
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7. The persistence of discontinuities. In this section we prove that if
ux(xo, to) +c for some (x0,t0), then ux(xo,t) remains infinite for all t > 0. The
main idea of the proof is to show that we can reconstruct the solution for t > to by
solving the problem independently in the sets (0, xo) (to, +x) and (x0, 1) (to, +x)
if we impose the boundary condition u(xo, t) +cx for t > 0. This construction
reflects the lack of interaction between these two sets across the point x-xo, caused
by the strong degeneracy of the equation for infinite gradients; in other words, the
vertical line x--x0 is a characteristic of the equation.

Proof of Theorem 3.3. Without loss of generality we may assume that to-0. We
consider the problem

ut e(u)z + TCe(uz)xt in (x0, 1) x R+,
u(x, O) uo(x) for x e (x0, 1),

(III)
(u(xo, t)) 7 for t > O,
(u(1,t)) 0 for t > 0.

Arguing as in the proof of Theorem 3.1, it follows that problem (III) has a unique
solution u, and that there exists a sequence en -- 0 as n -- cx such that un converges
to a solution u of the problem

ut (u) + T(Ux)t in (x0, 1) R+,

(III)
u(x, O)= uo(x) for x0 < x < 1,

(u(x0, t)) 7 for t > 0,

(u(1, t)) 0 for t > 0.

(The definition of a solution of problem (III) is quite similar to the one of problem (I).)
We claim that the solution of problem (III) has the following property:

(7.1) u(x+o, t) is nondecreasing for t > O.

Before proving this we complete the proof of Theorem 3.3.
In a similar way we solve a corresponding problem for 0 < x < x0:

ut (u)x + T(u)t in (0, x0) x R+,
u(x, O) uo(x) for 0 < x < x0,

(III’)
(u(xo, t)) 7 for t > O,
(u(0, t)) 0 for t > 0,

and its solution (x, t) satisfies the property that

(x, t) is nonincreasing in (0, T].

Finally, defining
u(x t)

(x, t)
(,t)

if x0 < x _< 1,t _> 0,
if 0 <_ x < x0,t >_ 0,

it is easy to show that is the unique solution of problem (I), and the desired result
follows from (7.1)and (7.2).

So it remains to prove (7.1).
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Let

(7.3) v(x, t) u(y, t)dy if x0

_
x

_
1, t _> 0

o

and

(7.4) v(x, t) u(y, t)dy if x0 _< x <_ 1, t _> 0.
o

Arguing as in the proof of Theorem 3.2(ii)-(iii) and using the boundary conditions at
x=xo and x=l, we obtain that vt(.,t) satisfies for any t>0,

_> o
v t(xo, t) v t(1, t) o.

for x0 < x < 1,

Hence v(x, t) and v(x, t) are nondecreasing with respect to t. Since v(xo, t)--0 for
t > 0, this implies that

vx(xo, t) u(xo+, t) is nondecreasing for t > 0,

and we have found (7.1).
8. The formation of discontinuities. In this section we shall prove that

smooth solutions may develop discontinuities within finite time. The idea of the proof
is to start off with a suitable initial function which is discontinuous at some point
x0, to solve the problem backwards in time, and to show that the solution becomes
smooth after a finite (negative) time.

Proof of Theorem 3.4. Let x0 E (0, 1/2), and let a, c and 5 be small positive parame-
ters such that c > a5. Then there exists a function u0 (see Fig. 4) satisfying hypotheses
(H3) and (A3)such that

u0 e C3([0, 1] \ {x0, l-x0}),
u0(x0+) a, uo(xo-) 0, u(xo +5) a+c,
uo (1 x) uo (5) uo (1/2) uo (x) for almost every 0 < x < 1,

and

if xo < x < xo+5,
if xo+5 <_ x <_ 5,

ug(x)>_ for0_<x<xo

for some > 0.
Using the transformation t --. -t and (s) -- -(s), we may apply Theorem 3.1

to solve problem (I) backwards in time, i.e., problem (I) has a unique solution u(x, t)
for t < 0. By uniqueness, u has the symmetry of its initial function:

(8.1) u(1 x,t) uo() uo(1/2) u(x,t) for almost every 0 < x < 1,t < 0.

In addition, it easily follows from the continuity of the function w defined by (3.6)
and from Theorem 5.3 that there exists a to < 0 such that u(x, t) is strictly increasing
with respect to x in (0, 1) [to, 0).
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’U0

FIG. 4. The function uo in the proof of Theorem 3.4.

We claim that for an appropriate choice of the parameters a, c, and 5, there
exists to E (to, 0) such that u is smooth at (xo, to). By symmetry, u is also smooth at
(1 xo, to); on the other hand it follows from Theorem 3.3 and the smoothness of uo
that [uz(x, to)[ < +x in the remaining points (x, to). Hence the continuous function
(ux) satisfies I(uz)(x, to)[ < V for all 0 _< x _< 1, and u(.,to) C1([0, 1]). Using
u(., to) as the initial function of problem (I) forwards in time, we obtain Theorem 3.4.

It remains to prove our claim. Arguing by contradiction, we may suppose that
the function w(x, t), defined in(3.6), satisfies

w(xo, t) w(1 xo, t) 3’ for all t < O.

Hence the function u(x, t), restricted to the set [xo, 1-xo] x (-oc, 0], is a solution of
the problem

u v(u) +(u)
(IV) (ux(x0, t)) (u(1 x0, t)) v

u(x, o) o(x)

for xo < x < 1- xo,t < O,
fort <0,
for xo < x < 1- xo.

It is not difficult to adapt the proof in 5 to show the uniqueness of the solution of
problem (IV).

It follows from Theorem 3.2(iii) that

(s.2) u(x, t) > a for almost every xo < x < 1- xo, t < 0,

and Theorem 3.3 implies that

(8.3) (x0+, t) > u(x0-, t) > uo(xo-) o
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and

(s.4) u((1- xo)-,t) < u((1- xo)+,t) < no((1- xo)+) < 2(a+c)+a(1-2xo).

Combining (8.2), (8.3), and (8.4) we have that
(s.)
a(x xo)

_
u(x, t)

_
2(a + c) + a(x xo) for almost every xo < x < 1 xo, t < 0.

The solution of problem (IV) may be approximated by the solution u of the
problem

v(u) +()
(IVy) (u(x0, t)) (u(1 xo, t)) -(, o) o()

for x0 < x < 1- x0,t < 0,
fort <0,
for x0 < x < 1- x0,

where uo is a smooth function which converges uniformly to uo in (xo, 1-xo) such
that u _> c in (xo, 1- xo).

Let v(x,t) and v(x,t) be defined by (7.3) and (7.4) for xo<_x<_ 1-xo and t_< 0.
By (8.5) we have that for all xo _<x _< 1-xo and t_< 0

v(x, t) v(x, O) (u(s, t) uo(s))ds > -2(a + c).
o

Since v --, v uniformly on bounded sets as e -- O, there exists eo > 0 such that for all
0<<o,

(8.6) v(x, t) v(x, O) > -3(a + c) for xo < x < 1 xo,-1 < t < O.

Arguing as in 7, we obtain that

vt T(U)t + 99(U) in (x0, 1- x0) X (--oo, 0).

Hence

(, tl (,o -e((, t/ -(;(/ o((, lle,

and, by (8.6), for O< e < eo

(s./ -((, t)) _>-() + ((,lle a( + )
for :co <_ :c _< 1 :co,- 1 <_ t <_ 0.

Since (s) is uniformly bounded away from zero in a neighborhood of s a for e
small enough, it follows from (8.7) that there exist constants 0 < el _< e0, to _< to < 0
and C> 0 which do not depend on a, c, and 5 such that

uz(x, to) > C + a 3(a + c) forxo<x<l-xo.

Letting e 0, we obtain that

u(x, to) >_ C + a 3(a + c) for almost every xo < x < 1 xo,

and, choosing a+c sufficiently small, we obtain a contradiction with (8.5).
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9. The convergence to stepwise solutions. In this section we prove the
convergence of the solution to a stepwise steady-state as t -- +x). The first step
is rather elementary: integrating the equation with respect to x, we shall use the
maximum principle to prove the existence of an asymptotic profile.

More precisely, let z be defined by (6.1), and let

x

for 0_< x_< 1, t_> O.

Since 99(u) >_ 0 in Q, it follows from (6.4) and (6.5) that zCt _> 0 in Q, and hence

(9.1) z(x, t) is nondecreasing with respect to t.

Since u is nondecreasing with respect to x,

(9.e) z(x, t) is convex with respect to x,

and since z(0, t)-0 and z(1,t)=f3 uo(x)dx for all t_>0, it follows from (9.1) and (9.2)
that the pointwise limit

(x) lim z(x, t), 0 < x < 1
t--oo

exists, and
(x) is convex in [0, 1].

Since u zx is uniformly bounded in [0, 1],

e WI,((0, 1)),

and it follows from (9.2) that

(9.3) u(x, t) -, q(x) =_ ’(x) as t - c for almost every 0 < x < 1.

To complete the proof of Theorem 3.5 we have to prove that

(9.4) q’(x) 0 for almost every 0 < x < 1,

which is the second step of the proof. The fact that q(x) is nonconstant if u has a
discontinuity at some point (x0, to) follows at once from (3.9).

We observe that, formally, (9.4) follows if we prove that (q(x))---0 for all x, i.e.,
that q(x) is a solution of the steady-state problem

(q’)’ 0 in (0,1),
q’(0) q’(1)=0.

Below we shall make this argument precise.
Integrating (6.3) with respect to t, we obtain that for any tl > to _> 0 and

0<x<l,

ze(x, tl) Te(Uex(x,t)) Ze(X, to) Te(Ue(X, to)) + e(uex(x,t))dt.
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Since z - z and Ce(uex) w uniformly on bounded sets as e --+ 0, we have that for
any t > to >_ 0 and 0 < x < 1,

(9.5) z(x, tl) TW(X, tl) Z(x, to) TW(X, tO) + h(w(x,t))dt,

where h is defined by (3.4).
Since h(w) >_ O, 0 <_ w <_ , and z as t - oc, we may define

(x)= limw(x,t) for0_<x<_l.
t--c

We observe that this implies that

(9.6) w(.,t)- inLl((O, 1)) ast

and

h(w(x,s))ds is uniformly bounded in (0, 1).

In particular, since for all 0 < x < 1 and t > 0,

t+l

h(w(x, s))ds z(x, t + 1) z(x, t) TW(X, t + 1) + TW(X, t),

we find in the limit t --+ oc that

h((x))=O for allO<x<l,

which implies that the function assumes only the values 0 or .
Let e > 0. Because of (9.6), and since z(., t) -+ uniformly in (0, 1), there exists

t > 0 such that t oc as e 0,

(9.7) O_<--Z(.,t)<eT in(O, 1) fort_>t,

and

(9.8) measure {x e (0, 1)" [w(x, t)- (x)[ _> e} < e for t _> t.

We assume for the moment that

(9.9) almost everywhere in (0, 1).

Defining the open set
U {x e (0, 1)" w(x, t) < e},

it follows from (9.8) and (9.9) that

measure U > 1- e.

We claim that

(9.10) q, _< -1 (2e) in U.
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In view of the arbitrariness of e, this completes the proof of (9.4).
It follows from (9.5) that for all t > t and 0 _< x _< 1,

TW(X, t) TW(X, t) + (Z(X, t) (X)) (Z(X, t) ) h(w(x, s))ds,

and thus, by (9.7), the positivity of h(w) and the definition of U,

w(x,t)_<2e inU fort>t.

It follows from the relation w (u) in the set where w < that

u(x,t) < -1(2e) for x E Ue and t > t.

Since U is an open subset of (0, 1), this implies (9.10).
It remains to prove (9.9). We argue by contradiction, and suppose that the set

S {x e (0, 1) (x)

has positive measure. Since

TW(X, t) T(X) + Z(X, t) --(X)+ h(w(x, s))ds

and z(., t) -, uniformly in (0, 1) as t c, for any 5 > 0 there exists a t > 0 such
that

w(x,t)>_-5 forxS and t>t.

Since

w(x, t) lim (ux) uniformly on bounded sets,
e--0

a straightforward integration of u yields that

u(1, t) u(O, t) >_ -1(. 5)1SI.

Since the choice of 5 > 0 is arbitrary and -1(/_ 5) - as 5 -+ 0, we obtain a
contradiction with the boundedness of u.

To conclude the paper, we observe that it follows easily from Theorem 3.3 about
the persistence of discontinuities, that the (infinitely many) piecewise constant steady-
states are all locally stable (for example, in L(0, 1) or in BV(0, 1)), and therefore
the asymptotic profile will strongly depend on the initial function u0.

We conjecture that the asymptotic profile also depends on the value of the re-
laxation time T. More precisely, we guess that, given an initial function which has
supercritical gradient in some subinterval, the number of discontinuities of the corre-
sponding asymptotic profile may become arbitrarily large as T --, 0. Some numerical
evidence for this conjecture can be found in [BBdPPU].
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ON A TRANSMISSION BOUNDARY-VALUE PROBLEM FOR THE
TIME-HARMONIC MAXWELL EQUATIONS
WITHOUT DISPLACEMENT CURRENTS*

MARTIN REISSELt

Abstract. This paper considers a transmission boundary-value problem for the time-harmonic
Maxwell equations neglecting displacement currents. The usual transmission conditions, which re-
quire the continuity of the tangential components of the electric and magnetic fields across bound-
aries, are slightly modified. For this new problem, it is shown that the uniqueness of the solution
depends on the topological properties of the domains under consideration. Finally, existence results
are obtained by using a boundary integral equation approach.

Key words, time-harmonic Maxwell equations, existence and uniqueness, integral equation
methods

AMS subject classifications. 35Q60, 45F99, 78A25

1. Introduction. Many problems in electrical engineering lead to transmission
boundary-value problems for the time-harmonic Maxwell equations. A standard prob-
lem of this type is shown in Fig. 1. One considers a bounded domain GE c ]13 of
conducting material which is surrounded by an isolator (usually air). In the in-
terior of the unbounded domain GL :-- ]13\E a time-harmonic current density
Je(x,t) Je(x)e-t is given. We are now interested in the currents induced in
GE by . This leads to. the classical transmission boundary-value problem for the
time-harmonic Maxwell equations

curl HL Je- icoLEL

curl EL iw#LHL
in GL,

curl HE (iTE- icaE)EE
(1) in GE,

curl E ica#EHE

nAHL =nAHE

nAEL =nAEE
on OGE,

with the Silver-Miiller radiation condition

HL A - =0

uniformly for Ixl--, oc.
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FIG. 1

The different constants have the following meaning:

frequency,

gL, gE > 0 electric permittivity in (L, (E,

#L,E > 0 magnetic permeability in,GL,

(rE > 0 electric conductivity in GE.

Under certain assumptions on the regularity of Je and the smoothness of the
boundary F, which separates the domains (L and (]E, existence and uniqueness of
solutions HL, EL, HE, EE of (1) can be shown [7], [9].

Dealing with problems in connection with machines working at power frequencies,
equations (1) are modified. Since the frequency w is very small, displacement currents
are usually neglected, which means that L and E are set to zero in (1). Moreover, the
transmission and radiation conditions are changed. The continuity of the tangential
components of the electric field across F is substituted by the condition n. (#LHL)
n. (#EHE) on F, n being the outer normal to (]E. In addition, the Silver-Miiller
radiation condition is replaced by HL (x) o(1), EL (x) o(1) uniformly for Ixl --. c.
All these modifications together yield our new problem as follows.

curl HL Je

curl EL iw#LHL

curl HE erEEE
in GL in GE

curl EE iw#EHE

n A HE n A HL

n. (#EHE) n. (#LHL)

HL(x) o(1), EL (x) o(1) uniformly for Ixl -* o.
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As we will see, uniqueness results for (2) will strongly depend on the topology of GL
respectively, GE. In 4 we will show existence for (2), and the set of all possible
solutions will be completely characterized.

2. Preliminaries. Before we start with the existence and uniqueness proof, we
want to give a detailed description of the problem.

Let C(G)(Ck (G) respectively, Cos (G), 0 < ( < 1) denote the space of continuous
(k times continuously differentiable respectively, HSlder continuous) functions on G.

GE c ]13 is an open, bounded domain with C2 boundary. The complement
GL 3\E should be connected ((S denotes the closure of GE). GE is the
union of m connected components G, j 1,..., m having the topological genus pj.
The boundaries Fj OG are closed surfaces, which should be disjoint. Setting
F [.Jj=l Fj we get F OGE OGL.

mThe topological genus of GB, respectively GL, is p -]j=l PJ- There exist p

surfaces ’ c GE, respectively, -]L C GL, i- 1,... ,p, such that GE\ ,P=I -E
respectively, GL\ PI.Ji=l -L are simply connected. The boundary curves 0-E
and .E 0-L lie on F.

Example. Let GE be a torus. In this case we have m p 1. The surfaces
E, -1L and the curves .yL,E are shown in Fig. 2.

FIG. 2

The problem to be solved is now defined as: for Je E C(R3), div Je 0,
supp(J) c GJ, J c GL bounded, find HL, EL C(GL) n c(L), HE, EE
CI(GE) n c(E), solving

curl HL Je curl HE aEEE
(3) in GL, in GE,

curl EL iwtLHL curl EE iwEHE
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nAHE =nAHL

(4) on F,
n. (#EHE) n. (ItLHL)

(5) HL(x) o(1), EL(x) o(1) uniformly for [x -- o.
3. Uniqueness. Taking a closer look at (3)-(5), it becomes obvious that we

cannot expect uniqueness for all four fields because adding the gradient of a suitably
chosen function to EL does not change anything in (3)-(5). Therefore, if we talk
about uniqueness in the sequel, we only mean uniqueness of the fields HL, HE, and
EE

THEOREM 1. For problem (3)-(5), together with the additional condition

T. HLdl h/L, i 1,...,p,(6)

h E C given, T being the unit tangent to /iL, the fields HL, HE, EE are uniquely
determined.

Proof. We consider the homogeneous problem with Je 0 and h/L 0, i
1,..., p. We show that the fields HL, HE, EE vanish identically.

From the first transmission condition n A HE n A HL on F, we get, with the
help of the Gaussian theorem,

n ([-IL A EE)ds fr n (E A EE)ds

((tEEE E iwEHE [_iE)dv,

where F denotes the complex conjugate of the field F.
GE and GL were defined to have topological genus p. In this case, it is well

known [6] that there exist p linear independent Neumann fields ZE respectively, ZL,
i-- 1,...,p, in GE respectively, GL, fulfilling

curlZ/E-0, divZ/E-0 inGE, n.Z/E--0 onr,

curlZ/L--0, divZ/L=0 inGL, n.Z/L=0 onr,

T Zdl 6ij

and

T Zdl=6ij,

uniformly for Ix[ --, cx. As a consequence of the regularity assumptions on GE and
GL we get

z( e c(a e c(a
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Using the second transmission condition n. (#LHL) n. (#EHE) on F, we
conclude that for any surface element S c F we have

fosT" (EE EL)dl fsn’curl (EE EL)ds iW fsn" (#EHE #LHL)ds O"

But this means that the tangential components of E EL on F are of the form

P P

(E EL)ltan Grad+ L L +
j= j=

where Grad denotes he surface adien of on and e,e C, i 1,..., p, are
complex numbers.

In complete analog, we derive from

eurlHz=0 inGL, r Hdl O, i=1,..., P,

ha we can write he angenial components of Hz a surface gradien

HL ,. Grad .
Puing (E EL)],a, and H],a. in (7), we arrive a

i=1 i=1

Applying Sgokes’s heorem o he erms on the right-hand side, we deduce

Z n. (Grad A Grad )ds O,

and therefore,

n. (Grad (p A ZL)ds O,

n. (Grad A zE)ds O,

(8) ]r n. (E A EE)ds Iv n. (L A EL)ds.

Let us now consider Gn GL 3Bn, Bn := {xlx E IR3, Ixl <_ R}. For large enough
R, we get, by using the Gaussian theorem,

0 x (L A EL)ds Fn (ftL A EL)dS o n’ (f-IL A EL)ds

--iw#L fGn HL [-ILdv’
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n being the outer normal to GR.
Together with (7)and (8)this means

(9)
--iwltL /Grt HL [-ILdv

q_ /G (rEEE E iwlzEHE [_IE)dv o x___ (L A EL)ds.

For HL we have

curl HL 0, div HL 0 in GL, HL(x) o(1) uniformly for Ix[ - c.

Therefore, HL is a harmonic vector field in GL tending to zero for Ix[ oc and thus

(1)HL(x) -0 uniformly for [x[

From EL(x) o(1) uniformly for Ixl we get

x EL^ on OBR,

and

(L A EL)ds o(1)

Taking the limit R - cx), (9) yields

aE/GEE.Edv--iw(PE/GEHE.IEdv-PL/GLHL.[ILdv) --0.

Since w, (rE, tL,E are real and positive constants, we conclude

HL =_0, EE =--0, HE =-0. D

Remark. The free parameters hL in (6), which are the circulations of HL along
the curves ,L, are later on used to characterize the different solutions of (3)-(5).

4. Existence. To establish existence results for (3)-(5) we consider the following
auxiliary problem.

Find HL E CI(GL) N c(L),

HE e C2(GE) FI c(E), div HE e c(E), curl HE e C(E)

solving

curl HL 0 (A + k2)HE 0

div HL 0 k2 iwaEtE
in GL, in GE,
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nAHE-nAHL c

(10) n (#EHE) n. (#LHL) g on r,

div HE d

i- 1,...,p,

HL(x) o(1) uniformly for

For k we choose the square root with positive imaginary part.
In this chapter we show that (10) is uniquely solvable for sufficiently smooth data

c, g, d. Moreover, we describe how all solutions of (3)-(5) can be constructed by using
the solvability of the auxiliary problem (10).

By the following lemma [8], the uniqueness of (10) can be reduced to the unique-
ness theorem given in the last chapter.

LEMMA 1. Let H e CI(GL) fc(L), H(x) O(1/Ixl+), Ixl- , 0 </ < 2,
satisfying div H 0 in GL. If we have

j 1,...,m

for any connected component Fj ofF, there exists a field, field E E CI(GL) Nc(L),
such that

curl E iw#LH, div E 0 in GL,

(1)E(x) 0 uniformly for

THEOREM 2. Problem (10) has at most one solution.
Proof. We consider (10) with homogeneous data c 0, g 0, d 0. Since

HE is a solution of the vector Helmholtz equation with wave number k in GE, the
divergence of HE solves the scalar Helmholtz equation with the same wave number
k in GE. From div HEir d 0 and Im(k) > 0 it follows that div HE vanishes
identically in GE [1]. Using the identity curl curl grad div -A and defining EE
by EE 1/aE curl HE, we conclude that HE, EE are solutions of the Maxwell
equations in GE.

On the other hand, HL is a harmonic vector field in GL, satisfying HL(x) o(1)
uniformly for [x --* c. Therefore, we immediately get HL(x) 0 (1/Ix]2) uniformly
for Ix[-- c. In addition to this, we deduce from the transmission conditions of (10)

#L r n" HLds r n" (#LHL)ds r n. (#EHE)ds

n (iw#EHE)d8 n curl EEds O.
iw zw
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Applying Lemma 1 with 1 to HL proves the existence of a field EL defined in
GL, having the following properties:

curl EL iw#LHL in (L,

EL(x) o(1) uniformly for Ix --. oo.

Thus we have shown that HL, EL, HE, EE solve the homogeneous equations (3)-(5)
with vanishing circulations

Now, from Theorem 1 we conclude HL =_ 0, HE =_ O. D
Before we start with the existence proof for (10), we have to introduce some

notation.
DEFINITION. Let 0 < a < 1.

is the space of Hblder-continuous functions on G.

v0(r) (c0(r)), max
i=1,2,3

is the space of Hblder-continuous vector fields on F.

T(r) {a e V(r)[n. a 0),

is the space of Hblder-continuous tangential fields on F.

T(r) ( e T(F)lDiv a e c(r)}, Ilulla,,r max(llull,r, IlDiv ullo,,r),

is the space of Hblder-continuous tangential fields on F having Hblder-continuous
surface divergence.

x(r) Tg(r) c0(r) c(r),

Ilullx ma,x(I]UllldX, Ilu2110r, Ilu3110,r),

1 eitclx-ul 1 1
(I)(x, y)

ix YI’ Oo(x, y)
4" Ix

The spaces C(G), Va(F), T"(F), T2"(F), and Xa equipped with the correspond-
ing norms are Banach spaces.

THEOaEM 3. For any c e T2"(r),g e C"(r),d e C"(r), problem (10) is
uniquely solvable. The solution depends continuously on the given data.

Proof. The proof will be divided into three parts. In the first part, we use a
special ansatz for HL and HE to transform the transmission boundary-value problem
into a boundary integral equation. In the second step, we show that the integral
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equation is of second kind. Finally we conclude the proof by showing the injectivity
of the corresponding integral operator.

The ansatz. We are looking for solutions HL, HE of the form

(11)

HL(x) gradx fr A(y)(bo(X, y)ds(y),

HE(x) curlx Jfr a(y)(x, y)ds(y)+ grad Jfr A(y)(x, y)ds(y)

+ fr n(y)5(y)(x, y)ds(y),

a e T"(F), A e Ca(F), 5 e Ca(F). For HL, HE we get [ll and [9]:

(i)
(1)HL 6 C(GL) N Ca(L), HL(x) 0

T HLdl O, i 1,..., p.

uniformly for [x --. c,

(ii) HE E C2(GE) Ca(E), div HE Ca(E), curl HE Ca(E),

(iii) curl HL 0 (A + k2)HE 0
in GL, in GE,

div HL 0 k2 iwaE#E

(iv)

max(]]HE]]vo,,O..,, ][div HE]]o,,) < c,

a

XdOt

]]curl HEIIva,Os _< ca max(llall,r, 11611o,r).

From (i)-(iv) we see that our ansatz meets all the regularity requirements of (10).
HL and HE depend continuously on a, ), and 6 and solve the required differential
equations. Therefore we only have to adjust the boundary values on F corresponding
to (10).

Defining F+(x) limh0 F(x 4-hn(x)), x F, n outer normal to GE, we get
the following jump conditions for both single and double layer potentials and their
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derivatives [1]"

Jfr Jfr ln(x) A a(x)’curlx a(y)((x, y)ds(y) curlx (a(y)((x, y))ds(y) = -grad A(y)(x, y)ds(y)
+

A(y)grad(I)(x, y)ds(y) ={: -n(x)

n(Y),5(y)(x, y)ds(y) Jfr n(y)5(y)O(x, y)ds(y),

)(y)O(x, y)ds(y) Jfr A(y)(x, y)ds(y),

S(Y)O,(x, y)ds(y)
1

5(y)On((x, y)ds(y) =l=-5(x).

The jump conditions do not change if we replace (I) by (I)0 on both sides. Using

(div HE)(x) A Jfr A(y)((x, y)ds(y) + Jfr div(n(y)6(y)((x, y))ds(y)

-k2 Jfr A(y)((x, y)ds(y) + Jfr 5(y)n(y) gradx(I)(x, y)ds(y)

x 6 GE,

we deduce

H_(x) Jfr A(y)gradx(I)0(x, y)ds(y) n(x)A(x),
1

HE_(x) curlx(a(y)((x, y))ds(y) + -n(x) A a(x)

fr+ A(y)gradx(I)(x, y)ds(y) +

/ Jfr n(y)5(y)((x, y)ds(y),

(div HE)_(x) -k2 Jfr A(y)((x, y)ds(y)

1
5(y)On,(x, y)ds(y)+ -6(x).
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Introducing the operators

(Ma)(x) 2n(x)A Jfr curl(a(y)((x, y))ds(y),

(Na)(x) 2n(x) fr curlx(a(y)(x, y))ds(y),

(K,k)(x) 2 Jfr )(y)On(x, y)ds(y),

(K’))(x) 2 Jfr A(Y)Onx((x’ y)ds(y),

(S,k)(x) 2 Jfr )(y)((x, y)ds(y),

(PA)(x) 2n(x) A Jfr n(y)A(y)((x, y)ds(y),

(QA)(x) 2n(x). Jfr n(y)A(y)(x, y)ds(y),

(n))(x) 2n(x) A Jfr A(y)gradx(I)(x, y)ds(y),

(K)))(x) 2 Jfr )(y)O,xo(x, y)ds(y),

(Ro))(x) 2n(x) A fr A(y)gradcI)0(x, y)ds(y),

we get the following expressions for the boundary values of HL and HE:

H (z)

2n(x) A HE_(x) (Ma)(x) a(x) + (RA)(x) + (PS)(x),

2n(x). (#LH(x)) #L((K)))(x) )(x)),

2n(x). (#EHE_ (x)) #E((Na)(x) + (K’))(x) + A(x) + (QS)(x)),

2(div HE)_(x) -k2(SA)(x) + 5(x) (KS)(x).

Thus, we immediately see that solving (10) is equivalent to solving the following
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integral equation

Av b, A

(12)

M-I R-Ro P

#EN #E(I + g’) + #L(I-- K)) #EQ

0 -k2S I K

a c

v= A b=2 g

d

The integral equation (12) is of second kind in X"(F). According to
[1]-[3] and [9] the operators defined above have the following mapping properties

M: TO" (F) --, T"(F) respectively, T"(F), N: T"(F) - C"(F),

Q, S, K, K’, K: C"(F) - CO" (F), P: C"(r)- T2"(r),

R, Ro: C"W) - T"(r).

N, R, Ro are continuous; M, Q, S, K, K, K, P, R Ro are compact.
Setting

F(x) 2 Jfr A(y)gradx(I)(x’ y)ds(y), A e c"(r), x E GE,

we get

F e C2(GE) N C"((E),

curl F 0 in GE,

n A Fir RA.

According to [1] we deduce

Div (RA) Div(n A F) -n-curl Fir 0

and therefore

In the same way we show IIRoAIId.,r IIRoAIIT.,r, so that the continuity of R, Ro
and the compactness of R- Ro carry over to the case where we consider R, R0 as
operators mapping C"(F)into T"(F).
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Now A is split up into

-I 0 0 M R-R0 P

A B+C, B IEN (E .4_ IL)I 0 C 0 #EK, LKD #FQ

0 0 I 0 -k2S -K

From the above considerations we immediately get

B, C: X"(r) -. "(r),

where B is continuously invertible and C is compact. Therefore (12) is of second kind.
The operator A is injective. Consider a solution

a

of the homogeneous equation Av O. Inserting a, A, 5 in (11), the fields HL and HE
obtained in this way solve the homogeneous problem (10). Corresponding to Theorem
2, they vanish identically. But HL was defined as

HL (x) gradx Jfr )(y)(I)0(x, y)ds(y)

and therefore

0 2

Since GL R3\(s is connected and unbounded, we get N(I- K) {0} [4], so
A 0. Using A 0 we obtain from the last component of Av b, (I- K)6 O.
According to [1], g(I- K) {0} for Im(k) > 0, and thus 6 0. From the first
component of Av b we get (I- M)a 0, and again a 0 because N(I- M) {0}
for Im(k) > 0 [11.

From the above considerations we conclude that our auxiliary problem (10) is
equivalent to the integral equation Av b. Since c e T (F), g e C (F), d e C (F),
the right-hand side b lies in Xa(F). Now A is injective in Xa(F) and therefore,
according to the Riesz theory, continuously invertible inX(F). So Av = b is solvable
for any b E X(F), with v depending continuously on b. If we use the components
of v to define HL, HE using (11), we get a solution of (10). By

lalld ,r, II llo ,r),
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we get the continuous dependence of HL and HE on the data c, g, d.
Up to now we have shown the unique solvability of the auxiliary problem (10) for

arbitrary c E T(F), g E C(F), d e C(F). With the help of this result, we want
to prove existence and uniqueness for (3)-(5) under the additional assumption (6) of
prescribed circulations for HL.

LEMMA 2. (i) Let Gg C GL be defined as above p Ca(]R3),supp(p) c Gg.
Then

u(x) -/aj p(y)o(x, y)dy e C2(R3),

u(x) O (x[ ) grad u(x) O ( 12 ) Ix,

(ii) Consider Je e C1(1R3), div Je 0, supp(Je) c Gg. There exist

Hg 61(]13), EJ 6 CI(GL) fq C(L),

curl HJ Je, div HJ O, Hg(x) O ( i-12)
curl EJ iw#LHJ, divEg=0, EJ(x) O (xl ) uniformly .for Ixl -- oc.

(iii) Corresponding to the Neumann fields in GL we have Ez C (GL) fq c(L),

curl Ez iwlzLziL, div Ez 0, Ez(x) O -[ uniformly for Ixl- .
Proof. The first part is an easy consequence of some well-known properties of the

Newtonian potentials in R3 [5].
In (ii), we assume Je e C(R3), supp(Je) c Gg. Therefore J e Ca(R3) and

from (i) we get

A f J(y)o(x, y)dy e C2(R3).
J

Defining HJ as HJ curl A C (R3), we see that

div HJ O, curl HJ curl curl A (grad div A)A J.

Corresponding to (i), the components of HJ behave as O(1/Ixl2) uniformly for
(90.

Since

r n HJdS r n curl A ds O, J l, m,

we may apply Lemma 1 to Hg (with 1) and get the existence of EJ.
For the last part, we remark that ZL e C(GL) N c(L),i 1,... ,p, are har-

monic vector fields in GL satisfying

n.ZL=0 onF, ZL=O 5 uniformly forlxl
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Using Lemma 1 again with f 1, the proof is completed.
With the help of Lemma 2, we obtain the main result of this paper.
THEOREM 4. Consider Je e 61(]3), div Je 0, supp(Je) C GJ,g C GL, Gg

bounded. Under these assumptions, problem (3)-(6) possesses a solution HL, EL, HE,
EE. HL, HE, EE are uniquely determined.

Proof. Consider HJ, which is given by Lemma 2. Define hJ as hJ f T.

Hgdl, i 1,..., p, and

P

j--1

^ (H + I,,,

From HJ E CI(R3) we deduce HJIr Ca(F). For the surface divergence of n A HJ

on F we get, according to [1],

Div (n A HJ) -n curl Hg Ir -n Jelr 0

because supp(Je) c GJ,g c GL.
For the Neumman fields ZL holds [6]

n A zLIr CS(F), Div (n A ZL) -n. curl zLIr 0,

and therefore c T(F). On the other hand, HJ CI(R3) implies g C(F). By
Theorem 3 there exist unique fields/L,/E,

e c’(c) n c(),

ffIE e c2(aE) f3 c(OE), div ffIE e c(OE), curl ffIE e c(OE),

solving

curl L 0 (A -f- k2)ffIE 0
in GL, in GE,

div L 0 k2 iwaElzE

. (ff) . (,zff) a
div/E 0

on F,

T.ffILdl=O;

H(x) o(1),

i= 1,...,p,

uniformly for Ix]- .
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Prom div/ 0 on F and Im(k) > 0 we get, in the same way as in the proof
of Theorem 2, that E and E (1/aE)curl E solve the time-harmonic Maxwell
equations in GE with coefficients #E, a, and co.

/L is harmonic in GL. From the proof of Theorem 3, we know that for/rL even
the stronger condition ffL (X) O(-) uniformly holds for Ixl--. cx). In addition we
have

r n curl Eds iw#L r n HJds

r n’curl Eds--iw#L r n.curl A ds, j l,...,m,

where A is defined in the proof of Lemma 2. Since F, j 1, m are closed
surfaces, we conclude by Stokes’s theorem,

r
n ILds O, j 1, m.

Now Lemma 1 guarantees the existence of L E CI(GL) V C(L) with

curl ,L iw#LIYIL in GL, L(x) O (x) uniformly for Ixl--. oo.

Summarizing the results obtained for rL, L, /rE, E, we have

I, e c(a) c(), I, e cl(a) c(),

curl L 0 curl aE
in GL, in GE,

curl/i iw#iy_iL curl /S iw#EytE

n A tE n A tL c

n. (#EIE) n. (#LIL) g
on F,

i-- 1,...,p,

Ii (x) o(1), ,i,(x) o(1) uniformly for

But in Lemma 2 the existence of EJ, Ez CI(GL) C? c(L),

curl Eg
iw#iHJ, curl Ez iw#iHZ,
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is shown, both behaving uniformly like o(1) for Ix[ o.
Defining HL, EL, HE, EE as

HL iL _[_ HJ + Hz, EL L 2_ EJ q_ Ez, HE IE

and using curl HJ Je, curl Hz -0, we get

curl HL curl (IL + Hg + Hz) Je

curl EL curl (L
__
EJ + Ez) iw#LHL

in GL,

EE E

curl HE flEEE

curl EE iwltEHE

n A HE n A IE n A IL + c n A (IL + Hg + HZ) n A HL,

n. (#EHE) n. (#EIE) n. (#LL) + g n. (#L(IL + Hg + Hz)) on F,

--n.(#LHL),

i-- 1,...,p.

Therefore, HL, EL, HE, EE solve (3)-(6).
COROLLARY. For Je E C1(3), div Je -0, supp(J) C GJ, J c GL bounded,

problem (3)-(5)is solvable.
In the homogeneous case J 0 we get exactly p linear independent solutions

HL, HE, EE, where p denotes the topological genus of (E, respectively, (L.
EL is not uniquely determined.
Proof. The first statement follows immediately from the last theorem by choosing

the circulations h i 1, arbitrarily.
In the case J 0 Theorem 3 shows the existence of p solutions H, E, H,

E, j 1,..., p, of (3), (4), (5), having circulations hjL 5ij, i 1,..., p. The linear
independence of H, E, H is a consequence of the uniqueness results of Theorem
1.

The nonuniqueness of EL is obvious.
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DETERMINATION OF SCATTERING FREQUENCIES FOR AN
ELASTIC FLOATING BODY*

C. HAZARDf AND M. LENOIR

Abstract. This paper studies the time-harmonic motions of a three-dimensiona elastic floating
body on the sea, in the case of finite and constant depth. In order to compute the resonant .states
of such a system, a variational formulation for the determination of the scattering frequencies of
the problem is investigated, i.e., the poles of the analytic continuation of the solution operator. A
practical method, based on a series expansion of the solution in a vicinity of infinity, is described. The
scattering frequencies are shown to be the solutions of a nonlinear eigenvalue problem for a compact
operator. Numerical results for a two-dimensional model are presented.

Key words, fluid-structure interaction, scattering frequencies, resonances, series solutions
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1. Introduction.

1.1. Motivation. In a previous paper [18], we described two practical methods
for the computation of the scattering frequencies of the Helmholtz equation in exterior
domains, i.e., the poles of the analytical continuation of the resolvent of the problem.
In both cases, we constructed explicitly this analytical continuation by reducing the
problem to an equivalent one, set in a bounded domain, using either an integral
representation or a series expansion of the solution in the vicinity of infinity. We
have shown that the determination of the scattering frequencies then amounts to the
solution of a nonlinear and nonselfadjoint eigenvalue problem for a compact operator.

The purpose of the present paper is to show how one of these methods applies
to the problem of the linearized motions of an elastic floating body on the sea, in the
case of finite and constant depth. The determination of the scattering frequencies,
as well as the associated scattering modes, provides a new and especially convenient
method for the study of the dynamic stability of ships, in the context of linearized
approximation. Indeed, instead of computing the response of the system for numerous
cases of external forces (which essentially depend on the frequency and the direction
of propagation of the incident wave), our method consists in determining intrinsic
quantities of the system the scattering frequencies, which are characteristic values of
the problem. As described in [18], their knowledge allows not only to locate the peaks
of the response curve of the floating body, i.e., the (real) frequencies of the incident
waves for which the energy transmitted to the body is maximum, but also to obtain
an a priori estimate of the response of the system in the vicinity of such frequencies.

Our analysis is based on a stationary approach of scattering frequencies, since the
starting point of our study consists in the time-harmonic vibration problem: the scat-
tering frequencies are shown to be the poles of the analytic continuation for complex
frequencies of the solution operator associated with this problem. An equivalent ap-
proach (see [2], [5], [34]), which is closely related to the time-dependent scattering the-
ory of Lax and Phillips [15], offers another characterization of scattering frequencies:

*Received by the editors December 7, 1992; accepted for publication March 8, 1993.
Laboratoire de Simulation et Modlisation des Phnomnes de Propagation (associ au Cen-

tre National de la Recherche Scientifique et l’Universit Pierre et Marie Curie), Ecole Nationale
Suprieure de Techniques Avances, Chemin de la Hunire, 91120 Palaiseau, France.
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they appear as the poles of the analytic continuation of the so-called scattering ma-
trix, which connects the asymptotic behaviours of the incident and scattered waves.
The agreement of both approaches is proved in [5] in the case of a rigid floating body.
As we will see, the stationary approach is particularly well adapted for a numerical
treatment of the problem.

The characterization of scattering frequencies which is proposed in this paper pro-
ceeds from the coupling method between variational formulation and series expansion
(which leads to the so-called "localized finite element" method; see Richer [28]). It
is in fact a generalization to the three-dimensional case and to complex frequencies
of the method described by Lenoir and Tounsi [17]. (in the two-dimensional case, the
extension to complex frequencies is studied in [5]). An alternative approach, which
applies in both finite and infinite depth cases, will be presented in [6]: it is based
on the coupling method between variational formulation and integral representation
introduced, by Jami and Lenoir [9] for the sea-keeping problem.

For other fluid structure interaction problems, some asymptotic properties of scat-
tering frequencies are studied by Ohayon and Sanchez-Palencia [23], Sanchez-Hubert
and Sanchez-Palencia [29], [30], and Vullierme-Ledard [32]. Also worth mentioning is
the work of Joly and Poisson [12], [25], [26], who deal with the scattering of acoustic
and elastic waves: they compute the scattering frequencies by means of an integral
equation method.

1.2. Description of the method. The general organization of the paper is
as follows.

In 2, we introduce the linearized equations describing the small motions of an
elastic body floating on the sea and subject to an incident monochromatic wave. These
equations involve the velocity potential of the scattered wave which is defined in
the unbounded fluid domain , and the displacement vector field u of the body. The
"stationary problem" then consists of determining the pair (, u) for a given frequency
(whose square is denoted by ) and a given incident wave. The purpose of the present
paper is to construct explicitly the analytic extension to complex of the "solution
operator" 7v associated with this problem, i.e., the linear operator which maps the
incident wave onto the solution (, u). The scattering frequencies actually are the poles
of the analytic continuation of Tv in the complex plane C.

In a first step (2.4), we show how7 can be easily extended to the upper complex
half plane C+ ( E C; Im > 0} in fact, the stationary problem extends in this
case to a well-posed coercive problem. In order to construct the continuation of T4 in
the lower complex half plane C-, we proceed as in [18] by reducing the initial problem
to an equivalent one, which is set in a bounded fluid domain delimited by a fictitious,
vertical, cylindrical boundary ] (2.5). This reduction is performed by noticing that
the only knowledge of the restriction 1 of allows us to determine in the whole
domain outside 5]. We can then define a "reduced problem" by means of a "coupling
condition" on 5] which implies the analytical matching between lh and

Theextension of the coupling condition to complex values of , which is dealt with
in 3, is the backbone of the analytic continuation of 7. To construct this extension,
we exhibit an explicit form of the coupling condition by means of a series expansion
which follows from the particular choice of the outer d0main . Indeed, this choice
enables us to expand [ as a series of functions.with separated variables, In the case
of real, positive (3.1), the application of the method of separation of variables is
rather classical: the determination of the solutions with separated variables amounts
to solving the so-called dispersion equation - tan , and the completeness of
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these solutions results from standard arguments of spectral theory. The properties of
the series expansion of olfi in terms of solutions with separated variables are studied
in Appendix A. The generalization of this method for complex (3.2) causes two
difficulties. The first one lies in the solution of the dispersion equation. We make use
of an original method for solving some transcendental equations (Henrici [7]), which
is based on the properties of Cauchy integrals on arcs. It provides an explicit form of
the solutions which actually are branches of an algebraic function having a countable
infinity of singularities of order 1. For the sake of clarity, the analysis of the dispersion
equation is postponed to Appendix B. The second difficulty is the completeness of
the solutions with separated variables, which does not follow any more from classical
spectral theory, since it involves the completeness of a nonorthogonal basis. Following
Kato [13], we use perturbation techniques for orthonormal families. Finally, we prove
in 3.3 that the coupling condition depends analytically on in a subset of the complex
plane.

This latter property allows us to proceed to the analytic continuation of the
reduced problem (4) by writing it as a Fredholm equation, which requires a sharp
study of the series expansion of the coupling condition. Using a theorem due to
Steinberg [31], we deduce that its solution depends meromorphically on the poles,
which are located in R+ or C-, are the solutions of a nonlinear eigenvalue problem.
By virtue of the equivalence between the initial and reduced problems, we finally prove
that these poles are nothing but the poles of the analytic continuation of the solution
operator 7: these are the eigenfrequencies (in R+) and the scattering frequencies (in
C-) of the problem.

Finally, we present in 5 the outcome of a numerical application for a two-dimen-
sional "catamaran," i.e. two rigid hulls linked together by an elastic beam. We briefly
describe the main stages of the method in this case. Numerical results are shown:
they illustrate in particular the connection between the scattering frequencies and the
peaks of the response curve of the system.

2. Linearized equations of the coupled problem.

2.1. Notation. Consider an elastic body which floats (without forward motion)
on the free surface of an inviscid, incompressible fluid. The motion of the fluid is
assumed irrotational. When the system is at rest, the fluid fills an unbounded domain
C ]13 whose boundary 0f consists of the free surface S, the bottom F, which is

supposed to be plane and parallel to S, and the immersed surface F of the body
(see Fig. 2.1). The body fills a bounded connected domain B C 3 with Lipschitz
boundary OB; the emerged part of OB is denoted by Fo: it is assumed free. The
coordinates (xl,x2, x3) of every point x of the fluid or the body are expressed in
an orthonormal system (O, 1, 2, 3) chosen such that (O,, 2) contains the free
surface S and (O, 3) is the ascending vertical axis. We denote by n either the outer
unitary normal to 0f or the inner normal to OB (which coincide on F).

All quantities involved in the problem are supposed to be dimensionless. Indeed,
we can rescale all physical quantities by means of three independent characteristic
constants: the fluid density (which is assumed constant in f), the gravitational con-
stant, and the depth. In particular, the equation of the bottom F is x3 -1.

In the sequel, we will use the following notation. For any open set D c 3,
the usual scalar product and the associated norm in L2 (D) (respectively, the Sobolev
space Hs(D), for s e ) are denoted by (., ")D and I1" liD (respectively, (., ")8,0 and
I1" 118,D). For an unbounded domain f, Hoc(f denotes the Frechet space of functions
such that 1D E H(D) for any bounded domain D c f. If is the boundary of
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FIG. 2.1

an open set D C IR3, the semiduality product between H-s(E) and Hs(E) for s > 0
is denoted by (. ,.)s,.

2.2. The time-dependent problem. In this paper, we are concerned with the
linearized approximation of the problem: the amplitudes of the motions of the fluid
and the body are assumed small with respect to the dimensions of the body. Let
(I)(x, t) be the velocity potential of the fluid and U(x, t) the displacement field of the
body. Let ej (U) and aj (U) (for i, j 1, 3) be, respectively, the components of the
strain and stress tensors given by

ei.(U) 51 (O:r,Ui -t- O,,Uj) and aij(U) aijkhekh(U),

where aijkh E L(B) are the elastic coefficients. Note that we make use of the
classical summation convention for twice-repeated indices in a product. In the case of
an isotropic material, we have

aijkh ,’ 5ijSkh W # (SihSjk q- 5ikSjh),

where A and # are the so-called Lam coefficients. In the sequel, we will only assume
that the elastic coefficients satisfy the symmetry and positivity properties

aijkh ajikh akhij

aijkh(X) eijekh >_ (X eijeij Vx B

for any real symmetric tensor eij, where a is a positive constant. This amounts to
saying that 2#(x) _> a and 3A(x)+ 2#(x) > a for an isotropic material.

The linearized equations of the time-dependent problem are the following (a math-
ematical formulation of this problem in terms of semigroups of linear operators, as well
as an existence and uniqueness result, are given by Licht [19])

(2.3) A(I) 0 in

(2.4) 0t2(I + 0n(I) 0 on S,
(2.5) OnO=O on F,
(2.6) pO2tUi Oaij(U) 0 in B,
(2.7) aij(V) nj 0 on F0,
(2.8) OtU.n OnO 0 on F,
(2.9) aj(V) nj OtO n 0 on F.
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Laplace equation (2.3) follows from the mass conservation law; the free surface con-
dition (2.4) combines both the kinematic and dynamic relations to be satisfied on S
(John [10]) (2.5) expresses that the normal velocity vanishes on the bottom F. Re-
lations (2.6) are the classical dynamic equations in a continuous medium (see, e.g.,
Neas and Hlavek [22]), where p E Lc(B) is the (dimensionless) mass density of
the body, which is assumed to satisfy

(2.10) p(x) > Po in B

for some positive constant p0. Equations (2.7) express that the emerged part of OB
is free. Finally, (2.8) and (2.9) are, respectively, the kinematic and dynamic coupling
conditions on F (i.e., the continuity of the normal velocity and of the pressure).

In the case of a rigid body (i.e., eij(U) 0 for i, j 1, 3), the linearized displace-
ment field reads U a + b x (see [22]): the system (2.3)-(2.9) then reduces to the
problem studied by John [10].

2.3. The stationary problem. We consider the time-harmonic vibration of
the system when it is subject to a monochromatic incident wave of pulsation w > 0.
We are thus led to seek a solution of (2.3) to (2.9) in the form

(2.11) (I)(x, t) Re (((x) + i(x))e-it) and U(x, t) Re (i u(x)e-i"n),

where i(x) is the velocity potential of the incident wave, that is, a solution of

AI=0 in {(xl,x2, x3) E R3; -l<x3<0},
O,x /2x O onx3=0,
O,x O onx3=-l,

where/2 w2. For instance, in the case of a plane wave which propagates in the direc-
tion k (unit vector of the plane (Z1, Z2)), we have i(x) Acosh(/20(x3 / 1)) eioz’k,
where A is a complex constant and/20 is the only positive root of equation

(2.12) /20 tanh/20 =/2.

Substituting the expressions (2.11) of (I) and U in (2.3) to (2.9), we obtain

(2.13)

A 0 in fl,
0- 0 onS,
0==0 onF,
/2pu + Oxjaj(u) 0 in B,
aj(u) nj 0 on F0,
1/2 u.n On f! on F,

aid(u) nj +/21/2 ni on F,

where f’ OnI and f" -/21/2i are given functions on F. Note that the com-
plex factor i in the definition (2.11) of u avoids complex coefficients in the boundary
conditions on F.

In addition, we must specify the asymptotic behaviour of by means of the
outgoing radiation condition which expresses that the energy (associated with the
scattered wave) radiates towards infinity (see [11])

(2.14) R-+lim [On i/20 [2 dE O, with ER {x e gt; (x + x22) R2},
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where v0 still is the only positive root of (2.12).. Setting

(2.15) /loc Hloc(f) Hi(B)3 and "-- L:(r),

we thus define the "stationary problem,"denoted by 7v in the sequel:

Find X (, u) E T/lot such that
(2.16) and u satisfy (2.13) and

satisfies the radiation condition (2.14),

where the datum f (f’, f’) is assumed to belong to ’. We will see that 7)v has a
unique solution, except maybe for a discrete set of v E R+ (the set of eigenvalues of
the problem).

Remark 2.1. If is not an eigenvalue of the problem, the solution X (, u)
of :P actually provides the asymptotic behaviour when t -- / of the solution
((t), U(t)) of the time-dependent problem (2.3)-(2.9). More precisely, the quantities
(I)(x, t)- Re (((x)-t-(fli(x))e-iwt) and U(x, t)- Re (i u(x)e-it) tend to 0" this result,
which is called the "limiting amplitude principle," has been proved by Vullierme-
Ledard [33] in the case of a fixed rigid body.

In the sequel, we denote by 7 the "solution operator" associated with problem
7, i.e., the linear operator which maps the datum f " onto the solution X /oc
of 7). The aim of the present paper is to construct explicitly the extension of 7v to
complex values of . We will show that it extends to a meromorphic function of whose
poles are nothing but the scattering frequencies of the problem, and we will give
characterization of these poles which is well adapted for their numerical computation.

The extension of 7 is performed in two steps. The first one, which consists in
extending 7 to the upper complex half plane (i.e., for Im > 0) does not raise any
difficulty. It is dealt with in 2.4 below. On the other hand, the extension to the lower
complex half plane requires a precise control of the asymptotic behaviour of when

Ixl -- +c (which becomes exponentially increasing in this case). Following the same
idea as in [18], we will reduce problem :P to an equivalent problem set in a bounded
domain (2.5) in order to carry out this extension (3 and 4).

2.4. The solution operator. Let v C+ ( C; Im > 0} and let (.)1/2
denote the principal value of the complex square root, i.e.,

/,1/2 rl/2 eio/2 if r ei with r > 0 and 101 < r.

Problem :P, defined in (2.16) for real positive v can be extended to complex values
E C+ as follows. Let 7-/denote the Hilbert space

(2.17) 7-/= Hl(f) Hi(B)3.

Consider then the problem

(2.18) Find X (, u) e 7/ such that
and u satisfy (2.13),

which amounts to replacing the radiation condition by a decay condition at infinity.
This problem will also be denoted by 7v in the sequel.

PROPOSITION 2.1. Let C+. For every f jz, problem 7 has a unique
solution X T f in 7-l. Furthermore, there exists K() > 0 such that

(2.19)
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Proof. It is an easy matter to prove that the following variational formulation is
equivalent to

(2.20) Find X E 7 such that
a(X, Y) (; Y) VY

where a(., .) is the sesquilinear form defined on 7-/ T/by

a,(X, Y) k(X, Y) , re(X, Y) -/21/2 c(X, Y),

with

k(X, Y) V9.V df + aijkheij(u)ekh() dB,

re(X, Y) dS + pu. dB,

c(X, Y) (u.n + .n) dr

for all X (, u) and Y (, v) in , and l(f; .) is the semilinear form

l(f; Y) fr(f’ + f".n) dr.

a and are of course continuous on 7-/. To see that a is a coercive form, notice that

(2.21) Im {/2-1/2 a,(X,X)} -Im(l/2) (l,l-k(X,X) + m(X,X))

from which we deduce

I(x, X)l _> IIm(ul/Z) Min {11-/, I11/z } (k(X,X) + m(X,X)).

Moreover, (k(X,X)+ m(X,X))l/2 is a norm in T/equivalent to IlXll. This follows
on one hand from the assumptions (2.1), (2.2), and (2.10), and from Korn’s inequality
(see, e.g., Neas and Ulavek [22]):

(2.23) ej(u),() dB + lul 2 dB Ilul = HI1,B VUe (B).

On the other hand, we have

IIllf, < IIVoll + I111 v,,o e Hi(a),

which can be proved by the same techniques as for Poincar’s inequality in a strip.
The existence and uniqueness of the solution of (2.20) thus results from Lax-Milgram’s
theorem. Finally, inequality (2.19) is a simple consequence of the continuity of and
of the coerciveness of a. B

Remark 2.2. This new problem actually defines a continuous extension in C+ of
79 initially constructed for real positive when C+ # N+, its solution tends
(in 7-/loc) to the solution of P. This result, which is called the "limiting absorption
principle," may be proved by classical techniques using continuity properties of the
Green function with respect to (see [5] or [16] for the infinite depth case). In fact,
it appears as a straightforward consequence of the analyticity results which will be
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FIG. 2.2. The inner and outer domains.

worked out in 4: these results provide far more precise information about the u-
dependence of the solution of P than a simple continuity property.

Remark 2.3. If u E C- (u E C; Im < 0}, problem (2.18) still is well posed:
the sign of Im does not affect the proof of Proposition 2.1. However, we are not
concerned with this problem, since it does not define a continuous extension of (2.16).
Indeed, if C- --. # JR+, the solution of (2.18) has a limit (in 7"/loc) which satisfies,
instead of (2.14), the so-called incoming radiation condition

10, + iuo ]2 dE O,

where 0 is, here again, the positive root of (2.12) (with #).
2.5. Reduction to a bounded domain. In this paragraph, denotes either

a real positive number or a complex number of C+. Consider the vertical cylinder
E {x Q; x + x2 r02}, where r0 > 0 is chosen large enough so that E does not
intersect F. This boundary E splits Q into an inner bounded part and an outer
unbounded part (see Fig. 2.2). The parts of S and F which are contained in the
boundary 0 of (respectively, 0 of ) are denoted by ; and/ (respectively,
and/).

Let us define the outer Dirichlet problem, denoted by 75 in the sequel:

(2.25)

Find in H ]+ in H C+lo() if u or () if u E
Aq5 0 in ,
O-u=O one,
0=0 onP,

X on E,
satisfies the radiation condition (2.14) if R+,

such that

where X is a given function defined on .
PROPOSITION 2.2. For every u R+ U C+ and for every datum X H1/2(),

problem 75 has a unique solution 7 X which depends continuously on X, i.e., if
u R+, for every bounded domain 0 c , there exists K(u, O) > 0 such that

(2.26)

if u C+, there exists K(u) > 0 such that

(2.27)
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Proof. (i) If u E R+, the uniqueness of the solution of 75 can be worked out by
John’s method [11]. For the existence proof, we may use some general methods such
as the limiting absorption principle (see Remark 2.2) or the "compactness method"
(which consists in writing/5 as a Fredholm equation; see, e.g., [5]). Both methods are
based on an integral representation of in . They allow us to deduce the existence of
a solution from the uniqueness property. However, for the sake of consistency, we will
give in the sequel (see Lemma 3.2 proved in Appendix A) a new proof of the existence
and the continuity property (2.26) which is closely related to the method explained in
this paper: we will see that the solution can be expressed as the sum of a converging
series in Hloc().

(ii) Now, we deal with the complex case. From classical trace theorems, we
know that for every X E H1/2(F), there exists ) HI() (which can be chosen with
compact support) such that )1. X and

where C is a positive constant. Setting -), we are thus led to consider a problem
similar to/5 with a homogeneous Dirichlet boundary condition on P.. The end of the
proof is similar to that of Proposition 2.1: writing a variational formulation of this
problem in the space { e HI(); 1 0}, the existence and the uniqueness of the
solution follows from Lax-Milgram’s theorem, which, moreover, gives the following
inequality:

Property (2.27) thus derives from this estimate and (2.28). D
Consider now the so-called coupling operator Q from H/2(P) into H-/2(P)

given by

(2.29)

where 0n denotes here the exterior normal derivative to . Proposition 3.1 shows
that, for every v IR+ tO C+, is a continuous operator. We then define the reduced
problem, denoted by/3,

(2.30)

Find 2 (3,fi) e such that
A=O in,
On-=O on ,
On=O
Pi + Oxaij() 0 in B,
aij() nj O onr0,
/.n-0 f’ on r,
aij() nj + /2 ni nil" on F,
&=-lr one,

where is the Hilbert space

(2.31) H (fi) x H (B)3.

This problem is equivalent to problem :P in the following sense.
PROPOSITION 2.3. Let e JR+ tO C+; ]or every f (f’, f") e J=, problem

has at least (respectively, at most) one solution if and only if the same holds for
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Moreover, if f( (, t) is a solution of 75v, then X (, t), where is the function
given by

(2.32) and

is a solution of P. Conversely, if X (, u) is a solution of 79, then ) (1’ u)
is a solution of

Proof. It is enough to prove the equivalence between :P and/Sv for the existence
property the equivalence for the uniqueness follows by contraposition from the unique
continuation property. Let us first assume that 75 admits (at least) one solution (, fi).
The coupling condition On -Ql implies the analytical matching on E between
and 71; according to (2.25) and (2.30) of 75 and 75v, the .pair (, ) (where
is given by (2.32)) actually satisfies the equations of :P. Conversely, if (, u) is a

solution of :P, the restriction to of is nothing but 7 1, and thus 5 1
clearly satisfies the coupling condition on E.

Remark 2.4. Note that if C+, Propositions 2.1 and 2.3 show that problem
is well posed.

3. Diagonalization of the coupling operator. The purpose of this section
is to express the coupling operator v (given by (2.29)) by means of an explicit series
expansion. We will see that for a suitable choice of a basis of H1/2(E) (which depends
on ), becomes diagonal. This result is based on the method of separation of
variables which is used here for the outer problem in cylindrical coordinates (r, O, x3)
(with r (x + x22)1/2). In 3.1, we first deal with the case of real positive for
which the main results follow from spectral theory. In 3.2, we generalize these results
to complex E C+, using perturbation techniques. We finally show in 3.3 that
Q actually depends analytically on , and has an analytic continuation in the lower
complex half plane. This latter property is the basic tool for the analytic extension of
the reduced problem (4).

3.1. The case of real positive . The method we use here is quite similar to
the one introduced by Lenoir and Tounsi [17] in the two-dimensional case. We first
exhibit the solutions of 75 with separated variables. We then prove that every solution
of 75 can be expanded as a series in terms of solutions with separated variables.

In the following lemma, Kn denotes the modified Bessel function, which is real-
valued and exponentially decreasing at infinity for real positive arguments (see, e.g.,

LEMMA 3.1. Let t > 0 the solutions with separated variables of the outer prob-
lem 75 are given (up to a multiplicative complex constant) by

(3.1) (n,m) (r, O, xa) (n,m) (r) X(n’m) (0, x3) for n Z and m > O,

where the functions l(n’m) and X(n’m) are defined as follows:

(3.2) /p,m)(r) Kn((m)r) X("’’) (0, x3) ein T(m) (X3) and
K=((m)ro) v/2rro

(3.3) T(’)(x3) a) COS() (x3 + 1)) with am) sin2m) 1
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v/

FIG. 3.1. Real solutions of the dispersion equation.

and the (m), m _> 0, are the roots of the so-called dispersion equation

(3.4) - tan v,

chosen such that (o) is imaginary with negative imaginary part, and (m), for m >_ 1,
are real, positive, and arranged according to increasing values.

Remark 3.1. The positive roots (m), m _> 1, of (3.4) are represented in Fig. 3.1
it may be easily seen that

(3.5) (m) e ](m- 1/2)r, mr[ for m >_ 1 and (m) mr when m -.

Notice that (3.4) has only one imaginary root with negative imaginary part. Indeed,
setting (0) -iu0, we see that u0 is the only positive root of (2.12) which appears in
the radiation condition (2.14).

Remark 3.2. In this definition of (n,m), the coefficients are chosen so that (o(n’m)
is the (only) solution of ib for the Dirichlet datum X(’m) (which can be considered as
a function defined on E), and this latter function is a unit vector of L2(E). Moreover,
setting

(3.6) }3 C x 2,

where C is a circle of radius r0 and 2" is the vertical segment 1, 0[, we see that
functions T(m) and ein/v/27rro are unitary, respectively, in L2(Z) and L2(C).

Remark 3.3. If Hn(1) denotes the Hankel function of order n of the first kind, we
have (see [1])

ir
ein/2 H(nl)(iz) for r < arg z < r

(3.7) Kn(z)- -.
Hence, from Remark 3.1, we see that the definitions of r/(n’) and X(n’) amount to

These expressions clearly show that the solutions @(n,-) of ib are divided into two
classes. If m > 0, @(n,m) decreases exponentially when r -- +oo, these solutions are
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called "evanescent." But if m 0, the functions (n,0) decrease as r-l2 (see (3.14)
below), they are called "radiative."

Remark 3.4. Note that, from the relation

(3.10) K-n(z) Kn(z), n e Z, and argz < r,

we have the symmetry properties

(3.11) y(-n,m) y(n,m) and X(-n’m) X(n’m)

Proof of Lemma 3.1. Suppose that a solution of 75 can be written in the form

e,
v/2rro

where n e Z. According to (2.25) of 75, functions y(r) and T(x3) are solutions of the
following problems for some A E R:

(3.12)

and

(3.13)

rdr(rdr) (n2 -t- Ar2)r/-- 0 on Jr0,
lima_.+= R Idry(R) io r/(R)I2 0,

d23T+AT=0 onZ,
dz3 T(O) T(O) O,
dzaT(--1) =0

(where 2" denotes the segment ]- 1, 0[). Solving the eigenvalue problem (3.13) does
not raise any difficulty. If A > 0, we obtain the sequence of solutions (A(m), T(m))
with A(") (’), m _> 1. On the other hand, if A < 0, problem (3.13) has a unique
solution (A(), T(0)), where A()- -02.

We can then solve problem (3.12). If A (m) with m _> 1, the solution can be
expressed by means of the modified Bessel function gn and In of order n (see [1]):

l(r) "y K,((m)r) + /’ In((m)r),
where ,yl must be zero, since In increases exponentially at infinity. If A -v02, the
solution is a combination of the Hankel functions Hn(1) (vor) and Hn(2) (v0r) from the
asymptotic behaviours of Hn(j) (z) (j 1, 2) and their derivatives for fixed n E Z and
large z e ]1(+ (see [1])

(3.14) H(j) (z) eC-)-li(z-n/2-/a) / 0(z-3/2),

(3.15) H(j)l(z) (-1)J-iHn(j) (z) / O(z-a/2),

we deduce that only Ha() (0r) satisfies the radiation condition in (3.12). D
PROPOSITION 3.1. Let > 0; the set 2 (X(n’m); n Z, m >_ O} is an

o ho o. a ol or hoao   oI ]0, 1].
Furtheore, the expression

(3.16) [X],s Z (1 +n2 +m2) (X,Xn’m))12
nEZ m>0
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is a norm on Hs() which is equivalent to the usual norm.

Proof. (i) Let us prove that the functions X(re’n) are the eigenvectors of a self-
adjoint operator with compact resolvent. First, notice that each function X(n’m) is a
solution of the following eigenvalue problem for A r2n2 + ((m))2"

A(,X+Ax=O in,
(3.17) Oz3X- t X 0 on Co,

OX 0 on

where A denotes he Laplace-Beltrami operaor on (i.e., %-2 + z23), Co and C-1
are, respectively, the upper and lower boundaries of (i.e., two circles of radius r0).
A variational formulation of this problem writes as follows:

Find X E H1(5]) such that
t(x, X’) A (X, X’) V X’ C: H1(),

where t(., .) is the following symmetric sesquilinear form on H() (V denotes the
tangential gradient on ):

t(X, X’) VX.Vx’d j[c XX-- d.
o

From Lions’s lemmas [20] we know that, for any > 0, there exists K > 0 such that

c IIx/Ico < Ilx112/3, < llxlll,, / KI[xlI VX e HX(),

from which we infer that, for sufficiently large d > 0, the form

td,(X, X’) t(x, X’) + d (X, X’)

is coercive on H(). As a consequence, the representation theorem of sesquilinear
forms (see, e.g., Reed and Simon [27]) shows that the operator Td, defined on n2()
by

D(Td,) {X e Hi(E); :tg > 0, VX’ e H(E), td,(X,X’) <_
(Td, X, X’) td,(X, X’) V X e D(Td,) VX’ e H(),

is an unbounded selfadjoint positive operator with compact resolvent. Thus Td, has a
countable infinity of positive eigenvalues and the associated eigenvectors can be chosen
so as to form an orthonormal basis of L2().

(ii) To see that the functions X(n’m) are the only eigenvectors of Td,, first
notice that each of the two families {eine/v/2rro; n e Z} and {T(um); m >_ 0} is,
respectively, an orthonormal basis of L2(C) and L2(Z). The former result is classical.
To prove the latter, it .suffices to apply the method described in (i) to the eigenvalue
problem (3.13) (instead of (3.17)): since we have determined all the solutions of this

one-dimensional problem, the completeness of the T(um) follows. Consequently, the
products T(um) (X3)ein/v/2rro, for n Z and m >_ 0, form an orthonormal basis of
L2() (see, e.g., Kato [13, Ex. V.I.10]).

(iii) The set {X(n’m); n Z, m > 0} is also an orthogonal basis of the domain

D(T[,) of any power Tr (with r > 0) of operator Td,,dt

,,
d, X ]eZ ]m>0(A(’m))r X, X(’’) X(n’m) VX e D(T,
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r(’):where A(’m) d-r2n2 -v By the interpolation theory between Sobolev spaces
(see Lions and Magenes [21]), we see that D(Td,v), for r e [0, 1/2], is nothing but the
interpolation space [H (E), L2(E)]I_2r, and thus

(3.18) r 1D(Td,) H2(F) for 0 <_ r _< .
Consequently, X is an orthogonal basis of H8(5]) for s E [0, 1] and the expression

1/2

is equivalent to the usual norm of Hs(F). Moreover, we have from (3.5),

C1 (d--r2n2 --(m)2) _
(1 -n2 --m2) 62 (d--r-2Tt2 --u(m)2)

for some positive constants C1 and C2. The statement of the proposition follows.
Proposition 3.1 shows that every function X E Hs(5]) (with 0 _< s _< 1) expands

nEZm>O

where the series converges in H(Z). The following result completes the proof of
Proposition 2.2 (existence of a solution of 75 for real positive u).

LEMMA 3.2. Let u > 0; for every X H1/2(]), the outer problem 75 has a
unique solution ( 7vX which expands as

(3.20) (X, X’")): ’"),
nEZm>O

where the series converges in Hiloc(t) and depends continously on X.
Proof. Recall that the (only) solution of 75 for the Dirichlet datum X(’’’) is

(n,m) (defined in Lemma 3.1).. Consequently, if the series (3.20) converges in Hc(
and satisfies the radiation condition, it will clearly define the only solution of :P for
the Dirichlet datum X. The proof of this statement (which is rather technical) and of
the continuity with respect to X is given in Appendix A.

Finally, by (2.26) and the continuity of the normal derivative of on 5], we deduce
the diagonal form of the coupling operator.

COROLLARY 3.1. Let u > 0; the coupling operator given by (2.29) expands as

(3.21) X q(n,.) (X, X(n’m)) X(n’m)
nZ m>O

with q(,,m) _(m) K((m)ro)
K((’)ro)

where the series converges in H-1/2(]) for every X e H1/2(]).
3.2. The case of complex u. The extension of the results of 3.1 to complex

values of raises two difficulties. On one hand, we have to solve the dispersion equation
(3.4) in the complex plane. On the other hand, the eigenvalue problem (3.17)is no
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ID-

FIG. 3.2. Analyticity domain o. the (m).

longer selfadjoint and therefore the spectral theory results we have used for real do
not apply any more.

For the sake of clarity, the study of the dispersion equation is postponed to
Appendix B. We show that each root (m), for m _> 0, actually extends to an analytic
function of v (which will still be denoted by (m)) in every simply connected domain
of C \ E, where E is the discrete set of C (with no accumulation point) which consists
of the values of v for which the dispersion equation admits a double root (see B.1). In
the sequel, we will consider the simply connected domain D of C \ ]E which is obtained
by cutting the complex plane from each point of ]E as shown in Fig. 3.2. This is of
course an arbitrary choice, which is justified here by the fact that we are primarily
concerned with the analytic continuation of the problem in the vicinity of the positive
real axis. We will denote D+ D 3 C+/-.

Since each solution (m), for m > 0, depends analytically on v in B, each function
T(m) given by (3.3) (and thus X("’m) defined in (3.2)) can be extended to an analytic
family on ]]). Note that the quantity sin(2(m)) -4- 2(m) does not vanish if e C \ ]E

(see Proposition B.1), which shows that the normalization coefficient a(m) is always
defined in this domain.

Similarly, each function (n’m)can be extended analytically in D except maybe
for the values of for which K,((m)ro) O. If E D+, this quantity cannot vanish:
this results from property (B.34) and the fact that the modified Bessel functions Kn
have no zeros in the region arg z _< r/2. Thus, (n,m) is defined everywhere in D+"
it is obviously the only solution of 5 for the Dirichlet datum X(n’m). From (B.34),
we see that it is always exponentially decreasing when r --+ +cx.

The purpose of this paragraph is to show that Proposition 3.1 and Corollary 3.1
extend as follows.

THEOREM 3.1. For every and every s [0, 1], the set X (X(n’m); n 6
Z, m > 0} is a basis ofHs(), and the expression X],8 given by (3.16) is still a norm
on Hs() equivalent to the usual norm. Moreover, the two families X and Xv are
adjoint to each other in L2(), i.e.,

(3.22) (Xn,m) (n’,m’)

In the particular case t D+, this statement allows us to extend the diagonal
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form (3.21) of the coupling operator (which was up to now defined for E R+ U C+)
as follows.

COROLLARY 3.2. Let t ID+; the coupling operator given by (2.29) expands
a8

(3.23) @ X E E q(n,m) (X, X(vn’m)) X(’m)
nEZ m>0

with q(n,m) _(m) K’n((m)ro)
Kn((’)ro)

where the series converges in H-:/2() .for every X H:/2()
Note that this expression of agrees with (3.21) if t lI+, since P in this

case.

Proof of Corollary 3.2. Theorem 3.1 shows that every function X e H1/2()
expands as

(3.24) X E E (X, X(v=")): X(=’’)
nEZ m_>O

where the series converges in H1/2(). Since 5(=’m) is the solution of 75 for the datum
we deduce from the continuity of (Lemma 3.2) that the general solution of

/3 is given by

(3.25) ( 7X E Z (X, X(vn")) ("),
nZm>0

where the series converges in HI(). The expression of @ follows. [:1

The remainder of the present paragraph is devoted to the proof of Theorem 3.1: it
is based on perturbation techniques which consist in comparing the family A’ with the
orthogonal basis A’g for some given # > 0. We begin by proving the completeness of
the family A’ in L2(E) (Lemma 3.4) which follows from the completeness of the T(m)
in L2(Z) (Lemma 3.3) by separation of variables. Lemma 3.5 provides a perturbation
result which is used in the proofs of Lemma 3.3 (in the simple case s 0) and Theorem
3.1 (in the general case).

LEMMA 3.3. For every e , the set T {T(m); m > 0} is a basis of L2(:Z")
and the two families T and Tv are adjoint to each other, i.e.,

(3.26)

Remark 3.5. For real positive , we defined (o) as an imaginary number and
(m), for m >_ 1, as real positive numbers. Consequently, the analyticity property of
’) shows that if u E lI, we have

(3.27) o)= _(o) and (vm)= (m) for m > 1,

from which we deduce that

(3.28) rv(’) r(’) for m _> 0.
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Proof of Lemma 3.3. (i) Relation (3.26) can be obtained by a direct calculation
of the scalar product, noticing that

sin2 1
(3.29) cos2 (x3 -{- 1) dx3

4 -,
q

cos (x3 -+- 1) cos ’(x3 - 1) dx3(3.30)
cos cos ’ ( tan ’ tan ’)

( + ’)( ,)

We can also refer to the analyticity of T(m) with respect to u. As a matter of fact,
by the unique continuation property, (3.26) is nothing but the extension to ]D of the
orthonormality relation of the T(m) for real u.

(ii) Let # be a given real positive number, and let Tu {Tm); m >_ 0}. We
have seen in the proof of Proposition 3.1 (point (ii)) that family Tu is an orthonormal
basis of L2(:). To prove that T is a basis of L2(:), we use a perturbation result of
orthonormal families (Kato [13, Thm. V-2.20]), by considering T as a perturbation
of the orthonormal basis. Tu. We have to verify the two following conditions:

(c) there exists a positive constant C such that

() for any sequence (a,; m >_ 0) of complex numbers,

T-- amT(m) O implies am O Vm >_ O.
m>0

Condition (c) follows from Lemma 3.5 below in the case s 0 (the quantity involved
in () is nothing but Av,0). Condition () is a straightforward consequence of (3.26),
since am (T, T(m)). D

LEMMA 3.4. For every E , the set , is a basis of L2(), and the two families
X and are adjoint to each other, i.e., (3.22).

Remark 3.6. This lemma shows in particular that the scalar product in L2()
can be expressed as follows:

Proof of Lemma 3.4. Relation (3.22) results from (3.26) by Fubini’s theorem.
Proceeding as in gato [13, Ex. V-I.10]), we easily prove that (X, X(n’m)) 0, for all
n E Z and m _> 0, implies X 0 this derives from Lemma 3.3 and the completeness
of the family {ene/v/2rro; n Z} in L2(C). The completeness of ’ follows. Thus,
every X L2(E) expands as

X an,m X
nEZm>0

where an,m (X, X(n’m)) by virtue of (3.22).
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LEMMA 3.5. Let # be a given real positive number. Then, for every s E [-1, +1]
and every v D, the following quantity is finite:

(3.32) Av,s--supE E (1/n2+m’2)
s

I(T(m)-- ) 2

neZm>0m,> 1 / n2 + m2 T(m) T(m’)

Proof. This result is based on the asymptotic behaviour of the roots (m) of the
dispersion equation when m --, +x). We prove in Appendix B (see Proposition B.6)
that

(3.33) + when

Using the definition (3.3) of T(m) and formula (3.30), we deduce that

when m2 + m’2 +cx:). In order to prove that Av,8 is bounded, we split the series
a(J) for j -2 to +2, which correspond, respectively, to m’ _< am,into five parts ,8,

am < m’ < m, m’ m, m < m’ < bm, and bm _< m’, where a and b are given
real positive constants such that a < 1 < b. We will assume that s _> 0: the case of
negative s can be dealt with similarly. For A(-2) to A(1), ,, we first notice that

1 + n2 + m’2

1 +n2 +m2 -< C,

Which shows that the convergence does not depend on n and s in these cases. Using
(3.34) and (3.35), we deduce

m>O O<m’<am

(m2 --m’2)-2
_
C E m-3’
m>O

m>0 am<m’<m m>00<p<(1--a)m

A() < C E m-4

p-2m-2,

and for A(1) the same kind of estimate as for A(-)" the convergence of these series

follows It remains to deal with A(2) We use in this case the following inequalitiesV8

(for m’ >_ bm)"
1 + n2 + m’2 mp2

1 + n2 + m2 - m2

mp2 m2 > Cml-(ml+c

where c can be chosen in the range [0, 1]. Thus, we deduce

A(u) <C EV8

m>0 m’ >bin

m-2(1-a/S)m,-2(l/a-s)
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which converges if Is- a < 1/2" for every s e [0, 1], we can choose a such that this
condition is satisfied.

We can now proceed to the proof of Theorem 3.1. As for Lemma 3.3, we consider
A’v as a perturbation of the orthogonal family A’ for a given # E R+. However, the
perturbation result we have used in the proof of that lemma does not apply here:
condition (() is not satisfied, since for every m _> 0, the quantity

X(un’m)]2u,8 is infinite. In other words, the perturbation only concerns function T(m)
(which does not depend on n) in the expression of X("’m). Namely, we have

(.6) (x(’),x;’"’)
Proof of Theorem 3.1. Consider the linear operators T and S in Hs() given by

nEZ m>O

n_Z m>O

(i) Let us first prove that these expressions actually define two bounded op-
erators on H(). To see that T is bounded, consider the quantity [Tx- X]2u,, for
X e Hs(), which expands, by (3.16), in the form

Z Z (l+n’2 +m’2)"
n Zm >0

,;; ))
nZm)_O

and simplifies to

Z Z (1 +n2 -+-mr2) s

nZm >0

(, (’)) (() (), (’))
m_>0

by virtue of (3.36). Hence, by the Schwarz inequality, we have

(3.39) [Tx- X]2u, <_ A,, [X]2u,,

where A, is the bounded quantity defined in Lemma 3.5: the boundedness of T then
follows from the triangle inequality. On the other hand, [Sx-X]2u,8 expands as follows:

Z Z (l+n’2+m’2) ’(n’m’)-)(’u
n Zm >0

Noticing that

(n m )-x;’
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we deduce as above that [Sx- X12,8 <_ B,8 [X]2,s, where

n(Z m>0 m’>0

From (3.28), we have B, A,-s. Lemma 3.5 thus shows that S is also bounded on

Hs(E).
(ii) Noticing that T)" (,,m) X(n’m) and conversely SX(n’m) X(n’m), we infer

that T is invertible and S is a left inverse of T, since A’ is an orthogonal basis of
Hs(E). To see that S is also a right inverse of T, it is sufficient to consider T and S
as operators defined on L2() (for they both map Hs() onto itself). In this case,
this amounts to showing that the range R(T) of T is the whole space L2(E). This
latter property readily follows from Lemma 3.4. Indeed, (X, X’). 0 for all X’ E R(T)
implies, in particular, (X, x(n’m)) 0 for all n E Z and m

_
0, which shows that

X 0 since A’ is a basis of L2().
As a consequence, T and S are bounded operators on Hs() which are inverse

to each other: this clearly shows that A’ is a basis of H().
(iii) Finally, noticing that [Sx], [X],8 (where [X], is defined as in (3.16)),

we infer that [X],s is a norm on Hs() for every , D. This completes the proof of
Theorem 3.1.

3.3. Analyticity of the coupling operator. We have seen that every root
(m) of the dispersion equation (3.4) is analytic in D, and consequently, every term of
the series (3.23) is defined at any point of D provided that gn((m)ro) does not vanish.
This may happen only in the case m 0 indeed, the set Zn of zeros of the modified
Bessel function Kn is contained in the region arg z > r/2, and we know from (8.35)
that (0) is the only root of (3.4) which is located in this domain (if v D-). Let
Z Jn>0 zn, and consider the set

IK- {z/- -z/ro tan(z/r0) e C-; z e Z}.

LEMMA 3.6. For every , D- \ ]K and every X H1/2(), the series (3.23)
converges in H-1/2().

Proof. Let D- \ ]K. Let us first study the asymptotic behaviour of q(n,m) when
n2 / m2 --+ +oc. Using the uniform asymptotic expansions (A.20) and (A.21) of gn,
and noticing, from (3.33), that for large enough n2 +m2, the quantities (m)ro/n lie in
a closed subset of the validity domain of these expansions, we deduce, as in the proof
of Lemma A. 1,

Kn((m)ro) (n2+(m)r) /2

Kn((m)ro) (’)ro {1+O((n2--(m)r)-1/2)}.
Consequently,

(3.41) _(n,.) (r-2n2 (.)2) /2g + + 0(1).

It follows from the asymptotic behaviour (3.33) of (m) that

(3.42) Iq(n") <_ C (1 + n2 + m2)/2,
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which shows that for every X and X’ in H1/2(),

E E q(,,m) (X, x(on’m))r (X(n’m), X’)r
nZm>O

_< C IX]o,1/2 [X’]v,1/2,

by the Schwarz inequality (note that the expression of (QvX, X’)i/2,s results from
(3.31)). The conclusion thus follows from Theorem 3.1.

THEOREM 3.2. The diagonal .form (3.23) of the coupling operator defines an
analytic family from D \ iK into the space B(H/2(), H-/2()) of bounded operators
from HI2(F) to H-I2(E).

Proof. Every term of the series (3.23) is obviously an analytic function of v. We
thus have to prove that the same holds for the sum of this series, which amounts to
verifying that (QX, X)I/2, is analytic in ]I) \ ]K for every X and X in H1/2() (see
Kato [13]). A sufficient condition for this. property to be satisfied is, for instance,

(x, (x(: o

for every compact set K C D \ ]K: this condition expresses that the sequence of partial
sums of the series converges locally uniformly on ID \ ]K (see Henrici [7]). First, notice

that the asymptotic expansion (3.33) of (m), as well as the estimates which, derive
from it, are valid uniformly with respect to v E K. Consequently, by (3.42) and the
Schwarz inequality, it is enough to show that for every X H1/2(),

L--*oo v.K nZ+mZ>_L

Let PL denote the orthogonal projection on the closed linear manifold of H/2()
spanned by (x(n’m); n2 / m2 >_ L}. We easily obtain

n2-I-m2>_L

where S is the bounded operator on H/2() given by (3.38). We obviously have

[PLSX]#,/2 - 0 when L - +c, locally uniformly with respect to . The statement
of Theorem 3.2 follows.

Remark 3:7. The analytic continuation of the roots (m) of the dispersion equation
also. provides the analytic continuation of the solution 7X of the outer problem
(see Proposition. 2.2). Indeed, if v JR+ U D+, we have by construction

(3.43) 7X E E (X, X(n’m))r (n,m) VX Hl/2()
nEZ m>_O

By the same techniques as in A.1, it may be easily seen that if v D" \ IK, this series
converges in Hoc(). Moreover, it depends analytically on in ]D\ ]K. (same. proof
as for Theorem 3.2).. This expansion thus defines an analytic family from ]I) \ ]K to

Hloc (). (recall that 7X Hloc() is analyticif, for every open bounded set OC
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the family (7,X)Io Hi(O) is itself analytic). Note thatX becomes exponentially
(,0)increasing at infinity when ID- \ K, except if (X, x )r 0 for all n Z.

4. Eigenfrequencies and scattering frequencies. In 2.4, we have defined
problem P (set on the bounded fluid domain () by means of a coupling condition on
the fictitious boundary E. Theorem 3.2 shows that the coupling operator Q actually
is an analytic family in ID \ K: consequently, we are now able to extend 73 to lI)- \ K.

4.1. Analytic continuation of the reduced problem. Let ]I)\ K; a
variational formulation of problem 75 reads (see (2.30)):

(4.1)
Find (,) E/:/ such that

where &(-, .) is the sesquilinear form defined on/2/x/2/by

a(, ?) i(, ?) (, ?) /:(, ?) + (, ?),
with

for all . (qS, ) and ? (, ) in . The semilinear form [, which depends on the
datum f (f’, f") ’, is given by

[(f ) (f’b + f’.n) dr.

Let A and ](f) be, respectively, the bounded operator on 7:/and the element of
associated with &(., .) and [(f; .), i.e.,

(4.8) (A,, ?) h,(.,, I7") and (L(f), ?), [(f;

The variational formulation (4.1) of 75 then amounts toA ,(f). The object of
this paragraph is to prove the following statement,.

THEOREM 4..1. The operators for D \ IK form a holomorphic family of
Fredholm operators on l. Moreover, ft is a meromorphic family in ID \ E whose
o oa i+ o

Remark 4.1.. The poles of- are the values of for which the Fredholm operator
is not invertible. In other words, they are the solutions of the following nonlinear

(and nonselfadjoint) eigenvalue problem:

(4.9)
Find 1+ U ]I)- \ K such that there exists /:/\ {0} which satisfies
k(2, ?) ,/ (2, ?) + 0(2, ?) ,(2, ?) v? e .
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Proof. (i) The analyticity of the family . follows readily from Theorem 3.2.
(ii) Let us prove that in every compact subset K of ]I)\ N, . can be written as

where and/ are two an^alytic families of bounded operators on , is invertible
with bounded inverse, and K is compact. The main difficulty arises from the coupling
term which will be rewritten as the sum of two forms such that the real part of the
first one is positive, and the second one corresponds to a compact operator on .

Consider the bounded operators a and/ defined on by

(2..t. ?) + ?) + Oa..(.t. ?).
17) + 1) ]Y) ?) + 17)

where Od, is the sesquilinear form given by

(4.10) Od,’()’ 12)- E E (d + %-2n2 + (m)) 12

nEZ m>O

where d is a real positive parameter. We prove in Lemma 4.1 below that for large
enough d, d,(,) depends analytically on v in K, and its real part is nonnegative
for every E . Moreover, as in the proof of Proposition 2.1, it may be eily seen
that k+rh is a continuous coercive symmetric form on 7-/x 7-/. Consequently, J defines
a holomorphic family of bounded invertible operators with bounded inverses, and the
inverse family -1 is also holomorphic in g (see Kato [13, VII-I.1]).

On the other hand, the compactness of K is a straightforward consequence of
Lemma 4.2 below and the Rellich theorem.

(iii) Rewriting -i in the form (1 + gi/)-i j-i, we can use Steinberg’s
theorem I31] which states that either (1 + j-i/) is nowhere invertible in K, or else
(1+- g)- is meromorphic in g. We are of course in the second case, since problem
P is well posed if v ElI)+ (see Remark 2.4). Consequently, Ei is a meromorphic
family which has no poles in ID+. El

LEMMA 4.1. For every compact subset K of ) \ K, there exists d > 0 such that

(4.11) Re (d,(,))_>0 V V.K.

Moreover, d,(,) depends analytically on in K.
Proof. Consider the sesquilinear form td, introduced in the proof of Proposition

3.1:

td,(X, X’) VaX..Vax’ dE C XX--T dC. + d xx--T dE
0

V (X, X’) e H (E).
We know from Lions’s lemma that we can choose d > 0 such that td, is a strictly
m-accretive form for every e K. Consequently, there exists a family of strictly
m-accretive unbounded operators Td, on L2(E) given by

(Td,X, X’), td,(X, X’) V X e D(Td,) V X’ e Hi(E).
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rp1/2 /rN1/22 Td, (seeLet -d, be the unique strictly m-accretive operator such that d,
Kato [13, Thin. V-3.35]). In particular, we have

D(T1/2Re (TJ,X, X)r, > 0 VX "-",’*’d,v )"

(T1/2 HI() and T1/2We prove below that D.d, -d, expands as follows"

(4.12) -1/2
ld, X Z (d + r-2?z2 (m)2) 1/2

nEZm>0

which of course implies (4.11), since HI() is dense in H1/2().
First, notice that the domain HI() of the form td, does not depend on g,

and td,(X, X) is holomorphic in K for each fixed X E HI() the operators Td,
associated with such a family of forms (which is called holomorphic of type (a)) define
a holomorphic family (Kato [13, Thin. VII-4.2]). Consequently, the family T1/2

d, is also
holomorphic in K (Kato [13, Rein. VII-4.7]).

On the other hand, we have seen in the proof of Proposition 3.1 that for real
r1/2 (rp1/2 H1positive , the expansion (4.12) of ld, X is valid for every X Dd, ().

Moreover, using exactly the same techniques for Theorem 3.2, we eily prove
that the series in (4.12) defines a holomorphic family of unbounded operators on
L2() (with domain H()). By virtue of the unique continuation property (Kato

T1/2[13, Rem. VII-1.6]), this family is nothing but d,, which completes the proof.
LEMMA 4.2. Let K be a compact subset of E and d > 0; then, for eve
K, we have

for all ( (, ) and (, O) in -l.
Proof. We deduce from the asymptotic behaviour (3.41) of q(n,m) that

nEZ m>0

Relation (4.13) thus results from Theorem 3.1 by the Schwarz inequality.

4.2. Singularities of the reduced problem. The purpose of this paragraph
is to study how the poles of .-1 affect the solution of the reduced problem. Indeed,
it may happen that for a datum f E ’, the solution -l](f) of 75 is regular in a
vicinity of a pole y. of -1 this situation may occur if the datum f is such that ](f)
belongs to the range R(.z) of .. The question is whether there exists some datum
such that the solution of :P becomes singular in the vicinity of .. We first prove the
following result which concerns the nonreal poles of .1.

PROPOSITION 4.1. Let . D- \ K. Then, . is a pole of if and only if there
exists at least a datum f jc such that . is a pole of -l(f).

Proof. (i) If . is a pole of fi.l](f) for some f e ’, it is clearly a pole of .-1.
a singularity of the solution can only proceed from a singularity of 1.

(ii) Conversely, assume that . is a pole of -1. Let us prove by contradiction
that u. is a pole of -lL(f) for some f e ’. Suppose that

L(f) eR(A.) (KerA* +/-
vfe .
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*Let (5, fi) e Ker (v.). From the definition (4.7), (4.8) of ]_,(f) the relation
((f),) 0 yields

’ + ftte.) d 0 / f (f,,f,) .’,

which shows that

(4.14) =0 and .n=O onF.

On the other hand, it may be easily seen that .*v, is given by

1/2 ((, ]) -t- (]Y,)i, ](, ?) ( ?) ,,,?)

As is sumed to belong to Uer (.) and (,) 0 by virtue of (4.4) we infer
that

(,) (,9) + 4(9,) 0 v9 e .
This implies in particular that and satis, respectively, the equations

(a.5) 0 i fi,
0 0 on F,

and

(4.16) ’--p,i + Oxaij() 0 in B,
aij (fi) ni 0 on F0 U F.

Equations (4.15) together with (4.14) show that 0 in . From (4.16), we readily
deduce that 0 in B, since Im . - 0 As a consequence, Ker ( .) {0}, which is
inconsistent with the fact that . is a pole of 1.

Assume now that . is a real positive pole of. In this ce, the arguments of
the proof of Proposition 4.1 are still valid, except that (4.16) does not imply fi 0 in
B. Indeed, (4.16) is a clsical eigenvalue problem which h a countable infinity of
real positive eigenvalues, and . may be one of them. In fact, from (4.14), the problem
to be dealt with is the following:

(4.17)
,,p,i + Oxaij() 0 in B,
aij(fi).nj 0 on F0 U F,
.n 0 on F.

A real positive number , such that (4.17) has a nonzero solution is referred to as
an exceptional eigenvalue. Harg [4] has proved that for almost every elastic body B
with regular boundary OB, there is no exceptional eigenvalue. This means that these
values may exist only for very particular shapes of the body. The axisymmetrical
bodies provide the simplest example of exceptional eigenvalues, indeed, the revolu-
tion motions about the axis of symmetry are obviously .solutions of problem (4.17)
associated with the value , 0. But even in this case, it is not clear whether there
exists a nonzero exceptional eigenvalue.

An exceptional eigenvalue . is always a pole of 1, since we can find 0 such
that .(0, fi) 0. Nevertheless, we cannot assert that there exists a datum f such

*that it is a pole of l(f) indeed if Ker (.) reduces to the pairs (0, ) where fi
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is a solution of (4.17), then ],(f) e R(A.) for all f e Y. As a consequence, for real
poles of .-1, the statement of Proposition 4.1 becomes the following.

PROPOSITION 4.2. Let , e ]+. Then, , is a pole of fi1 i.f and only if there
exists at least a datum f E z such that , is a pole of -l],(f), except maybe when, is an exceptional eigenvalue of the body.

4.3. Analytic continuation of the initial problem. We are now able to
proceed to the extension to the lower complex half plane of the solution operator
T associated with the initial problem P. This operator was defined in 2.3 and
2.4 for u E JR+ t C+, and the equivalence between P and the reduced problem
(Proposition 2.3) provides in this case a convenient expression for T. Indeed, for a
given f e , let (, ) denote the solution of b (i.e., .-l],(f)). We know
from Proposition 2.3 that the solution of 7 for the same datum f reads

(4.18) T f (, u), where (1, u) (, ) and 1(

This identity actually defines the analytic continuation ofT f to ]D \ ]K, since .1 is
a meromorphic family in D \ IK (Theorem 4.1) and 7 @1 is analytic in this domain
(Remark 3.7). As a consequence, for every f , the family u --+ T f e T/loc
is meromorphic in D \ K and its poles coincide with those of -lf. By virtue of
Propositions 4.1 and 4.2, we can then state the main result of this paper.

THEOREM 4.2. The solution operators T, from jz onto 7"/loc, form a meromor-
phic family on D \ IK. Its poles coincide with those of fill, i.e., the solutions of the
nonlinear eigenvalue problem (4.9), except the exceptional eigenvalues defined by (4.17)
which may be removable singularities of T. These poles are located in + or ]D- \
and are referred to as "eigenffequencies" in the first case, and "scattering frequencies"
in the second one.

Recall that the family is said to be meromorphic near u, C if there exists
a Vicinity ]} of u, and a sequence {T(p); p _> -P} (with P _> 0) of operators from
to ?-/oc such that

p_-P

where the series converges in T/oc for every f E and every v 6 ]2 \ {, }. By (4.18),
the 7(P) may be easily obtained from the series expansions of -1 and .

Remark 4.2. The distinctionbetween the real positive poles of. andthe complex
ones seems artificial, since they both are solutions of the same nonlinear eigenvalue
problem. This difference actually results from the associated eigenvectors. Let (@, )
be an eigenvector associated with a solution v, of problem (4.19), and let denote the
analytic continuation of @ in the whole domain D, i.e., 1 @ and 1 , @1.
The asymptotic behaviour of at infinity depends on the location of v,: if , is real,

* @IE --+ 0 at infinity (see 3.1), whereas it increases exponentially if , I- \ IK
(see Remark 3.7).

Remark 4.3. The points of ]K (defined by (3.40)), which are poles of the coupling
operator, were left out for the analytic continuation of the reduced problem. In fact,
these singularities are not intrinsic quantities of the initial problem, since they depend
on the choice of the fictitious boundary E. This means that T actually defines a
meromorphic family in ]I). From a practical point of view, it is necessary to decide
whether a point of ]K is a scattering frequency or not: aconvenient criterion is given
in [18, 4.3].
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cn = -1 F
FIa. 5.1

Remark 4.4. On the other hand, the branch points of the solutions of the dis-
persion equation, which led us to introduce cuts in the complex plane, are clearly
intrinsic singularities of the problem, for they do not depend on the method we used
to construct the analytic continuation of Tv. These are characteristic quantities of the
asymptotic behaviour of the system at infinity.

Remark 4.5. The connection between scattering frequencies and resonant states
(i.e., the peaks of the response curve of the system for real frequencies) has been
circumstantially studied in [18]: for an internal approximation of the problem, we
show how to construct explicitly the first terms of the Laurent series of the solution
of/Sv in the vicinity of a scattering frequency. The same results apply to the present
problem. A concrete example is given in 5.5 below.

5. Numerical application. We present in this last paragraph the outcome
of a numerical application of our method for a two-dimensional problem. We are
concerned here with the small motions of an elastic "catamaran" constituted of two
rigid floating bodies linked together by an elastic beam. The characterization of the
scattering frequencies associated with this problem is performed along the same lines
as in the preceding sections: we will restrict ourselves to mention the basic stages of
the method, as well as the main differences from the three-dimensional case (a more
detailed study may be found in [5]). Except where otherwise stated, the notation
previously introduced are retained.

5.1. Equations of the stationary problem. Consider a floating elastic "cata-
maran" as shown in Fig. 5.1. Let c ]I2 denote the domain filled by the fluid at
rest, and 0 its boundary which consists of the free surface S (located at x2 0),
the bottom F (x2 -1) and the immersed parts Ik, k-- 1,2, of the two hulls. The
elastic beam B, which is parallel to S, is embedded in the bodies Bk at points Ok,
k 1, 2. For the sake of simplicity, it is assumed unstrained when the system is at
rest. We denote by the (complex) velocity potential of the fluid, u (ul, u2) the
displacement field of the beam (i.e., the horizontal and vertical displacements of each
point of the beam), and sk, k 1, 2, the 3-components vectors which characterize
the motions of the bodies with respect to Ok (displacement of Ok and rotation of the
bodies):

(5.1) sk --(ui(Ok),u2(Ok),dxlu2(Ok)).

The time-harmonic vibrations of the system are described by the following set of
equations (where v still denotes the frequency squared):
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(5.6)

k= 1,2.

Equations (5.2)-(5.4) are the same as in problem (2.13). Relations (5.5) and (5.6) are
the dynamic equations of an elastic beam which model, respectively, the longitudinal
and transverse vibrations of B. The mechanical data p, c, and are assumed to
belong to L(B) and to be bounded from below by a positive constant (p is the mass
of the beam per unit length, a EA where E is the Young’s modulus and A is the
measure of each section of the beam, E1 where I is the geometrical inertia of
each section). Equation (5.7) stands for the continuity of the normal velocity on the
hulls: ng denotes the so-called "generalized normal" defined by

where n (nl, n2) is the unitary normal to rk at point (Xl, x2) measured with respect
to Ok. Finally, (5.8) expresses the dynamic equations of the two rigid bodies (see John
[10]). lk, which is referred to as the "generalized mass matrix," is the 33 positive
matrix given by

Mk 0 mk mkXlG
--mkX2G mkXlG Ik

where mk is the mass of the body, (XlGk, X2Gk is the location of its centre of gravity
with respect to Ok, and Ik is its inertia at point Ok. The "hydrostatic stiffness matrix"
]Kk is defined by

0 0

Kk 0 fs dSk
0 fs, xldSk O)fS Xl dSk

(x2c x2v)f dgk + fm x dSk

where Sk and k are represented in Fig. 5.2, and Ck is the geometrical centre of
gravity of k. The 3-components vector gk is the torque of the force exerted on the
body by the beam, which expresses as follows:

(5.9) gk (--1)k (-- dxl Ul(Ok), dx (d2u2(Ok), -- d2 u2(Ok))).

In Equations (5.7) and (5.8), the right-hand members depend on the incident wave:

f is a function defined on Fk, and f E C3. More precisely, if I denotes the velocity
potential of the incident wave, we have

f 0.o and f =-vl/2f ingdrk.
k
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FIG. 5.2

As in 2.3, the asymptotic behaviour at infinity of the scattered wave is specified
by means of the outgoing radiation condition

lim I01 99 = io 99 dx2 0,
xi-*:kc

where 0 is, here again, the only positive root of

(5.11) 0 tanh 0 .
For every E R+, the stationary problem, denoted by P in the sequel, is then

defined as follows:

Find X (99, u) E ’loc such that
99 and u satisfy (5.2)-(5.8),
99 satisfies the radiation condition (5.10),

where ?-/ioc denotes the Frechet space

(5.13) ?-/loc Hoc()x (Hi(B) H2(B)),

and the datum / ((f, f’), (f, f’)) is assumed to belong to

(5.14) 2r= (L2(F1)x C) x (L:(r:)x

Following the same idea as in 2.4, problem :P can be extended to the upper
complex half plane by replacing the radiation condition by a decay condition at infinity.
For every E C+, consider the problem (also denoted by P)

Find X (99, u) / such that
99 and u satisfy (5.2)-(5.8),

where 7-/is the Hilbert space

(5.16) ?-I Hl() x (Hi(B) x H2(B)).

PROPOSITION 5.1. Let E C+. For every f E , problem P has a unique
solution X T f in Tl. Moreover, T is a continuous operator from jz to

Proof. A variational formulation of :P reads

Find X E 7-/ such that
a.(X, Y) l(f; Y) VY
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--F, F
FIG. 5.3. The inner and outer domains.

where av(-, .) is the sesquilinear form

and l(f;.) is the semilinear form

k=l k

where Y (, v) 6 7-/and tk is defined as in (5.1) by

tk (vl(Ok), v2(Ok),dxl v2(Ok)).

Using the same techniques as in the proof of Proposition 2.1, it may be easily seen
that av is a continuous and coercive form on 7-/ 7-/. The statement of Proposition 5.1
then follows from Lax-Milgram’s theorem. [3

5.2. Reduction to a bounded domain. Let t c ft be the bounded domain
delimited by two vertical segments E1 and E2 (located, respectively, at x a and
X a2) chosen such that the hulls F1 and F2 are contained in the boundary 0 of

^(see Fig. 5.3). We denote by and/ the parts of S and F which are included in
OCt, and by tj, j, and/y (for j 1, 2) the left and right connected components of
Ft \ t, S \ and F \/, respectively.

As in 2.5, we define, for j 1, 2 and u E l+ t2 C+, the coupling operator Q,
from H/2(Ej) to H-1/2(Ej) by

(5.17) Qy, T On(y, T)IZ

where 7j,, T is the solution of the following outer Dirichlet problem 75j,v

Find %5 in H1 ]1{+ H (j) if ujoc(j) if v 6 or 6 C+ such that

A=O in,j,

(5.18) On(o- v (o 0 on j,
0n95 0 on/,

satisfies the radiation condition (5.10) if u 6 ll{+.
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The well-posedness of this latter problem, as well as the continuity of the solution op-
erator j,v, may be proved by the same method as for Proposition 2.2. Consequently,
2j,v is continuous from H1/2 (Ej) to H-1/2 (Ej).

Consider then the reduced problem 75, set in the bounded fluid domain :
Find (, ) e such that
A=O in,

o P,
(5.19) pCz +dx,(ad,lCz) -0 on B,

p fi2 d2, ( d21 fi2) 0 on B,
v/2 k.n9 0, f on rk,

+ +
on

where k and k are defined as in (5.1) and (5.9), and 7:/denotes the Hilbert space

(5.20) H() (HI(B) H2(B)).

The equivalence between 75 and the initial problem :P, which is expressed in Propo-
sition 5.2 below, follows from the same arguments as for Proposition 2.3.

PROPOSITION 5.2. Let E IR+ U C+ for every f J:, problem 7) has at least
(respectively, at most) one solution if and only if the same holds .for 75. Moreover, if
X (, t) is a solution of 75, then X (, t), where is the function given by

is a solution of P. Conversely, if X (, u) is a solution of P, then f( (1’ u)
is a solution of

5.3. Analytic continuation. The analytic extension of the reduced problem
/5 is based on the explicit series expansion of the coupling operators , which is
achieved, here again, by the method of separation of variables.

In the case of real positive , it is an easy matter to check that the solutions
with separated variables of the outer problem 75, are given (up to a multiplicative
complex constant) by

(5.21) (m)(Xl X2) T(m)(x2) e(-1)j+Icm)(x-aj) for rn > 0,

where the functions T(m) and the complex numbers (m) are defined as in Lemma 3.1.
Note that ._(0) is the only radiative solution: the others are evanescent since theyWj,v
decrease exponentially at infinity.

Using some classical results of the spectral theory of selfadjoint operators (see the
proof of Proposition 3.1), we readily prove the following.

PROPOSITION 5.3. Let v > 0; the set T {T(m); m _> 0} is an orthonormal
basis of L2(Ej) and an orthogonal basis of Hs(Ej) for every s e ]0, 1]. Furthermore,
the expression
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is a norm on Hs(Ej) equivalent to the usual norm.
As a consequence, every function T e H1/2(Ej) expands as

m>0

Noticing that ..(m) (given by (5.21)) is nothing but the solution of 75j, for the DirichletWj,v

datum r(’), we infer that the general solution of 75, reads

(m)

m_>0

where the series converges in Hlloc(j). The diagonal form of the coupling operator
for v 6 JR+ follows:

V r e H1/2(E).

The case of complex v is dealt with as described in 3.2. We have seen that each
solution (’) of the dispersion equation extends analytically in the simply connected
domain ]I) C C. The same holds for the functions T(m) and (m) (which are definedj,v

everywhere in D). Note that if v D \ R+ each solution (’) decreases exponentiallyWj,v
at infinity except in the case m 0 and v e D-, where it becomes exponentially
increasing (see Proposition B.5). Proposition 5.3 extends as follows.

PrtOPOSTON 5.4. For every v ID and every s [0, 1], the set {r(’0; m _>
0} is a basis of Hs(Ej) and the expression [T], given by (5.22) is still a norm on
Hs(Ej equivalent to the usual norm. Moreover, the two families 7" and 7" are adjoint
to each other in L2().

The proof of this statement is simpler than Theorem 3.1. We use directly the
perturbation result given in the proof of Lemma 3.3. Indeed, it may be easily seen
that for every v D and # JR+, we have

,s < (:X).

We readily deduce from Proposition 5.4 that if v D+, the coupling operator
Qj, expands as

(5.24) Qy, T- E (m)(T, Tm))E Tm) V T H1/2(j).

This expansion actually defines the analytic continuation of y," it appears as an
analytic family from ][]) to B(H/2(E:)),H-i/2(.i ).

We can then proceed to the analytic extension of the reduced problem 75 by
writing it in variational form:

Find - (, fi) 6 such that
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where 5 is the sesquilinear form defined on by

(5.26) &(,
with

(5.27) ](),) aV.Vdt+ fB(dxltldxl)ldB-/Bdl 2u2dx2 dB

2

+(a
k=l

2

(.al (2, + o.+(.,
k=l

(. a(2, (. + e.er,
k=l

2

(.30) (, ?) () (,, ()) ((),)
j--1 m>_O

for all (, ) and ]Y (, 9) in . The semilinear form [ is given by

(5.31) )/(f; 71 dr +.t
k=l

Let . denote the bounded operator on associated with 5, i.e., defined by the rela-
tion (,17) 5(7, ]Y). As in Theorem 4.1, a characterization of the eigenvalues
and scattering frequencies of the problem is as follows.

THEOREM 5.1. The operators for//E ID form a holomorphic family of Fred-
holm operators on l. Moreover, A i8 a meromorphic family in D whose poles are
located in 1+ or I-. These poles are the solutions of the following nonlinear (and
nouselfadjoint) eigenvalue problem:

Find// R+ U D- such that there exists f( 7:l \ {0}, which satisfies(5.32) k(2, ) -//1/2 (2, ]r)
__
(2,1) --//(2,1) V e ’.

5.4. Numerical implementation. The discretization of the problem involves
two steps. We first truncate the series expansion of the sesquilinear form (we denote
by M the order of truncation of the series). We then define a finite-dimensional
subspace of 72/ by means of a standard conforming element method. For the fluid
domain , we use classical quadrangular Lagrange finite elements (see, e.g., Ciarlet
[3]), i.e., a piecewise polynomial interpolation of partial order 1 (class C0) for . For
the beam, we use standard beam elements, i.e., a polynomial interpolation of order. 1
(class C0) for 1, and of order 3 (class C1) for t2. Let T/h denote the approximation
space resulting from this finite element discretization, and let (. ")h be the scalar
product in T/h Consider then the matrices MIh Kh Ch, and (U) given byv,h

(x Yh)h (Xh, Yh),

(hXh Yh)h (Xh, Yh),
(ChXh Yh)h (Xh, Y),

2 M

j=l m=O
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for all Xh (h, Uh) and Yh (h, Vh) in ?’/h. Note that MIh, ]Kh, and Ch are real
symmetric matrices, and Q(M) is complex symmetric (but not selfadjoint) Thesev,h
matrices are computed by classical assembly techniques. For the sake of simplicity,
we omit the index "h" in the sequel.

The numerical application concerns three points: the usual approach which con-
sists in computing the response curve of the body for real frequencies, the present
method of determination of scattering frequencies, and finally, a comparison between
both approaches, by means of the series expansion of the response in the vicinity of
the scattering frequencies.

(i) The computation of the response curve of the floating body is performed as
follows. Consider a monochromatic incident wave of frequency/21/2 E JR+ given by

cosh/2o(x2 + 1) eivolI(Xl,X2) /21/2 cosh/2o

where/20 is the positive root of (5.11) (the amplitude of this wave is 1, since the free
surface elevation is defined by l(xl) i/21/2oi(xl, 0); see [10]). From (5.25), the
approximate response of the system is then the solution X (, u) of the following
linear problem:

(5.33) (- vM- v/2C + QM))X F,,

where the right-hand member is defined by

2

(5.34) (F Y) r (0, /2.n) drk.
k=l

The total energy of the catamaran follows:

E 1/2((/2M + ]K) ), where (0, u).

By computing this quantity step by step over a given frequency range, we obtain the
response curve of the catamaran: its peaks are the resonant states of the system.

(ii) On the other hand, consider now the matrix nonlinear eigenvalue problem
associated with (5.32),

(K- v/C + QM))X vMX,

whose solutions are the approximate scattering frequencies. Solving this problem
amounts to determining the solutions of the fixed-point equation )k(/2) /2, where
Ak(/2) denotes any eigenvalue of the problem

+ Q U))x x.

This latter equation is solved as described in [18, 6.3] by an iterative Newton method.
(iii) As for the continuous problem, the solution of (5.33) is a meromorphic

function of/2. In the vicinity of an approximate scattering frequency/2,, it expands as

X (/2-/2,)PX(P), P >_ O.
p_-P
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We described in [18] how to calculate the first terms of this expansion. In particular, if
u, is a nonsingular simple scattering frequency (i.e., Ak(u,) u, is a simple eigenvalue
of (5.37) and dAk(u,) 1), we have P- 1 and

(5.38) X(-1) ((--1), U(--1)) (F() .) X.,
((1/2 +

where F() is the first term of the expansion of F near u, (F depends analytically
on u), and X, is a scattering mode associated with u, (i.e., an eigenvector of (5.37)
for u u, associated with the eigenvalue Ak(u,) u,). In this case, the total energy
of the catamaran expands as

(5.39) E I’- ,,-21
2

where (-1) (0, u(-)). For the scattering frequencies which are close enough to the
positive real axis, we will see that the only first term of this expansion provides a good
approximation of the response curve of the catamaran.

5.5. Numerical results. We present a typical numerical application which is
related to the following data. The hulls of the two rigid bodies are parabolic curves
defined by

X2 2(Xl +/- 1)2 0.2.

The centres of gravity of the bodies are Gk (+/-1, 0), and the embedding points are
Ok (+/-1, 0.3). The inertia of each body at point Ok is 0.2. The mechanical data of
the beam are assumed constant: p- 0.04, a--0.7, and f --0.35.

The discretizetion of the fluid domain is shown in Fig. 5.4 (770 degrees of freedom
for ). For the beam, we use 38 elements (117 degrees of freedom for u).

The upper part of Fig. 5.5 shows the response curve of the catamaran (i.e.,
function E defined in (5.35)) in the frequency range [0.7,3.0]. In the lower part of
the same figure, the locations of the computed scattering frequencies in the lower
complex half plane (solutions of (5.36)) are displayed. All these scattering frequencies
are simple; their numerical values are

real part
imag. part

(a) (b) (c) (d) (e) (f) (g)
1.028 1.306 1.636 1.776 2.186 2.530 2.723
0.175 0.015 0.191 0.011 0.143 0.043 0.010.

As expected, their real parts agree with the resonant states of the catamaran, i.e. the
peaks of the response curve. Note that the sharp peaks correspond to the scattering
frequencies which are very close to the positive real axis (imaginary part about 10-2
for (b), (d), and (g)).

Figs. 5.6(a)-5.6(e) show the scattering modes associated with the scattering
frequencies (a)-(e). Only the strain of the catamaran and the free surface elevation
are represented. The location of the system at rest is indicated by the dotted line.

Case (a) is nearly a rigid motion of the catamaran (very slight strain of the beam):
it is essentially a "rool" motion coupled with a small "sway" (displacement in the Xl
direction).

Case (b) shows, on the other hand, an important bending strain of the beam with
nearly no global motion of the catamaran. In fact, this mode is almost an eigenmode
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FIG. 5.5. Response curve and scattering frequencies.

REAL PART IIAGINARY PART

Fz(. 5.6(a). Scattering mode associatett with (a).

of the body uncoupled with the fluid, since the free surface elevation is small with
respect to the displacement of the beam.

Case (c) is a symmetric "heave" motion (vertical global displacement) together
with a slight longitudinal and bending strain of the beam. As in case (a), this is clearly
a coupled mode between the fluid and the floating body.

Case (d) shows a large free surface elevation compared with the motion of the
catamaran. In fact, this elevation is nearly zero outside the two hulls: the wave is
"trapped" between them. Contrary to (b), this mode is almost a scattering mode (or
a "trapped mode") of the fluid uncoupled with the floating body. This explains in
particular why the associated peak of the response curve is low.
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REAL PART IMAGINARY PART

REAL PART

FIG. 5.6(c). Scattering mode associated ,with. (c).

FIG. 5.6(b). Scattering mode associated with (b).

IAGINARY PART

REAL PART IMAY PART

FIG. 5.6(d). Scattering mode associated with (d).

Case (e) is a coupled scattering mode of the system: as in case (c), it essentially
consists in a global heave motion and a longitudinal strain of the beam.

Fig. 5.7 compares the response curve of the catamaran (i.e., the curve of Fig
5.5, reproduced here in dotted line, with the approximation of resonant states which
follows from the first term of the expansion of the response (order -1) in the vicinity of
the scattering frequency (i.e., formulas (5.38) and (5.39) applied for real frequencies).
This approximation is rather good for (b) and (g) (relative error about 10-2 for
the maximum). In case (d), the location of the peak is correct but not its height:
intuitively, this may be accounted for by the fact that the energy of the catamaran
in the scattering mode (d) is low. For the other resonant states, we notice a sensible
shift between the peak and its approximation: the only first term of the expansion of
the response is not sufficient to provide a precise location of the peak (an estimate of
this shift using the second term of the expansion is given in [18]).

Appendix A. Series expansion ofthe solution ofthe outer problem. This
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FIO. 5.7. Approximation of resonant states.

appendix is devoted to the proof of Lemma 3.2. We show that the series constructed
in 3.1 for E 1+ (see (3.20))

(A.1) ’ (X, X(n’m))m (n")
nEZm>0

converges in Hloc() for every X e H1/2(E), depends continuously on X and satisfies
the radiation condition (2.14). These results are based on asymptotic properties of
the modified Bessel functions K, which are collected in A.3.

Let us point out that the method we present below can be used similarly for the
two-dimensional acoustic scattering problem, in order to prove that the Fourier series
expansion of the scattered wave outside a circle satisfies the Sommerfeld radiation
condition. This answers the question raised by Hochstadt [8].

A.1. Convergence of the series. Consider, for a given R > r0, the bounded
domain R c delimited by the vertical cylinder R {x ; x + x R2}; we
denote by R the part of which is contained in the boundary of R. The proof of
the convergence of the series (A.1) in HI(a) is based on a suitable choice of a scalar
product for which the solutions with separated variables become orthogonal.
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As in the proof of Proposition 3.1, it may be easily seen that the expression

(A.2)

is, for sufficiently large d > 0, a norm on HI(R) equivalent to the usual norm. Let
denote the associated scalar product. Noticing that if is a solution of 75,

we have

where (., ")/2,un denotes the duality product between H-1/2(Un) and H1/2(t2
n), we deduce from the definition (3.1) of (n,m) that
(A.3)
Pd,R ,m) .(n ,m’) ,m)=(x

0 0

which shows that functions (n,m) form an orthogonal family in H(n) for Pd,n.
Consequently, the norm of (A.1) reads

(A.4) d,R P
m>_O

By Proposition 3.1, if there exists C > 0, independent of n and m, such that

(A.5) N2 ((n,m)) < C (1 + n2 + m2)/2d,R

then Nd,n(() is bounded and satisfies the following inequality:

(A.6) Nd,R((O) (_ -0

which is nothing but the required continuity property (2.26). From (A.3), we thus
have to estimate the asymptotic behaviour, when n2 + m2 --+ +(x), of

(A.7) "d,nur2 (.v(,,m)) d r(,,m
2 __r dr +

o ro E 1
R

r0 ro

where

K,((’)r) (’)K((’)r)(A.8) r](n’m) (r) and dr(’’m) (r)K,((’)ro) K,((’)ro)
Note that, from the symmetry property (3.10), it is enough to consider the case n _> 0.

First, assume that m > 0. In this case, the roots (’) of the dispersion equation
are real and positive, and their asymptotic behaviour is given by (see 3.1)"

(A.9) (m) mr when m
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The arguments of Kn and K in (A.8) are thus real and positive. Setting x (m)r
and xo (um)ro in (A.24), we derive

(A.10)
g’n((’)r) < C (n2 + m2)1/2 gn((m)r)

and <C forn_>0, m>0.
gn((m)r) m gn((m)ro)

These inequalities show that the first term of the right-hand side of (A.7) is bounded
by a constant, and the second one, by C(n2 -l- m2) I/2. Relation (A.5) is thus proved.

Suppose now that m 0. In this case, the arguments of Kn and K’n in (A.8) are

imaginary (for (0) -i0; see 3.I). Setting y 0r in (A.29) and (A.30), we see
that

(A.11) K’n(-ivor) g,(-ivor) < C for r e [r0, R] n > 0.
gn(-ivor) <- Cn and

g(-ivoro)

These estimates show that inequality (A.5) is still valid for m 0. The convergence
of the series (A. 1) follows.

A.2. The radiation condition. By construction, each term of the series (A.1)
satisfies the radiation condition (2.14): the aim of this paragraph is to show that this
property holds for the sum b of the series. First, note that for R > r0,

since {X(n’m); n e Z, m > 0} forms an orthonormal basis of L2(E). We prove below
that

nEZm>0

which of course implies the convergence to 0 of (A.12) when R --+ -{-oc for every
X E H1/2(). Note that, here again, it is enough to deal with the case n >_ 0.

(i) In a first step, we consider the part of the series in (A.13) which corresponds
to m > 0 the exponential decay of }(n,m)(r) actually leads to a stronger property
than (A. 13), namely,

n>O m>O

as well as the same property for dri(t,n’m) (R). We restrict ourselves to the proof of the
former statement; the latter is obtained similarly. In order to prove (A.14), we study
separately the two quantities:

(A.15)

(A.16)
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where nm(R) denotes the greatest integer such that nm(R) <_ ’)R. If n <_ nm(R),
we deduce from (A.25) that

Kn(m)R)
Kn((m)ro)

_< C e-()(-o)/a,

whence we infer, from (A.9), that for every /> 0, there exists C > 0 such that

17n’m)(R)] <_ C (mR)-’ for n <_ nm(R).

Noticing that nm(R) <_ C mR, we thus have

AI(R) <_ C R E(mR)-2+l"

By choosing, for instance, f + 1, we deduce that AI(R) --, 0 when R - +x. On
the other hand, if n > urn(R), inequality (A.26) shows that

Noticing that nm(R) is an increasing function of m, we can rewrite the series (A.16)
in the form

n>nl(R) m<mn(R)

where mn(R) is the greatest value of m such that m)R <_ n. By (A.9), we see that
mn(R) <_ C n/R; consequently

<_ C’

Hence, we easily deduce that A2(R) 0, which completes the proof of (A.14).
(ii) Consider now the case m 0 in the series (A.13): it remains to prove that

(A.17) lim REI-(n,o) (n,0) 12ar7 (R)-iuo, (R) =0,
n>0

where
( o)ar,’ (R)-i’oyn’)(R)l-’o K(-i’oR) / Kn(-ioR)

Kn(-i’oro)
Let be an arbitrary small (but fixed) positive number. We split the series in (A.17)
into three parts:

(A.18)

BI(R) n
,+()

E (’")’ B2(R)-R E (’")’ B3(R)--R
n<n-(R) n--n-(R) >+(R)
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where n-(R) and n+(R) denote, respectively, the greatest integers such that

u0R(A.19) n+(R) <_
1 :l: e"

If n < n-(R), (A.35) shows that there exists some positive constants C and c such
that

" (n’) C (n) -n c<n<n-(R)(R) (R) <_

from which we deduce that B1 (R) -+ 0 when R -+ -t-cx). If n-(r) < n < n+(R), the
estimates given in (A.33) yield

(n,0) -n

arth, (R)-ib’o7(n’)(R)[<_C(n-)c
whence we infer that

n)
-2n

X:
,>,- (R)

since R _< n(1 -t- e)/0. The convergence of B2(R) to 0 follows. Finally, if n > n+(R),
we see from (A.29) and (A.31) that

Cry, (R) i,o7(un’) (R) <_ --from which we easily deduce that B3(R) --+ 0. Property (A.17) is thus proved.

A.3. Some properties of the modified Bessel functions. We prove here
some asymptotic properties of Kn and K’ which are used in the two preceding para-
graphs. The main tools are the following uniform asymptotic expansions (see Olver
[24, Chap. 10, 7 and 8]):

(A.20)

(A.21)

where

(A.22) {(z) (1 + z2)l/2 q-In
1 + (1 + z2)1/2"

These expansions are valid for n > 0 and z in a complex domain such as the one
shown in Fig. A.1, which excludes in particular the singular points -t-i of {(z). In this
domain, {(z) is an analytic function, the branch being chosen such that {(z) takes its
principal value when z E JR+. Outside a vicinity of the singular points =hi, the bounds
for the error terms e0 and el are given by

1
(A.23) Iek(Z, n)l < C ,1,2, k O, 1

nil+ z2 I"
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Irn(z)

x

:i,, ’
Re(z)

-ix, x

FIG. A.1. Validity domain of the expansions of Kn and Kn.

We begin with the case of real positive arguments.
LEMMA A.1. Let x be a given real positive number.

positive constants (all denoted by C) such that
Then, there exist some

(A.24) Kn(x)
< C (n2 + x2)1/2 and

x
Kn(x)
Kn(xo)

<_C forn>_O, x>_xo.

Moreover, we have the more precise estimates

(A.25)

(A.26)

K,(x)
K(xo)
g.(x)
gn

<_ Ce-(X-xo)l3 for O < xo < x and O < n < x,

_<C
x

for 0 < 2x0 < x < n.

Proof. First, assume that n > 0. Setting z xln in (A.20) and (A.21), we derive

Kn(X) (n2 + x2)1/2 (1 + 0 ((n2 + x2)-1/2)),

which implies the first inequality in (A.24). On the other hand, we have

(A.27) Kn(x)= (1 -4- xrt-2) 1/4

Kn(xo) 1 + x2n-2
e--an(x0,x) (1 + 0 ((n2 + x)-i/2)),

where

an(xo, x) n ((x/n) (xo/n))
X2 X

(n2 + x2)1/2 + (n2 + x)l2
n ln (xl + (n-2 + X2)1/2+ \x-1 + (n-2 W x-2) 1/2 )

Since x _> x0, this latter quantity is the sum of two positive terms: the second in-
equality in (A.24) follows. If n < x, by neglecting the second term of the right-hand
side, we easily obtain

a,(xo, x) > (x- xo)/3,
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from which we deduce (A.25). If n > x, we neglect the first term in the expression of
an(xo, x), which yields

x
an (x0, x) _> n In

2x0
Inequality (A.26) follows.

Finally, if n 0, we simply use the following asymptotic expansions of Ko(x) and
K(x) for large x > 0 (see [1]):

Ko(x) e-x(1 + O(x-1)) and

K(x) -KI(x) e-x(1 + O(x-1)),

which shows that (A.24) and (A.25) hold for n 0. D
We now deal with the case of imaginary arguments. The results depend on the

relative positions of the order n and the modulus of the argument iy (y real): in the
three following lemmas, we distinguish the three cases

(A.28) lY__ <_l_e, IY_ >_l_e and lY__ _>1+,
n n n

where > 0 is an arbitrary small (but fixed) constant. All proofs are given for positive
imaginary parts: the case of negative imaginary parts follows from the symmetry
property

g(2) g,(z), z e C.

LEMMA A.2. Let yo and yl be two given real numbers such that 0
Then, there exist some positive constants (denoted by C or c) such that

(A.29)

(A.30)

(A.31)

K’(iu)
Kn(iy)
K,(iy)
K,(iyo)
Kn(iy)
g(iuo’

n<c o o < lyl- (1- )n,

o c < lYl < (1- e)n.

Proof. Setting z iy/n, we see that z belongs to the validity domain of (A.20)
and (A.21) shown in Fig. A.1; consequently,

K,(iy) --1 (1 + 0 ((n.2 y2)-1/2)),

Since n-y >_ n, the error term is bounded: relation (A.29) follows. On the other
hand, we have, instead of (A.27),

(A.32)
K,(iy) (n2 y] l/4

Kn(iyo) n2 y2
e-a’(’Yo,’Y) (1 + O ((n2 y2)-1/2)),

where

an(iyo,iy) .+.nln (Yl + (Y2 n-2)1/2)y-1 + (y-2 n-2)1/2
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The first term in the expression of an (iyo, iy) is negative, but the second one is positive
and becomes dominant for large n and y bounded: inequality (A.30) is thus proved.

We obtain the more precise estimate (A.31) by noticing that, if y _< (1 )n,

y2 y < Cn and
y-i + (y-2 n_2)1/2 y

(n2 y2)1/2 + (n2 y))/2 y-1 + (y-2 n-2)/2 -> 2yo’

from which we deduce that, for some c > 0, an(iyo, iy) >_ n In(y/c) when y > c. D
LEMMA A.3. Let yo 0 be a given real number. There exist some positive

constants (denoted by C or c) such that

(A.33)
Kn(iy)
Kn(iyo)

and
c

K(iy)
K (i o)

lul
c -1-e

Proof. In the "transition region" y/n E [l-e, 1 +el, we cannot use the asymptotic
expansions (h.20) and (A.21). However, we have the following estimate (Olver [24,
Chap. 7, ex. 13.4])"

IKn(iy)l <_ y e’/u forn_>l, y>0,

and thus

IKn (iy) <_ r en/(l-e) for y > (1- e)n.

Furthermore, from the asymptotic behaviour of Kn(iyo) for fixed y0 > 0 (see [1]),

(A.34) IKn(iY)l -n when n

we infer that for large enough n and y > (1 )n,

K,(iy)
K,(iyo)

< C en(1-e-ln(2n/eu))

which implies the first inequality in (A.33). Finally, from the recurrence relation

Kn(z) --1/2 (Kn+l(Z) -]- Kn-l(Z)), zEC,

we deduce in the same way the second inequality of (A.33). D
LEMMA A.4. Let yo 0 be a given real number. There exist some positive

constants C and c such that

(A.35) K(iy) + Kn(iy)
K,(iyo)

C (n)-n forc<n<
ly-- ly13/4 1 +e"

Proof. Setting z iy/n, we clearly have Izl _> 1 + , and thus we can use the
asymptotic expansions (A.20) and (A.21) with the error bounds (A.23). Hence

Kn(iy)-" (_)1/2 C--n(iy/n)--iTr/4

(y2 n2)1/4 (1 + 0 ((y2 n2)-/2)),

()1/2 (y2 _n2)l/4e-n(iy/n)-ir/4 (1 +0 ((y2_ n2)-1/2))K(iy)
Y
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From (A.22), we easily verify that for y/n > 1,

(iy/n) i ((y2n-2 -1)l/2 + arcsinn)
which is purely imaginary, and thus

Noticing that y2_ n2

_
ny, we see that the error terms is these expressions are

bounded by C (ny)-3/4; then

IK(iY) + Kn(iY)l ()1/2 n2

y (y2 /2)1/4 (y
_

(y2 n2)1/2)
+O((ny)-3/4),

which shows that
IKn(iy) + Kn(iy)l <_ C n1/ay-3/4.

As in the proof of Lemma A.3, using the asymptotic behaviour (A.34) of Kn(iyo), we
thus deduce (A.35).

Appendix B. Solution ofthe dispersion equation in the complex plane.
The purpose of this section is to show a method which provides an explicit form of
the roots E C of the "dispersion equation" (see (3.4))

(B.1) f() u, where f() - tan

for any complex number u. This method, which is based on the properties of Cauchy
integrals on arcs, is widely described in Henrici 7, Vol. III, Chap. 14]" some results
will be stated here without proof.

B.1. Some general properties of the roots. Let 0 be a given complex num-
ber; suppose that (B.1) admits a solution 0 E C for u0. Function f is analytic in
a vicinity of 0 and can thus be represented by a series

S() uo + am( o)m.
m)l

Let mo _> 1 be the smallest value of m such that a, 0. We know (see, e.g., Henrici
[7, Thm. 2.4f]) that in a vicinity of o (B.1) admits exactly mo solutions which tend to
o when -- o" these are the mo branches of an analytic function having an algebraic
singularity of order mo- 1 at point o (Knopp [14]). Since am df(o)/m!, we have

(B.2) al
sin 240 + 240

2 cos2 0
and a2 a tano- 1.

The first coefficient al vanishes if sin 240 + 240 0. In this case, a2 0, which shows
that 0 is a double root of (B.1).
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0

a(.)

FIO. B.1. Solutions o] equation sin2 + 2 0.

+/-fl(’y) + 2k’"

LEMMA B.1. The roots of the following equation

(B.3) sin2 + 2 0,

which are such that Re _> 0 and Im _> 0 form a sequence (; n e N), where 0
and ae e ](n- 1/2)r, (n- 1/4)r[. Their asymptotic behaviour is given by

Log((dn 1)r) + o(1) when n +o.(B.4) (n- 1/4)r +

The other roots of (B.3) are obtained by symmetry with respect to the real and imagi-
nary axes.

Proof. First, notice that if is a solution of (B.3), then - and are ones too;
moreover, 0 is the only solution located on the axes Re( 0 and Im 0.
Consequently, setting 2 x + iy (x and y real), we can restrict ourselves to the case
x > 0 and y > 0. Equation (B.3) is thus equivalent to

--X
(B.5) y=a(x)-Arccoshsinx and

(8.6) x +/-(y) + 2nr +/-Arccos
-y + 2nr, n e N.

sinh y

These functions are represented in Fig. B.1: the two families of curves intersect at
one point x& + iy 2 in every strip x E ](2n 1)r, (2n- 1/2)r[. It may be easily
seen that Min (x) on each interval ]nr, (n + 1)r[ tends to +x) when n - +oc, when
we infer that

x, (2n- 1/2)r + o(1) when n --Substituting this expression in (B.5) yields

y Log((dn- 1)r) + o(1).

The asymptotic behaviour (B.4) of follows.
Let E denote the set of u which correspond to the solutions of (B.3), i.e.,

(B.7) u -tan sin2

In other words, E E means that (B.1) admits a double root (which is a solution of
(B.3)). Note that and - are the only double roots of (B.1) for such a "indeed,
it is a easy matter to verify that

f(l) f(Z2) and sin 21 + 21 sin 22 + 22 0
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implies 1 +/-2. The locations of the points of E are represented in Fig. 3.2: E is
symmetrical with respect to the real axis. Moreover, we have from (B.4)

(B.S) ()= -ir(n- 1/4)(1 + o(1)) when n -+ Tx).

These results may be summarized as follows.
PROPOSITION B.1. rm (i) If v E C\E, then every root of the dispersion equation

(e.1) is simple. /f v E E, (e.1) has exactly two double roots and-, solutions of
(B.3); the others are simple.

(iN) If o is a simple root of (B.1) for o, then there exists a vicinity ofo in
which (B.1) has only one root which tends to o when --. o" this root is simple
and depends analytically on .

(iii) If o is a double root of (B.1) .for o, then there exists a vicinity of o
in which (B.1) has exactly two simple roots + and , for o, which tend to o
when -- o these are the two branches of an analytic function of which has an
algebraic singularity of order I at point o.

B.2. Other formulation of the dispersion equation. Let us first note some
symmetry properties. For a given v, if is a solution of (B.1), then - is also a solution
for the same and is a solution of (B.1) for p. We can thus restrict ourselves to the
case

(B.9) Re_>0 and Imp>_0.

Let Arctan z denote the principal value of the inverse of tan z, i.e.,
z dtArctan z

1 + t2’

where the path of integration must not cross the two cuts (iy; y ] and lYl -> 1. If
/ is assumed not to belong to one of these cuts, (B.1) (with the restriction (B.9))
is equivalent to

(B.10) -Arctan(/) -+- kr, k _> 0.

Note that for a given k, the roots of (B.10), if any, are such that

+ 1/2).[.(B.11) Re e ](k-5
It may happen that v/ belongs to one of the cuts of function Arctan z. Indeed,

suppose that -it is a solution of (B.1), where t is a real number such that
0 < Itl _< 1. From the symmetry properties stated above, we can assume t > 0.
Equation (B.1) is thus equivalent to ttanh(t) 1, which yields

111 l+t ( )](B.12) u= LOgl_ t+ir n+ t]0,1[, n_>0.

This expression defines a family of curves (Cn C C; n >_ 0) which are represented in
Fig. B.2.

For every n > 0, we denote by Dn the open set located between Cn- and Ca;
Do is the domain of C+ \ (0} situated below Co. We define D and C by

(B.13) D-- UDa and C-- Uca"
n_>0 n_>0
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Im 12

51r/Z

D!

FIG. B.2. Definition of Dn and Cn.

Re

In the following paragraph, we will assume that E D. The case E C will be dealt
with at the end of B.4. Note that this distinction is not specific to (B.1)" it results
from the choice of the cuts which are necessary for the definition of function Arctan z.

B.3. The Privalov problem. Using the change of variable

(B.14) x /(ip);

(B.10) amounts to determining the zeros of functions f(k)(X) defined as follows

(B.15)
1f(k) (x) x + ik + 7 Log

x-1

x+l’
where Log is the principal value of the logarithm, and k is a nonnegative integer. Let I
denote the segment [-1, +1] oriented from -1 to +1. For every D and every k

_
0,

function f(k) is analytic on C \ I. Let t be a point on I different from the endpoints
+1 such a point will be called an interior point of I. If B(t) is a sufficiently small
disk centered at t, the set B(t) \ I has two separated components

B+(t) B(t) rG {x e C; Imx > 0},
B-(t) B(t)CG {x e C; Imx < 0},

and we can define the "one-side limits" of f(k) at t by

f(k)+ (t) lim f(k) (x).

It may be easily verified that at every interior point t of I these limits exist and read

(B.16)
1f(k)+ (t) t + iTr(k + 1/2) + Log

l+t

r(k)+ and f(k)- do not vanish at anyNote that the assumption D implies that j
interior point of I.

Consider then the function a(k) (t) defined for every interior point of I by

(B.17) a(k’(t)-- f(k)+(t (f(k’-(t))-I
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The so-called (homogeneous) Privalov problem associated with a(k) consists in finding
a function F(k) (x) which is analytic in C \ I, has at most a pole at x), and has one-side

limits F(k)+ and Fk)- (at every interior point of I) which satisfy the relation

a(k) (t) F(k)+ (t) (F(k)- (t)) -1

Function fk)(x) is a particular solution of the Privalov problem. Indeed, it has a pole
of order 1 at oc, since

(B.18) fk) (X) ’X / ikr x-1 + O(x-2).

The following result provides a general expression for any solution of the Privalov
problem (see Uenrici [7, 14.8]).

PROPOSITION B.2. Let E D; all the solutions of the homogeneous Privalov
problem are given by

(B.19)

(B.20)

(where log denotes any continuous logarithm) and r(k)(x) is an analytic function in
C \ {+/-1} which has at most a pole at oc.

Proof. First, consider the expression (B.20)of q(k). Since f(k)+ and f(k)- are
differentiable functions and do not vanish at any interior point of I, the same holds
for a(k). Moreover,

(B.21) lim a(k) (t) 1,
t-.d:1

which shows that a(k) does not vanish on I. For any continuous logarithm, log a(k) is
a continuous function on I, and we can then define the Cauchy integral

1 f log a(k) (t)
dt x e C \ I.(B.22) e(k)(x)

t-- x

Function log a(k) is differentiable on every closed segment of I which does not contain
+/-1. Consequently, the one-side limits i(k)+ (t) et (k)- (t) exist at every interior point of
I and satisfy the following relation (Sokhotskyi formulas; see Henrici [7, Thm. 14.1c]):

t(k)+ (t) ()-(t) + log a(k) (t).

Thus, function q(k)(x) given by (B.20) is a particular solution of the Privalov problem
(it is obviously analytic at x)), and every function of the form (B.19) is also a solution.

Conversely, let F(k) (x) denote any solution of the Privalov problem. Since q(k)
vanishes neither on C \ I nor at , function

(x)
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is analytic in C \ I and has at most a pole at o. Moreover, r(k)+(t) r(k)-(t)
at every interior point of I r(k) is thus analytic in C \ {+1}, which completes the
proof. D

Proposition B.2 shows that f(k) can be written in the form (B.19). From now on,
r(k) will denote the following function:

whose zeros coincide with the ones of f(k) (if they differ from +l). By studying its
behaviour in the vicinity of the endpoints +l, as well as at o, we prove below that
r(k) actually is a rational function.

We first have to precise the definition of log a(k) which was so far defined up to a
multiple of 2it. From (B.21), we can choose, for instance,

(B.24) lim log a(uk) (t) O,

which selects a particular branch of the logarithm. According to this choice, we have
the following result.

LEMMA B.2. When t --. +l, the limit of log a(k) (t) is given by

-2i7r ifk=O and u_Do,
(8.25) lim log a(uk) (t) 0 if k # 0 and v q[ Ok,

t-+l
+2i7r if tz E Dk.

Proof. a(k) (I) is a curve of the complex plane which is continuous, closed (from
(B.21)), and does not pass through 0. We thus have to determine the index of this
curve with respect to 0

:(k) 1 f dz i f_el a(k)d log (t)
2i7r () (0 x 2i7r

It may be easily verified that for a given k _> 0, :() is a continuous (in fact, analytic)
function of in every domain D. Since it is always an integer, we deduce that it is

constant in D. In order to calculate it, we study below the shape of a(k) (I) for the
particular point -l + inTr of D, where is an arbitrary small positive number.
We have, from (B. 17),

(ge(t))2 + ((tn + k)2 1/4)Tr2Re a(k) (t) + +
Im a(k) (t)

(ge(t))2 + (tn + k- 1/2)27r2’
where

1
ge (t) te- + Log

l+t

By studying the variations of this function, we see that the sign of Im a(k) (t) is given
by

t 1 t 0 + t*e -}-1

Ima(k)(t) 0 + 0 0 + 0 0
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FIc. B.3. Representation of a() (I).

where t is a real number such that x/1- e < t < 1. Therefore, the curve a()(I)
crosses successively the real axis at the four points

1 a(k)(:t:l), x[ a(k)(-t), k + 1/2 a(k) .(k) t*
k-1/2 (0) and x+ =.v (+ ).

Noticing that t*e can be chosen arbitrarily close to 1, we infer that

x :t:n+k+l/2 whene--0.
:l:n + k- 1/2

We thus deduce the shape of a(k) (I) according to k and n (see Fig. B.3), which shows
that

-1 if k=0 and uD0,
Z(k)= 0 if k0 and uC_Dk,

+1 if u E Dk.

Consequently, the variation of the argument of a(k) (t) when t moves along I is -2r
in the first case, 0 in the second one, and +2r in the last one. The statement of the
lemma follows.

PROPOSITION B.3. Function r(k) given by (B.23) is a rational function which has
a pole of order 1 at o and a removable singularity at -1. At point +1, the singularity
is a pole of order 1 if Dk, and is removable if D \ Dk.

Proof. Using the same techniques as the ones described by Henrici [7, 14.7 and

14.8], we deduce from (B.24) and (B.25) that r(k) (x) O(1) in the vicinity of x -1,
and

O((x-1)-1 ifeOk,r(k) (x) O(1) if n \ nk,

in the vicinity of x +1. Moreover, at oc, the singularities of f(k) and r(k) are the
same (i.e., a pole of order 1, from (B.18)), since q(uk) is analytic. Consequently, r(uk)
has at most a pole at +1 and cx), and is analytic elsewhere: it is thus a rational
function.

B.4. Explicit form of the solutions. The Laurent series of r(k) in the vicinity
of oc can be constructed explicitly. From (B.22), we have

--1 f log a(u
1 tx- "v,P

p=O
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where

(B.26) re(k) 1 I a(k)., tV log (t) dt, p>0.

Consequently,

(k)l 1 rm(k) ()1exp(-e(k)(x)) 1 A- Lm,0j x- + ,1 + 1/2,,o,0 j- + O(-a).

Using the Laurent series (B.18) of f(k)(x) at x, we deduce

(B.27) ()) (x) . + Z()) + ;()).-. + o(.-).

where

(B.28)

(B.29)

On the other hand, Proposition B.3 shows that r(k) (x) has the form ax + b /
c(x- 1) -1, where c 0 if u D \ D. Comparing the Laurent series of this function
with (B.27), we deduce that a u, b (k), and c ,(k). The roots of rk), which

coincide with the ones of j,(k) if they differ from 4-1, are thus given by

if uD.

In the particular case k 0, it may be easily seen that -(o) 1, which shows that"v0

(o) u. Consequently, if u D \ Do, we have x() -1 which is not acceptable, and
if Do, the two roots x()+ are opposite to each other (see the symmetry properties
in B.2)" they differ from +1 since 1 is a pole of v() when Do.

Finally, according to the change of variable (B.14) and property (B.11), we have
the following.

PROPOSITION B.4. The roots of the dispersion equation (B.1) are distributed as

follows:
(i) if u e On for n # O, no root in the strip ]-r/2, r/2[ x iR, one root z(k)

in each strip ](k- 1/2)r, (k + 1/2)r[ x iR for k n, and two roots z(n)+ in the strip
1(- 1/2), ( + )[ ,

(ii) if u e Do, two opposite roots z()+ in the strip]-’/2, r/2[ x iR given by
1)7r[ X iF for(B.31) with (o) , and one root z) in each stp ](k- )r, (k +

o, z) t, (B.aO).
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Remark B.1. The two roots located in the strip ](n- r + (fo 
E Dn) may coincide: more precisely, there exists one (and only one) value of E Dn

such that x(n)+ x(n)- is a double root of the dispersion equation. Indeed, we
know from Lemma B.1 that there is one possible double root , of (B.1) in each strip
](n- 1/2)r, (n+ 1/2)r[ ill this root corresponds to the exceptional point f()
sin2 , E. Consequently, each domain Dn contains one (and only one) point of E.

Consider finally the case C. By virtue of the definition (B.12) of the curves
C,, this means that there exists n _> 0 and t ]0, 1[ such that

1[1 l+t ( )](B.32) u= LOgl_t+ir n+

Moreover,

(B.33) ,t -Nut r n + - Log 1---t

is a simple root of the dispersion equation (B.1). In fact, by Remark B.1, all the
roots of (B.1) are simple in this case. Proposition B.1 thus shows that there exists
a vicinity of in which these roots are analytic. Consequently, their expressions are
obtained by going to the limit ( -- n Cn) in (B.30) and (B.31). For some of them,

#(n+l)- f(n)+a singular integral appears. Indeed, if E C functions f(n)+ and
vanish on I at point -t, where, t is the parameter which corresponds p in (B.32). On

e(k)+ (respectively, f(k)-) does not vanish on I if k n (respectively,the other hand, a
k n / 1). We finally deduce from Proposition B.4 the following:

(i) if passes from Do to D1 across Co, the only root of (B.1) located in the
strip ]0, r/2[ iI crosses the line Re /2 at point 0,, given in (B.33)

(iN) if, passes from On to Dn+l (n > 0) across Cn, one of the two roots of (B.1)
located in the strip ](n- 1/2), (n + 1/2)r[ iR crosses the line Re (n + 1/2)
at point cn,t given in (B.33).

B.5. Further properties of the roots. We consider in this last paragraph the
roots (m), m _> 0, of the dispersion equation defined in Lemma 3.1 for real positive
: (0) is imaginary with negative imaginary part and (m), for m _> 1, are real,
positive and arranged according to increasing values. The results of B.4 together
with Proposition B.1 show that each (m) extends to an analytic function of in any
simply connected domain of C \ E. We state below some properties of these roots.

PROPOSITION B.5. If Im > 0, the roots (m) of the dispersion equation (B.1)
are such that

(B.34) Re(m) >0 and Im(m) <0 Vm>_0.

If Im < 0, we have

(B.35) Reck() < 0 and Im (0) < 0,
Re (m) > 0 and Im (m) > 0 Vm>O.

Proof. First, notice that if lies in a simply connected domain of C \ E which
does not cross the real axis, then the signs of Re (m) and Im (m) (for a given m _> 0)
are constant. This follows from the fact that a root of (B.1) may be located on the
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real or imaginary axes only if is real (since - tan ). In order to find these
signs, we simply have to study
yields

sin2(m) + 2(m)"

If (m) is imaginary (i.e., m 0), this quantity is imaginary too, and its imaginary
part is positive. Similarly, if (m) is real and positive, it is real and negative. (B.34)
and (B.35) follow.

PROPOSITION B.6. The asymptotic behaviour of (m) when m -- +x) is given by

(B.36) (m) mr m-l/Tr + O(m-3).

Proof. We know from Proposition B.4 that for large enough m, (m) is nothing
but the root z(m) given by (B.30). We thus have from (B.26),

(’) mr log (t) dr,

where log is here the principal branch Log of the logarithm (see (B.24) and Fig. B.3
in the case n k and k 0). Recall that a(") (t) reads

t + ir(m + 1/2) + 1/2 Log
t + ir(m 1/2) + 1/2 Log Y7

For every t E 1, +1[, this quantity expands as follows:

(1 1( 1-:))a(m) (t) l + m-i + m-2
i-- ut + Log

l + +O(m-3)"

Consequently,

(1( l-t))Log a(") (t) m- m-2 ut + Log
1 + t + O(m-3)"

This expansion is valid uniformly with respect to t in every closed segment [a, b] C
1, +1[: we can thus integrate it over I. Noticing that

l-t) dt=O’Log
1 + t

the expansion (B.36) of (m) follows. [:]

We end this section by a remark about the role of the exceptional points of E. We
show in Fig. B.5 the path followed by each root (m) when describes the closed curve
around the "first" exceptional point represented in Fig. B.4 (the dots in Fig. B.5 are
the possible double roots of the dispersion equation, i.e., the solutions of (B.3)). More
generally, it may be easily seen that when describes a closed path around the nth
exceptional point, every root returns to its initial value, except (0) and (n) which
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FIG. B.4. Closed path for u around an exceptional point.

FIG. B.5. Corresponding path of each (m).

undergo a permutation. This illustrates the fact that the points of E are branch points
of order 1.
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GLOBAL EXISTENCE AND BLOW-UP PROBLEMS
FOR QUASILINEAR PARABOLIC EQUATIONS WITH
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Abstract. This paper deals with the solutions of nonlinear parabolic equations ut V(a(u)Vu)

with nonlinear boundary conditions i)u/On b(u) on 0fx (0, T), where a(u) and b(u) are positive and

nondecreasing C functions for u > 0. It is shown that if f+oo ds/b(s) < +oo or f+oo ds/b(s) -boo

and f+oo ds/(a(s)b(s)b’(s) + a(s)b(s) + a’(s)b2(s)) < +oo, then the solution blows up in finite time,

and the solution exists globally if f+oo ds/b(s) +oo and f+oo ds/(a(s)b(s)b’(s)+ a(s)b(s)+
’()b()) +o.
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1. Introduction. The global existence or blow-up problems for parabolic equa-
tions are studied by many authors. Papers [1] and [2] studied the following equations:

ut=Au, xEf, t>0,

(1) 0u =b(u), x e Of, t > O,

u(, 0) 0() > 0, e ,
where n is the outer normal vector.

In [1] Levine and Payne proved that, for the special case b(u) lull+h(u), e > O,
h(u) is increasing, problem (1) has no global solution. Later, Walter dealt with the
generalized nonlinear boundary conditions and he obtained that if b(u) and
are continuous, positive, and increasing, then f+ ds/b(s)b’(s) < +cx implies that
the solution of (1) blows up in finite time; f+oo ds/b(s)b’(s) +c implies that the
solution of (1) is bounded on [0, T] for any T < +x.

Recently, [3] considered the similar problem from another point of view, i.e., the
nonlinear diffusion term.

v((u)W), x e a, t > 0,

(2) Ou
0-=1’ x0, t>0,

(, 0) 0() > 0, e n.

Let a(u) and a’(u) be continuous and positive; there exists M > 0 such that
lim=_+osupa’(u)/a(u) <_ M. The author in [3] proved that if f+oo ds/a(s) < +cx,
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1993.
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then the solution of (2) blows up in finite time; if f+o ds/a(s) +cx, then the
solution of (2) is bounded on f x [0, T] for any T < /o.

Because lim__++oosupa’(u)/a(u) <_ M, it is obvious that the convergence of

f+oo ds/a(s) is equivalent to that of f+oo ds/(a(s) + a’(s)).
In this paper, we combine the two nonlinear cases by considering the following

nonlinear parabolic equations with nonlinear boundary conditions:

u v(a(u)W), z e n, t > 0,

(3) 0u b(u), x E OD, t > O,On

(z, o) o(z) > o, z e .
Our approach depends heavily upon the upper and lower solution method which was
first introduced by Walter in [2] to deal with nonlinear boundary problems. We obtain
similar results of (1) and (2) and can deduce the results of (1) and (2) as our special
cases.

2. Main results and an example. Throughout this section we suppose that
C ]1N i8 a smooth bounded domain, and the initial data uo(x) is a positive C

function. Moreover, we assume the following:
(n) a(s) and b(s) are positive and nondecreasing C functions for s > 0.
Under the above assumptions, it is well known that (3) has a unique local solution

u(x, t) and it is positive on 12 x [0, Tmax).
Before giving our main results, we first state a comparison theorem, which is a

special case in [4, Thm. 31.IV].
PROPOSITION (comparison principle). Let u, v be two positive smooth functions

satisfying - v(a()w) <- v(()w), xef, t e [0,T],

Ou
b(u) <

OV
_b(v), x e Of, t e [O,T]On -n

(x, O) < v(x, 0), x e .
Then u(x, t) <_ v(x, t) for all x e f, t e (0, T).

We state our main theorems and compare them with the previous results.
THEOREM 1. Let (H) hold. If f+oo ds/b(s) < /o, then the solution u(x, t) of (3)

blows up in finite time.
THEOREM 2. Let (H) hold, a(s) + a(s)b’(s) + a’(s)b(s) be nondecreasing, and

f+o ds/b(s)
(i) If f+o ds/(b(s)(a(s) + a(s)b’(s) + a’(s)b(s))) < +cx, then the solution u(x, t)

of (3) blows up in finite time.

(ii) If f+o ds/(b(s)(a(s)+a(s)b’(s)+a’(s)b(s)))= +oc, then the solution u(x,t)
of (3) exists globally.

From Theorems 1 and 2, we see easily that if a’(s) and b’(s) are nondecreasing,
then a(s)+ a(s)b’(s)+ a’(s)b(s) is nondecreasing. Hence the solution u(x,t) of (3)
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exists globally if and only if f+oo ds/b(s) +(x) and f+oo ds/(b(s)(a(s) + a(s)b’(s) +

COROLLARY 1. Let b(s) 1 and a(s),a’(s) be continuous, positive, and nonde-
creasing. Then if f+oo ds/(a(s) + a’(s)) < +oo, the solution of (3) blows up in finite
time; if f+oo ds/(a(s) + a’(s)) +oc, the solution of (3) exists globally.

This is the case of [3].
COROLLARY 2. Let a(s)= 1, b(s) and b’(s) be continuous, positive, and nonde-

creasing. Then, f+oo ds/b(s)b’(s) < +oo implies that the solution of (3) blows up in

finite time; f+oo ds/b(s)b’(s) +oo implies that the solution of (3) exists globally.
This is the case of [2].
Example. Let a(u) up, b(u) uq,p, q >_ O. If q > 1, the solution of (3) blows

up in finite time. If q _< 1, then p + q > 1 implies that the solution of (3) blows up in
finite time; p + q 1 implies that the solution of (3) exists globally; p + q < 1 implies
q < 1; by a similar method to the proof of (ii) of Theorem 2, it can be proved that
the solution of (3) exists globally.

3. Proofs of the main results. Now we are in the position to prove the results
of 2. In this section we denote d as the diameter of the bounded domain t c RN.
Our steps are just the same as those of [2] and [3]. The basic idea is to construct a
lower solution u(x, t) or an upper solution fi(x, t) of (3).

Proof of Theorem 1. By the comparison principle, it is easy to prove that the
solution u(x, t) of (3) satisfies u(x, t) _> e0 minfi uo(x) > 0. We first assume that
there exists a constant co > 0 such that b’(u) >_ co for u _> e0/4. Let (s) be the
solution of the following ordinary differential equation

(4)
’(s) b((s)), s > O,

(0) 0 1/4 0.
Then ’(s) b’((s))’(s). Since b(s) is continuous and f+o ds/b(s) < +oc, it

is easy to deduce that (s) exists locally and blows up in finite time. Because b(u) > 0
for u > 0, we find that there exists a unique s > 0 such that

(sl) e0/2.
Now we construct a lower solution u(x, t) of (3) as follows.

u(x,t) (et + c(h*(x) + A)),

Then

Since

h*(x) Xl 2t- -- XN,e Na((0))coc,
c=min 2Nd+l’

A--Nd+I.

Ou

’(s)
Oh* Oh* i

b(u)-bZn <

IVh*l N and Ah* 0,



1518 MINGXIN WANG AND YONGHUI WU

direct computations show that

V(a(u)Vu) ca((s))"(s)lVh*l2 + ca’((s))’2(s)lVh*l2

> ca((s))"(s)lVh*l2

ca((s))b’((s))’(s)N.

Because (s) is increasing, we know that u (et + Cl(h*(x)+ A)) > (0) 1/4co,
u(x,O) (cl(h*(x) + A)) <_ (c1(2Nd + 1)) _< (sl) 1/2co. And hence

so that

’(_) b’(()) > 0,

V(a(u)Vu_) > ccoNa((O))’(s).

_, < v(a(u)Vu), , t > 0,

Therefore, we have that

On < b(u)’ x E Off, t > O,

_(x, 0) < u0(), e n.
This shows that u(x, t) is a lower solution of (3); therefore, u(x, t) >_ u(x, t). Since
u(x, t) _> (et), (et) blows up in finite time. So does u(x, t).

If b(u) has no positive lower bound for u _> co/4, we can construct a new function
bl(u) having this property and satisfying the same conditions of b(u) and bl (u) <_ b(u).

In fact, let el e0. Since b’(u) >_ O, b(u) > 0 and f+o ds/b(s) _< c < +cx, we
know that

1 (u-el)<u ds

Hence b(u) >_ (1/c)(u- ) >_ 12 o u > 2 1/4o. Let

then

1Lu ( 1 )(,)
-.

(.)+ . d.,

1i
b(u) + (2elu

< ()+ < (u) fo > o/,

(le > ( 1)b(u) -x

1 1>1bi( (b() b( ,)) + 4 4"
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These facts show that bl(u) and b(u) are continuous, positive on [e0/4, +cx)) and

f+ ds/bl(S) < +oc.
By the above proof, we know that the solution Ul (x, t) of (3), corresponding to

bl(u), blows up in finite time. Since Ul(X,t) and u(x, t) are both greater than or
equal to co(- 8el), we infer that u(x,t) >_ Ul(X,t) from the comparison principle.
And hence u(x, t) blows up in finite time, which completes our proof.

Proof of Theorem 2. Let h(x) be the solution of the following problem:

Ah(x)=k= [tl
xet,

Oh
(0-- 1, x E Ot.

If h(x) e C2 (t) is a solution of (5), it is easy to see that h(x) + c is also a solution of
(5) for any constant c ) 0. Hence we assume that h(x) 0 on , and there exists a
constant L > 0 such that

m_ax(h(x) + IVh(x)l _< L.

(i) If f+ ds/(b(s)(a(s) + a(s)b’(s) + a’(s)b(s))) < +oc. Let (s) be the solution
of (4). At this time (s) exists for all s since f+ ds/b(s) +oc. It follows from
b(u) > 0 and b’(u) >_ 0 that lims__.+

Let g(t) be the solution of the ordinary differential equation

g’(t) c3[a((g)) + a((g))b’((g)) + a’((g))b((g))],

g(O) go -81,

t>0,

where

81 1 }c2=min 3(2Nd+l)’4Nd

{c2 1 81} { (_))=min
2L’2’3L ca=min k), 2},

81>0 such that )(81) 1/20.

Since f+ ds/(b(s)(a(s) + a(s)b’(s) + a’(s)b(s))) < +oc, we have that g(t) exists
locally and blows up in finite time.

Let

u(x,t) (g(t) + Ah(x) + c2(h*(x) + A)),

where h*(x) Xl +... + xN, A Nd + 1. Denote

s g(t) + h(x) + c2(h* (x) + A).

Then we have that
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V(a(u)Vu) a(u)[A’(s)Ah / "(s)[AVh + c2Vh* 2]

+a’(u)’2(s)[AVh + c2Vh* 2

kAa(u)’(s) + (a(u)b’(u)’(s) + a’(u)’2(s))[AVh + c2Vh*[2

(a(u)bt(u) + a’(u)b(u_U_))]
> c3[a((g)) A- a((g))b’((g)) A- a’((g))b((g))]’(s)

since (s) > (g) and a(s) + a(s)b’(s) + a’(s)b(s) is nondecreasing.
Because ’(s) b((s)) > 0, it follows from (6) that

u < V(a(_)vu).

Moreover,

o_
,() (o o*) ,

0 \ nn + c2-n -< (s)(A + c2Nd) < b(u),

u(x, 0) (go + Ah(x) + c2(h*(x) + A))

< (sl+AL+c2(2Nd/l))
1

< ()= 0 < 0().

Therefore, by the comparison principle we obtain that

(, t) _> _(, t).

Since g(t) blows up in finite time and limB--.+o (s) +x3, we get that u(x, t) blows
up in finite time. So does u(x, t).

(ii) If f+ ds/(b(s)(a(s)+a(s)b’(s)+a’(s)b(s))) +cx3. Let (s) be the solution
of the following ordinary differential equation:

’() (()), > 0,

(0) 0 max uo(x).

Then (s) is global solution of (7) because of f+ ds/b(s)
Let g(t) be the solution of the following problem:

g’(t) (k + L2)(a((g + L)) + a((g + L))b’((g + L))

+ a’((g + L))b((g + L))), t>0,

g(O) 1.
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f+ ds/(b(s)(a(s) + a(s)b’(s) + a’(s)b(s))) +cx) implies that g(t) exists globally.
We construct fi(x, t) as follows:

(x, t) (g(t)+ h(x)).

Through direct computations, it is easy to see that

t _> V(a()V), x f, t > O,

x E 0fl, t > 0,

o) > e

This shows that fi(x, t) is an upper solution of (3). Since and g exist globally, we
know that (x, t) exists for all t > 0. So does u(x, t). This concludes the proof of
Theorem 2.
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Abstract. Local C/, and W2+," (k _> 1,/ > 0, and v >_ 1) regularity is established for the

solutions of a class of degenerate quasilinear elliptic equations, which include the p-Laplacian. Unlike
the known local regularity results for such equations, k is larger than 2 in many notable cases. These
results generalize those in [13], which were established only for the p-Laplacian. Furthermore, local
results are extended to obtain a global regularity result in some cases. Global results of this type are
essential in proving optimal error bounds for the finite element approximation of such equations.
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1. Introduction. Let be a bounded open set in R2 with a Lipschitz boundary
0. Let o be a positive continuous function on (0, x). Many mathematical models
from physical processes have the following form: given p, find u such that

(1.1) v. p in

plus some boundary conditions. Such models arise in fluid mechanics (see [4] and [5]),
nonlinear diffusion (see [24]), and nonlinear elasticity (see [3]). An example of the
latter is the mode III problem, longitudinal shear, for a power law material (see [3]).
This leads to (1.1) with o(t) tp-2 (1 < p _< 2), which is usually referred to as the
p-Laplacian.

There is much work on the regularity of the solutions of (1.1) if o > 0 is smooth on

[0, c) and satisfies certain coercivity and growth conditions. In this case the solutions
of (1.1) will generally be smooth in any open set G cc . As key references, one
can refer to [11], [12], [15], and [23]. These results are generally true for (1.1) when
cRn.

However, as seen above, in some physically relevant models o may not be smooth
on [0, c) or may not satisfy the coercivity and growth conditions. Equations of this
type are usually referred to as degenerate. A typical example is the p-Laplacian
with p 2. The well established regularity results for nondegenerate equations are
generally not applicable to such cases (see [29] for some counterexamples). The regu-
larity theory for these degenerate equations is much more complicated and until quite
recently very little was known (see [31]).

Since the publication of [30], extensive work has been done on the regularity of
the solutions of (1.1) and more general degenerate quasilinear equations and systems.
One can find such work, for example, in [1], [2], [9], [10], [13], [17]-[19], [20]-[22], and
[26]-[29]. Generally speaking, local and global C1, regularity has been established
for the solutions of (1.1) and more general systems (for example, see [9], [18], [19],
and [29]). In addition, some local H2 regularity results have been established; for
example, see [26] and [29]. These results remain true for (1.1) when Ft C Rn. It
should be noted that it is usually quite difficult to extend a local regularity result to a

Received by the editors May 18, 1992; accepted for publication (in revised form) March 1, 1993.
Department of Mathematics, Imperial College, London ST7 2BZ, United Kingdom. The work of

the first author was supported by Science and Engineering Research Council of the United Kingdom
grant GR/F81225.

1522



DEGENERATE QUASILINEAR ELLIPTIC EQUATIONS 1523

global one due to the degenerate nonlinearity. In the plane there exist more powerful
methods to study (1.1); for example, complex function theory. In the case (t) tp-2

and p 0 a local W2,2+"(D) regularity result, where (p) > 0 has been proved, using
the theory of quasi-regular mappings, firstly for p _> 2 in [7] and then for p > 1 in [22].
In [20] global H2 regularity results have been established for (1.1), for p e Lr(D),
r > 2, when p E (1, 2] and for p 0 when p > 2, by using an a priori estimate for the
solutions of a linear elliptic equation in the plane with only L(D) coefficients.

These global H2 regularity results have been used in the error analysis of the
finite element approximation of (1.1) in [6], [20], and [21]. From this work it is
seen that the regularity of the solutions has a considerable influence on the order of
convergence that can be proved for their finite element approximation. Taking the
p-Laplacian (1 < p < 2) as an example, if u E W2,p(D) one can prove that the error
for the continuous piecewise linear finite element approximation converges at the rate
hp/2 in WI,P(D), whereas one can prove that it converges at the optimal rate h if
U e C2’2/p-1() N W3’1(’), see [6], or u e W3’p(-). With some restrictions on p
and the boundary data, the global regularity u WI+2/p,P(D) is shown in [21] to
be sufficient to ensure the optimal convergence rate h. Thus one can see that it is
important to establish some global higher-order regularity results in order to obtain
optimal error bounds in W,P(D) for the continuous piecewise linear finite element
approximation of (1.1).

A first step in this direction was taken in [13], where Ck, and W2-Fk’q regularity
has been established, using the theory of quasi-regular mappings for the solutions
of the p-Laplacian in the plane with p 0, although the results are only local.
Unlike most known results, k is larger than 2 in many interesting cases; for example,
the p-Laplacian with 1 < p _< 2. From this result it was pointed out in [21] that
global W3’P(), C2’2/p-1(=), and WI-f-2/P,P(’) regularity can indeed be achieved for
solutions of the p-Laplacian in some physically relevant cases, though this result is
only applicable to a limited class of boundary data. It should be noted that the results
in [13] are sharp and such high-order regularity (local or global) is not generally true
for the case p 5 0; see, for example, [17].

The purpose of this paper is to generalize the results in [13] to a class of degenerate
quasilinear elliptic equations, which includes the p-Laplacian. Furthermore, we show
that this local result can be extended to a global one in some cases.

Throughout this paper, we adopt the standard notation WS’V(2)(s >_ O, v
[1, cx]) for Sobolev spaces on D with norm I]’llws,-(); see [14], for example. We denote

TTTS vwm’2(D) by Hm(D) for nonnegative integers m and the spaces loc (D) consist of
all functions which are in Ws,V(D) for all open sets D cc D (that is, D c D). For
the definitions of the spaces Ck,(D) (k a nonnegative integer and 0 _< _< 1) and
domains with Ck, boundaries; see [12], for example.

2. Preliminaries. Let D be a bounded open set in R2 with a Lipschitz boundary
0D. Let satisfy the following conditions:

(A1) The function t (t)t belongs to C[0,) F C(0, x).
(A2) There exist constants q > 1, q 2, and C, > 0 such that for all t _> 0

CI min{ta-2, (1 + t)a-2} _< (t)t <_ C2t max{ta-2, (1 + t)a-2},

and r(t) ’(t)t/(t) is such that for all t _> O,

(2.1b) <_ r(t)/(q- 2) <_ 1.
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(A3) The function F(t) is analytic at t 0; that is, in an interval about t 0,

(2.2a) r(t) 7t.
i--0

In addition we assume that there is a /> 0 such that

(2.2b) I’il-< I’01/i for all i _> 1,

where we note from (2.1a) that F(0) 7o 0.
We note that the regularity requirement C(0, cx) in (A1) can be appropriately

relaxed and the results in this paper remain valid.
In this paper we will study the local and global regularity of the weak solutions
T,,T,r 1,qu E loc (f)(q > 1) of the following equation:

(2.3) V. (qo(IVul)Vu) 0 in f.

Example 2.1. For example, it is easy to see that (t) _-- tq-2 or (t) [t(1 /
t)] (q-2)/2 or (t) [t(1 + t2)](q-2)/3(q > 1) satisfies the conditions (A1)-(A3). It is
also easy to show that if satisfies the conditions (A1) and (A2), then it satisfies the
structural conditions (1.2)-(1.5)in [27] and (1.3)-(1.5)in [29].

Remark 2.1. We note that if (t) satisfies the conditions (A1)-(A3) and u satisfies
(2.3), then for any constant A > 0, _= ,-lu is such that V. (3([Vfil)Vfi) 0 in f with

(t) qo(At). Therefore qh(t) satisfies (A1)-(A3) with (t) _= ’(t)t/(t) =_ F(At),
F(t) =_ -ioo--o $iti, and I’il -< I’01(A?) for all >_ 1. Therefore without loss of generality
we can assume that /> 0 in (2.2b) is as small as we please throughout this paper.

T/I?"l’qIn [8] [19] [27], and [29] the existence of solutions, u e loc (Ft), to the weak
formulation of (2.3) is established. It follows from [9] and [29] that u e Cl’a(gt) for
an a > 0. Furthermore, if some suitable boundary conditions are imposed, the weak
solution u Wl’a(f) is unique.

Let u be a weak solution of (2.3), and let f =_ ux -iuy be the complex gradient
of u. It turns out that regularity of f, and hence u, can be more easily examined
if we view it as a function of a complex variable. To this end we first express (2.3)
in the form of a complex equation. Let us recall for z =_ x + iy, (x, y) R2 that
O/Oz =_ (O/Ox iO/Oy)/2 and 0/02 =_ (O/Ox + iO/Oy)/2.

LEMMA 2.1. The mapping f =_ ux -iuy is K-quasi-regular with K max{q-
1, 1/(q- 1)}. Hence f e [Wlo’c2+()]2 for a 7 > 0 and f-(0) {z e t" Vu(z) 0}
is discrete provided that u is not identically constant.

Let p 2 + F(0); then

(2.4) pC[q, 2) ifqe(1,2) and pe(2, q] if q>2.

On setting G(t) =_ r(t)/r(o) and F(t) =_ pG(t)/(2 + (p- 2)G(t)), it follows that f
satisfies for almost every z ,

alia2 (lip- 1/2)[(]/:)(af/az) + (f/f)(Of/Oz)]F(Ifl).

Proof. We will show that f is a quasi-regular mapping by generalizing the ap-
proach given in [22] for the p-Laplacian. Firstly we prove that u E H12oc().
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Let (t) ((t2 + e)1/2) and u be the unique solution of the following problem:

(2.6) V.((IVuI)Vu)-0 inB and u-u on0B,

where S is an open ball in ft. As u e C1(/), it follows from [12] and [15] that u e
Hoc(B C(B) (actually u e C2’(B) for a Z > 0). Noting that our Assumptions
(A1) and (A2) are equivalent to (1.2)-(1.5) in [27], it follows that u -- u in W,q(B)
as --. 0. On the other hand, (2.6) can be restated as

(2.7) aeO2Ue/OX2 + 2bO2ue/OxOy + ceO2ue/Oy2 0 in B and u u on OB,

where v (e + IVuel2)/2, Vl -= Oue/Ox, v2 =- Oue/Oy, a =- [1 + [’(v)v/T(v)](Vl/V)2],
b =_ [’(v)v/(v)](vv2/v2), and c [1 + [’(v)v/(v)](v2/v)2]. Setting d =_ aece-
(be)2 _= 1 + [’(v)v/(v)][{(vl)2 + (v2)2}/v2], we have from (2.1b) that

min{1, q-1}_<ae,c,de_<max{1,q-1} and [b[_<[q-2[;

that is, the equation is uniformly (with respect to e) elliptic with bounded coefficients.
We now apply the inequality (17.20) in [15, p. 228]. For any B" cc B’ cc B

this yields that [U[H2(B,,) <_ C[lU][HI(B,), where C is independent of e. In [27] it has
been shown that [ue[ + [Vuel is bounded on B’ as e --. 0 since u e C(/). This implies
that I[uel[H2(S,,) is uniformly bounded. Hence u e H2(B’’) so that u e H}oc(), since
u will converge to u weakly in H2(B’’) as e --. 0. Since the proof of the uniform
boundedness of [u[ / [Vue[ n [27] is quite complicated, we now give a simpler proof.
Let u0 minxeos u(x) and u maxxeOB u(x). Note that u0 and Ul are constants
so that one can apply Lemma 3 in [27] to (2.6). This shows that u0 _< u <_ Ul for
any e > 0. Then by applying Theorem 12.4 in [12] with f 0 and the interpolation
inequality (12.23)[(6.82)] in [12] one can see that lue[ + IVu[ is bounded on B’ as
e -- 0. Of course for q > 2, Ilue[IH(S) is uniformly bounded since I[ue[[WI,q(B) is.
Therefore, we have that u e Hoc(), which implies that f e [Hloc(t)]2.

Let ff (v,-v2). Adopting the same notation as in Theorem 1 in [22] we have
from (2.8) that for all z E B,

[(OVl /(X)2 -- (OVl /(y)2 + 2((Vl /y)2] (Z)/[((Vl /Oy)2 --(OVl/CX)(CV2/Oy)](Z

< + +

[1 + (de)2](z)/d(z) <_ 2K,

where K max{q- 1, 1/(q- 1)}. Hence ff is a K-quasi-regular mapping; see [13]
and [22]. As lu[ + IVue[ is bounded on B’ as e --, 0, we can apply the argument in
Theorem 1 in [22] and let e 0 in the above to yield that f is K-quasi-regular with
K max{q- 1, 1/(q- 1)}.

It follows immediately from the theory of quasi-regular maps, see [15], that f E

loc for a y > 0 and f-(0) {z e " Vu(z) 0} is discrete, provided that
u is not identically constant.

The result (2.4) follows immediately from Assumption (A2), which in turn implies
that G and F are well defined. Finally we note that if ]Vu(z) > 0, then (2.3) yields
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that

(2.10)
eOI()/O =- au() -r(IVu(z)l)[(u)u + + ()](z)/IW(z)l

(-)(IW(z)l)[() + + ()](z)/IW(z)l.
In addition, if IVu(z)l > 0, then 20f/Oz =_ uxx uyy 2iuxy, and so

(2.11)
[(f-/f)(Of/Oz) -Au(z)/ 2[(u)Uu / 2uuuu / (uu)Uuuu](z)/lVu(z)l

Combining (2.10), (2.11), and noting that {z e f" Vu(z) 0) is discrete yields the
desired result (2.5). D

We note that in the case (t) tq-2, q e (1, oc), it was first proved in [7] for
q > 2 and then in [22] for q > 1 that the corresponding map f was quasi regular.

It follows from classical regularity theory that the solution u of (2.3), and the
corresponding f, is C outside the set {z e " Vu(z) 0} (see, for example, [12]).
Therefore it is sufficiently general to examine the regularity of u (or f) near one of the
zero points of f, which one may assume is the origin. From now on, we will assume
that 0 E and f(0) 0.

We now consider the regularity of local solutions of (2.5). We generalize the
approach for the p-Laplacian given in [13]. From the theory of quasi-regular mappings,
see [16], and as f(0) 0 with 0 e is an isolated zero of f, there exists a quasi-
conformal homeomorphism X defined in a neighborhood of z 0 and a positive integer
n such that X(0) 0 and

(2.12) f(z) =_ [X(z)]n.

From (2.5) and (2.12) we have that

OX/02 (lip- 5)[(n/xn)(oX/Oz) -Let H({) be the inverse of X(z) in a neighborhood of z 0. It follows that H is
quasi-conformal in a neighborhood B of { 0, and hence H C(B) f Hi(B) and
H e C(B- {0}). Then we have that

(2.13) OHIO,- (1/2 1/p)[(n/n)(oU/O) + (/)(OU/O)]F([[n).
Let rei and U(r, O) =_ S(rei). Proceeding as in [13] one obtains that

(2.14) 2rH -i(2 + (p- 2)G(r))Ho + i(p- 2)G(r)e-OHo.
Expanding H(r, O) into Fourier series with respect to 0, 0

_
0 < 2r,

(2.15) U(r,O) =_ hk(r)ei(k-)e,

where hk e C[0,5] f C(0,5] for 5 > 0. It follows from (2.14) and (2.15) that for all
integers k,

(2.16a) 2rhk(r) --(n- k)(2 q-(p- 2)G(rn))hk(r) (n + k)(p- 2)G(r)h_k(r)
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and

(2.16b) 2rh_k(r) --(n 4- k)(2 4- (p- 2)G(rn))h_k(r) (n- k)(p- 2)G(rn)hk(r).

Setting Xk(r) =-- (hk(r), h_k(r))T, this system of equations can be restated as follows:
Let n be a positive integer and p E (1, 2) U (2, c). Then for any integer k find Xk(r)
such that

(2.17a) 2rX(r) -[A(k) 4- [l(r)S(k)]Xk(r),
where
(2.17b)

+ k) (n + k)
and

(2.17c) t(r) =- (p- 2)(G(r) 1).
The advantage of this reformulation is that the structure of the general solutions
for the system 2tWO(r) -A(k)Wk(r) is easily established when k -n and the
function [l(r)B(k)/r is regular.

Therefore, to study the regularity of local solutions of (2.5) we need to study the
structure of the general solutions about r 0 to the system (2.17). This we do in the
next section.

3. Series expansion for H(). We will analyze the system (2.17) by developing
a series solution about r 0. In fact, we analyze a more general system: (2.17a, b)
with O(r) being any real analytical function at r 0 satisfying (0) 0, instead of
the specific choice (2.17c). First, we need a lemma.

LEMMA 3.1. Let m be a positive integer and let M R be such that M >_ 1 4- 2m.
Then for any integer k [0, m] and any integer >_ 1,

i--1

(3.1) E(i j)kMJ <_ Mi.
j=o

Proof. Simple calculations yield that (3.1) is true for (i) k 0 for any integer
i _> 1, and (ii) i 1 for any integer k e [0, m]. Now assume (3.1) holds for all
k [0, rh] and any integer i _> 1 with 0 _< < m. Suppose that for k 4- 1 it is
also true for any integer i [1, ] with _> 1. Then we have that

+ /E( + 1 j)+IMJ (rh + 1)! MJ E ( j)k
=o =o k=o / [k!( + 1 k)!]

Mi + E {(rh + 1)!/[k!( + 1 k)!]} E( j)kMd
k=0 j=0

[ ]_< 1 + E {(rh + 1)!/[k!(rh + 1 k)!]} M
k=O

_< (1 4- 2’h+l)M _< (1 4- 2m)M <_ M+1.
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Therefore, (3.1) also holds for k + 1 and + 1. Hence by induction (3.1)
holds for any integer k E [0, m] and any integer i _> 1. [3

THEOREM 3.1. Let p (1, 2) U (2, oc) and n be a positive integer. Suppose that
(X)(r) =_ Y=I gr near r 0 and that there exist R+ and a positive integer m

such that Igl <- im .for all >_ 1. Then for any integer k, except k -n, the general
solution Xk(r) of (2.17 a, b) near r 0 is of the form

(3.2a) x(,-) ... (,-) + c;,-; [x-(,) +, n(,-)X+(,-)],

where Ck are general constants,

(3.2b)

(3.2c) Pk =-- (A+k -) =- [4k2(p- 1) + n2(p- 2)211/2,

(3.2d) +/- +/- )(2 v)]ek =_ [(n- k)p + 2k ]/[(n +

The constant c is zero if Pk is not an integer, but possibly nonzero otherwise,

(3.2e)
^+/- ^+/-()ak (r) + bk

=_

() + ()

where + +ak (0) + bk (0) 1 and

(3.20 ^+

i=o i=o

In addition there exist constants C(k) and M _> 1 + 2m, dependent on p and n
tat I()1, I()1 < C()M o a > O.

Proof. Let X(r) be a fundamental solution to the system 2rW(r) -A(k)Wk(r)
when k n; that is,

x()
+ +% r k ek r-

where are the eigenvalues of -A(k)/2 and (1, e)T the corresponding eigenvectors;
see (3.2b, d). We now seek two linearly independent solutions of (2.17a, b) of the form
Xk(r)Yk(r). Inserting Xk(r)Yk(r)into (2.17a)one obtains

2rY/ (r) -O(r),[ (r)B k)ik (r)Yk (r)

and hence

(3.3) Y(r) [[(r)/rlDk (r)Yk (r),
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where

Dk(r) =- I dl(k) d2(k)r-p, Id3(k)r d4(k)

+)- / (e- 1)Tk+
(

(1 ,.+.+.p

(e- 1)T[r--P+ I(1 e )T-

with

+/-(+k).T (n k) + e/

It follows that there exists a/:) > 1, independent of p, n, and k, such that

(3.4) Idj(k)l <_ T)(Ik + n), j 1 --, 4.

From our assumptions we have that [l(r)/r =- -i=0 gi+lri We now look for two
linearly independent solutions Y to (3.3) of the form

(3.5)

Inserting (3.5) into (3.3) and equating coefficients one obtains the following linearly
independent solutions:

+Yk+ (r) by choosing ck
=_ O, +k =- Pk, a+o (k) 1, b+o (k) =_ 0 and for >_ 0,

(3.6a)
]/a+(k) =_ Egi+_j(d(k)a(k) + d2(k)b(k)) (i + 1),

j=o

b++(k) =- 9i+l-j(da(k)(k) + d4(k)b(k)) (i + 1 + pk);
j=o

if #k is not an integer:

Y-(r) by choosing ; --Pk, ; =--0, a-(k) _= 0, b-(k) 1 and for i _> 0,

(3.6b
/ai-+l(k gi+l-j(dl(k)a;(k) + d2(k)b(k)) (i + 1 Pk),

j=0

b-+l (k) 9+1- (da(k)-(k) + d(k)b- (k)) (i + 1).
j=o

Then we obtain two linearly independent solutions rX+Xk+ (r) and rX; X- (r) to (2.17a,
b), where rX(r) =_ Xk(r)Yk(r). Hence the general solution is given by (3.2a)
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with c 0 and Xk(r) defined by (3.2e) with &(0) 4- k=e (0) ------ 1. Furthermore,
if C(k) and M are such that M _> 1 + 2" and la(k)l, Ib(k)l <_ C(k)M for all
i < 2GZ)(]k + n) + Pk it follows from (3.6), (3.5), and Lemma 3.1 that
[b(k)[ <_ C(k)M for all/_< 0.

If Pk is an integer, say >_ 1, then the solution (3.6b) is no longer valid. Taking
Yk+(r) as in (3.6a) to be one solution to (3.3), a routine calculation yields that a
second solution, linearly independent to Yk+ (r), is Yk-(r) 4- c ln(r)Yk+ (r), where

1--1

j--0

gl_j(dl (k)a (k) 4- d2(k)b (k))

and Yk-(r) is given by (3.5) with a- --Pk --= --1, f- 0, a (k) 0, b (k) 1. For
i 0 l- 2, ai-+l (k) is defined by (3.6b), a-_l (k) _-- 0, for i 0 l- 1, b-+ (k) is
defined by (3.6b), and finally for i _> l,
(3.7)

ai-+l (k) --ca+i+l_l(k) 4- gi+l-j(dl (k)a2 (k) + d2(k)b (k)) i + 1 -/),
j=o

We obtain two linearly independent solutions r+X+k(r and r [X-(r)4- crp

ln(r)X+k(r)] to (2.17 a, b)with c possibly nonzero, by setting rXk(r) =-- X’k(r)Y(r).
It follows that Xk(r) are given by (3.2e) with ^+ ^+ak (0) 4- bk (0) =- 1. Similarly to the
above we can choose constants C(k) and M >_ 1 4- 2m, dependent on p and n, such
that [a(k)l [b(k)[ _< C(k)M for all/

With the help of Lemma 3.1 and the following corollary to Theorem 3.1 we will
establish our main regularity result for (2.3) in the next section.

COROLLARY 3.1. Let p e (1, 2) t_J (2, c) and n be a positive integer. Suppose that
=_ E= gr near r 0 and that ]gl <- l for all >_ 1, where rl <_ 1. Then .for

any integer k, except k- -n, the general solution Xk(r) of (2.17 a, b) near r--0 is

of the form (3.2). In addition .for k >_ n and .for rl <_ 1/(8:D) we have that

(3.8b) la+(k)l, Ib (k)l k,

where T) > 1 is the constant, independent of p, n, and k, appearing in (3.4).
Proof. Clearly Theorem 3.1 applies with the given assumptions on . Let M _--

87)r/k. Firstly, we note that for any integer j E [1, k],
j-1

(3.9) Ij =_ lJ-iMi/i! <_ MJ/j!.
i--0

Equation (3.9) holds for j 1 as r/_< 1. Assume it is true for 1 _< j _< < k, then

I+1 =- rl(I 4- MS/l!) <_ 2rlM*/l! <_ M+l/(1 4- 1)!. Hence, by induction (3.9) holds for
l<_j<_k.



DEGENERATE QUASILINEAR ELLIPTIC EQUATIONS 1531

We now show that the improved bounds on the coefficients, (3.8), hold. (3.8a)
holds for i -0. Assume it is true for 0 <_ i <_ < k; then from (3.6a), (3.4), and (3.9)
we have that

[yl+l_JMJ/j!] /(l +
<_ M [I-1 + MII!]/ 2(/ + 1) _< M+ll(l + 1)!.

Hence, by induction (3.8a) holds. Inequality (3.8b) holds for i k. Assume it is true
for k _< i _< 1. Then as M _< k we have from (3.6a), (3.4), (3.9), and (3.8a) that

1)]

<_ l-k + (Mk/
j=0

k!)/2 <_ (Mk/k!).

Hence, by induction (3.8b) holds.

4. The main regularity result.
1/171,qTHEOREM 4.1 Let u E loc (f), 1 < q < cx), be a local weak solution of (2.3)

with satisfying (A1)-(A3). Then

(4.1) T/17k+2,ve (a),

where the integer k >_ 1 and exponents/3 E (0, 1] and v [1, 2] are determined uniquely
from

6(k +/3) 7 + 1/(p- 1) + [1 + 14/(p- 1) + 1/(p- 1)2] 1/2

and 1 _< v < 2/(2-3),

where p _-- 2 + F(0).
Proof. Let be defined as in (2.17c). From the definition of G in Lemma 2.1,

o riAssumption (A3), and Remark 2.1 we can assume that (r) i=1 gi near r 0
with Igi[ <- / for all i _> 1 with > 0 as small as we please. Hence we can apply
Corollary 3.1 to the system (2.17), yielding that the general solution has the form
(3.2a) about r 0 if k -n. We note that in this case one can obtain X_n(r)
directly from Xn(r). For all integers k the constant C- in (3.2a) must be set equal
to zero since A- < 0, ^+ ^+ak (0) + b} (0) 1 and we know that X e C[0,512; see (2.15)
and (2.17). For the same reason Ck+ _= 0 when Ik[ < n since Ak+ < 0. In addition, as

H(0) 0, A+ 0, h+(0) 1, and +(0) 0 it follows that C+ 0. Therefore we
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have from (3.6) and (2.17) that

H(r,O) =- Ck r (ak (r) + bk

=_ c+ e + e a (r)
k--n-.t-1

or equivalently,

(4.3b) k=nq-1

e-.+ ^+ )]llX++--
Since H L2(B) we have from (4.3) that for R sufficiently small,

(4.4)

R
r 02 IH(r, O)12dOdr

fo
R

2 ICk+l r2++l[(ak+(r q- k+(r))2
k=n+l

q_ + ^+ ^+( a () +- ())]& < c.

In the analysis that follows Mi denotes a constant dependent only on R < 1 and p.
We set ai =_ a(k) + b+(k), t 1/r and note from (3.2b) that Ak+ _< k(p- 1) 1/2. In
addition we note that the L norm over an interval of length 2 of a polynomial of
degree k with leading coefficient 1 is bounded below by 21-k; see, for example, p. 80
in [25]. Then for k _> n + 1 we have from (3.8) that

(4.5)

R r2’++l[hk+(r) + +k(r)]2dr

R
> r++l^+ ^+ak (r) / bk (r)ldr

rirz
i-o

_> t-(++a+a)

/R

k

y Critk-i
i--O

dt- (Mllk)k/k!
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k

E airk-i

i--0

dt- (Mlk)k/k!

>_ M3 -(Mlk)k/k! >_ M -(Mle),
since ffl -= 1 and (k/e)k/k! G e-1. Combining (4.4) and (4.5) we have that by choosing
r sufficiently small there exists an M, dependent only on R and p, such that

(4.6) [C[ <_ Mk for all k _> n + 1.

Let 5 be such that 5, Me5(p-1)’/2 e (0, R). As Ak+ >_ k(p- 1) 1/2 -pn/2 we have
that c=+1(Me)khX+ < oc. It then follows from (4.3b), (4.6), (3.2d), and (3.8) that
for <

IH()I-< E ICk+1 [(1+ lek+l)l ^+ (1 ^+ I] x:
k=nnCl

_< c(l]/) ,+ [la+(1:1)1 + I+(11)1]M+
k=n+l

k=n+l

Therefore the upper bound of (41) in [13] holds. In addition, we see from (4.7) that
the series (4.3b) is uniformly and absolutely convergent for I(I-< 5.

As H is a one-to-one mapping near ( 0 it follows that +Cn+11 0. Noting from
(3.2d) that +Ien+ll < 1, it follows from (4.3b), (4.7), and (3.8) that there exist positive
constants Mi such that for I(I sufficiently small,

Hence, the lower bound of (41) in [131 holds. Similarly, one can prove that the bounds
(42) and (43) in [13] hold. The remainder of the proof of (4.1) is then identical to
that in [13]; that is, apply Lemmas 1 and 2 and Corollary 2 in [13]. rl

Note that the conclusion of Theorem 4.1 is not necessarily true for (1.1) for p 0
(even if p is a constant); see [29].

Example 4.1. For the examples considered in Example 2.1 we have with q > 1 that
the local weak solutions of (2.3) are such that (4.1) and (4.2) hold with p _= 2 / F(0)
given as follows: (i) o(t) ----/:q-2 => p q; (ii) o(t) _= [t(1 + t)] (q-2)/2 => p (q + 2)/2;
and (iii) o(t) _= It(1 / t2)] (q-2)/3 => p (q / 4)/3. Therefore we see that the solutions
of (2.3) with o defined by (ii) and (iii) are as regular as those of (2.3) with (t) tp-2,
which is nothing other than the singular part of o in (ii) and (iii). In other words, it
is the singular part of o that determines the regularity of the local solutions of (2.3).



1534 W.B. LIU AND JOHN W. BARRETT

5. A global regularity result. As mentioned in 1, in order to obtain explicit
error bounds for the finite element approximation of (2.3) it is necessary to extend
the local regularity results obtained in the last section into global results. Apart from
those global C1,a and H2 results mentioned in the introduction, there appear to be
no other global results in the literature. We derive in this section a global regularity
result from Theorem 4.1 under some restrictions on the boundary data.

Consider the following mechanics problem. Suppose a plane ft, which is made of a
power law material, is undergoing longitudinal shear (the mode III problem; see [3]).
In this case the only nonvanishing component of displacement is the z-component
u(x,y), which satisfies (2.3) with o(t) tp-2 and p E (1,2). Physically one expects
that the tangential strain of the plane along 0t will vary strictly monotonically except
at those points where the displacement u(x, y) achieves its extreme values. Motivated
by this observation we will suppose that (2.3) is supplemented by the boundary con-
dition

(5.1)

where g has a nonvanishing tangential derivative, gr, on OFt except at those points
where g achieves its global extrema on 0. We have the following result.

THEOREM 5.1. Let o satisfy (il) with C(O, oo) replaced by C’l(o, oo), (A2)
and (i3) with p 2-f-F(0) E (1,2). Let Ot C2, and g C((’t) be such that
Igr(x, Y)I > 0 if (x, y) e O and g(x, y) is not a global extremum of g on OFt. Let
u e Wl’q() be the unique solution of (2.3) with the boundary condition (5.1). Then

(i) g C C2’(t),

(ii)

> 0, u c C=,’(t),

a e C W and r c (1, p], ==> u c C2,t* (t) f3 W3,r (),

where # "y for p c (1, 1.3), # min(3,,/) for p c [1.3, 2), and

{-5 + 1/(p- 1) + [1 + 14/(p- 1) + 1/(p- 1)211/2}/6.

Proof. From [19] we have that g E C’a(Ct) => u e Cl’a() for some a > 0, so
that IVu is continuous on . We first show that IVuloa >_ 5 > 0. If (x, y) OFt and
gr(X, y) O, then IVu(x, Y)I > 0 as (u- g)loa 0. Let gr(Xo, Y0) 0 and (without
loss of generality) let g(x, y) >_ g(xo, Yo) for all (x, y) 0t. Let uo =-g(xo, Yo). Then
u- u0 is such that V.(o([V(u- u0)l)V(u- u0)) --- V.(o(IVul)Vu) 0 in gt and
(u so)on >_ 0 because u0 is a constant. If u is constant, then the desired regularity
result holds. Therefore we can assume that u is not constant. From the strong
maximum principle in 3 of [28], it follows that u > u0 in t. (This result also holds
from the proof of the strong comparison principle in [22].) From the Hopf maximum
principle, see [28] and Lemma 3.4 in [12], we have that IOu/On(xo, Y0)l > 0, where n_
is the outward unit normal to OFt. Consequently, IVuloa > 0 and from the continuity
of IVul, there exists a domain S cc gt such that OS C2’1 and IVul(\sI > 5 > O.
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Let S cc $1 cc f. Then from Theorem 4.1 we have that

(5.3a) p e (1, 1.3) = k _> 3 = u e C3(-),

(5.3b) p e [1.3, 2) = k 2 => u e C2’(11)f W3’p(sI) with/3given by (5.2).

Rewriting (2.3), we have for Q 9t\S and g e C2’() that

Au + F(IVul) [(ux)2u,, + 2u,uyu,y + (uy)2uy] /IVul2 0 in Q,

e

As r(t) [(o(t)t)’/(t)]- 1 >_ q- 2, it follows from our assumptions that F e
C,l(0, oc) and hence the coefficients F(IVul)(u)2/IVul2, F(IVul)(uu)/IVul2, and
F(IVul)(u)2/IVul2 e C’a((). It then follows from Theorem 9.19 in [12], for exam-
ple, that u E C2’()), a min(c,#). This yields that the above coefficients then
belong to C,(() and hence u e C2’((). Combining this with (5.3) yields that
u e C2’(). If g e C2’() 71W3,r(f), r e (1,p] it follows in a similar manner that
e

it is of great interest to know if the conclusion of Theorem 5.1 is true or not
for more general bounary conditions. Of course, it would be even better if Theorem
4.1 could be extended to a global result. Nevertheless, the above result shows that
the global regularity on u required to guarantee the optimal rate of convergence
in W,P(f) of the continuous piecewise linear finite element approximation of (2.3)
does hold for suitable data. Another unsolved problem is extending the sharp local
regularity results in [13] to higher dimensions.
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GLOBAL OPTIMALITY CRITERION AND A DUALITY WITH A
ZERO GAP IN NONCONVEX OPTIMIZATION*

PHAN THIEN THACH

Abstract. This paper presents a relation between geometrical criteria for optimality and a
duality in two nonconvex problems: a quasi-convex maximization over a convex set, and a general
minimization over the complement of a convex set. A connection between the duality by Toland,
the global optimality criterion by Hiriart-Urruty, and the author’s result is also given. Several
applications are presented.
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1. Introduction. Duality theories have provided important relationships in both
analytical and algorithmic studies on optimization problems. Primal-dual pairs allow
us to construct primal-dual algorithms whose efficiency and nice economic interpre-
tation have attracted many researchers. There are several approaches used to obtain
dual problems of a given mathematical program. For example, in convex duality the-
ory we can find dual problems by either the Lagrangian functional approach or the
perturbation functional approach. These approaches have a common starting point,
the Kuhn-Tucker condition. A Kuhn-Tucker vector provides optimal Lagrange mul-
tipliers in the first approach and it is a minimizer of the conjugate of the perturbation
functional in the second approach.

In convex programs local optimality criteria are also global. In nonconvex pro-
grams the local information such as subdifferentials and tangent cones are not enough
to provide a global optimality criterion. However, by using the -subdifferentials
Hiriart-Urruty has provided a global optimality criterion for a problem of minimizing
the difference of two convex functions [5]. Since the minimization of the difference
of two convex functions can be converted into a convex maximization over a convex
set or a convex minimization over the complement of a convex set, a natural question
is how to extend the optimality criterion to more general problems. In this paper
we present geometrical criteria for global optimality in two problems: a quasi-convex
maximization over a closed set and a general minimization over the complement of an
open convex set. For constructing optimality criteria the separation theorem (or its

variant) is a basic instrument. We say that criterion A is reducible to criterion B if
we can obtain criterion B from criterion A by a transformation where the separation
theorem is not used. Criterion A is equivalent to criterion B if A is reducible to B
and B is reducible to A, i.e., in the proof for the equivalence we do not use the sep-
aration theorem. With this definition our geometrical criterion will be equivalent to
the criterion in [5] if we consider a problem of minimizing the difference of two convex
functions as a particular case of reverse convex constraint problems.

We also present a connection between the optimality criteria and a nonconvex
duality. These criteria involve the polars of level sets of the objective functions, and
there is a polarity correspondence between the level sets of the objective functions in
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a primal-dual pair. By our approach we can obtain dual problems given in Toland
[25], and Hiriart-Urruty [4].

The paper consists of six sections. In 2 we present geometrical criteria for global
optimality in general nonconvex problems. In 3 we show a polarity correspondence
between the level sets of a function and level sets of its quasi conjugate. In 4 we
present a duality scheme. Several applications are given in 5. Finally we draw some
conclusions in 6.

2. (eometrical criteria for global optimality in nonconvex problems.
Let X be a closed convex set in Rn. It is well known that a vector x does not belong
to X if and only if there is a hyperplane strictly separating x and X. The direction
"if" is straightforward, and the direction "only if" is a separation theorem. Now let
X1, X2 be closed convex sets containing 0. Denote by X, X2 the polars of X1, X2,
respectively:

X={v’(v,x)_<l VxEX1}, X2={v’(v,x)_<l VxEX2}.

From the definition of the polar sets it is straightforward that

c_ c_ .
Since X1, X2 are closed convex and contain zero, by the separation theorem we can
prove that

(Xl0)0 Xl, (X)0 X2"

Therefore, we have the inverse direction:

X20
_
Xl0 == X X2.

Thus in the equivalent relation

(1) Xl

_
X2 X20

_
Xl0,

the separation theorem plays a crucial role in the direction "=". Similarly by the
strict separation we can prove (1) if X, X2 are open convex sets containing 0. If
X and X2 are neither closed nor open, then generally speaking we do not have (1)
(more precisely, the direction "=" in (1)). This is quite reasonable, because we will
lose the information of irregular points on the boundary of a convex set if we pass to
its polar.

In this section we use relation (1) to interpret, in the dual space, the optimality
for a solution of a primal problem. Throughout this paper the terms "normal cone,"
"polar set," "conjugate function," and others have the meanings as in Rockafellar

We start from a very simple convex program

max{{c, x}: x e D},

where c is a nonzero vector in Rn, and D is a closed convex set in R such that
0 intD. It is well known that a vector x* D is optimal if and only if c belongs to
the normal cone of D at x*:

(3) c e N(x*,D).
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This is equivalent to (1/(c,x*))c E D. Since 0 E D, this is equivalent to

(c,x*)C’0<-A<-I C_Do

(c;x*}C’0<-’k<-I _D

n C_ {x" <c, x) <_ (c, x*)}.

Thus, criterion (3) can be interpreted as the use of the relation (1) to problem (2).
We consider now more general problems. The first type of nonconvex problems is

(4) sup(f(x) x e D},

where f is a quasi-convex function, D is a closed subset such that 0 convD (convD
stands as the convex hull of D). Since f is quasi-convex, the supremum value of f
over D is equal to the supremum of f over convD. However, in (4) we do not replace
D by convD, because in order to find an optimal solution (sometimes called briefly
"solution") we do not need to handle the convex hull of D (see Example 4.1 in 4). By
setting f(x) max(f(x), f(0)} we see that a maximizer of f on D is also a maximizer
of f on D. Therefore, we can assume that

f(O) min(f(x) x e

Using relation (1) we have the following geometrical criterion for the optimality in
problem (4).

THEOREM 2.1. Let z D. The condition

{x "f(x) <_ f(z)} c_ DO

is necessary for the optimality of z. If

sup(f(x) x e D} -sup(f(x)’x e int(convD)},

then (5) is sufficient for the optimality of z.
Proof. If z D is optimal, then D C_ {x f(x) <_ f(z)}. By definition of the

polar one has (5). Now suppose that (6) is satisfied and z D is not optimal. Then
there is vector x* such that

x* e D \ cl(x "f(x)

where cl stands as the closure. Since 0 E {x’f(x) <_ f(z)}, this implies that there is
vector y Ru such that

(y,x*) > 1 > (y, x) Vx f(x)

_
f(z).

The second inequality implies y e {x "f(x) < f(z)}. However, y 6 DO because

sup{(y, x)" x e D} _> (y, x*) > 1.

Thus (5) is not satisfied. D
Criterion (5) is rather straightforward, but it can be used later to obtain a non-

convex duality. If f is lower semicontinuous (lsc) and int(convD) # 0, then we can
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check that condition (6) is satisfied. In general cases relation (5) is not sufficient for
the optimality because optimal solutions could be irregular points on the boundary
of a level set of the objective function. We shall say that problem (4) is regular if
condition (6) is satisfied.

The second type of nonconvex problems under our consideration is

inf(f(x) x int

where f is an arbitrary function and D is a closed convex set containing 0 in its
interior.

THEOREM 2.2. Let z int D. The following condition

(8) DO C_ {x "f(x) < f(z)}

is necessary for the optimality of z. If

(9) inf{f(x) x int D} inf{f(x) x D},

then condition (8) is sujficient for the optimality of z.

Proof. Suppose that z is optimal to problem (7). Condition (8) follows immedi-
ately from {x" f(x) < f(z)} C_ int D C_ D. Suppose now that z int D is not optimal
and condition (9) is satisfied. Then there is u it D such that f(z) > f(u). Since
u D and D is closed and contains 0, there is a vector v E Do such that (u, v) > 1.
Since f(u) < f(z), this implies v {x f(x) < f(z)}. Therefore, D

_
{x f(x) <

f(z)). D
We shall say that problem (7) is regular if condition (9) is satisfied. It is easy to

see that if f is upper semicontinuous (use), then problem (7) is regular.
An important particular case of problem (7) is

(10) inf {ho(x) go(x)},
xR

where h0(.) is an extended real valued function and go is finite convex function. Using
the e-subdifferentials Hiriart-Urruty [5] proved the following criterion for the optimal-
ity of a vector z:

(11) Oego(z) C_ Oeho(z) V > O.

We know that by an additional variable we can convert problem (10) into a mini-
mization over the complement of a convex set. Therefore, it is natural to study the
connection between criteria (8) and (11). In the sequel we prove that these criteria
are equivalent for the same problem.

Set

hi (x) ho(z + x) ho(z), gl (x) go(z + x) go(z).

Problem (10) is converted into

(12) inf{f(x, t)" (x, t) int D},

where

/(x, t) h (x) t, D {(x, t)" g (x) t <_ 0}.
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Problem (12) is regular because

inf{hl(x) t’gl(x) t >_ 0} inf{hl(X) t" gl (x) t > 0}.

Vector z is optimal to problem (10) if and only if vector (0, gl (0)) e Rn x R is optimal
to problem (12). Since f(0,gl(0))- 0, criterion (8) at (0,gt(0))is

(13) {(x, t)" g (x) _< t} C_ {(x, t)- h (x) < t}.
PROPOSITION 2.3.
R, one has

Let h be an arbitrary function defined on Rn. For every

{(x, t)" h(x) t a < 0}
{(x,t)’h(x)- t- <_ 0}
{(y, A) A < O,h*(-y/A) + <_ -l/A} U {(y, 0) y e (domh)}.

Proof. By definition,

IfA>0thens(y,A)=+x. If A=0, y (domh),thens(y,A)>l. If A=0, ye
(dom h), then s(y, A) _< 1. If A < 0, then

This completes the proof.
From Proposition 2.3 one has

(14)
(15)

{(x,t)’g(x) <_ t} {(y,A) A < O,g(-y/A) <_ -l/A} {0}
{(x,t)’h(x) < t} {(y, )" A < O,h(-y/A) <_ -l/A}

U{(y, 0)’y e (dom h)}.

From (14)-(15) it follows that criterion (13) is equivalent to

{y" g(O) <_ } c_ {y" h (O) <_ }
= Oeg (0) c_ Oeh (0) W > 0

Oego(z) c_ Oegl (z) V > O.

V>O

Thus, we arrive at criterion (11). Note that in the above arguments we do not use
the separation theorem.
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3. Quasi-conjugate functionals. We know that any function can be defined
via its level sets. Let f be a function. If we denote

L(f, <_, o)- {x f(x) <_
L(f, <, o0 {x f(x) <

then f can be defined as follows:

f(x) --inf{c x e L(f, <_,
sup{cz x 6 n(f, <, ()}.

By condition (5) we see that z E D is optimal to problem (4) if

(16) {L(f, <, cz)} C_ D,
where o f(z). Since {L(f, <_,a)}0 and D are closed, convex sets, if they have
nonempty interiors, then (16) is equivalent to

(17) int(L(f, _<, a)}0 C int D.
If int{L(f, <, cz)} is a level set L(g, <,/) of a function g, then (17) implies that

(18) g(v) >_ Vv int D.
Therefore, we see intuitively that the problem of finding the smallest level set
L(f, <, o0 containing D (in the primal space) can be interpreted as the problem of
finding the biggest level set L(g, <,/) contained in int DO (in the dual space). In
this section we prove that the relationship between f and g is nothing but the quasi
conjugation presented in [19].

Now for a given function f we set

Ls :- (L(f, <,-o0), Us := int(n(f, _<, _))0.

Ls is closed, convex and Us is open, convex. If a _< /, then-a _> -/; hence
L(f, <,-) c L(f, <,-o0 and L(f, <,-) C_ L(f, <,-). This implies

(19) Ls C L, Us c U (c </).

Define fL and .fv as follows:

fL(y) inf{ "y e
fV(y) sup{a y Us}.

It is easy to check that

{y. fL(y) < o} Ls;
{V" .fv(V) < ’} V..

Since Ls is closed, convex and Us is open, convex, function fL is lsc, quasi-convex
and function fv is usc, quasi-convex. In the sequel, we give an analytical formula for
fL and fv.

Denote by GL the set of lsc functions f Rn --, RU {+oc} such that L(f, <, o) is
either a compact set or the whole space Rn, by QL the set of functions f GL such
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that f(0) inf(f(x): x E Rn}. The property "L(f, _<, ) is either a bounded set or
the whole space Rn’’ is equivalent to

f(x) --+ sup{f(x) x e Rn} as 11 x II-- o.
Denote by QU the set of usc functions f- R RU{+cx} such that f(0) inf{f(x)
xeR}.

We call the quasi conjugate of a function f R’ --, R U {+o} the function
fH Rn

__
R U {=ko} defined as follows:

-inf{f(x)’(y,x) >_ 1}In(U) -suo{/()’ e R"}
if y = 0
if y-- 0.

By definition, it is easy to see that fH is quasi-convex and

fH(o) inf{fH(y)’y e nn}.

THEOREM 3.1. (i) If f Qu then fL QL and fL(y) fH(y) for all y 0;
(ii) If f GL then fv Qu and fv (y) fH (y) ]’or all y.
Proof. (i) Let f e Qu. For a such that L(f, <, a) is nonempty one has

0 e L(f, <, a) int(L(f, <,

because f(0) inf{f(x) x e n}. This implies that L_a (L(f, <, a))0 is compact.
For a such that L(f, <, a) is empty, L_a {}0 Rn. Therefore, fL GL. Since
0 e (L(f, <, a))o L_ (for all a), one has

fL(o) inf(c" 0 L-a} -cx _< fL(y) Vy.

So fL e QL. In order to prove fL(z) fH (Z) for all z 0 we shall prove that

(20) {u./(u) </’(z)} {u./’(u) </’(z))

for all z 0. Set a fH (z). One has

(21)
fL(y)

_
C = y e La = y e (L(f, <, _())0
* sup{(y,x): f(x) <-} <_ 1

and

(22)
fg(y) <_ ( : inf{f(x) (y,x) >_ 1} _< c

: inf{f(x): (y,x) >_ 1} _>--c.

We prove first (21)=(22). If (22) is not satisfied then there is vector u such that
(y, u) >_ 1, f(u) < -c. Since {x: f(x) < -(} is open, one has

u,{(v,x) f()<-} > (v, ) > .
This conflicts with (21). We prove now (22)=(21). If (21) is not satisfied, then there
is vector u such that f(u) < -a and (y, u} > 1. This implies that

inf{f(x) (y,x) >_ 1} _< f(u) < -a.
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We arrive at the contradiction with (22). Thus, (21) is equivalent to (22) and hence we
obtain (20). We would mention that from (22) we obtain (21) without the assumption

if E Qu, and this statement can be regarded as a particular case of more general results
in Crouzeix [2].

(ii) Let f GL. For every c such that L(f, <, o) is compact one has

(23) {y. fV(y) < _} U_ int(L(f, <, a))0 0.

For such that L(f, <, o) =_ Rr’ one has

(24) {y. fv (y) < -c} U_a int(n(f, <, a))0 @.

Therefore, fv is usa and fv (0) < fv (y) for all y Rn, i.e., fv QU. From (23) and
(24) it follows that

fV(o) sup{a" 0 Va}
sup{a "L(f, <,-a) =- nn}

inf{a n(f, <, oz) =_ R}
e

fH(o).
In order to prove fv (z) fH (z) for all z 0 we shall prove that

(25) {y. fU(y) < fH(z)}-- {y. fH(y) < fH(z)}
for all z 0. Set a := fH (z). One has

fv (y) < o , y U,
(26) , y int(L(f, _<,-c)).
This implies that L(f, <,-o) is not the hull space. Since f GL, it follows that
L(f, <,-oz) is compact. Therefore, (26) is equivalent to

(27) max( (y, x) f(x) <-) < 1.

On the other hand,

(28)

fH(y) < a

--inf{f(x)’(y,x) >_ 1) < c

:} inf{f(x) (y,x) >_ 1} >--c.

We shall see the equivalence between (27) and (28). First we prove (27)=(28). Sup-
pose that (28) is not satisfied, i.e.,

(29) inf{f(x)’(y,x) >_ 1} _<-a.

Since f e GL, there is vector u such that (u, x) > 1 and [19]

f(u) inf(f(x) (y, x) >_ 1}.

From (29) it follows that f(u) <_ -o. Therefore,

sup{ (y, x) f(x) <_ -a) >_ (u, x) >_ 1.
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This conflicts with (27). Now we prove (28)=(27). Suppose that (27) is not satisfied,
i.e.,

(30) sup{<, >./(x) <_ -} >_

Since L(f, <_,-a) is compact, from (co) it follows that there is vector u such that
(y, u) >_ 1 and f(u)<_-a. Then,

inf(f(x) (y, x) >_ 1} _< f(u) <_ -o.

This conflicts with (28). Thus, (27):(28) and hence we obtain (25). [-!

The biquasi-conjugate function (fH)H will be denoted by fHH. In [19] we prove
that if f QU, then fHH QU and

{x fHH (x) < c)- conv(x f(x)

and that if f E QL, then fHH QL and

{. f"(x) < .} con{ .f() < .} (w).
The later relation can be generalized in the following theorem.

THEOREM 3.2. If f GL, then fHH QL and

{. f"() < } cov(( f() < } u {0})

for all ( > inf(f(x) x e Rn \
Proof. Let f GL. Then, by Theorem 3.1 (ii), fH fU and fH QU. By

Theorem 3.1 (i), flirt(x) (fH)L(x) for all x 0 and (fg)L e QL. This together
with the fact that

flirt(O) inf(fHH(x) x

implies fHH
_
QL. By definition,

f"(o) sup{f"(u).
sup {- inf(f(x) (y, x)

(31) inf inf(f(x) (y, x) >_
yR x

i in
X yR

inf{f(x)’x R’ \ {0}}.

For c > inf(f(x) x R’ \ [0}} fHH(o) one has

{. f"() <_ } {x.

(u" I(u) < _}0
{int{x

Since f GL, (x f(x) <_ a) is either a compact set or the hull space. If (x f(x) <_
(} is compact, from (32) it follows that

{ "I() _< }00
conv({ (x) _< .} V {0}).
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If (x f(x) <_ } Rn, from (32) it follows that

{x" fHH(x) _< a} {int{x "f(x) <_ a}}
{0} R
conv({x f(x) _< a} t2 {0}).

4. Dual problems. Denote by Q the set of functions f such that fHH f.
Since fHH is quasi-convex and fHH(o) inf(fHH(x)’x 0} [19], if f e Q then f
is quasi-convex and

(33) f(O) inf{f(x) x 0}.

Denote by G the class of quasi-convex functions satisfying (33). Obviously, Q c_ G.
However the difference between Q and G is not very big, because f E G will be in Q
if f is either usc or lsc [19], [22]. For f e Q we define

domf {x f(x) < sup
xER

kerf {x "f(x)= f(O)}.

From (33) it follows that kerr {x" f(x) <_ f(0)}. Therefore, dom f and kerr are
convex sets. If f is nonconstant and convex, then dom f has the usual meaning:

dom f-- {x f(x) < +cx},

because sup{f(x)’x e Rn} +c [14].
Consider the following primal problem:

(34) sup(f(x) x

where f Q and D is a compact set. We call the dual problem of problem (34) the
following problem:

(35) inf{fH(y)’y int DO}.

THEOREM 4.1. (i) sup(34) --inf(35).
(ii) /f the primal (34) is regular then the dual (35) is regular.,
(iii) If y is an optimal solution to the dual (35) then every vector x D such that

(y,x) >_ 1 is optimal to the primal (34).
Proof. (i) One has

sup{f(x) x e D}
--sup(fHH(x) x e D} (since fgH f)

sup{--inf(fH(y)’(y,x) > 1}}
xED Y

inf inf(fg(y)" (y, x) >_ 1}
xD y

inf inf (fH(y). (y, x) >_ 1}
y x6D

inf fH(y) (sinceyintDOvcsup(y,x)<l.
YintD \]xD
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(ii) Suppose that the primal (34) is regular, i.e.,

sup(f(x) x e D} -sup(f(x)’x e int D}.

Let (xn } be a sequence in int D such that

(36) f(Xn)

Since fHH f, one has

f(x,) fHH(xn) inf(fg(y) (y, xn)

Let yn be a vector such that (Yn, Xn) >_ 1 and

(37) IfH(yn) + f(x,) l< 1In.
Then, y, DO because

1- (y,,xn) < sup(yn, x) (since xn e intD).
xED

Furthermore, from (36) and (37) it follows that

Therefore,

_/H(y) __+ sup{f(x) x e D} inf fH(y) as n--> oo.
xED YintD

inf{fH(y)’y D} inf{fH(y)’y int DO}.
So the dual (35) is regular.

(iii) Let y be an optimal solution to the dual (35). Since y int DO and D is
compact, there is x E D such that /Y, x) > 1. Then,

f(x) > inf{f(z)" (y,z) >_ 1} _fH(y)=- inf(35)= sup(34).

Therefore, x is optimal to the primal (34).
If the primal problem (34) is nontrivial, i.e., f is nonconstant on D, then

inf(35) sup(34) < -f(0)= --fHg(O)= sup{fH(y)’y e Rn}.

Therefore,

inf{fH(y)’y intD} * inf{fg(y)’y int D,y e dom fH}.

If f is usc, then

This implies that the dual problem can be embedded into a k-dimensional space if
kerr contains an (n- k)-dimensional subspace.
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Example 4.1 (Burkard, Oettli, and Thach [1]). In a three-dimensional space we
are given n vectors vi (ai, bi, ci) E R3, i 1,..., n. Each vector vi is associated
with a weight w. We wish to find vectors vii,... vik such that the sum of their
weights wil +... + wik is less than or equal to 1, and the vector v vi +..-/ vi has
maximum length. This is a generalized knapsack problem. Let a (al,... ,an), b
(bl,...,bn), c (cl,...,cn). If there is a vector z Rn such that a cz; b
z; c -z, then a -t- b / c (c + + /)z and this problem is nothing but the one-
dimensional knapsack problem. So, we assume that a, b, c are linearly independent.
By using Boolean variables xi (0, 1} 1,..., n we can formulate the problem as

with

max{f(x) x e D},

D’= x (Xl,...,xn) {0,1}n" wixi <_ 1

Since kerr is the following (n- 3)-dimensional subspace

C "= x aixi O, bixi O, cixi 0
i=1 i=1 i=1

its dual problem can be embedded into a three-dimensional space as follows:

min {fH(y) y e C-t-, y . int(D) },
where

cz { + Zb +: (, Z, ) e

fH((a + b + 7c) inf f(x) x(ai +b + 7ei) 1
i=1

Since f(.) is convex quadratic, the value fH(aa + b + 7c) can be immediately com-
puted:

1fH(a + b + ?c) -2 + 2 + 2
rthermore, the constraint (a + b + 7c) @ int(D) is equivalent to

m (+Zb + c) e {0, 1} k 1.
i=1

Hence the dual problem can be rewritten

min -2+2+72 "m xi(ai+bi+Tci)-xe{0,1} 1
i=1

min 2 + 2 +2.m xi(ai + bi + 7ci)’x e {0, 1}
i=1
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which is a convex minimization over the complement of a convex set in R3.
We present now a dual problem for a general minimization over the complement

of a convex set-

(38) inf{f(x)’x t int D},

where f is an arbitrary function and D is a closed convex set such that 0 E int D. It
is well known that D D. We call the dual problem of problem (38) the following
problem:

(39) sup{fg(y)’y e D}.
THEOREM 4.2. (i)inf(38)---sup(39);
(ii) /f the primal (38) is regular and D is bounded then the dual (39) is regular,
(iii) If y is an optimal solution to the dual (39) then every minimizer of the

function f on the half-space {x <y, x) >_ 1} is an optimal solution to the primal (38).
Proof. (i) One has

-sup{fH(y)’y e D}
sup
yEDo x

inf inf{f(x)’<y,x> >_ 1}
yEDo x

inf inf
x yDo

x@intDinf f(x) (sincexintD=intD, Y@Dsup
<y,x> < 1).

(ii) Suppose that D is bounded and the primal problem (38) is regular, i.e.,

inf{f(x) x int D} inf{f(x) x t D}.

Let {xn} be a sequence such that xn D and

(40) f(Xn)

Let (Yn, ") be a linear function such that

(41) 1--(Yn, Xn) > sup(yn, x).
xD

Since D is bounded, Yn belongs to int D. Furthermore,

sup(39) _> fH(yn)=-- inf{f(x) (yn, x) >_ 1} >_ --f(xn).

This together with (40) and assertion (i) implies

fH(Yn) -"* sup(39).

Since y int D, this means that the dual (39) is regular.
(iii) Let y be an optimal solution to the dual (39) and z be a minimizer of f on

the half-space {x "(y,x) >_ 1}. Then,

f(z) inf{f(x) (y, x) >_ 1} =-f(y)
sup(39) inf(38).
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Since y E Do and (y, z) >_ 1, z does not belongs to int D. Therefore z is optimal to
the primal (38). V!

Example 4.2 (Burkard, Oettli, and Thach [1]). As in Example 4.1 we are given
n vectors T (ai, bi, ci) E R3 i 1,..., n. Each vector Ti is associated with an
weight wi. This time we wish to find vector Til, Ti2,... Ti such that the length of
the vector T Til +... +Ti is greater than or equal to 1 and the sum of their weights
wi +..-+ wi is minimized. By using a Boolean variable x (0, 1}n we formulate
the problem as follows:

(42) min{(w,x) (a,x} 2 + (b,x) 2 + (c,x) 2 _> 1, x e {0, 1}’},

where w (wl, Wn), a (al, an), b (b, b,), and c (c, cn). By
setting

f(x) { (w,x) ifxe{0,1}n
+oc otherwise,

D {x: (a,x)u + (b,x) u + (c,x) u <_ 1},

the problem is rewritten as follows:

inf{f(x) x q int D}.

Then the dual is

sup{fH(y): y e DO}.
Since {x (a,x) O, (b,x) O, (c,x) 0} C D, DO can be embedded into the
three-dimensional space:

DO {a.a +3.b+7.c a2 +2 + 72 < 1}.

Therefore the dual is a quasi-convex maximization in the three-dimensional space:

sup{fH(a.a + .b + -.c) a2 + f12 + 2 _< 1}.

Note that for each (a,/,-y) we can compute

fH(a.a + t3.b+"),.c) min{(w,x) (a.a + .b+"),.c,x) >_ 1, x e {0,1}n}

by a pseudopolynomial dynamic programming algorithm.
As presented above, a dual of a quasi-convex maximization over a compact set is a

quasi-convex minimization over the complement of a convex set and a dual of a general
minimization over the complement of a convex set is a quasi-convex maximization
over a compact convex set. In the remainder of this section we discuss the duality in
another class of nonconvex programs:

(43) inf {hi(x) h2(x)}

where h is an arbitrary function and hu is a finite convex function. In Toland [25],
and niriart-Vrruty [4] a dual of problem (43) is

(44) inf {h(y)- h(y)}.
yEdomh
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In the sequel we shall see that if problem (43) is regarded as a particular case of
problem (38), then the dual (44) can be obtained by our duality scheme. By adding
a variable t we transform problem (43) into the following problem:

(45)
By setting

inf{hl (x) t" h2(x) t- h2(0) 1 >_ 0}.

f(x, t) hi (x) t,
D {(x, t)" h2(x) t a _< 0},

where a h2(0)+ 1, problem (45) has the form (38). Note that 0 eint D, since
c- h2(0) + 1.

PROPOSITION 4.3. Let h be an arbitrary function on Rn. Set g(x, t) h(x)
t, Y (y Rn (y,x) < l for all x domh}. Then,

(1/)+ h*(-y/A)
gH(y,A)

_ ifA<O
if yEY andA=O
otherwise.

Proof. By definition of the quasi conjugate, it is easy to see that gH (y) --oc if
y E Y and 0, and gH (y, ) +o if either > 0 or y Y and 0. If < 0
then

gH (y, ) inf{h(x) t" (y, x) + .t _> 1}

=-inf h(x) t -t >_ -, x ----inf ( h(x) + ( y ) 1)
{ 1}h(x) +

This completes the proof.
Setting YI (y Rn (y,x) < 1 for all x e domhl), by Propositions 2.3 and

4.3, one has

fH(y,)) --cx) if y e Y1 and A 0,
+c otherwise.

{ ,(y) 1}D= (y,A)’A<0, h2 - +a_<- U{0}.

The dual of problem (45) is maximizing fH on D. Since fH (0, 0) --oc, maximizing
fH on DO is equivalent to maximizing fH on DO \ {0}:

{ ,(y) 1 ,(y) 1}sup h- +’A<0, h2 - +a_<-
-sup {h (-) -h (--) -c’A < 0,y domh}
sup{h(y)- h(y)’y e domh} -a
-inf{h(y)- h(y)’y e dom h} -a.
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Thus, we obtain the dual (44).

5. Applications.
Application 5.1. We are given a convex maximization program

(46) sup{f(x) h(x) <_ 1},

where f and h are the Minkowski functionals of the compact convex sets C and D
such that 0 E C and 0 E D. It is well known that

u e c},
h(x) sup{(y, x). y e DO}.

Consider a perturbation of program (46)"

(A(z)) sup(f(x) h(x) <_ 1 + (z, x) }.

It is obvious that program (A(z)) is program (46) when z 0. We wish to solve the
following parametric problem:

(47) s(z) := sup(A(z))- inf, such that z e Rn.

If z int Do then there is vector x such that

1 (z, x) _> sup{(y, x)’y e D} h(x) > O.

h(A.x) ).h(x) <_ A.(z, x) < (z, A.x) + 1 VA >_ O.

Therefore, the half line {A.x" A _> 0} is contained in the feasible domain of program
(A(z)). This implies s(z) +oc. If z int D, then 0 E int(D z). Since

(DO z) {X YEDsup (y- z’x) <- I}
{x "h(x) _< 1 + (z, x)},

the dual of (A(z)) is

(48) inf{fH(y)’y int(D z)}.

It is easy to check that

fH(y) 1/sup{ (y, X)" X e C}.

The dual (48) is equivalent to

inf{g(y)’y int(D z)},

where g(y) --sup{ (y, x) x e C}, or equivalently,

(49) inf{g(y- z)’y int DO}.
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Set r(z) inf(49). By the duality, s(z) -inf(48), and hence s(z) 1/inf(49)
1/r(z). Therefore, the parametric problem (47) is equivalent to

(50) r(z) -. sup such that z E int D.
Since g(.) is the Minkowski functional of the convex set C, r(z) is a concave function
on DO [18] and hence problem (50) is a concave maximization over a convex set, i.e.,
a convex program. If f(x) -II x then g(y) -II Y and program (50) is used to find
the biggest ball contained in Do

Application 5.2. We are given a convex minimization over the complement of a
convex set:

(51) inf{f(x) h(x) >_ 1},

where f and h are functions as in Application 5.1.
0 E int D. Consider a perturbation of program (51):

We assume additionally that

(B(z)) inf(f(x) h(x) z 1 + <z, x>},
and we wish to solve the following parametric problem

(52) s(z) :- inf(B(z)) sup such that z e Rn.

For every z R’, one has

(D z) Ix yED
<y- z’x> <- I I

{x "h(x) <_ 1 + <z,x>}

and hence

{x" h(x) <_ 1 + Iz, xI} (DO z)00 conv{(D0 z)U {0}}.

The dual of (B(z)) is

(53)

(54)

sup{fH(y): y e conv{(D z)U
= sup{fH(y): y e DO z}, sup{fg(y z): y e D}
: sup{g(y- z): y e D},

where g(y) sup{(y,x> x e C}. Set r(z) sup(54). By the duality, s(z)
-sup(53) and hence s(z)- 1/sup(54)- 1/r(z) because fH(y)_--1/g(y). There-
fore, the parametric problem (52) is equivalent to

(55) r(z) --+ inf such that z Rn.

Since g(.) is convex, r(.) is convex. So problem (55) is a convex program. If f(x)
x then g(y) -[[ y and problem (55) is used to find the smallest ball containing
DO

Application 5.3 (Konno, Whach, and Yokota [7]). We consider a multi-objective
problem:

(ci, x> --+ max i- 1,... ,p such that x X,
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where (ci, .), i 1,... ,p are p objectives and X is a polyhedral convex set of feasible
solutions. We denote by X* the set of nondominated solutions and we wish to find a
solution in X* which minimizes an additional objective function f" Rn H R"

(56) f(x) --. min such that x E X*.

For each s > 0 we define

8
1 x-,P

Cs (x e Rn: (ci,x)

_
0 i- 1,...,p},

X U_t( t,)>o,_- t=largmax
i=1

tic’Z X

Then X8 can be represented as follows:

Xs X \ int(X / C}

and X* X for sufficiently large enough s (Yu [29], Sawaragi, Nakayama, and
Wanino [15]). Therefore, problem (56)is equivalent to

(57) f(x) min such that x e X \ int{X + C }.

The constraint in (57) is a reverse convex constraint. By translating the original into

int{X + C}, if necessary, we can assume that 0 int{X + C8}. The dual of (57) is

(58) fH(y) __. max such that y (X + CS).
Since Cs contains the subspace (x: (c, x) 0 for all i 1,...,p}, the dual (58) can
be embedded into the p-dimensional space:

(59) F(tl,..., tp) --+ max

such that sup{ltic’x}’xE
i=1

X}_<l, P

E ti 1, tl >_ 0,..., tp >_ O,
i----1

where

(60)

If f is convex, then (60) is a convex program. The dual (59) is a quasi-convex max-
imization over a compact convex set in Rp. In practice the number of objective
functions, p, is often very small compared with the number of variables, n. Therefore
the dual problem is much easier to handle than the primal by the existing solution
methods (Horst and Tuy [6]).

6. Discussions. Let us discuss on the following classes of multi-extremal prob-
lems:

(QMIN) Quasi-convex MINimization over a convex set;
(QMINR) Quasi-convex MINimization over the complement of a convex set;
(QMAX) Quasi-convex MAXimization over a convex set.
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Since these classes contain convex programs, it would be interesting if we could
find connections between optimality criteria, duality schemes in these classes and
convex programs. There have been many significant results for extending the conju-
gation and convex duality to QMIN problems (see, e.g., Greenberg and Pierskalla [3],
Crouzeix [2], Oettli [10], [11], Wind and Wolsey [26], Passy and Prisman [12], Singer
[6], [7], Martinez-Legaz [8], Penot and Volle [13]). For a survey we refer to Penot and
Volle [13]. Since the class of quasi-convex functions is much bigger than that of convex
functions, we have to use an extra parameter in the extensions. More recently, in [23],
we have proved that if we restrict quasi-convex functions to a reasonable class, then
we can obtain generalizations, which involve no extra parameter. In [24] we present a
generalized Kuhn-Tucker condition and a variational inequality for QMIN, and show
that the path-following methods could, in principle, be applied to QMIN. Thus QMIN
problems are multi-extremal, but they are reasonably closer to convex problems.

A duality scheme for QMINR and QMAX was presented in [19]. We have proved
that this duality could be obtained from convex duality and the minimax principles,
and if we consider a convex problem as a particular case of convex maximization
problems under convex constraints; then the dual problems by convex duality and
by the generalized duality are essentially equivalent [22]. In this paper we show a
connection between the nonconvex duality and geometrical optimality criteria by using
the polar relationships of functions and their quasi conjugates. As we have seen, the
optimality criteria and duality in QMINR and QMAX are quite different from those in
convex programs. By conjugations we cannot reduce QMINR or QMAX problems to
solving equations (or generalized equations). This might be a reason that explains why
the algorithms for QMINR and QMAX problems have so far been constructed on the
basis of enumeration and branch-and-bound methods, which are completely different
from path-following methods and whose complexity is exponential with resepct to
the problem dimension. However, we can use the nonconvex duality to reduce the
dimension of certain large-scale nonconvex problems and hence to obtain practical
algorithms for solving them [1], [7], [20], [21], [27], [28].
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helpful remarks on the relations between the optimality criterion and the duality in
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and suggestions.
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MAXIMUM ENTROPY REGULARIZATION
FOR FREDHOLM INTEGRAL EQUATIONS

OF THE FIRST KIND*

P. P. B. EGGERMONTt

Abstract. The regularization of Fredholm integral equations of the first kind is considered
with positive solutions by means of maximum entropy. The regularized solution is the minimizer
of a functional analogous to the case of Phillips-Tikhonov regularization. The regularized solution
is shown to converge to the solution of the maximum entropy least squares problem, assuming it
exists. Under additional regularity conditions akin to those for Phillips-Tikhonov regularization error
estimates are obtained as well. In addition it is shown that the regularity conditions are necessary
for these estimates to hold. Approximation from finite-dimensional subspaces are also considered, as
well as exact and approximate moment problems for the integral equations. The basic tools in the
analysis are the weak compactness of subsets of L1 consisting of functions of bounded entropy, and
an inequality for convex optimization problems with Bregman functionals.

Key words. Fredholm integral equation of the first kind, ill-posed problem, regularization,
maximum entropy, Bregman functional

AMS subject classifications. 45L05, 45B05, 65R20

1. Introduction. We consider the regularization of ill-posed problems by the
maximum entropy method. We are interested in stability and error estimates, and in
the convergence of the method as the error in the data tends to zero. There are two
basic versions of the maximum entropy method. In the older version the entropy of the
unknown density distribution is maximized subject to the equality constraints imposed
by the data, while the newer version closely resembles the classical Phillips-Tikhonov
regularization of ill-posed least squares problems. Our aim is to get estimates similar
to the Philips-Tikhonov theory with positivity constraints; see Butler, Reeds, and
Dawson [4] and Groetsch [12]. The sensible modification of the older version in which
the data are interpreted as providing inequality constraints was considered by Amato
and Hughes [1]. This is also the usual interpretation in the statistical treatment; see
Skilling [22]. For the maximum entropy method applied to some classical moment
problems Borwein and Lewis [2] have obtained strong results. The maximum entropy
method has a rich history: we mention Larkin [17], Gordon and Herman [13], Frieden
[10], and quite recently Smith and Zoltani [23] and Amato and Hughes [1]. For a guide
to the lively recent literature on the statistical aspects of maximum entropy, see the
conference proceedings [22]. Here we do not consider such statistical aspects as these.

As the prototypical example of an ill-posed problem we consider the Fredholm
integral equation of the first kind. So let , Z c ]RN be bounded closed domains, and
let k e C( f). Define the (compact) operator ]C: Ll(f) -- L2() by

(1.1) ]Cf(x) jf k(x, y)f(y)d/(y), x e ,
*Received by the editors May 18, 1992; accepted for publication (in revised form) February 17,

1993.
tDepartment of Mathematical Sciences, University of Delaware, Newark, Delaware 19716 (egger-
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where d#(y) denotes Lebesgue measure on N. We note that the operator/C is also
compact as mapping from Ll(f) into C(2). We consider the equation

(1.2) lCf(x) g(x), x e ,
with given g E L2(), possibly subject to error. In general this is an ill-posed prob-
lem; see Groetsch [12]: solutions may not exist, or the solution f may not depend
continuously on the data g. In typical applications, the solution f is nonnegative, e.g.,
because it represents a density or intensity. Formulating the problem as a constrained
least squares problem, viz.

mimimize IIf 11.)
subject to f > 0,

does not essentially change the difficulty, though. In this paper we study variations of
Phillips-Wikhonov regularization of (1.2) or (1.3), i.e., we consider

(1.4)
mimimize IIf gll.() + c2D(f, qo)
subject to f > 0,

where ( is a regularization parameter, q is the choice for f in the absence of any data,
and D(f, qo) is the smoothing term. The case

(1.5) O(f ) IIZ:(f )11.<),
with : a differential operator, e.g., the Laplacian, corresponds to classical Phillips-
Tikhonov regularization; see Groetsch [12]. Here we are interested in the cross-entropy
functional

(1.6) D(f, qo) f(y) log + (y) f(y) d#(y),

which is defined for all nonnegative f and q (but its value could be +oc). Note that
the integrand in (1.6) is nonnegative. To get a feel for the relation between (1.5) and
(1.6) we quote the inequalities (see Kemperman [15] and also [2])

2 D(

where F f f, (I)= f , and

(1.8) D(f ) < fsu If(Y)- (Y)I 2

pp qa(y)
d#(y),

where we assume that f vanishes almost everywhere where q vanishes. This last
inequality arises from the usual convexity inequality for D(f, qo)-D(f, f) < (D- f).

Volumes have been and are being written to justify the scheme (1.4)-(1.6) from
a statistical point of view; see [22]. In this paper we are concerned with justifying it
as a regularization method, as follows. Suppose that f

_
0 and g satisfy/Cf g and
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that we are given some 5 _> 0 and g with IIg gll " i. Let fa denote the solution
of (1.4) with g replaced by g, i.e., fa solves

(1.9)
mimimize IIf gall() + a2D(f, 99)
subject to f _> 0.

Can we get estimates for Ilfa f]l, and does the estimate tend to zero as (, 5 0
(in some way)? And what is the appropriate norm to use here? In the same vein
we may ask about the dependence of fa on g and 99 for fixed ( > 0. Partial quali-
tative answers to this were obtained by Klaus and Smith [16], complete quantitative
answers were obtained under very strong technical conditions by Engl and Landl [9].
Essentially the same answers to the above questions but without any such technical
conditions derive from the following inequalities for (1.4). If fa solves (1.4), then for
all nonnegative f,

(1.10)

where g(f) IIf gllL()2 + a2D(f, 99), the objective function in (1.4), and if Fa
solves (1.4) with g replaced by G, then

(1.11) III(F, f,) 2 o2D(F,, f) < 4IIL=() + IIG- gll

These inequalities contain all the required information. Note that (1.11) shows a well-
posedness aspect of the problem (1.4): the quantity K:fa is well behaved uniformly in, whereas for fixed a > 0 the solution fa itself is well behaved. The inequality (1.10)
is actually quite well known. Note that IIKf- gl1252() and D(f, 99) as given by (1.6)
may be written as

(1.12)
(1.13) D(f 99) d(f) d(99) (d’(99), f 99),

where N(f) Ilfll(), and d(f) f f(y) log f(y) d#(y), and (.,.) denotes the
inner product on n2(f) and L2(E). Here N’(f) and d’(f) are the Gateaux derivatives
of N(f) and d(f) with respect to f. The inequality (1.10) is now nothing more than the
statement that N and d are convex functions; see Bregman [3] and also [5]. Recently
Chen and Teboulle [6] have made use of this as well. In the entropy context Csiszhr and
Tusnhdy [7] have a similar inequality. We reproduce the proof in 3. The inequality
(1.11) is a corollary to (1.10). All this suggests that we consider more than just
maximum entropy regularization, i.e., consider (1.4) with D any function satisfying
(1.13) for some convex d. Besides (1.5) and (1.6) there are also

(1.14) n(f, 99) log f- /
99(y)

which is known as Burg’s entropy (see [24] for some applications) and

cosh f(y)
(1.15) D(f, 99) log

cosh 99(y)
(f(y) 99(y)) tanh 99(y)} d#(y),
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which arises from d(f) fa log cosh (f(y))d#(y). This choice, or rather a discrete
approximation to jD(hOx f, 0a), with h a stepsize, is suggested by Green [11]. How-
ever, meaningful results can be obtained only if an inequality like (1.7) holds.

Maximum entropy regularization of Fredholm integral equations of the first kind
has been the subject of some recent studies. Klaus and Smith [16] study a discrete
version of (1.9) in the L2()-setting, and prove weak convergence. Engl and Landl
[9] study (1.9) (with a slightly different cross-entropy functional) by translating (1.9)
into a Phillips-Tikhonov regularization problem for a nonlinear equation, and then
applying their general theory of such problems. The translated problem of Engl and
Landl [9] reads

2 0/2 L2()mimimize IllCT(u) g,llL2() + u 2

subject to u _> 0,

where T" T)(T) C LI() -- L2() is an explicitly determined bijective nonlinear
operator such that if f T(u) then

(1.17) u ]ILk(a) f(y) log
f(y) + a(y)

d#(y).

(So the operator T depends on .) However, their general theory requires that the
operator T is weakly closed, which is an annoying technical condition. In our direct
approach via the inequalities (1.10) and (1.11), no such extra conditions are necessary.

In this paper we work out the above in detail. In 2 we prove that the minimization
problem (1.4) has a solution in LI(); in 3 we prove the inequalities (1.10) and
(1.11). In 4 we derive the error and stability estimates, which imply that the method
converges. Under some additional smoothness conditions on ]C we get asymptotic
rates of convergence, and we prove a saturation result. In 5 we discuss the maximum
entropy optimization problem (1.4) for finite-dimensional subspaces. In 6 we consider
the maximum entropy method for approximate moment problems, and in 7 we discuss
the (older) version of the maximum entropy problem for exact moment problems
associated with integral equations in the style of Borwein and Lewis [2].

We finish the introduction with a remark on notation. In the remanider we let
][. denote the norm on the space L2(E) rather than the more cumbersome ]]. ]]L2(E),
so for all g E L2(E)

(1.18) Ilg]l { ]9(x)12d#(x)}
1/2

Norms on other Lp(S) spaces are denoted explicitly as L,(S).

2. Existence of regularized solutions. For good measure we show that the
maximum entropy problem (1.4)-(1.6) has a unique solution in L1 () for every 0/> 0.
The uniqueness follows from the strict convexity of IllCf- gll 2 -+-0/2D(f, p) as function
of f. The essential ingredient in the existence proof is the weak compactness of sets of
bounded entropy. Our proof is different from Borwein and Lewis [2] in that we avoid
using the Kadec property of D(., ), but it is identical in spirit to that of Amato and
Hughes [1] for the problem of minimizing the entropy functional fn f(y)logf(y)dy
subject to the constraint II]Cf- gll -< 5. However, in the process we also prove that
the solution is essentially positive, which is useful later on.
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LEMMA 2.1. The sets M defined as

M { f e L(Q) f nonnegative, D(f qo) <_ M },

are weakly closed, convex subsets of Ll(f).
Proof. The convexity ofM follows from the convexity of D(f, qo) as function of f.

We show the closedness ofM in the norm topology on Ll(f). Suppose that (f,}n c
tM. converges strongly to fo E L (f). Then fn -- fo almost everywhere on f, and so
f, log(fn/qo)+qo-fn --- fo log(fo/qO)+o-fo almost everywhere on f. Since these are
nonnegative functions, Fatou’s lemma implies that D(fo, qo) <_ lim infn D(fn, qo) <_ M,
SO that. fo M. Thus tM is closed in LX(f). The lemma now follows since closed
convex sets are weakly closed; see Holmes [14, 12, Cor. 1].

COROLLARY 2.2. For nonnegative qo L(f) the functional f D(f, qo) is
lower semicontinuous in the weak topology on L(f).

Proof. Let (f}n C M converge weakly to fo e L(f), and let (f’n} be a
subsequence with lim, D(f’n, qo) liminf D(f, qo). By Lemma 2.1 we have that
D(fo, qo). supn D(f’, qo), and since this also holds for any subsequence of (f’}, it
follows that D(fo, qo) <_ lim supn D(f’, qo) lim inf, D(fn, q), which shows the weak
lower semicontinuity of D(f, qo).

Remark. Amato and Hughes [1] prove the weak lower semicontinuity of the func-
tional f fn f log f by appealing to Fatou’s lemma, as in the proof of Lemma 2.1
above, but without explicit recourse to the convexity of this functional.

LEMMA 2.3. For fixed nonnegative qo L(f), the sets M are weakly compact
subsets of Ll(f).

Proof. The compactness follows from the Dunford-Pettis criterion, combined
with the criterion of De La Vallde-Poussin (see [8, Chap. 8, Thm. 3.1]) as follows.
Assume without loss of generality that qo(y) > 0 almost everywhere on f. Define
m(y) f(y)/qo(y). Then f e M is equivalent with m e ,*M, where ,’*M is defined as

JZM (m L(, qo(y)d#(y)) / (m(y)) qo(y) d#(y) <_ M)
in which (I)(t) t log t + 1 t. Obviously, (t)/t oc as t oc. Now the
Dunford-Pettis-De La Vall(e-Poussin criterion applies in the L(f, qo(y)dy)-setting,
and gives us the relative compactness of 9VM in the weak topology on n (f, qo(y)d#(y)).
This is equivalent to the relative compactness of tM in the weak topology on L(f).
By Lemma 2.1, tM is closed in the weak topology on Ll(f), so that the relative
compactness of M implies its compactness.

The above Corollary 2.2 and Lemma 2.3 immediately prove the existence of so-
lutions to (1.4)-(1.6).

THEOREM 2.4. For > O, nonnegative qo L(f) and g L2() the maximum
entropy problem (1.4)-(1.6) has a unique solution f e L(2). Moreover, the ratio
fc/qo is bounded away from zero.

Proof. The functional g(f) IllCf gll 2 + 2D(f, qo) is weakly lower semicon-
tinuous by Corollary 2.2 and the compactness of/C L(f) ---+ L2(). When mini-
mizing g(f) we may restrict attention to those f for which g(f) <_ (qo), so that then
D(f, qo) <_ M with M c-’/?(qo). In other words, we may take f E M as in (2.1).
Thus we are considering a weakly lower semicontinuous functional on a weakly com-
pact subset of L(f), and the existence of a solution follows. Note that fa vanishes
almost everywhere where qo vanishes.
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Now suppose that f/qa < on some set E c ft with positive measure (on which
qa is positive almost everywhere), let 1E be the indicator function of the set E, and
let f fa + AlE. Consider the function L(A) [[/Ef g[I 2 + a2D(f), (p) for A >_ 0.
Then L(A) is differentiable, and

L ’(O) /E [1E*(1Efa g) + a2 log [-l <_ {[[1E*(fa g)[[C() + a2 log i} [E[.

So, if, 5 < exp (-a--[[K*(1Cf- g)l[c()), then L’(0) > 0, so that L(A) is not the
minimum of L(A) for A > 0. But, obviously, L(A) is minimal for A 0, so we have a
contradiction, and f/qo is bounded away from 0.

We note that it is not clear whether the solution fa actually is in L2(f) as well.
The above analysis suggests a negative answer: the fact that D(f, qo) <_ M does not
imply that f E L2().

3. Inequalities for constrained regularized least squares. In this section
we prove the inequalities (1.10) and (1.11) for the regularized least squares problem
(1.4), where D(f, ) has the representation (1.13). Since the nonnegativity constraint
in (1.4) may appear rather special, we replace it with an abstract constraint f E C,
where C is some closed convex set. Since the proper setting of the minimization

2problem (1.4) depends on the particular choice for D (e.g., for D(f, qo) [If- [I Lg-(f)
the setting is the Hilbert space L2(ft), but for the entropy functional D(f, qa) given by
(1.6) the setting is Ll(f) as shown in 2), we let the setting be any Banach space X
of integrable functions on ft, and assume that/C X L2(5]) is at least bounded.
We now consider the problem (1.4) in slightly more abstract setting, i.e., we consider
the problem

(3.1) Pa(g, q)
mimimize e(f) de____f IIf 911 + a2D(f, ),
subject to

where a > 0, g L2(E), C and D given as

(3.2) D(f qa) d(f) d(qa) (d’(qo), f

Here (-, denotes the duality pairing between X and X*, the dual of X, and d is a
strictly convex, Gateaux differentiable function on C, with d’(f) X* for each f E (7.
The following theorem is a result of Bregman [3] slightly modified. The corollary is
vintage (varietal?) Bregman [3]. We remind the reader that [[. denotes the norm
on L2 ().

THEOREM 3.1 (Bregman [3]). Assuming that Pc(g, q) has a solution fa C, we
have for all f ,

II(f f,)ll 2 + a2D(f, f,) < g(f) t(f,).

COROLLARY 3.2 (Bregman [3]). Assuming that the problem

(3.3) miminize D(f ) subject to f C

has a solution f , we have for all f ,
D(f f) <_ D(f q) D(f, q).
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Proof of Corollary 3.2. In the theorem take/E O, the zero operator, and g 0,
the zero function. E]

Proof of Theorem 3.1. We note that the representation (3.2) implies that

D(f qo) D(f,, qo) D(f fo) (d’(fo,) d’(o), f fa) (D’(f qo), f

A similar relation holds for II/Cf- gll 2. Putting these two relations together results in

g(f) (f) IllC(f f)ll (2D(f, f,) (,(f(), f f),

which by the (necessary) Karash-Kuhn-Tucker conditions for a solution of T’ (g, ) is
nonnegative for all f E C.

It is possible to derive a continuity result for 7)(g, ), as follows.
THEOREM 3.3. Let g, G L2(). Let fa solve the problem :P(g, ), and let

Fa C solve the problem :P(G, ). Then

Proof. From Theorem 3.1 we get that

ll/C(f F,)ll + a2D(f,, F)
<_ l[ICf, G[[ + a2D(f, ) -IIICF, Gll 2 a2D(Fo, q).

A Taylor expansion in G around g gives

so that from (3.4) we get that

II:(J’ F,)II + oZD(fo,,Fo,) < 2 IlXZ(f F,)II IIg
+ IlXZf all + oZD(fo,, q) {II1CFo, gll + ozD(F,,

Since fa solves Pa(g, ), the expression on the second line of (3.5) is negative (non-
positive) so that

(3.6) II:(f, F.)II + a2D(f, F) <_ 2 [IE,(f, F)II Ila GII.
Ignoring the a2D term on the left of (3.6) we get a quadratic inequality for I[/C(f
F)II with the result that

II:(f F,)II -< 2 Ila Cll.
Using (3.7) in the right-hand side of (3.6) then gives us the required result.

For the general problem (3.3) an inequality as in Theorem 3.3 does not seem to
be available, nor for the problem 7)a(g, ) if we keep g fixed but allow to vary, let
alone if we vary both g and . Note though that Theorem 3.3 in combination with
inequality (1.7) already shows for the entropy case that

for an appropriate c. For the entropy functional (1.6) we have the following result
regarding continuous dependence on , but the type of variation allowed in is quite
limited.
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THEOREM 3.4. Let D be given by (1.6). Let g E L2(), and let LI() be
nonnegative. Then there exists a constant c such that for all G e L2(E]) and ( e L(f)
for which IIg- GII / lg(/(I))lln(n) is small enough

IIX:(f. F)II2 + a2D(f,, F) <_ c (11 g e 2 + 211

where f solves 79(g, qa) and F solves 79a(G, ).
Proof. Since F solves P(G, (I)) it follows from Theorem 3.1 that

II(f F)ll= + c=D(f, F)
II,CY Oil + c2D(f,, ) IIF Oil = D(F,, ),

which leads to the following variation of (3.5):

(3.9)
II(f F)II 2 + 2D(f,,F) -< 2 II(f F)II IIg

+ I[f gll 2 + c2D(f, (P) {IIF gl[ 2 + (x2D(F,,
+ c2[D(f., (I)) D(f, qo) + D(F, qa) D(F, ()].

Since f solves :Pa(g, ) the second line of (3.9) is negative (nonpositive). The expres-
sion in the last line equals

(f F)log _< IIf FIIL<a>

By means of inequality (1.7) we may estimate

for some constant c, so that

(f F)log c log(/)llL(a) D(f, F).

Substituting this into (3.9) results in

where E II(f F)II, and O O(f, F). After the usual manipulations, in
the proof of Theorem 3.3, the estimate of the theorem follows.

4. Convergence results and error estimates for mimum entropy. In
this section we consider the convergence of the regularization method, and provide
error estimates for mimum entropy. We will be using the results from 3 with

O(f, ) the cross entropy given by (1.6). To motivate the following theorem it should
be noted that for equations Ef g which admit nonnegative solutions its proof is
rather straight forward; this suggests that (constrained) let squares solutions be
admitted well, and that is what we do. So we state first the constrained least
squares (LS) problem:

(4.1) LS: minimize II:f- gll 2

subject to fL(), f>0,
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and then consider the maximum entropy least squares (MELS) problem

(4.2) MELS: minimize D(f, 99)
subject to f solves LS.

The insistence on LI() solutions to the LS problem is a nontrivial regularity condi-
tion. By way of example, we consider the case where k is bounded away from zero on
E , i.e. k(x, y) > kmin for all x, y, for some positive constant kmin. Then it follows
for nonnegative f E LI() that

kmin Il /2 ]lf]lL() ]]f]l IIg[[ + IIf gll,

so that a minimizing sequence for (4.1) is bounded in Ll(fl). Unfortunately, this does
not rule out the possibility that the solution of (4.1) be a nonnegative measure on fl
which is not absolutely continuous with respect to Lebesgue measure. In order for
(4.2) to have a solution we need to require even more than mere L (fl)-solvability of
(4.1); cf. inequality (1.7).

THEOREM 4.1. Assume that the MELS problem (4.2) has a solution fo Ll(fl).
Let f solve the problem 79(g, 99), with I]g*- gl] <- . Then if 5, c -- O, with

/ O, the regularized solutions fa, converge strongly to fo, i.e.,

Ilfa follil(n) ---* 0 as 5 ---, O.

Proof. Applying Theorem 3.1 to :P(gb, 99) we get that

(4.3) IIE(fo f,)ll 2 + a2D(fo, f)
<_ IIEfo gll 2 + a2D(fo, 99) II1Cf g ll 2 a2D(f,, 99).

By Taylor expansion (in g, around g) we get that

The sum of the first two terms on the right is negative since fo is a least squares
solution. Straight forward estimation then gives that

(4.4)

where E II1C(fa5 fo)[I. Then we may write (4.3) as

E2 + a2D(fo, f6) < 26E + a2 [D(fo, 99) D(f6, 99)].

Ignoring o2D term on the left-hand side of this inequality, as well as ignoring the
term -c2D(fa6, 99) on the right, we get that E2 < 26E + cc2, where c D(fo, 99). It
follows that

(4.6) E _< 5 + v/ca2 + 52.

For later use we note that from (4.6) it follows that E/a is bounded as c, 6 0,
with 5/ ---, O, and

(4.7) II (f. fo)ll ----> o for c, -----} O,
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regardless of whether 6/a -- 0 or not. Replacing the left-hand side of (4.5) by zero
we get that

26E
(4.8) D(f,, o) < m(fo, o) + a---U.
Since 5/a -- 0 it follows from (4.6) that 5E/(2 ----+ O, and so from (4.8) that

(4.9) lim sup D(f,,, o) <_ D(fo, o).

Consequently, we have that the fa belong to a set of bounded entropy, so that by
Lemma 2.3 the fa belong to a weakly compact subset of Ll(f). Now let (n, 5n 0,
with n/On 0 as n o, let gn g., and fn f. Then {f} has a weakly
convergent subsequence, say with limit o. For notational convenience assume that
the whole sequence converges weakly. Since/C LI() ---+ L2() is compact then
K:o lim K:f (strong limit in L2(5])). From (4.7) we also have that
so that lCo ]Cfo. Since fo solves the LS problem, then so does o. By the weak
lower semicontinuity of D(., ) (see Corollary 2.2, and (4.9)) we also have that

D(o, ) <_ lim inf D(f,, ) <_ lim sup D(f,, ) <_ D(fo, ).
n n

Since fo is the unique solution of MELS, and o solves LS, then o fo, and

(4.10) lim D(f, o) D(fo, o).
n

From (4.5), ignoring the E2 term on the left, we obtain that

25ED(Io, < + D(fo, ) D(f, ).

Since 5nE/o2n -- 0 as discussed before, we get with (4.10) that D(fo, .f) ---* O.
The inequality (1.7) then shows that Ilfn- follLl(a) -- O. This shows that every
convergent subsequence of {fa, }n converges to fo. Consequently, the fa have only
one accumulation point as c ---+ 0, 6/( 0, and the theorem follows.

The above shows that the regularized solutions converge, but a rate of convergence
is not provided. Inspection of the above proof reveals that in order to get rates we
need to estimate the term a2[D(fo, )- D(f, )] in (4.5). From the easily checked
identity

D(fo, o) D(f,6, o) -D(f,6, fo) + jf (fo f,6) log(fo/),

which holds provided fo/ is nonzero almost everywhere, we see that the assumption

(4.11) log(folio)

for some Qo E L2() would go a long way towards this goal. At the end of this section
we will address the question whether this assumption is at all reasonable.
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THEOREM 4.2. Assume that fo solves the MELS problem and satisfies (4.11).
Let f solve the problem :Pa (g, ), with IIg -gll <- . Then for --. 0 with
the regularized solutions fa converge to fo, and

Proof. Our starting point is (4.5) in the proof of Theorem 4.1. For the relevant
terms in the right-hand side of (4.5) we get by convexity that

D(fo, o) D(fa,, p) <_ I(fo f,6) log "-z,

so that by (4.11)

<_ f.( o zo ) C.Oo

It follows that for some constant c (depending on fo!),

(4.12) a2 [D(fo, ) D(f, )] _< ca2E.

Substituting the estimate (4.12) into the right-hand side of (4.5) gives for some (other)
constant c,

(4.13) E2 / a2D(fo, f) <_ c (5 / a2)E.

Ignoring the a2D term on the left yields E _< c (5 + a2), so that now ignoring the E2

on the left in (4.13) gives D(fo, f,) <_ [c(a + 5/a)]2. The choice a 51/ minimizes
the right-hand side, and finally (1.7) gives the required result.

We have an analogous result for exact data (i.e., 5- 0)
THEOREM 4.3. Assume that fo solves the MELS problem (4.1) and satisfies

(4.11). Let f solve 7(g, o). Then as a --- 0 the regularized solution f converges
to fo and

D(I,, A) O(), II(f, ]o)11 O(":),

as well as

IIA YollL <m
Proof. As in the proof of the previous theorem we get he inequality (4.13) for

E ll(f fo)ll, but now with 5 0, so that

E2+ a2D(fo, fa) <_ ca2E,

from which it follows that E <_ ca2, and then D(fo, fa) <_ c2a2, and (1.7) does the
trick.

We now show the converse of Theorem 4.3. Although this does not show the
reasonableness per se of condition (4.11), it does show that the above error estimates
are possible only if (4.11) holds. This type of theorem is known as a saturation result;
cf. Groetsch [12].
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THEOREM 4.4. Let o e Ll(f) be nonnegative, and let g e L2(E). Let fo be
the solution of the MELS problem, and assume that lC*(1Cfo g) O. Let fa be the
solution of Pa (g, o), and suppose that

D(f, fo) O(42),

Then condition (4.11) holds.
Proof. Since f solves :P(g, o), and since f is bounded away from zero (see

Theorem 2.4) it follows that the gradient of the objective function vanishes, so

(4.14) 2K:*K:(fa fo) + 2 log f"

where we used the assumption that K:*g *lCfo. Let ra -2K:(fa fo)/2, then

II .ll is bounded 0, by our assumptions. Then for a sequence (cn}n, with
Cn ----* 0, we have that (ra}n converges weakly to some element ro E L2(E). Then
(lC*r,}n converges strongly to l*ro in the C()-topology. It follows from (4.14)
that then log(fo/O) 1C*ro, and the theorem follows. M

5. Finite-dimensional approximation of maximum entropy problems. In
this section we consider the convergence of the solutions of the maximum entropy
problems when the maximization is done over finite-dimensional subspaces. So we let
V1 c V2 c c V, c be a nested sequence of subspaces of L (fl), such that Un Vn
is dense in L1(2). We consider the convergence of the solution fn of the problem

(5.1)
mimimize e(f) de___f IIf 11z

/ c2D(f, ),
subject to f E Vn, f >_O,

for fixed a > 0 to the solution fa of the regularized least squares problem (1.4)-(1.6),
as well as the convergence for a cn .---- 0 to the solution fo to the MELS problem
(4.2). We need a suitable, possibly nonlinear projector mapping nonnegative i(t)
functions into nonnegative elements of Vn. We denote this projector by qn. We require
qn to satisfy the following approximation property:

qn maps nonnegative L(t) functions into nonnegative functions in Vn
such that lim D(qnf, f) 0 for all nonnegative f L(f).

Later we will discuss the existence of such q,.
THEOREM 5.1. Let a > 0 be fixed, let o Ll(f2) be nonnegative, and let g

L2(E). Let f, denote the solution of (5.1). Then {fn}n converges to the solution
of (3.1) and

II C(A .t’,)ll + agD(A, f,) < II1C(q,f, f,)ll + aZD(q,f,, f,).

Proof. Theorem 3.1 is the starting point as always. Since fa solves T’(g, o), we
get that

(5.3) II C(f, f)ll + oz2D(f,,, fo,) < e(f,)

Using the identities
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and
-D(fa, qo) -n(qnfa, qo) + n(qnfa, fa) (n (fa, qo), fa qnfa),

we get that

IlIC(fn fa)ll 2 + a2D(fn, fa) < :.(fn)
(5.4) / II](:(A q=f-)ll 2 / a2D(quA,

The expression on the right in the first line of (5.4) is negative (nonpositive) since f
solves (3.1), and quf E Vu as well. The expression on the third line of (5.4) equals
(’(f),qnf J’). Now note that the fact that D(quf, f) is finite implies that
qufa vanishes on the set where fa itself vanishes. Since ’(fa) and fa cannot both be
positive on the same sets of positive measure, it follows that the same holds for ’(f)
and quf. Consequently

(’(A), qua A) O,

so that from (5.4) the result follows.
The inequality of the theorem is quite satisfactory, since the error is related to

how well fa can be approximated by elements from Vu. We are also interested in the
case u 0. To quantify the choice of u we need the quantity u defined as

(5.5) e ll(q,f f)ll 2 / 2D(qufo, fo).

By the assumption (5.2) and inequality (1.7) we have that en --+ 0 as n
THEOREM 5.2. Let LI() be nonnegative, let g L2(E), and let a au with

an ent. Assume that the solution fo of the MELS problem satisfies the condition
(4.11). Then {fn}n converges to the solution fo, and

for some constant c.

Proof. Let en denote the solution of (3.1) for a an. So eu fan. By Theorem
5.1 and inequality (1.7) we have that life- nllil() <_ Cen/an, and by Theorem 4.3
we have that IIn follil() < Can, SO that by the triangle inequality

for some (other) constant c. Since an en the result follows. El

We finish this section with a discussion of the nonlinear projection operator qu
and the associated approximation number en, see (5.5). The best choice (to produce
the smallest n) would be to define quf as the solution of the minimization problem

(5.6)
mimimize IIIC( f)ll 2 + a2D(, f)
subject to Vn, >_0.

Theorem 5.1 implies that the optimal for f f is precisely equal to fu, the solution
of (5.1), and so implies the commutativity of the diagram

(g ) (3.)
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So to show that n 0 it suffices to indicate a Cn E Vn such that /n 0, where

II:( f)ll 2 + c2D(n, f).

By inequality (1.7) all we need to do is show that D(n, f) 0 as n oo. We will
show this for one special choice of the subspaces Vn. Let (ain }i be a nested sequence
of triangulations of f, with maximum diameter tending to zero as n oo, i.e., with
diam(a)- sup(Ix- Yl x, y e a} we require that

(5.8) max diam(ain) ---, 0 (n -- oo).

Let p be a positive natural number. We let Vn be the space of C(-1) piecewise poly-
nomial functions of degree p or less. So Vn if and only if restricted to ain is a
polynomial of degree p or less. No continuity conditions across boundaries of the (Tin

are imposed.
We proceed to construct the Cn for given nonnegative f Ll(f). Let Pn

L(f) ---* Vn be a projection operator, e.g., the choice

(5.9) pnf(y)= f(z) d#(z) for y e ain,
in

would do. Set Cn Ill- PflIL(), then Cn 0 as n 0. Define the sets An, Bn
by

A, { y e f f(y) < , }, B { y e f If(Y) P,f(Y)] > f }.

Then IBnl, the measure of Bn, tends to zero as n ---, oc. Now define Cn (Y) for y ain

(5.11)
Pnf(Y) rain, otherwise,

where min 0 if Pnf(Y) is nonnegative on ain, and min min (Pnf(Y) Y e o’in}
otherwise. So Cn is nonnegative everywhere. Also note that Iminl <_ /. We now
estimate the quantity

f(y)
d#(y) - + f(y)

d#(y),

where Cn \ (An U Bn). First we have that

I(u)- :(u)l ff(y) d#(y) f(y) d#(y) <_ n IAI <_ , Il o (n c),

as well as
I(/) :(/)I /.f(y)

d#(y) f(y) d#(y) 0,

since BI --* 0 as n ---,
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Secondly, on Cn we have that f(y) >_ n and ICn(Y)- f(Y)l < IPnf(Y) f(Y)l +
Iminl, so that

c

I(u)l /c +

Putting the above together shows that

]n(Y)- f(Y)l 2
f(Y)

d#(y) ----. 0 (n ---, oo),

and then from (1.8) we have that D(n, f) 0 as desired.
The above argument becomes a bit more involved if continuity/differentiability

conditions are imposed on the elements of Vn across the boundaries of the triangula-
tions. It seems reasonable to assume that the conclusion would remain the same.

6. Convergence results for moment problems I. In this section we consider
maximum entropy regularization for approximate moment problems, i.e., we assume
that we have available for some nonnegative fo E Ll(2) the data gin with

(6.1) gin [lEfo](Xi) + din, i 1, 2,..., n,

where din represents noise. The exact moment problem in the style of Borwein and
Lewis [2] is considered in 7. Here we regularize (6.1) by means of the minimization
problem

(6.2)

n

minimize E a’ l
i--1

subject to f E Ll(f), f > 0,

/ a2D(f, )

for appropriate weights win, about which more later on. In this setting we run into
trouble with the point evaluation functionals/El [/Ef](xi), which are not bounded
in the L2() setting, viz. there is no constant c such that

(6.3) I[/Cf](xi)[ c llK:fJJ for all f

When D(f, ) [if- where 7-/is a reproducing kernel Hilbert space (RKHS)
there are quite elegant solutions to this; see Natterer [20] and Lukas [18]. A similar
case arises when we assume that g and/El themselves lie in some RKHS; see Nashed
and Wahba [19], and (much) more recently Nychka and Cox [21]. Here we fudge the
issue by considering approximations to the point evaluations in the form

(6.4) r,F(i) F(x)rin(X) d#(x), i 1, 2,... n

for all F C(), and we require an (approximate) interpolation operator pn such
that

(6.5) liF- pnrnFIJc(ro --. 0 as n cx
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for all F E C(E). We set Pn pnrn and we define the weights win by means of

n

(6.6) E Win [rnF](i)= f[PnF](x)d#(x) for all F e C(E).
i--1

We now rephrase (6.2) as

minimize
(6.7)

subject to

g.n(f) de=f IIP,(K:f g.)ll + o2D(f,
f L(), f 0,

nwith gn Pn({gzn}i=l).
In the analysis below it is helpful to have the following quantities available,

(6.8)

We assume that en, Tn 0 as n oc. Note the occurence of the operator I- P,,
so that this requires more than just (6.5). We also assume that , -- 0.

We begin the analysis with a boundedness result.
LEMMA 6.1. Let fn be the solution of (6.7), and fa the solution of (3.1). Then

D(fn, p) <_ D(fo, p) + /o,
D(f, qo) <_ D(fo, ).

Proof. Since f solves (6.7) we have that en(f) _< en(fo), so that ignoring the
term IIPn(Igfn- gn)l] on the left we get

a2D(fn, (P) -< a2D(fo, P) + IIP ( Yo g)ll 2,

Since ]fo g, this proves the inequality. The argument for fa proceeds in the same
way.

COROLLARY 6.2. There exists a constant c such that

Proof. The proof follows from the previous lemma, inequality (1.7), and Lemma
2.3. []

We are now ready to consider the convergence of the entropy method.
THEOREM 6.3. Let LI() be nonnegative, let g, gn L2(E). Let fn denote

the solution of (6.7). Then {fn}n converges to the solution fa of (3.1) and

(
Proof. Since fn solves (6.7) we have that 0

_
en(fa)- en(fn), and since fa solves

(3.1) we have again by Theorem 3.1 that

IIK:(f. f)ll 2 + c2D(A, f,) < g(A)
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Adding both inequalities results in

In the following we let Fa fa -g, Fn fn -g, and 7n Pn(gn --g), as well as
Qn Pn I. Then the above may be rewritten as

IIK:(A f)ll + a2D(f, f,)
< IIP.F. -11 -IIFII / IIFII -IIP.F -11.

By Taylor expansion of the right-hand side this results in

Writing (F, Qn(fa fn)) (QF,K(fa fn)), this results in the inequality

(6.9) E2 / a2D(f, f) _< 2 E An +B2,
where E [IK:(fn- )11, and

(6.10)
Bn IIQ,F 711,
An IIQFII + IIQF.II + I1-II.

We may rewrite (6.9) as (E An)2 / a2D(fn, fa)

_
A2n + B2, so that, ignoring the

first term on the left we get that

a2D(f, fa) <_ A2 + B.
Since we may estimate An and Bn as

Corollary 6.2 and inequality (1.7) then provide us with the required estimate.
We now have a result analogous to Theorem 4.2.
THEOREM 6.4. Assume that ]Cfo g and that fo satisfies condition (4.11). Let

en n + ?n + 5n. Let fn solve (6.2) with a an, where an en/. Then

Proof. We have that A fo < IIA f + f fo II, By Theorem 6.3 and
Theorem 4.3 we then have that

llA AII() < c + 1+ <
an an

the last inequality owing to the fact that 5n/an --- O. The theorem follows.
Specific error estimates follow once the operators rn, Pn and Pn have been chosen,

along the lines of Lukas [18], Nychka and Cox [21], or Nashed and Wahba [19]. It should
be noted that here these operators play a crucial part in the method, as opposed to the
operator qn in 5, which played a theoretical part only. At this point we also mention
that we can avoid the introduction of the approximate point evaluation functionals
rn (see (6.4)), but at the price of an extra factor a-1 in the estimate of Theorem 6.3,
similar to the proof of Theorem 7.2 below. We omit the details.
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7. Convergence results for moment problems II. In this section we consider
the convergence of the maximum entropy method for the moment problem for ]Cf g,
inspired by Borwein and Lewis [2],

mimimize D(f, o)
(7.1)

subject to f_> 0, []Cf](xi) -gi, i- 1,2,...,n,

where the x E E are given, and the data consists of the g g(x) and E LI(f). We
are interested in the behavior of the solution f, as n -- oo. Borwein and Lewis [2]
obtain uniform convergence for some classical moment problems under quite natural
conditions. Here we will be satisfied with obtaining Ll(t) convergence. It should be
noted that as a regularization method the method (7.1) is rather suspect, the biggest
problem being that the constraints with noisy data

(7.2) [lCf](xi) g(x,) + ,, i 1, 2,..., n,

might easily be inconsistent. For consistent problems we have the following result.
THEOREM 7.1. Let o LI() be nonnegative, and let {g} be a bounded se-

quence of real numbers. Suppose that there exists a nonnegative fo L() such that
D(fo, ) < cx, and

Let fn e L() be the solution of (7.1). Then {fn}n converges strongly to the solution

oI
mimimize D(f, o)

(7.4)
subject to f >_ O, [1Cf](xi) ,, i 1, 2,

Proof. Let Cn C L(f) be the set of nonnegative f L(t), which satisfy

[]Cf](xi) gi, i 1, 2,... ,n.

Note that fo Cn so that Cn is nonempty, and obviously the (:n are closed and convex
subsets of Ll(12), and Cm C C, if m > n. Then the solution f to (7.1) exists by
Theorem 2.4, and for m > n we have fm Cn. By Corollary 3.2 we have that

(7.5) D(f,, f) <_ D(fm, ) D(f, ) for all m > n.

Since fo C then D(f, ) <_ D(fo, ), so it follows that {D(fn, )} is a bounded
increasing sequence, hence it has a finite limit. Then the right-hand side of (7.5)
tends to zero as n, m -- oc, and we then have that D(f,,, f) ---. 0 as n, m -- o(with m _> n). From the inequality (1.7) we then get that {fn}n is Cauchy in L(f),
and thus is convergent, say with limit o. It is obvious that o satisfies (7.3). Since

fo Cn it follows from Corollary 3.2 that

0 <_ D(fo, f) <_ D(fo, ) D(fn, ),

and so D(o, ) lim D(fn, ) <_ D(fo, ). Since this holds for all fo which satisfy
(7.3), this shows that o solves (7.4). [3
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It is clear that we are a long way from uniform convergence, and we will not try to
recreate such results. See Borwein and Lewis [2]. However, under the usual conditions
(4.11) it is possible to get Ll-error estimates. So we assume that (x} is dense in ,
with

(7.6) sup mAn ]y-xi
yE <i<n

It follows that lCf(xi) g(xi) for all i implies that lCf(x) g(x) for all x e ], e.g.,
if g C(Z), and f Ll(f). We let rn C(Z) fn be the restriction operator,
defined by

rag(i) g(xi), i 1,2,...,n,

and let ra /Ra C(E) be a prolongation operator, e.g., by means of spline
interpolation of some appropriate order. We let Ha 7nrn, and we assume that for
all F E C(),

[IF- HnF[[c() ---* 0 as n

cf. (6.5). This should not be too much of a requirement in view of (7.6). We need the
following approximation number for the operator K:, viz.

(7.9)

which provides a measure of how well the data []f](xi), i 1, 2,..., n, describe the
function [)f](x), x E E. By (7.8) we have an

THEOREM 7.2. Let L() be nonuegative, let g C(E), and gi =_ g(xi) for
all i. Suppose that fo is bounded away from zero, and that fo solves (7.4). Assume
that fo satisfies condition (4.11). Let fn solve (7.1). Then (fn}a converges to the
solution of (7.4), and for some constant c depending on g and

Proof. From Corollary 3.2 we get that

f
D(fo, f) <_ D(fo, )- D(fn, ) <_ I(fo- fa) log ju.

Jn

By the assumption (4.11) the right-hand side may be written as f OolC(fo fa), and
since HalC(fo fa) IIn (g ]fn) O, this equals

(7.1o) IIn)IC(fn fo)] <_ II olI llf follLl( ).

In the proof of the previous theorem (see (7.5)), it was shown that D(fa, ) <_
D(fo, ), so that {fn}a is bounded in L(), see Lemma 2.3. Applying (1.7) to the
left-hand side of (7.9) then results in the required estimate.

Actual estimates follow from the theorem once the precise setting is specified, as
in 6.
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BIFURCATION FROM A PERIODIC ORBIT FOR A STRONGLY
RESONANT REVERSIBLE AUTONOMOUS VECTOR FIELD*

MARIE-CHRISTINE PROUIME

Abstract. The author considers a reversible system admitting a symmetric periodic orbit such
that the Jordan block belonging to the Floquet exponent zero is four-dimensional, nonsemisimple.
Using the normal form theory around closed orbits, it is shown that, generically, such a solution
is part of a one-parameter family of symmetric periodic orbits. The existence in such a system of
two one-parameter families of symmetric solutions homoclinic to some periodic orbits is also proven.
Finally, the author shows how this problem is related to the perturbed reversible 1-1 resonance vector
fields, and allows its study to be completed.

Key words, reversible systems, Floquet exponents, normal form theory, integrable systems,
homoclinic solutions, 1-1 resonance, Eckhaus instability
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1. Introduction. Let us consider a four-dimensional reversible system du/dt
F(u) with a symmetry S such that F(Su) -SF(u), and let us assume that
this system admits a reversible or symmetric T-periodic solution uo(t) such that
Suo(t) uo(-t). It is proved in [6] that u0 belongs to a one-parameter family of peri-
odic solutions, and, therefore, the Floquet exponent zero attached to the solution u0
is nonsemisimple. In [6], the author studied the case when the Jordan block belonging
to the Floquet exponent zero of the operator du/dt- DF(uo(t))u is two-dimensional;
because of the reversibility the other exponents are =t=A with 0 generically. He
proved the persistence of the family of periodic solutions under small reversible per-
turbations as well as the existence of branches of subharmonic solutions when exp AT
is-a root of unity. (A complete analysis was made in the case when exp AT -1.)

In the present work we study the case when the Floquet exponent ) - 0. More
precisely, if we consider a family (parametrized by v) of reversible systems with a
reversible periodic orbit, the reversibility implies that for each value v this system
admits the Floquet exponents zero (nonsemisimple) and +/-(). Then, we only need
to be a one-dimensional parameter to impose the value of A to be zero at a prescribed
value, say p 0. As two eigenvalues collapse in a nonsimple way generically, the
Jordan block belonging to the Floquet exponent zero is then of the type

0 1 0 0

/0 0 1 0
0 0 0 1
0 0 0 0

So this singularity of a vector field is a priori of codimension one, Using the normal
form theory for flows near closed orbits for an autonomous vector field as developed
in [4], we shall give below a proof that it is in fact of codimension zero.

In 2, we compute a reversible normal .form around the periodic orbit. It turns
out that this four-dimensional normal form admits two first integrals and, therefore,

*Received by the editors January 20, 1992; accepted for publication (in revised form) January
5, 1993.
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is integrable. We study extensively the reduced system, focusing on periodic and
homoclinic solutions.

In 3, we prove that our original system admits in fact a family of symmetric
periodic solutions, Uo which stability changes type [semi-elliptic ,-, semihyperbolic]
precisely at the solution u0. Moreover, we prove that two symmetric homoclinic orbits
are associated to each periodic solution of semihyperbolic type.

In 4, we study a small reversible perturbation of our system and prove that
generically the solution u0 is stable. It follows that the families of periodic and ho-
moclinic orbits are also stable and that our singularity was in fact of codimension
zero.

Finally, we give an example where such a situation occurs: in [5], studying the
reversible 1-1 resonance, the authors proved the existence, in the supercritical case,
of a point E, the Eckhaus point, where periodic solutions change type (elliptic
hyperbolic). In 5, we prove that at the point E, the Jordan block belonging to the
Floquet exponent zero is four-dimensional. We then compute the first coefficient of the
expansion of the normal form to prove that generically the study of the neighborhood
of the Eckhaus point falls within the scope of 3 and 4. So our Fig. 1 is just the
same as Fig. 3 of [5], but here we look at a different scaling. Finally, the present study
completes the study of the neighborhood of the point E of [5].

2. The "reversible normal form."

2.1. The derivation of the reduced equation. Consider a four-dimensional
differential equation

dx
(2.1) d-- F(x),

where x E IRa and F is a reversible vector field. That is, we assume that there exists
a symmetry S in GL(IRa) such that S2 IdlR4 and

F(S )
This implies that if x(t) is a solution of (2.1), so is &(t) -: Sx(-t). A solution such
that x & will be called a reversible solution.

Let us make the following assumptions.
(Hi) Equation (2.1)admits a reversible solution, periodic of period T, say uo(t).

We shall denote by
n(t)--: Dxf(uo(t)), the linearized operator around the periodic solution,
S(t), the fundamental linear operator, solution of the equation

-S(t) L(t)S(t),
(.3)

S(O) Idt4
S(T), the monodromy operator.

It can be easily proved that, as (2.1) is autonomous,/t0(t) S(t)/t0(0) and that,
as a consequence,/t0(0) is an eigenvector of S(T) belonging to the eigenvalue 1.

Our next assumption is as follows.
(H2) The Jordan block belonging to the eigenvector/t0(0) is four-dimensional,

i.e., as

0 1 1 0
0 0 1 1
0 0 0 1
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According to [4], we can find a system of independent T-periodic vector-functions
satisfying

)(2.4) -- + L(t) i(t)

_
(t), i 0... 3, with the convention --1 --= 0.

Note that Co(t) -/to(t) and satisfies~o -0. It follows that 1 is a solution of the
same equation as_l. Then, we have- ao and replacing by + (a/2)0, we
can assume that_l . This now implies that -2 is a solution of the same equation
as 2, i.e.,~that 2 / 2 -/0. Applying’ we can deduce that 2 / 2 0 -0,
i.e., that 2 -2. Using the same argument, we finally prove that we can find the
i’s such that

Si(-t) (-1)i+li(t).

It is proved in [4] that there exists a nonlinear change of variables (normal form) in
the neighborhood of the periodic orbit F -: {u0(t), t E IR}:

(2.6) x(t) UO(T) + (T) + A2(T) + B3(T) + O(T, y),

such that at any arbitrary order (2.1) becomes an autonomous system:

dT
d- l++n (y),

dy
Loy + N(y),

dT

where

y-" and L0-: 0 0 1
B 0 0 0

(I) is T-periodic and smooth in y, n is a polynomial, N is a polynomial vector function,
0, n, and N are

The normal form theory developed in [4] shows that n and N have to commute
with erL); hence, it is proved in [2] that a good choice of n and N is as follows:

n (y) n(, A2 2B),
P(, A2 2B)

g(y) AP(, A2 2B) + P2(, A2 2B)
BPI(, A2 2B) + AP2(, A2 2B)

where Pj are polynomial in their arguments. In our case, as the system is reversible
and as the i’s satisfy (2.5), (I) can be choosen so that it respects the symmetry:

(e.8)

and N can be chosen so that the new system in (y, T) is reversible with respect to S,
i.e.,

(2.9) O(--T, S’y) SO(T, y), N(S’y) -S’N(y),
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which implies that P1 P3 0.
Finally, up to any arbitrary order (2.1) can be written as

d7"- 1 + + n(, A 2B),

de
-T A,
dA
-T S + P(,A2 2B),
dS

Ap(,A2 2B).

By the expression at an arbitrary order we mean that (2.1) writes

(2.11)

dT- 1 / / n(, A2 2B) + h.o.t,

de
TT A + h.o.t,

dA
S + P(,A2 2B) + h.o.t,

dB
AP(, A2 2B) + h.o.t,

where h.o.t stands for T-periodic functions which are O(llyllg+l), with an arbitrary
N.

The solution uo(t) of (2.1) now corresponds to the solution y 0 of (2.10), and
the linearized equation around the basic periodic solution for the transverse dynamics
is

(2.12) --- Loy.
dT

We can sum up these results saying that we have found a reversible normal form
for (2.1) around the periodic orbit F. For more results about reduction of vector fields
with a periodic orbit, see [1].

2.2. Properties of the reduced equations. It is easy to check that (2.10)
admits two first integrals:

(2.13) { K A2 2B,
H B G(, g), where G(, K) =: P(s, K)ds.

As a consequence, (2.10) is integrable and can be written as

(2.14)

de) 2(G(, K) + H) + K,

dA
d- G(, K) + H + P(, g),

B G(, K) + H,
dT

1 + + n(, g).d-
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Let us define f(,K,H) 2(G(, K) -+- H) + K, in such a way that the
equations satisfied by y are

de
-T eV/f ’ K’ H)’

(2.15) dA
TT f(’ K, H)/2, with sgnA.

dB
-T ev/f(’ K’ H)P(’ K)’

We can notice that fixed points of (2.15) are of the type

where (i) o is a double root of the polynomial f, i.e., satisfies

(2.16) 20 (G(o, K) + H) + K 0,

G(o, K) + H + oP(o, K) 0,

and (ii) taking account of A dA/dT 0, B satisfies

(2.17) B + oP(o,-2oB) 0.

For o small enough, it is possible to solve (2.17) with respect to B using the implicit
function theorem. And finally, fixed points of (2.15) write

B(o)

where o satisfies (2.16) and B(o) (2.17). Now, letting o be a double root of f, the
linearized operator in y around the corresponding fixed point is

(2.18)
0 1 0 )L(o) Po + oPo 2oS(o)P 0 1 2o2p
0 Po 0

where Po P(o,-2oB(o)). Its eigenvalues are zero, due to the existence of a
family of fixed points, and +A, where

(2.19) A2 2Po -{- oPo.
2.3. Fixed points and homoclinic solutions of the reduced equations in

the generic case. Let us present the expansions we use below:

(2.21)
P(,K) a +/K +...,

f(u, K, H) c3 + 2/K2 + 2H + K +....
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By "generic case" we mean the case 0. The principal part, for small 0, of the
set where we find double roots for f is then given by (see Fig. 1)

(2.22) { K 2a03,
H -3c02/2,

and

A2 3(x0 4- O(02).

The origin is a singular point, corresponding to a triple root of f, where all the eigen-
values vanish in a nonsimple way. The Jordan block corresponding to the eigenvalue
zero is then three-dimensional.

If we complete our figure, adding the form of the graph of f and the eigenvalues of
L(0), it appears that there exists a one-parameter family of hyperbolic fixed points
along the arc OG. This family can be parametrized by 0 > 0, and we shall denote it
by

(2.24) Yo =: 0
B(0)

Let us also denote by H(0), K(0), and )o the corresponding values of H, K, and
A. For each 0 > 0 there exist orbits homoclinic to Yo which are of the type

(2.25) ho(T, TO)=: A(O(T--TO))
B(0(T TO)) as T B(0)

where (i) the function 0(T) is defined implicitly by the formula

(2.26)
o() ds

ITI sgna
Jo’ v/f (s, g(o), H(o))

(ii) 0 is the other root of f which is simple,
(iii) A() sgn(a( o’))v/f(,g(o),H(o)), B() G(,g(0)) +

H(0).
It follows from the definition that 0(.) is an even function of T and that 0(0)

0’. As a consequence, A(0(0)) 0, and among the homoclinic orbits one is re-
versible: the one corresponding to the choice T0 0. We shall denote it by ho (T).

3. Solution homoclinic to a periodic orbit in the generic case. In the
same way as (2.10) leads to (2.15), which can be written as

dy
F’(U)(3.1)

dT

(2.11) leads to

(3.2)
dy

F’(y) + G’ (y, T)
dT

with G’(y, T) O(llYllN/l).
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along OF

along OG

FIG. 1. Different shapes of the graph of the function f and Floquet exponents of periodic orbits.

Moreover, G is T-periodic and reversible:

(3.3)

In the previous section, we proved that (3.1) admits reversible fixed points and homo-
clinic orbits. Our aim is now to prove their persistence for (3.2).

Each solution y(T) of (3.2) leads to a one-parameter family of solutions of (2.1):

x(t) SO(T) -- D(T)I(T) -- A(T)@(T) + B(T)@(T) + O(T, y(T)),
(3.4) f] dT

t
1 + (r) + n((r), K)"

Note that Si(T/2) (-1)i+li(T/2). So, if y(T) is a reversible solution of
among the corresponding family of solutions of (2.1) two are reversible: the one cor-
responding to the choice T0 0 or T0 T/2.

3.1. Existence of periodic solutions. The proof of the existence of reversible
periodic orbits of (3.2) will go in two steps.

The first step consists in controlling the size of the perturbed solutions close to
some fixed point of (3.1). We shall follow in that part the proof of [5], that is, we shall
show that such perturbed orbits are solutions of a functional equation, and solving
this equation will give us, at the same time, the size of these solutions.

The second step will look for periodic reversible solutions. Our approach here
will be different from the one of [5]: we shall not involve geometrical arguments but
we shall show that the previous functional equation admits a solution in the space of
periodic reversible functions.

Let us look for a solution of (3.2) of the form y(T) Yo + Z(T), IlZll << IlYo II-
O(0). Note that 0 appears here as an additional free parameter. This allows us to
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choose z(0) in any convenient direction transverse to dyo/do. And z has to satisfy

(3.5)
dz

L(0)z N(z) + R(z, T),

where N(z) F(yo + z)- F(yo L(0)z, and R(z, T) G(Yo + z, T), or equiva-
lently,

"r

(3.6) Z(T) erL(o) + e(r-s)L(o)(N(z(s)) + R(z(s),s))ds,
with z(0). We can notice that

(3.7)

N(z) O(llzll),
N(z) N(z’) O((llzll + IIz’ll). IIz- z’ll),

R(z, ) O(0+),
R(z, ) R(z’, ) O(oNIIz- z’ll).

Then, if we denote by Oe the right-hand side of (3.6), and if we let z and z in Cd, the set
of continuous functions I-T/2, T/2] IRa such that [[Z[[T =: supe[_T/2,T/2] [[Z(T)[[ _<
d, there exists M such that

IlOzllT < M (11:11 + (d + oN+)),
IIOz Oz’llT _< M(d + oN) I1 ’11.

We see that one can always find 0, d, and I]511 small enough for O to be a contraction
on Cd. Now, it is a classical result that, when O is a contraction, (3.6) admits an
unique solution in Cd, say z.

Moreover, due to the reversibility, S’z(-t) is another solution of (3.6) starting
at S at t 0, i.e.,

S,z(-t) zs,(t).

It follows that if we choose H =: {y/S’y y}, the corresponding z is reversible.
And z will lead to a T-periodic solution of (3.2) if and only if it satisfies the additional
condition z(-T/2) z(T/2) S’z(T/2), i.e., if and only if

(3.9)

where Ao =: e(T/2)L() -e-(T/2)L(o). Notice that Ao is a linear operator mapping
H onto the one-dimensional subspace A =: {y/Sy =-y}, and which nullspace is
generated by dyo/do. Moreover, one can easily show that S’L(0) -L(0)S’ and
deduce that

SerL(o) e-rL(o)S.
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So, for each II,

It follows that the right-hand side of (3.9) belongs to A and (3.9) reduces in fact to
a scalar equation. More precisely, let us denote by )’o and -o --: So the
eigenvectors of L(o) belonging to the eigenvalues +o. Then, E H writes

dYe + b ()’o + -Ao)"a
de0

As a consequence of our remark on the choice of z(0), we can impose the transversality
condition a 0, and (3.9) can be reformulated as

(3.10) g(b, o) 0, with g(0, 0) 0.

Noting that erL(o)Ao =.eAorAo and erL(o)_Ao e-AOor_Ao one can
compute

TAoAo(Ao + _Ao 2 sinh (o -Ao )"
2

So, applying (3.7) once again, (3.9) leads to

(3.11) bsinh TA 0N+I
2 +O(b2 + )=0,

or equivalently,

(3.12) b_{_o(b2A-oN+l)A
O.

This equation can be solved with respect to b provided that )0N+I/Ao2 is small

enough. We then have I1]1 b O(og+l/Ao). From (2.23), Ao O(ol/2), and,
therefore, ]111 0(02N+/2) Now coming back to (3.8), provided that 02N+/2 <<
1, one can choose d 0(02N+/2). It means that if N > 2, for each value of o > 0,
small enough, (3.2) admits a reversible periodic solution, say Yo (T). Remark that the
bigger N is, the smaller one can choose d. This means that increasing the value of N,
one improves the distance between the periodic solutions of (3.1) and (3.2).

Remark. Notice that the same analysis applies to prove the persistence of the
family of fixed points of (2.1) occuring along the curve OF. The eigenvalues are then:
zero, double, and two pure imaginary complex numbers, +/-Ao [o < 0, Ao E IR]. All
the calculations are the same except that we now choose -(o + -)’o as basis

vector instead ofAo +_Ao and we have to replace sinh(TAo2 by sinh(TAo/2
sin(TAro/2).
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THEOREM. The original solution uo is in fact part of a family of reversible peri-
odic solutions, say Uo which are of semi-elliptic type for0 < 0 and of semihyperbolic
type for 0 > 0.

3.2. Existence of reversible homoclinic solutions. Here again, we shall
follow the proof of [5]. However, in putting our system into a normal form, we have
factored out the phase in our equations, we then have a quite simple way to express
that we are looking for reversible homoclinic solutions.

Let us look for a solution of (3.2) of the form y(T) ho (T) Yo 4- Yo (T) 4- Z(T).
Then z has to satisfy

(3.13)
dz DF(ho(7-))z- g’(z T)4- R’(z, T),
dT

where

and

N’(z, T) --:F(ho (7-) Yo 4- Yo (T) 4- Z(T))
F(ho(T)) F(Yo(T)) DF(ho(T))z

R’(z, ) =: (o() o +o() + z(), ) (o(), ).
We can prove estimations similar to estimations (3.7):

(3.14)

where d is such that Ilyo ()- yo _< d and is assumed to be << 0.
Notice that if z is a solution of (3.13) going to zero as T - +/-OO, the corresponding

y a homoclinic solution of (3.2), we look for solutions of (3.11) in

E,=: {z/ sup Ilz()lle"" <+oo}, 0 < # < Ao, # close to Ao.

In order to solve (3.13), we need some information about the linearized equation
around ho (T) which reads

dz
(3.15)

dT DF(h(T))z=O"

Let po(T) =: (Oho/OT)(T), and ro(T =: (Oho/OO)(T), then one can easily check
that both Po and ro are solutions of (3.15), such that

IIpo()ll- e-’ as - +,
dYoro (T) - de0

as T --* 4-CX,

s’po(-) -po (),

s’o(-) o().

Now, looking for instance at the Wronskian, one can see that (3.15) admits a
solution qo (T) such that

S’qo (-7-) qo (7-), IIqo ()11- e)’o" as 7- +oo.



BIFURCATION OF A RESONANT REVERSIBLE VECTOR FIELD 1587

Let us denote by (Po, qo, r*o) the adjoint basis of (Po, qo, ro). Then one can
check that if z is a solution of the functional equation

(3.16)

T

Z(T) (N’(z(s),s) / R’(z(s),s) Po(S))ds po (T)

(N’(z(s),s) + R’(z(s),s) q;o(S))ds qo(T)

z is a solution of (3.13) lying in H at T 0, therefore a reversible solution. If we
denote by ’ the right-hand side of (3.16), and by Ilzll =: sup e IR IIZ(T)IIell for
z E E, we now obtain, as for (3.8),

(3.17)

We now recall that Ao 0(01/2) and that d-- 0(o2N+1/2), according to 3. Let
us also set # Ao (1- e). Then, provided that 02N-1/2 << e, we can find d such
that O is a contraction on the ball of radius d of E. For instance, one can choose
d 0(oN/e). So, if N _> 2 and 0 > 0 is small enough, (3.2) admits a reversible
solution homoclinic to yo(T) and (2.1) admits two reversible solutions homoclinic
to uo (t). Notice that the bigger N is, the smaller one can choose e; it means that
increasing the value of N, we can improve the exponential tendency of these homoclinic
solutions towards the periodic orbit.

THEOREM. Equation (2.1) admits two reversible solutions homoclinic to each pe-
riodic orbit of semihyperbolic type.

4. Roughness. We are now interested in proving that these families of periodic
and homoclinic solutions of (2.1) are generically stable under small reversible pertur-
bations. From the results of 3 it is enough to prove the persistence of a reversible
periodic solution such that the Jordan block belonging to the Floquet exponent zero
is of the same type as the one attached to u0. The method we shall use derives from
the implicit function theorem and will give at the same time a shorter proof of the
existence of a family of periodic solutions of (2.1). But this method does not allow
us to reach homoclinic orbits. Anyway, as we pointed out, the part in 3 where we
compute explicitly the distance between periodic orbits of (3.1) and (3.2) is essential
in proving the persistence of homoclinic orbits. This is the reason why we include the
two proofs.

Let us consider a reversible perturbation of (2.1):
dx

(4.1) d- F(, x), F(0, x) F(x), F(,,Sx) -SF(,,x).

We wonder on which conditions (4.1) admits periodic reversible solutions of period
close to T, say T/(1+) with

_
0. Let us make the change on the time - (1 +

so that we now look for T-periodic reversible solutions of

(4.2)
dx F(,,x)
dT 1 +
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We can look for solutions of (4.2) of the form x u0 / z. Then z has to satisfy.

dz

(4.3) dT
DxF(uo)z F(, uo + z) F(uo) DxF(uo)z

1+
DF(O, uo) 0 / o(llzll / / ).

To solve this equation we need some information about the linearized operator

dz
(4.4) ji" z -. -d- + DxF(uo)z.

PROPOSITION. Let C (respectively, C) the space of continuous (respectively,
continuously derivable) vector T-periodic functions IR -, IR4. Then ,4" C --, C is a
Fredholm operator of index zero. His kernel is generated by o, and his image is the
orthogonal of the space generated by for the standard scalar product on C"

1/oT(z Z’)T--" (z(t) z’(t)) dr.

It follows that if we denote by C+ (respectively, -) the space of vector functions
such that Sz(t) z(-t) (respectively, Sz(t) -z(-t)), 4 is an inversible operator

+

Proof. Let ((t), ; (t), (t), j (t)) be the adjoint basis of (0(t), l(t), u(t), a(t))
for the standard scalar product on IR4, and G4 the adjoint operator of 4:

dz
(4.5) tA" z -* -T + tDF(uo)z.

Then one can easily check that

(4.6) t,A i+1, i 0... 3,

Moreover, let z E C and f E C,. Then

with the convention 0.

(4.7)

and z C, iff

d(z C)

dT

dT

dT

d
dT

d
-(fl) + (z[) and f[ dT

d (z-(fl;) + (z]) and f[ dT
d (z

=0,

=0,

=0,

It is easy to see that provided that (f )T 0, these equations admit a solution
which is unique up to adding a multiple of 0 and that this solution satisfies

(4.8) (z *+I}T (flC)T, i= 0, 1,2.

This proves the first part of the proposition. The other is a consequence of the fact
that Jt maps (1- into C0+, C1+ into (0-, and 0 (:1-, CI+.
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Then, using the implicit function theorem, (4.3) can be solved with respect to
z E (g,+ provided that and are small enough. Let us denote by z(y, , T) this
solution. The linearized equation around the corresponding T-periodic orbit of (4.3)
writes

dz
(4.9) d-- DxF(, uo + z(, ))z/(1 + ).

We shall denote by q(, , T) its fundamental matrix. Due to the existence of a
family of periodic solutions, 1 is a Floquet multiplier of S(, ,T) at least double
nonsemisimple. Moreover, one can easily check that

T

det q(, , T) exp traceDxF(p, uo + z(, ))/(1 + ),

and that, due to the reversibility, det,.q(, ,T) 1. So, the other Floquet mul-
tipliers are, a priori, exp+TAv,, with Av, E IR or dR, and trace q(, , T)
2(1 + cosh(T),)).

(All assertions concerning Floquet theory are proved in [3], and the way they are
modified by reversibility is extensively studied in [6].)

For a given value of (, ) all the Floquet multipliers are 1 if and only if

(4.10) traceq(, , T) 4.

We then have (q(, ,T)- IdlR,)4 01R4 and, as (q(T)- IdlR4)3 0]R, we still
have (8(, , T) Idt,)3 0t. It follows that if (4.10) is satisfied the Jordan block
belonging to the Floquet multiplier 1 is of the same type as the one attached to u0.
Now equation (4.10) can be solved with respect to provided that

(4.11)
0S

(0, 0, T) - 0.trace

For the normal form, the Floquet exponents are computed in (2.23), and

traceS(C0, T)- 2(1 / cosh(TAo))
trace0(0, T) 2T sinh(T)o dd0

From (2.23), 2Ad)/do --. 3c as 0 -- 0, and we can deduce that

(4.12)
OS

(0, T) 3cT2.trace

We are now going to prove that (4.12) still holds for the complete equation (4.1).
Note that, from (4.3), Oz/O(O, O, T) e Cr+ and is a solution of

dz
dT + DF(uo)z o.

It follows that

(4.13)
Oz

(0,0 T) 1(’).
0
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In the same way, from (4.9) and (4.13), 08/69 is a solution of

dZ
-d-- + DxF(uo)Z (DxF(uo) DF(uo)i)S, Z(O) O.

It follows that

OS
(4.14) (0, 0, -) 8(T) S-I(s)kDxzF.uo(8).I(8)(() DxF.uo(s)./S(s)ds()
Let A =: (Df(uo)( D,F(uo)). Then

3 T
trace 0S (0, 0, T) i=o ((T)S-(s)A(s)S(s)i(O) (0)) ds

3 T[ <(s)8(s),(0) *8-(s)*8(T)C(0))ds.
i=0

One can eily check that 8(s)S-(T) 8(s-T), and that ’8- (s) is the fundamental
matrix of the adjoint equation *Az 0. As a consequence,

s(s)o(O) Co(s),
$(s) (0) (s) + To(s),
8(s)2(0) 2(s) +T(s) + T2o(s)/2,
(s)3(0) 3(s) + T2(s) + T21(s)/2 + T3@(s)/6,

tS(s)-(O) (s) T(s) + T2(s)/2- T3(s)/6,
tS(8)--l;(0) ;(8) T(s) + T2(s)/2,
tS(s)- (0) (s) T(s),

And we obtain

08
(0, 0, T)=Ta <o {)T/6+ T3(<ColC>T + <C C)T)/2trace

Due to the reversibility, the scalar product in factor of T3 and T are zero, nd it
remains that

os
/6trace (0, 0, T)

+ I* *

Now, let us compute the coefficient a of the normal form.
Let x uo + + A2 + B3 + (T, y), then up to the order 2

(4.16) F(x) =o + CDF(uo) + ADzF(uo)2 + BDF(uo)3
+ Df(uo) + D,F(uo)(y, y)/2

dx
(4.17) d =o + (DF(uo)( -o) + ADzF(uo)2 + BDxF(uo)3

0"
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If we expand

n(y) Zn5,kiAJBk’ ((T, y) E (i,J,k(T)iAJSk’

the identification of the terms of order 2 in the equation

dx
F(x),(4.18) (1 + + n(y))-T

leads to

(4.19) -(I)’2,o,o + DxF(uo)2,o,o n2,0,oo -o + (2 + DF(uo)
D,F(uo)(l, 1)/2.

The solvability condition of this equation reads

(nF(uo) D,F(uo)(, )/2 )T O,

and is satisfied due to the reversibility. In the same way, the identification of the terms
of order A leads to

(4.20) -,,o + nF(uo)i,i,o =n,l,00 + a3 + nF(uo)2
n,F(uo)(, 2) + 22,0,0.

The solvability condition now reads

+ (DF(uo)2 D,F(uo)(, 2) [)T + 2 (2,0,0 [)T 0.

om (4.8)and (4.19), we get

<2,0,0 [)T @ (DF(uo) Dx,xF(uo)(l,l)/2 )T

and compute

(4.21)
3a (D,F(uo)(l,l)- 2DF(uo)i

+ (D,F(uo)(,
It follows that

0S
(0,0 T)- 3T2 =T4((Dz,xF(uo)(l O)])T --(DxF(uo)o[)T)/6trace

+ T2((n,xF(uo)(i,
+ (nF(uo)i )T)"

Moreover, writing that A, one gets

+ (DF(uo)( DF(uo)()T
o)
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(D,F(uo)(I, 0) *)T (DF(uo)o * )T + (DF(uo) )T O.

Writing that jt, we obtain similarly

<D,F(uo)(, o) )T <DF(uo)o )T.

As a consequence,

(4.22)
OS

(0 0, T) 3aT2trace -We finally have stated the following.
THEOREM. Generically if [a 0], the solution uo and, therefore, the families of

periodic and homoclinic orbits of (2.1), are stable under small reversible perturbations.

5. Application to the reversible 1:1 resonance. Let us consider a four-
dimensional differential equation

(5.1)
dX
dt

jz(#, X),

with a fixed point at the origin such that the linearized operator for # 0 has a 1:1
resonance, i.e., such that

O --wo 1 0 IDxiTZ(O, O) wo 0 0 1
0 0 0 -wo
0 0 wo 0

In [5], the authors showed that if in addition the system is reversible, (5.1) can be put
into a normal form that writes

(5.3)
dX
dt

with

X B A,B ,

and P, Q polynomial in their arguments such that P(0, 0, 0) Q(0, 0, 0) 0.
The system (5.3) is rotationally invariant, i.e.,

y, (,, R X) R Y’(,, X),

and admits two first integrals:

where Re -eL, and B iB

(5.4) where G(#, u, c) --: (#, s, c)ds.
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If we define

x=" eAe-io y =: mAe-iot,
z-" eBe-iWo T -: ;mBe-iwot,

then X is a solution of (5.3) if and only if X is a solution of

Z

T

dR
(5.5) d--- 9v(#’ X),

with

:(#, f() :F’ (#, f() woLf(
yp(#,u, c) + z
xp(#, u,,c) + "-p(, u, :) + x(#, u, :)
zp(, u, :) + (,u, :)

and u
It is proved in [5] that the system (5.5) admits periodic solutions of type

(5.6) X(t) RatX,

where

satisfies

(5.7) J:’(#,X) (wo + a)LX.

The linearized equation around the periodic orbit O =" {f((t)/t e IR} is

(5.8)
dZ

(t)Z O,
dt

with (t) Dx.(_#, f((t)) DxJz’ (#, f((t)) -woL. If we let Za be an eigenvector
of : --: DxYZ’ (#, X) (wo + a)L, belonging to the eigenvalue A, then Za (t) =:

RatZa is a solution of
dZ
d-- (t)Z Z.

This proves that the Floquet exponents of (5.8) are mod. a, the eigenvalues of
Moreover, one can compute

(5.9)

where

0 1 1 0
’0

a+c 0 0 c= A2-ro(a-b+c) 0 0 br*-c
0 (1 - 0

"0 "0

ro ro
rl A2 2 rl

c P[cror, q Quro 2
7"0 rO
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When A 0, the eigenvectors of are

=ha belonging to
LX roX+, -t-2 :t:: a the eigenvalue 4- A’ -rlc’o, 0

belonging to
the eigenvalue zero.

Notice that the eigenvenvalue zero is not semisimple because, differentiating (5.7) with
respect to :, one obtains

dX:(5.10) E dc

According to (16) and (17) of [5] we have

do:LX.

(5.11) U2Q(u,U, :) + :2 0, a 7(,u,) +

We can deduce that

(5.12) du= -2c d_ 1 l1dc Au: dc u Auc
It is proved in [5] that in the supercritical case [(0/o)(0, 0, 0) > 0], when

# > 0, there exists a point (the Eckhaus point E of Fig. 3 in [5]), where 0. As
we get to this point, -- 0, d(=/d: -oc and all eigenvectors X+ tend towards
LXE ---: LXcE. Moreover, when 0 [: :E], one can check that all eigenvalues of
/:E =: ::E vanish and that, as ab 0, Ker(E) is one-dimensional, i.e., the Jordan
block belonging to the eigenvalue zero is four-dimensional.

We are now going to define a rescaling so that all these "critical" periodic orbits
we found for # > 0 appear for p 0. Using the same notation, as in [5], we expand

(,,) -+ + +... [, > 0].

After the change of parameter p2 =: 1/3, we get at the first order,

2 ()3/2 2

2 2

2 /3
2/3 2

UE E + 2 +...,
e2 e2

a=-2u+..., b=2u+--., c=u+...,

and

(5.13)

0 1 01- 0 0 1E 32 0 0
0 _2

_
0

If we make the rescaling,
(5.14)

=. t, (,)1 5(-(,,,) + (,,,))
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then is a solution of (5.5) if and only if is a solution of

(5.15) d__ fi’(u, 2)d
Note that

XE 0 -f(E 2 0
0 0

rlE 1

(5.16) (#,u, tc) u2(ug- 3) + O(u3), T’(#,u,:) O(u2),

(0,2)= (-a)
(:a- 3)

,, , + o(u),

So now the solutions 2E(t) of (5.5) correspond to the solution E( Rf(E of
(5.13), when u 0. Moreover, our rescaling has been chosen in such a way that

(5.17)

0 1 1 0

/E --1 0 0 1
3 0 0 1
0 --1 --1 0

The matrix E is nilpotent of order 4, and a good choice of a Jordan basis for ,E is
as follows:

1 1= 2x/0= 0
0 1

/001/ 1 /-1/4/022= 1 3= 2x/
0 -If we let i() Ri, the relations Ei i- lead to

(5.18)

o( dR](E (),
dt- +(3 (3 -(,

The adjoint basis of (0, 1, 2,-3) is

i- 1,2,3.
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If we let (t R_, one can check that

(5.19) - -- tE( ( i*+l (, i 0... 3.

Due to the expression of the and * and the rotational invariance of/, (4.21) takes
the "simpler" form

with, according to (5.16),

3
0

-3&

This allows us to compute

(5.20) c -4.

So, the study of the reversible 1:1 resonance enters into the frame of 3 and 4
with c -4 in our problem the origin in the (H, K) plane is just the same as the
point E in [5].

Acknowledgments. The author would like to thank Andr Vanderbauwhede
for the attention he has paid to this work, and the referee for suggesting a great
improvement to an earlier result.
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CONTINUED FRACTION REPRESENTATIONS OF MAXIMAL
AND MINIMAL SOLUTIONS

OF A DISCRETE MATRIX RICCATI EQUATION*

CALVIN AHLBRANDT

Abstract. Explicit constructions are given for the "maximal" solution Wn+ and the "minimal"
solution W- of the discrete matrix Riccati equation

Wn+l An + Wn(Wn + Cn-1)-lcn-1

given "disconjugacy" of the associated self-adjoint linear difference equation

--A(Cn_1Axn- 1) + Anxn O.

These constructions provide characterizations of the recessive solutions at -o and cx of the linear
equation. In the special case where An and Cn are positive definite, the solutions Wn+ and W- have
the simple continued fraction representations (using Dn =-- C1)

Wn+ lim An-l-}-
I I I I I

Dn-2 + An-2 -+- Dn-3 + + AM+I + DM

and
I I I I I I

lim Dn- --W Noo An + Dn + An+l + + AN-1 + DN-1

respectively. The periodic coefficient case provides a matrix extension of a result of Galois. Matrix
extensions are also provided for continued fraction results of Euler and Pincherle.

Key words, matrix continued fractions, discrete Riccati equations, maximal solution, differ-
ence equations

AMS subject classifications. 39A10, 30B70, 11Y65

1. Introduction. As in Ahlbrandt and Hooker, [5] and [6], consider a vector
difference equation

(1.1) -A(Cn-IAxn-1) + Anxn O,

where An and Cn are r x r real symmetric matrices with Cn nonsingular for all integers
n. The associated matrix difference equation is

(1.2) -i(Cn_liXn_l) + A.X. O.

By expanding the forward differences, (Auk Uk+l --uk), these equations have the
form of symmetric, three term recurrence relations

(1.3) -CnXn+l Cn-lXn-1 "- Bnxn 0

*Received by the editors January 31, 1990; accepted for publication (in revised form) September
21, 1992.

iDepartment of Mathematics, University of Missouri, Columbia, Missouri 65211.
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and

(1.4)

with B, C + Cn-1 + A,.
The corresponding discrete Riccati equation is

(1.5) W--I A, + W,(W, + Cn_1)-1C_1

Solutions X, of (1.2) and W of (1.5) are related by

(1.6) Wn (Cn-liXn-1)Xll

In previous joint work with Hooker [6] it was shown that a hypothesis of "even-
tual disconjugacy"of (1.1) implies existence of a recessive solution of (1.2) at and
corresponding "eventually minimal" Hermitian solution, W-, of the Riccati equation
(1.5). An analogous treatment will now be given for the recessive solution at
and the corresponding "primordial maximal" solution, W+, of (1.5). This language
is chosen because solutions which start outside the "interval" [W-, Wn+] can be ex-
tensible. This contrasts with the continuous case where no solution can extend to the
right if it starts below W-(t) nor extend to the left if it starts above W+ (t). However,
as a consequence of results of [6] and Theorem 6.1, below, it follows that under the
disconjugacy hypothesis, any Hermitian solution Wn of (1.5) on (-cx), cx)) can vio-
late the condition W <_ Wn _< Wn+ a finite number of times at most. The Riccati
interpretation of the Reid constructions [36] of the recessive solutions will prove con-
vergence of generalized, continued fraction representations for Wn+ and W-. These
results for W- also improve the previous results given in [6]. The general theory is
then applied to special cases of periodic coefficients, positive-definite coefficients, and
constant positive-definite coefficients. The latter case adds perspective to the results
of [6], where the constant coefficient results were obtained by time-reversal methods.
The results in the periodic case are related to a study of periodic and reverse periodic
continued fractions by Merkes and Scott [28]. In particular, the result of Galois [18]
cited there [28, Cor. 1, p. 26] suggested the aesthetic notational relationship of Wn+
to W- given in the abstract. Furthermore, it shows the dependence of the "mini-
mal" solution upon present and future coefficients, whereas the "maximal" solution
depends upon all past coefficients. Ryde [38, Chap. V, pp. 67-82] discussed relation-
ships between finite continued fractions and their reciprocals (he called them "inverse"
continued fractions).

Arscott [7], [8] also used the type of construction used by Reid [36] and Gautschi
[19] in the study of the recessive solution of three term recursions arising in eigenvalue
problems for periodic solutions of Mathieu’s differential equation. Noncommutative
continued fractions have been studied by Fair [15]-[17], and by Denk and aiederle [13].
Reference [13] includes an extensive bibliography. The question of "oscillation" of (1.2)
was recently investigated by Chen and Erbe [10] and by Peterson and Ridenhour [32].
Peterson and Ridenhour [32, eq. (8)] point out that the Riccati equation can also be
written in the form

(1.7) AWn-An-Wn(Wn+Cn_I)-Wn.

This shows that the iteration (1.5) carries Hermitian W to Hermitian W+I.
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This work was motivated by more complicated Riccati equations arising in the
discrete regulator problem; see, for example, Vaughan [44].

Theorem 8.1 makes possible an "analytic theory" formulation of matrix continued
fractions. A theory of "symplectic continued fractions" is introduced in 13. That the-
ory allows extensions of theorems of Euler and Pincherle to the matrix case. Theorem
13.1 equates convergence of a matrix continued fraction with convergence of an associ-
ated series. Theorem 13.2 establishes equivalence of existence of a recessive solution at
x) with convergence of a continued fraction. It is to be noted that 13 requires no sign
conditions on the coefficients, other than Cn nonsingular, and assumes no Sturmian
theory. The experienced reader should start by reading 13.

2. Terminology and basic propositions. The notation U’ denotes the con-
jugate transpose of U.

PROPOSITION 2.1. If Un and V are solutions of (1.2), then the bracket function

(2.1) {Un, Vn} UtnCn_I AVn_I --[Cn_IAUn_I]tVn
Utn_IC_IVn UnCn_IV_

has A{Un, Vn} O; i.e., (Un, Vn} is constant. Also,

(2.2)

Proposition 2.1 also holds for vector solutions. Vector solutions u and v are
called conjoined [35] if {Un, vn} 0. A vector solution u is called self-conjoined
if {Un, u,} 0. A matrix solution X is called prepared [23] (or self-conjoined) if

0.
PROPOSITION 2.2 (variation of parameters). IfX, is a solution of a homogeneous

equation AXn-1 + FnXn 0 with X, nonsingular for M < n <_ N, then Yn is a
sOlution of the nonhomogeneous equation AYn_I + FnYn Gn if and only. if Yn has
the form Yn XnVn, M < n <_ N with Vn a solution of the first-order equation

(2.3) AYn-1 z.llGn_ M < n- 1 _< N.

PROPOSITION 2.3 (reduction of order). If X, is any prepared solution of (1.2)
with Xn nonsingular for M < n <_ N, then Yn is a solution of (1.2) if and only if it
has the form

(2.4) Yn Xn[P- Sn,N(X)Q], M < n <_ N

where

(2.5) P X;1YN, Q {Xn, Yn}

and

(2.6) { o,
Ek--nT1N (XCk_lXk_l)_l,

Furthermore, Yn is prepared if and only if

n=N,
n<N.

P’Q Q,P.



1600 CALVIN AHLBRANDT

PROPOSITION 2.4. I.fUn is any solution of (1.2), then each of the 2r x r matrices

has the same rank. In particular, if bin has full column rank r at one point n, then
has rank r for all n.

A prepared solution Un such that/4n has full rank is called a prepared basis.

3. Sturmian theory. Jerry Ridenhour and Allan Paterson have pointed out to
the author that the definition of conjugate intervals used in [3]-[6] is not appropriate
for Theorem 3.1 of [5]. The definition should be as follows: For integers p and q with
p < q, the intervals [p, p + 1] and [q, q + 1] are conjugate if there exists a self-conjoined
vector solution xn of (1.1) such that

(3.1) xpCpXp/l <_ 0 and x’qCqxq+l <_ 0

with Xp+ 0 and Xq O. Equation (1.1) is called disconjugate on [M- 1, N] if the
interval [M- 1, N] contains no pair of conjugate intervals.

THEOREM 3.1 (see [5]). Assume An and Cn are real symmetric and Cn is non-
singular for all n. Let M and N be integers with M < N- 1. Then the following
conditions are equivalent.

(i) If u is a real vector solution of (1.1) on [M,N] with U’M_CM_UM <_ 0 and
UM 0, then

u’nCnun+ > 0 for n M,..., N 1.

(ii) If v is a real vector solution of (1.1) on [M,N] with VN_CN_IVN <_ 0 and
VN-1 O, then

vCnvn+ > O for n= M-1,...,N- 2.

(iii) Equation (1.1) is disconjugate on [M- 1, N].
(iv) There exists a prepared matrix solution Xn of (1.2) on [M,N] with real

entries such that
Xn_ C_ Xn > 0 /or n M, N.

(v) There exists a sequence Wn of real symmetric matrices, defined for n
M,..., N + 1, with Wn + Cn-1 > 0 for n M,..., N satisfying the matrix Riccati
equation (1.5) for n M, N.

(vi) The quadratic form ,72 defined by

N

J[] (A_)’C_Ay_ +A
M

is positive definite on the class of real vector sequences with 7]M-1 0 7IN.
Since the quadratic form 72 has a matrix representation, we have the following.
COROLLARY 3.1. Disconjugacy on (-cx), x) is equivalent to the condition that

the block tridiagonal matrix

BM --CM ]--CM "’.
--CN-2 BN-1
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is positive definite for every M, N, with M < N- 1.
Hence this work is conceptually related to Wall’s positive-definite continued frac-

tions [45, Chap. IV]. Indeed, this condition will make all inverses exist in our matrix
continued fractions. (The referee has pointed out that there is a "related but distinct"
paper of MacNerney [27]. That paper extends many of the results of Wall’s text [45,
Chap. IV] on positive-definite continued fractions to continued fractions of operators.)

THEOREM 3.2 (Sturm separation theorem [6]). Assume A, and C, are real sym-
metric matrices of order r with Cn nonsingular. If (1.1) is disconjugate on [M- 1, N]
and Un is any prepared basis, then the following applies:

(i) There exist at most r points m in [M, N] such that Um is singular; and
(ii) There exist at most r points m in [M, N] for which there exist unit vectors

r(m) such that
< o.

COROLLARY 3.2. Suppose (1.1) is disconjugate on (-oc, N] and U, is a prepared
basis. Then there exists an integer P in (-oc, N) such that

(3.2) UCnUn+I > 0 on (-oo, P].

In particular, U, is nonsingular in some neighborhood of-cxz.
4. A Hartman-type construction of the recessive solution at -o. We

assume that (1.1) is disconjugate on some neighborhood of -oc, say (-oc, N+ 1]. Let
Xn be the solution of (1.2) with

(4.1) XN I, XN+I O.

Then XiCnXn+I > 0, for n < N- 1, by condition (ii) of Theorem 3.1. Apply
Proposition 2.3 with P I and Q -I in order to define Yn by (2.4). Then Y= is
prepared and

Y X[I + Sn,N(X)] for _< N,

where SN,N(X) 0 and S,,N(X) > 0 for n < N. Furthermore, S,,N(X) increases
as n decreases. Thus Yn is nonsingular for n < N and the roles of Xn and Y= can be
reversed for the identity

X Yn [I S,N(Y)] for n _< N,

since the Q in this case is {Yn, X,} -{X,,Yn}’= -(-I)’ I. Compare (4.2) and
(4.3) for the identity

(4.4) I (I- S,,N(Y))(I + Sn,N(X)), n < N.

Since the second factor is increasing as n decreases and exceeds I for n < N, the first
factor must be decreasing as n decreases and satisfy 0 < I- Sn,N(Y) < I for n < N.
Thus Sn,N(Y) is bounded above, Hermitian and increasing as n decreases; hence it
has a positive-definite limit S-o,N(Y). (The solution Y is dominant at -oc.) The
recessive solution at -oc is formed as in [23], [2], and [6] (for the recessive solution at
oc) by defining a new solution by

(4.5) Zn Yn[S-m,N(Y) Sn,N(Y)], n < N.
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Then Yn-1Zn 0 as n -oc. Also, Zn is nonsingular for n _< N and Zn is prepared.
Reverse the roles for

(4.6) Yn Zn[(S-o,N(Y))- / Sn,N(Z)].

Let # be the maximum eigenvalue of (S_oo,N(Y))-. Then ZYn <_ #I + Sn,N(Z)
and all eigenvalues of Sn,N(Z) must go to oc as n -- -oc. Thus

-, 0 as

THEOREM 4.1. Suppose An and Cn are real symmetric with Cn nonsingular .for
all n. Assume that (1.1) is disconjugate on (-oc, g + 1]. Then there exists a solution
Zn of (1.2) which is recessive at -oc. It has the following properties:

(i) Zn is nonsingular .for n <_ N;
(ii) Zn is prepared;
(iii) ZnCn-lZn-1 > 0 .for n < N;
(iv) [Sn,N(Z)] -1 "-4 0 as n
(v) If Yn is any prepared solution with {Yn, Z,} nonsingular, then Yn is non-

singular .for n near -oc and Y-Zn
The proof of condition (v) is immediate from the proof of part (iii) of Theorem

4.1 of [6], given on pp. 19-20.

5. A Reid-type construction of the recessive solution at -x. Assume
that (1.1) is disconjugate on (-oc, N / 1]. For M < N, let Un(M, N) denote the
solution of (1.2) which satisfies the boundary conditions

(5.1) UM(M, N) O, UN(M, N) I.

Assume that Zn is constructed as in the previous section. Without loss of generality,
assume ZN I. Then there exists a matrix QM such that

(5.2) Un(M,N) Zn(I- Sn,N(Z)QM), n <_ N.

In particular, n M gives

(5.3) QM --[SM,N(Z)] -1 - 0 as M --+ -oc

and hence

(5.4) Zn-- lim Un(M,N) for n_< N.
M--o

Thus there can be only one solution Zn with ZN I and property (iv) of Theorem
4.1.

Reid [36] used variational methods to establish that the recessive ("principal")
solution at oc of a self-adjoint disconjugate linear matrix differential equation was gen-
erated as a limiting case of a two-point boundary-value problem. The author, while
a student under Professor Reid, once asked him how he knew to use that construc-
tion. He replied that he was motivated by Sansone’s discussion of the Thomas-Fermi
equation. See Sansone [39, pp. 445-450] for a summary of the literature and a proof
of existence and uniqueness of a solution of the boundary-value problem

xl/2yt, y3/2, y(0) 1, lim y(x) O.
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Reid’s variational proof is patterned after the construction of Sansone. However, as
done here, it requires less variational understanding to use Hartman’s construction for
existence and Reid’s construction for uniqueness.

Gautschi [19] credits the analogous backward recurrence construction for. the re-
cessive solution of scalar difference equations to J.C.P. Miller. This method was also
used by Olver and Sookne [29].

THEOREM 5.1. Suppose An and Cn are real symmetric, Ca is nonsingular, and
(1.1) is disconjugate on (-oc, N + 1]. Then the recessive solution Zn of (1.2) with
ZN I is given by (5.4) .for Un(M, N) the unique solution of (1.2) which satisfies the
boundary conditions (5.1).

6. Definition, properties, and construction of W+. Assume that (1.1) is
disconjugate on (-x), N / 1] and Zn is the recessive solution at -oc with ZN I.
Then

(6.1) ZtnCn_lZn_l > 0 for n <_ N,

and W+ may be defined by

(6.2) Wn+ (Cn_I/Zn_I)Zll_ for n _< N + 1.

Then

(6.3) W2 + Cn-.1 Cn-lZnZl_l
(Z11)’(Zn_1Cn_1Zn)Z11 > 0

for n _< N and W+ is a real symmetric solution of the Riccati equation

(6.4) Wn+l A, + W, W, + Cn C

Suppose that Wn is any other Hermitian solution of (6.4) which is left extensible. We
now show that

(6.5) Wn <_ Wn+

for n in some neighborhood of -. Let N be chosen so that W,+Cn-1 is nonsingular
for n <_ N. Furthermore, it is possible to choose N so that W + C_1 is positive
definite for n _< N. This is possible because of the corollary to the Sturm theorem,
Theorem 3.2, applied to the solution Xn of (1.2) defined by XN I and

(6.6) Xn-1 (Wn --Cn-1)-lVn-lXn, n <_ N,

which necessarily has

(6.7) Cn-IXn > 0Xn-1 (Wn + Cn-1)Xn-1 Xn_

for n in some neighborhood of-x). Then, for N chosen as above, we have

(6.8) Z Xn(I- Sn,N(X)Q) for n _< N.

For Un(M, N) as in (5.1), there exists a matrix FM such that

(6.9) U(M,N) Xn(I- Sn,N(X)FM), n<N.
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In particular, FM (M,N(X))-1 and

(6.10) Q= lim FM= m (SM,N(X))-1,
M---*-o M -o

where

O, {x.. z.}

by using n N + 1. Since we wish to compare Wn to Wn+, note that

(6.12) Wn+ Wn Cn-IZnZll -Cn-XnX_ n < M + 1

But n N + 1 and XtN+ICNXN XtNCNXN+I give

(6.13) WN++I WN+I Q lim (SM,N(X))- > 0
M---*-oo

with equality if and only if X is recessive at -cx. Since N can be chosen arbitrarily
close to -cx we have the "maximality" of W+ stated in the following theorem.

THEOREM 6.1. Suppose An and C, are real symmetric, C, is nonsingular and
(1.1) is disconjugate on (-c, N + 1]. Then W+, the solution of the Riccati equation
(6.4) corresponding to any solution Z of (1.2) which is recessive at-cx has represen-
tation

(6.14) W+ lim C,_(AUn-(M, N))U_(M, N)
M----o

for n <_ N. This solution Wn+ has the "primordial maximality" property: For any left
extensible Hermitian solution Wn of (6.4), the inequality

(6.15) Wn < Wn+

is satisfied on some neighborhood of-cx.
7. Continued fraction representations of W+. The result of Theorem 6.1

could be restated in terms of any solution Un(M) with

(7.1) UM(M)=O, UM+I(M) nonsingular.

Then Wn(M), defined for M + 2 < n < N by

Wn(M) (Cn-AUn-(M))UX_I(M),

satisfies the Riccati equation

(7.3) Wn+(M) An + Wn(M)[Wn(M) + Cn-]-Cn-, n- M+2,...,N- 1.

If we wish to approximate WN+, then we need to know WM+2(M) in order to start the
iteration (7.3). Rewrite (1.2) as

0 -A(Cn-AUn-(M))+ AnUs(M)
[-(CnAVn)V; + (Cn_lAVn_l)U; + An]U,
[-Wn+l (M) + Cn-l(I Un-IU;) + An]U,
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and choose n as M + 1, for the starting value

WM+2(M) AM+I W CM
for the iteration (7.3).

THEOREM 7.1. Suppose that N is such that (1.1) is disconjugate on (-oc, N/ 1].
Then, for any positive real number e, there exists an M in (-oo, N- 1) such that the
value of WN(M) defined by the iteration (7.4), (7.3) has

(7.5) IIW+N- WN(M)II2 < e..

This shows that computation of Wn+ requires knowledge of all "previous" coef-
ficients, namely, A,-I, Cn-2, An-2, Cn-3, If the coefficients are periodic, then
these computations are possible; results for the K-periodic case are given in 9.

8. Approximants as iterates of linear fractional transformations. Define
matrix linear fractional transformations Tn by

(8.1) T,(W) A, + W(W + C_x)-xC,_x

The approximant WN(M) of WN+ given in Theorem 7.1 can then be expressed in terms
of these linear fractional transformations. Recall the iteration

WM+2(M) AM+I "t- CM

(8.3) W,+I(M) A, + W,(M)[W,(M) + Cn_l]-lCn_l, n M + 2,... ,N 1.

Then

(8.4) WN(M) TN-1 0 TN-2 o..’o TM+3 o TM+2(AM+I - CM).

Given an initial Hermitian matrix Z, define the function T(Z) by

/(Z) TN-1 o TN-2 o...o TM+3 o TM+2(Z).

Then T(Z) is the result of starting the solution of the Riccati recurrence with WM/2
Z and following it to the right to WN. It will be shown that this expression can be
written in terms of a linear fractional transformation involving Z and two solutions of
the linear equation. These "analytic" methods are being developed for the treatment
of the case of periodic coefficients of the next section.

The prototype for this construction is that of Wall [45, pp. 13-16]. We first
summarize the relevant points of his definition of continued fractions as compositions
of MSbius transformations.

Wall defines tp by

to(w) bo + apt (w) +
p 1, 2, 3,

The associated continued fraction generated by

lim totl...t(O), i.e., lim totl’"tn+l
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is

The quantity

bo + al

bl -t- a2

b2+

al
tot1.., tn(O) bo + bl + a

b.+
"+(anlbn)

is called the nth approximant. The 0th approximant is t0(0) b0.
Composition of the linear fractional transformations gives

An-w + Antot tn(w)
Bn-lW + B’

where the quantities An-, An, Bn-, Bn satisfy the fundamental recurrence formulas:

A-1 1, A0 bb, B_I 0,

A+ bp+ Ap + ap+ Ap-1,

B+ b+ B + a+ B_

Bo= 1;

for p 0, 1, 2,
Finally, Wall inductively computes the determinant of the composite transforma-

tion t(w) tot tn(w) by

An-1 An
Bn-1 Bn

An- bnAn- + anAn-2
Bn- bnBn- + anBn-2

An-2 An-1
Bn-2 Bn-1

so that
An-Bn AnBn- (-1)naoal an, n O, 1,2,...,

where a0 must be taken equal to unity.
Note that in our case all the ap are 1, so the determinants are all 1. Since we

are taking only every other approximant, we expect constancy of these determinants
as functions of n.

The essential idea which we now emulate is that the corresponding solution of
the linear system gives "projective coordinates" for the approximants. Given any two
linearly independent matrix solutions Un and Vn of the linear system (1.2), any other
solution Xn may be expressed uniquely in terms of Un and Vn. Corresponding to the
initial-value problem

WM+2 2, Wn+l T(Wn), n >_ M + 2,

let X be defined as the corresponding solution of the linear equation defined by
XM+ I and

(8.6) X Cll(Wn --Cn-1)Xn-1, M + 2 <_ n <_ N.

Then XM/2 CI1+1Z - I. Let Un and V be the solutions of (1.2) which satisfy the
initial conditions UM+ I UM+2 and VM+I O, VM+2 CM+I-1, respectively.
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Then Un and Vn are prepared with (Un, Vn} I. Thus, Xn UnF1 + VnF2 for some
constant matrices F1 and 1"2, namely, F I and 1"2 Z, i.e.,

(8.7) + y z.

Then

(8.8) + +

and we have shown the following.
THEOREM 8.1. For N larger than M + 2, the composite transformation T(Z)

defined by (8.5), which carries the solution starting at WM+2 Z to WN T(Z), is
the matrix linear fractional transformation of Z given by

(8.9) T(Z) (EZ + F}(GZ -4- H}-,
where

(8.10) E CN-1AVN-1, F CN-AUN_,
G VN-1, H UN-1

for solutions Un and Vn of (1.2) with initial conditions

(8.11) UM+I I UM2 and VM+I O, VM+2 CM+-11,

respectively. Furthermore, the "determinant" of this transformation is

(8.12) E F
G H EH- GF I,

and we also have the remaining "symplectic" conditions

(8.13) E’G G’E O and F’H H’F O.

The concepts of symplectic matrices and associated linear fractional transforma-
tions will be discussed in 13.

9. K-periodic coefficients. Suppose (1.1) is disconjugate on (-oc, oc). As-
sume that the coefficients are K-periodic, i.e., for some positive integer K,

(9.1) An+K An, Cn+K Cn for all n.

Then as in [6, p. 2] or [37] maximality implies that Wn+ > Wn++g and hence W+ is
K-periodic. The iteration of Theorem 7.1 can be continued until convergence with
only a finite number of coefficients. Indeed, set M + 2 N- K in (7.4) and iterate
by setting WM+2 WN.

THEOREM 9.1. Suppose that (1.1) is disconjugate on (-oc, oc) and K-periodic.
In the following algorithm, WN converges to W+N

(1) Initialize by setting WN-K AN-1 + CN-2. Then iterate by the following.
(2) For n N g,..., N 1, set Wn+l An + Wn[Wn + Cn-1]-ICn-1.
(3) Compare WN-K with WN. If they "agree," stop; else, set WN-K WN

and return to (2).
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Theorem 8.1 allows us to step from WN-K to WN by using the composite function
7". Then the problem is reduced to finding a fixed point for the linear fractional
transformation 7"(Z). Other values of Wn can then be found by iterating the Riccati
equation. This role of the linear equation is somewhat like the corresponding Floquet
theory in linear ordinary differential equations with periodic coefficients.

THEOREM 9.2. The algorithm of Theorem 9.1 can be replaced by the following:
As above, set M + 2 N- K.

(1) Initialize by setting Z AN-1 + CN-2.
(2) Forn M+2,... ,g compute the solutions Un and Vn of(1.2) which satisfy

the initial conditions (8.11).
(3) Compute E, F, G, and H by (8.10).

z  r(z)
(5) Replace WN-K by Z.
(6) For n N g,..., N 1, set Wn+l An + Wn[Wn + Cn-]-lCn-.
The fact that, for our setting, a convergent periodic continued fraction converges

to a solution of a quadratic equation

(9.2) Z{GZ + H} EZ + F

is a generalization of Theorem 176 of Hardy [22]. (The converse of that result, Theorem
177 of Hardy [22], says that the continued fraction which represents a quadratic surd
is periodic. According to Hardy [22, p. 152] that result is "Lagrange’s most famous
contribution to the theory.")

The special case of K 1 is the constant coefficient case.
COROLLARY 9.1. Suppose An and Cn are constant and (1.1) is disconjugate on

(-oc, oc). Then Wn+ is constant and satisfies the discrete algebraic Riccati equation

(9.3) W A + W[W + C]-C.

Initialize by W A + C and iterate by overwriting W with A + W[W + C]-IC
repeatedly in order to obtain W+. Furthermore, for any choice of the integer K, the
algorithm of Theorem 9.2 can also be used on the constant coefficient case.

We have shown that the periodic case can also be solved by reducing the problem
to the solving of a matrix quadratic equation (9.2).

For noniterative solution methods for matrix quadratic equations of Hamiltonian
form, see the papers of Potter [34], Vaughan [44], Hewer [24], Laub [26], and Byers
[9], as well as the references contained therein.

10. Positive definite coefficients. One case where we know that (1.1) is dis-
conjugate on (-cx), cx) is the case where

(10.1) An > 0, Cn > 0 for all n.

Indeed, condition (vi) of Theorem 3.1 is immediate. (The tridiagonal matrix of the
Corollary to Theorem 3.1 has a property which can be thought of as a generalization
of diagonal dominance.) In this case the approximants WN(M) of Theorem 7.1 are
positive definite and satisfy

(10.2) Wn+(M) An + [C_11 + W-I (M)] -1, n-M+2,...,N-1.
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This is because (7.4) makes WM+2(M) > 0 and (7.3) inductively makes Wn+I(M)
positive definite if Wn(M) is positive definite. Set Dn C1 for the iteration:

(10.3)
I

WM+2(M) AM+I 4" [DM] -1 AM+I -- D---’
I

I n=M+2,...,N-1.

Thus, in modern continued fraction notation,

(10.4) WN(M) AN---I I I I I
DN-2 + AN-2 T DN-3 T 4- AM+I + DM

for M+2 < N.
THEOPEM 10.1. Suppose An and Cn are positive definite on (-oc, oc). Then

(1.1) is disconjugate on (-oc, cx) and .for any n the approximants (Dn =--C"1

(10.5) Wn(M) An- +
I I I I

Dn-2 "k- An-2 + + AM+ + DM

converge monotonically from above to Wn+ as M --. -oc. Furthermore, the approxi-
mants

(10.6) nn-1 -- I I I I I
An + Dn + An+ + + AN-1 + DN-I

converge monotonically from below to -(W)- as N --. oc, where W is the unique
minimal solution of (1.5).

The unique, eventually minimal solution W- corresponds to the recessive solution
at oc. It follows readily from Theorem 4.1 of [6] that the approximants are generated
by

(10.7) Wn(N) (Cn-AUn-(N))U_(N), n < N,

where Un(N) satisfies UN(N)--0 and UN_(N) nonsingular. Then

WN(N) CN-I(0- UN-(N))Ucl_ (N) --CN-1

and
Wn+I(N) An + Wn(N)[Wn(N) + Cn-]-Cn-,

Inducting to the left, Wn+l (N) negative definite implies that

n<N.

0 > Wn+(N) An Wn(N)[Wn(N) + Cn-1]-lCn-1, n<N.

Hence, if Wn+(N) is negative definite, then Wn(N) is nonsingular and satisfies

Wn+(N)- An [C_ + W(N)]-1 < 0.

Thus, for n < N,
W(N) + Dn- -JAn Wn+(N)] -x
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Wn(N) is negative definite, and

(10.8) -wgl(N) Dn-1 + A, Wn+l (N)

for n-- N-1, N-2, Since-WN(N)- D1_1, relation (10.6) follows by iterating
(10.8). Convergence to (W-)-1 follows since the approximants Wn(N), i.e.,

Wn(N) -[Dn-1 i+/- i]A + D, + + DN-1

-1

are known to converge to W- as N c [6, Thm. 4.1, part (v)].
COROLLARY 10.1. Suppose An and Cn are positive definite and K-periodic. Then

the iteration which starts with Wn A,-I + Cn-2 and iterates by

(10.9) Wn An-1 + I I I I I
Dn-2 + An-2 + ...-}- An-K + Dn-K-1 + Wn

converges montonically from above to W+. Convergence may be accelerated by using
Theorem 9.2. The corresponding iteration which starts with Vn Dn-1 and iterates
by

(10.10) Vn Dn-l+
I I I I I
An -k- Dn nt- + Dn+K 2 "nt- An+K -+" Vn

converges monotonically from below to -(W-)-1

Note that (10.10) could be rewritten as

(10.11) Vn Dn-K-1 -- I I I I I
An-K -t- Dn-K -t-"’" + D,-2 + An-1 + V,’

which generates the "reverse" periodic continued fraction to (10.9). Hence the above
corollary provides a matrix interpretation of the scalar result of Galois [18] cited in
[28, Cor. 1, p. 26]. Indeed, the results of 9 establish that for each n, there exists a
matrix quadratic equation for which W+ is a solution.

It is important to not write the continued fraction representation of Wn+ of The-
orem 10.1 as

I I I
Wn+ An-I -- Dn-2 nt- An-2 + Dn-3 nt-

since Wn+ is obtained as a contraction (Perron [31, Chap. I, 4, pp. 10-16]) of this con-
tinued fraction. Indeed, these continued fractions can diverge even though their even
and odd approximants converge. Wall has the following result [45, p. 28, Thm. 6.1]"
If the series y Ibpl converges, then the continued fraction

1 1 1

bl + b2 + b3 +.-.

diverges. The sequences of its even and odd numerators and denominators, A2p,
A2p+l, B2p, B2p+l, converge to finite limits F0, F1, Go, G1, respectively, where

F1Go FoG1 1.
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11. Positive-definite constant coefficients. In the case where A and C are
positive-definite constant matrices, Wn+ and W- are of period 1, hence constant. The
existence and uniqueness of W+ and the relationship with W- were obtained in [6,
Thin. 8.1] by the method of time reversal. We summarize the known facts in light of
the above continued fraction representations.

THEOREM 11.1. Suppose A and C are positive definite. Then .for D C-1,

I I I I
(11.1) W+--lim A/ / / / /

and

I I I I
(11.2) -W- --lim

D + A + D + + D

In particular, W+ A- W-. Furthermore, if W is any Hermitian solution of

(11.3) W A + W[W + C]-IC, i.e., WC-IW AC-1W A O,

then
W- <W<W+.

Also W+ and W- are the only solutions which are positive definite and negative
definite, respectively.

The estimates W- > -C and A < W+ < A + C obtained in [6] are immediate
from these continued fraction representations.

The two forms in (11.3) are equivalent since both are equivalent to

(11.4) (W- A)C-(W + C) W.

Indeed, if W is a solution of (11.4) and u is a vector with (W + C)u 0, then
0 (W A)C-I(W + C)u Wu -Cu and therefore u 0. Thus, any solution W
of (11.4) has W + C nonsingular.

An example where additional Hermitian solutions of (11.3) exist is obtained by
taking A and C as scalar matrices A aIn and C CIn, with a and c positive. For
w+ and w-, the positive and negative roots of

W2 aw ac O

we have W+ W+In and W- w-In. But (11.3) and (ll.a) have 2n solutions
consisting of diagonal matrices W with diagonal entries chosen from w+ and w-.

12. Numerical methods. Numerical experiments with Matlab show that con-
vergence of these continued fraction representations can be quite slow, although they
are stable and preserve symmetry. In the variable coefficient case, one is faced with
the difficult choice of how many "terms" are necessary. The continued fraction must
be computed from "tail to head." A second try with more terms gives a feeling for how
many significant digits have been achieved. If more terms are needed for a good esti-
mate, then a completely new calculation must be carried out. This does give an idea of
the rate of convergence and some feel for how far one is from convergence to machine
precision. This difficulty of knowing how many terms and successively recomputing
was addressed in the scalar case by Gautschi’s "second" and "third" algorithms; see
[19, 4, pp. 42-46].
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Attention is now focused on the constant coefficient case. A few terms of the
continued fraction representations of Theorem 10.1 can be used to provide starting
values for the more rapidly convergent Newton’s method. Consider the matrix function
F defined by

(12.1) F(W) WDW- ADW- A,

where D C-1 and A are positive definite. Then

(12.2) F(W 4- H) F(W) + WDH 4- HDW- ADH + HDH.

If we neglect the "quadratic" term HDH and choose H so that F(W 4- H) 0, then
Newton’s method is to replace W by W 4- H, where H satisfies

(12.3) (A- W)DH- HDW F(W).

If A and D are positive definite and W > A, then A- W and W have no eigenvalues
in common and (12.3) has exactly one solution H; furthermore, H is real symmetric.
Indeed, use the numerically stable Cholesky decomposition of D, D LL’, for L lower
triangular with positive diagonal entries [20, p. 89] in order to rewrite (12.3) as

L’(A- W)LX XL’WL L’F(W)L

for X L’HL in order to .obtain an equation of the form

(12.4) XP 4- QX R,

where P and Q are the negative-definite matrices P -L’WL, Q L’(A- W)L,
and R L’F(W)L. If we choose q (IIPII2 + IIQII2)/2 in Smith’s Algorithm [43],
then (12.4) can be written in the form

(12.5) (qI Q)X(qI P) (qI + Q)X(qI + P) -2qR.

Rewrite this equation as

(12.6) X UXV S

for U (qI-Q)-l(qI+Q), V (qI+P)(qI-P)-, S -2q(qI-Q)-lR(qI+P)-1

Then the solution X is given by

(12.7) X EUk-SVk-
k--1

which converges since U and V have 2-norm less than 1 (see Smith [43, p. 199]). The
solution X is obtained as the limit of the iteration Yo S, Y,+ Y, 4- U2y,v2".
That is, Smith speeds up the convergence by repeatedly squaring U and V. Thus
X gives H and W is replaced by W 4- H. The iteration can by started with W
as any of the approximants of W+ of (11.1). Then H can be obtained by Smith’s
algorithm. One step of the iteration (10.2) or Theorem 9.2 can be used to stabilize
and symmetrize the iterations in between using the Newton method. It is to be noted
that if D1/2 were used instead of L, the Newton iteration would be unstable. While it
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is not obvious from (12.4) that H is symmetric, it is true that this solution H is also
a solution of the Newton iteration for

G(W) WDW 1/2ADW 1/2WDA A.

That is,
(1/2A- W)DH + HD(1/2A- W) G(W) F(W).

For L as before, rewrite this as

L’(1/2A- W)DHL + L’HD(1/2A- W)L- L’F(W)L,

PK + KP R

for g L’HL, P L’(1/2A- W)L, and R L’F(W)L. Since P is negative definite
if W > A, this equation has one and only one solution K, which must be symmetric
since K also satisfies

KP + PK R.

Furthermore, K and H are positive definite if F(W) is positive definite. (See
Hale [21, Lemma 1.5, p. 315].)

For A and D positive definite, W+ must agree with the unique positive-definite
solution of the symmetric equation, G(W)= 0 (see [6, pp. 33, 34] and Coppel [12]).

13. Pincherle’s theorem for symplectic continued fractions. A famous
theorem due to Pincherle [33, Chap. III, 15, pp. 228-230] says that a three term
recurrence relation has a recessive solution if and only if the associated continued
fraction converges. See Jones and Thron [25, Appen. B] for a statement of this result.
Jones and Thron call such a solution minimal. Pincherle used the terminology integrale
distinto. (W. T. Reid later used the term distinguished for the corresponding solution
of the Riccati differential equation.)

We now construct a theory of symplectic continued fractions in order to investi-
gate the corresponding theorem for the self-adjoint case. We already know that under
a disconjugacy hypothesis, we have a recessive solution at oc, and the corresponding
solution of the Riccati equation, W-, has a continued fraction representation. The
Fibonacci recurrence, Yn+l Yn + Y,-I, when written in self-adjoint form

-(-1)nyn+ (-1)n-lyn- + (-1)nyn O,

where cn (-1)n and b (-1)n an, has the recessive solution y r, for r2
the negative root of r2 r + 1, but it fails to be disconjugate on any neighborhood
of cx). Indeed, the sequence {cnr2r2’+1} changes sign and the Sturm separation the-
orem (Theorem 3.2) implies that no real solution y, can have cynYn+l positive in
any neighborhood of oc. (This can also be seen from the Legendre necessary condition
given in [4]. For minimization problems, bn must be nonnegative and for maximization
problems, bn must be nonpositive. Since bn (-1)n, the Jacobi condition cannot be
satisfied and every neighborhood of cx) must contain conjugate intervals.) This exam-
ple contrasts with differential equations where eventual disconjugacy is equivalent to
existence of a recessive solution. Thus, for discrete problems, the question of criteria
for existence of recessive solutions is more interesting than in the corresponding con-
tinuous theory. The purpose of this section is to investigate the question of extension
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of Pincherle’s theorem to systems. Additional insight is provided for. scalar self-adjoint
recurrence relations.

As noted in Theorem 8.1, we are led to a class of linear fractional transformations
of the form

(13.2) T(Z) (EZ + F)(GZ + H)-1

whose coefficients satisfy

(13.3) EG GE, FH HF, EH- G’F I.

Associated with the transformation T are the matrices A4 and defined by

(la.4) .M= c; H J= 0

The matrix 3/1 is called a symplectic rntri (Siegel [42]) if conditions (la.a) are
satisfied, i.e., .M,].M . Since this condition is equivalent to 3d- -,].M",
the inverse of the symplectic matrix 3d is given by

(la.) 3-= -a, E,

Since .M- is a two-sided inverse, conditions (la.a) are equivalent to

(13.6) EF FE, GH HG, EH’ FG I.

Note that the symplectic matrices of order 2r form a group under multiplication.
Associated with a symplectic matrix A/I is the symplectic transformation T. It
follows that

(13.7)

Hence, the symplectic transformations form a transformation group. We also write

Tn for the transformation associated with a symplectic matrix A/In. Note that A/[ and
-A/[ give the same transformation T. (Seigel identifies these matrices.) Symplectic
transformations are of special interest not only because the transformation 7" of 8
is symplectic, but because the transformations Tn defined by (8.1) are symplectic.
Indeed, if we set Dn-1 C-11, then the transformation

(13.8) Tn(Z) An + Z(Z + Cn_l)-lVn_l

can be rewritten as

T,(Z) An + Z[Dn-IZ + I]-1 {An(Dn-IZ + I)+ Z}{Dn-lZ -[- I}-1,

i.e., in symplectic form,

(13.9) Tn(Z) (EnZ + Fn)(GnZ -}- Hn)-1,

with associated symplectic matrix

(13 10) A/,- [En
L (n Hn Dn-1

+I
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However, those transformations run the wrong direction since they were designed to
approximate W+. Thus we need to take a fresh start to compare with the usual
Pincherle theorem.

Since Pincherle’s theorem concerns the recessive solution at oc, our continued
fractions are motivated from the representation

(13.11)-W-- lim
I I I I I I

D,-I + A, + D, + A,+I + + AN-1 --t-- DN-1

which is valid when the An and Dn are positive definite.
Recall the definition of T given in (8.5), i.e.,

(13.12) "I"(Z) TN-1 o TN-2 o...o TM+3 o TM+2(Z).

In the statement of Pincherle’s theorem given in Jones and Thron [25, p. 403], the
continued fraction considered is

al a2

b + b2 -[-

Thus, we will start with Az[, for n 1. Hence we set M + 2 1, i.e., M -1, and
replace N- 1 of (13.12) by N in order to define TN, for N >_ 1, by

(13.13) o o...o

For each positive integer N define a transformation ’-N by

provided )--1 rN(_Z)"

Since all the matrices A/In are symplectic, they are invertible, and the transformation
8N is remarkably easy to invert, namely, Z 8N(W) -T7(>V-1) is given by

(13.14) Z -T-l o Tl o o TI(w-1).

Let us denote T-1 by s. Then

(13.15)

where, because of (13.5) applied to (13.10), sn has coefficient matrix

I -A ](13.16) A4- -D,_ Dn-lAn q- I

Application of Theorem 8.1 with N- 1 replaced by N gives the alternative represen-
tation of TN

(13.17) 7"N(Z) {CNAVNZ + C aU v}{VNZ + UN}

for solutions U and V of (1.2) with initial conditions

(13.18) U0-I-U1 and V0-0, V1-C-I,
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respectively. Since the coefficient matrix is symplectic, we have

s (w) +

(13.19) s (w) + +

The relevant transformations involving sn are given by

(13.20)
Sn(W-1) {I- AnW}{-Dn-I + (Dn-lAn + I)W}-1

sn(O) {O An}{-Dn-lO + (Dn-lAn + I)}-1.

We are now prepared to define the continued fraction approximants associated
with the sequences of matrices An and Dn. We say that SN(0) is the Nth approximant.
For solutions Un and Vn of (1.2) defined by the initial conditions (13.18) we have
the characterization .N(0) Uv(Y/)-1 But each of the Tn and sn take Hermitian
matrices to Hermitian matrices; hence SN(O) is Hermitian and

(13.21) SN(O) VIUN.
The corresponding continued fraction is the sequence of approximants {SN(0)}. We
will say that the continued fraction converges if Vn is nonsingular for large n and the
sequence of approximants has a (finite) matrix limit.

This compares favorably with the relation for -W- given in (13.11) when the
coefficients are positive definite. Indeed, in that case

(13.22) $1(0) D-1

and

I I I
(13.23) s(0) Do + - + D

The iteration in this case, namely, SN(VV-1)[w=o -Dv and

sn(O) -{Dn-1 + (An O)-1}-1,

allows one to see that (13.15) does yield approximants SN(O) corresponding to the
right-hand side of (13.11).

The above matrix approach to continued fractions depends heavily on the applica-
tion of matrix representations of Mhbius transformations to scalar continued fractions
given by Schwerdtfeger [40], [41].

Another representation of the approximants results from a series interpretation of
convergence. The following is related to Theorem 2.1 of Wall [45, pp. 17-18]. However,
it is more closely related to the original paper of Pincherle [33, pp. 228-229].

From the bracket function identity, {Un, Vn } I, and relation (2.1) we have

(13.24) Un_ Cn_ VnVJ1 UnCn_ V-_11"
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Since Vn is prepared, we may use Cn_lVnV_11 (Vtn_l)-lVtnCn_l in (13.24) for the
identity

Urn_ (Vtn )-1VtnCn_i-UtnCn_1--V-21-1

Therefore,

(13.25) (Vn)-1Un_l(Vn_l)-1 U(Vn)-1 Vn-_11C- 11
Define Rn by Rn (Vtn+lCnVn) -1. Then Rn is Hermitian and for p _> 1,

p--1

(13.26) q,+p(O) ,(0) E Rn+k.
k=O

Hence, the continued fraction converges if and only if V, is nonsingular for large n
and the series

(13.27) E Rk, i.e., y(V+lCkVk)-1

k-n k=n

converges; furthermore, in case the continued fraction converges to a matrix , then
is Hermitian and, for n chosen sufficiently large, we have

(13.28) v-lun- E(V{+ICkVk)-I.

These results are summarized as follows.
THEOREM 13.1 (Euler [14]). Suppose that An and C,-1 are Hermitian with Cn-1

nonsingular for n >_ 1. Let D, C1. For U, and Vn the solutions of (1.2) which
satisfy the initial conditions

(13.29) Uo I U1 and Vo O, VI CI,

assume that V, is nonsingularforn >_ M. Then the approximants SN(0), i.e., VIUN,
converge if and only if the series k__M(V+lCkVk)-1 converges. Furthermore, if the
continued fraction converges to a matrix f, then f is Hermitian and is given by (13.28)
forn _M.

For the history of the equivalence between convergence of continued fractions and
convergence of series, see Perron [30, p. 18] and [31, pp. 16-20], and the original paper
of Euler [14, p. 63].

We are now prepared to investigate the problem of generalizing Pincherle’s theo-
rem. Unfortunately, the development of the theory of recessive solutions given in 4
and 5 depended upon disconjugacy and the resulting Sturm theorem. A prototype
definition for our purposes might be that used by the author in [1, pp. 172-173]. That
definition did not use the reduction of order formula. However, we can carry out a
reduction of order formula here by using the solution Vn.

We generalize our definition of a recessive solution at oo to the following.
A solution Yn of (1.2) is said to be recessive at oc if it satisfies the following

conditions:
(i) Yn is a prepared basis;
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(ii) If Xn is any solution with {Xn, Y=} nonsingular, then Xn is nonsingular for
large n and

(13.30) XIY, 0 as n oc.

Hence, the right-hand counterpart of conclusion (v) of the above Theorem 4.1 is
taken as a definition. Also, compare with condition (iv) of Theorem 4.1 of [6, p. 14].

THEOREM 13.2 (Pincherle [33]). Assume the hypotheses of Theorem 13.1. If there
exists a recessive solution of (1.2) with Yo nonsingular, then the partial denominators,
Vn, are nonsingular .for large n and the continued fraction converges. Conversely,
suppose that the denominators Vn are nonsingular for large n and the continued frac-
tion converges to . Then there exists a recessive solution Yn of (1.2) with Yo I.
Furthermore, -CoAYo W

Proof. Assume that (1.2) has a recessive solution Yn with Y0 nonsingular. Then,
there exist constant matrices P and Q such that

Y UP + VQ for n 0,1,

Indeed, P- Y0 and Q (Co)(Y -P). Also (Vn,Yn} -Yo -P is nonsingular.
Hence Vn is nonsingular for large n,

v-lynP-1 v-lan _].. Qp-1,

and v-lan has a limit. Hence the continued fraction converges.
Conversely, assume that the continued fraction converges to D. Let Y, be the

solution defined by

(13.31) Y, Un- Vngt.

We will show that Yn is recessive at oc. Since Vn is nonsingular for large n, we write

and observe that vlyn - 0 as n --, 0,3. From the initial conditions Y0 I, and
Y1 I- c-lf, we see that YOCoY1 is Hermitian, hence Yn is a prepared basis.
Equation (13.28) gives the identity

(13.32) U, Vn" "- Yn E(V+ICkVk)-I

Substitution of this value of U in (13.31) gives

(13.33) Y, Vn E(

Now use Vn and Yn as a basis. Suppose that Xn is a solution with {Xn, Yn} nonsin-
gular. We first establish that there exist constant matrices P and Q such that

(13.34) Xn V=P + YnQ.
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Indeed, use n 0 and n 1 to conclude that Q X0 and P CoX1 + (Co gt)Xo.
Then (XI,Y} -P’ and P is nonsingular. But the form of Yn given in (13.33)
implies that

(13.35) [ ]Xn Vn P T (V+ICkVt:)-Q
k--n

Since the series converges to 0 as n --, oc, we conclude that V-IXn -- P and conse-
quently Xn is nonsingular for large n. Finally,

XYn [VnP + YnQ]-IYn (P + V-IynQ)-IV-IYn -- O.

Thus Yn is recessive.
The computational value of these results is illustrated by the scalar example of the

Fibonacci recurrence (13.1), where the recessive solution is Yn r, for r2 the negative
root of r2 r + 1. The solution un of the initial-value problem Un+l Us--1 + Un with
u0 1, Ul 1, is the nth Fibonacci number; let us denote it by fn. Then vn fn-1
and Cn (- 1)n. Thus (13.28) becomes

fn
o (_1)k

fn--1 kn fk-lfk

Since the series is alternating with terms decreasing in magnitude to 0, the ratio of
successive Fibonacci numbers fn/fn- approximates -w- within 1/(fn-fn). Fur-
thermore, successive approximants provide a nest for the true value.

We now give the continued fraction representation of W. Let Uu,n and VM,n
be the solutions of (1.2) which satisfy the initial conditions

(13.36) UM-1 I UM and VM-1 0, VM C/I_I

Make the definition

(13.37) M,N()/)) --SM 0 8M+l 0’’’0 8N()-1).

Then the approximants satisfy

(13.38) 3M,N(O) V-1 UM,NM,N

and the following corollary gives a continued fraction representation of W.
COROLLARY 13.1. Suppose that An and Cn-1 are Hermitian with Cn-1 nonsin-

gular for n > M. If (1.2) has a recessive solution Yn at c with YM- nonsingular,
then the approximants SM,N(0) are definedfor large N and converge to -W.

The above result extends Theorem 1.1 of Gautschi [19, p. 31]; see also part B of
Theorem B.4 of Jones and Thron [25, p. 403]. Gautschi used continued fractions to
estimate the Bessel functions Jn (x), which (for fixed x) are recessive solutions of a self-
adjoint three term recurrence relation. By doing so, he avoided the inherit instability
in calculation of the recessive solution from an initial-value problem for a three term
recurrence relation.

Finally, because eventual disconjugacy implies the existence of a recessive solution
[6, Thm. 4.1], we have the following sufficient condition for convergence.
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COROLLARY 13.2. Suppose that An and Cn-1 are Hermitian with Cn-I nonsin-
gular for n >_ M- 2. Assume that (1.2) is disconjugate on [M- 2, ). Then (1.2) has
a recessive solution Yn at cx) with Yn nonsingularfor n >_ M 1, and the approximants
SM,N(O) are defined for N >_ M and converge to -W4.

Note added September 22 1992. In the time since this paper was written
continued fraction representations have been obtained for more general Riccati equa-
tions than those considered here. Those equations are variable coefficient versions of
those of Vaughan [44]. The paper by the author which contains those results is entitled
"Geometric, analytic, and arithmetic aspects of symplectic continued fractions." That
paper is to appear in a special volume entitled Analysis, Geometry and Groups: A
Riemann Legacy Volume edited by T. M. Rassias and H. M. Srivastava, and published
by Hadronic Press, Palm Harbor, Florida.

Acknowledgment. The author wishes to express his thanks to the referee for
constructive comments and for pointing out the work of MacNerney [27]. The author
wishes to thank his colleague, L. J. Lange, for sharing his knowledge of the literature
on the subject of continued fractions.
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Abstract. The authors investigate bounds for various combinations of the low eigenvalues of
the Laplacian with Dirichlet boundary conditions on a bounded domain C ]Rn. These investigations
continue and expand upon earlier work of Payne, Pdlya, Weinberger, Brands, Chiti, and the authors
of this present paper. In particular, the authors generalize and extend to the n-dimensional setting
various bounds of Payne, Pdlya, Weinberger, Brands, and Chiti and examine their consequences and
interrelationships in detail. This includes comparing the asymptotic forms of the various bounds as

the dimension n becomes large. The authors also present various extensions and consequences of their
recent proof of the Payne-Pdlya-Weinberger conjecture, including the proof of a second conjecture
of Payne, Pdlya, and Weinberger under an added symmetry condition.

Key words, eigenvalues of Dirichlet Laplacians, universal eigenvalue inequalities, zeros of
Bessel functions
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1. Introduction. In this paper we go beyond our work in [6] to investigate
such quantities as A3/A1 and (A2 + A3)/,l for a bounded domain C nn. Here the
quantity Ai (for i 1, 2,... denotes the ith eigenvalue of the Laplacian on with zero
Dirichlet boundary conditions imposed on 0. In [6] (see also the announcement in
[5]) we proved the Payne-Pdlya-Weinberger conjecture in general dimension n, which
says that

(1.1) A2/AI
n-dimensional ball,

with equality if and only if is an n-dimensional ball. This bound had been con-
jectured by Payne, Pdlya, and Weinberger (PPW) in [34] and [35], where they had
proved that A2/A _< 3 in the two-dimensional case (by contrast, (1.1) above gives
approximately 2.5387 in this case). Thompson [47] made the natural extension of the
results and conjecture of Payne, Pdlya, and Weinberger to the nodimensional setting.
Between the papers of PPW and our own, several authors managed to lower the bound
3 in the PPW result for A2/A in two dimensions. These include Brands [12] who ob-
tained 2.686 in 1964, de Vries [18] who obtained 2.658 in 1967, and Chiti [17] who
obtained 2.586 in 1983. Only Chiti gave an n-dimensional version of his inequality,
and even then he did not evaluate certain integrals of Bessel functions that occur in
his bounds (except when n-- 2). In this paper (5) we reduce Chiti’s n-dimensional
result to its simplest form and compare his result with our own. We also extend
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the basic result of Brands to the n-dimensional setting, recovering as a by-product a
bound on A2/A1 which was given by Hile and Protter [23] (and which is a moderate
improvement upon the general bound A2/A1 <_ 1 + 4/n of PPW/Whompson).

In their original paper [35], Payne, Pblya, and Weinberger also formulated con-

jectures concerning Am+/Am for m 2, 3, 4,..., and (A2 -b A3)/A in two dimensions.
These conjectures were that

(A) Among all bounded domains and for all m 1,2,3,... Am+/Am is
maximized by disk and m 1 with equality only in this case, i.e.,

(1.2) )m+l/)m )2/,1[ 2.5387;
f=disk

(B) Among all bounded domains f, (A2 + A3)/A is maximized by f disk, i.e.,

(1.3) (A2 + ,3)/,1 (,2 "- 3)/1[ 5.077.
f--disk

These and related questions have been called attention to recently by Shubin in [3]. In
our recent work [7], [8], we have extended our proof of the PPW conjecture to prove the
m 2 and m 3 cases of (A) and even to prove that A4/A2 < A2/A1 (disk) 2.5387.
However, the cases for m > 3 are still left open. In this paper, we concentrate on

(B) and, while we do not prove it, we prove a special case of it for domains with
4-fold rotational symmetry. We also formulate n-dimensional generalizations of it,
prove certain related but weaker inequalities, and examine the relations between our
inequalities and the conjectured inequalities particularly in the limit as the dimension
n goes to infinity.

The original papers of Payne, P61ya, and Weinberger have spawned a large collec-
tion of papers on "universal inequalites" between eigenvalues. A relatively complete
set of references to this literature is contained in [6]. In the meantime we have be-
come aware of a paper by Anghel [2] and of recent work of Harrell [20]. Particularly
relevant to the present paper are the review articles by Protter [39], [41] (see also
Payne’s review article [32] for a more general overview as of 1967). Finally, we can-
not leave our historical summary without at least mentioning the work on A3/A1 and
(A2 + A3)/A in two dimensions which was begun by Payne, P61ya, and Weinberger
and continued by Brands [12], Hile and Protter [23], and Marcellini [27]. Marcellini’s
result )3/.1 7(15 q- 31/--)/60 3.9170 is the best bound on A3/l to date (Brands
found A3/A1 _< (7 q- 21/)/3 4.097 while nile and Protter found A3/A _< 4.014).
Similarly, Marcellini’s bound (A2 q- A3)/A1 <_ (15 + -)/6 5.5957 is the best gen-
eral bound on (A2-bA3)/A to date (Brands found (A2+A3)/A1 <_ 3-bv/ 5.646 while
Hile and Protter found (A2 q-A3)/A _< 5.622). These bounds improve upon the bound
(A2 q- A3)/A1 _< 6 proved by Payne, P61ya, and Weinberger [35] (who also observed
from this that A3/A < 5 but could easily have obtained A3/A1 _< 13/3 4.333 by
using (A2 + A3)/A _< 6 in combination with another of their results, A3 <_ A q- 2A2).
The work of these authors was largely confined to the two-dimensional case though
certain of the results of Brands and Payne, P61ya, and Weinberger do generalize fairly
easily (see inequalities (6.2) and (6.10) in 6 below). In addition, many of the results
of Hile and Protter are obtained for general dimension n. Work on A3/A is made
more difficult by the fact that no reasonable guess exists as to the precise shape of the
domain which maximizes it.

We also examine various consequences of our proof of the PPW conjecture for
,2/,1. In particular, we show hat it leads to optimal inequalities [or quantities
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considered by PSlya [36] and to an improved upper bound in an inequality for the gap
2 )1 due to Singer, Wong, Yau, and Yau [45]. These results are in our 4 and 7,
respectively.

2. Notational preliminaries. In this section we summarize our notation and
recall from [6] some of the more useful formulas for our present considerations. We
deal always with the Dirichlet eigenvalue problem for the Laplacian on a bounded
domain

(2.1) -Au Au on

with boundary condition

(2.2) u 0 on

We list the eigenvalues (with multiplicity) as

(2.3) 0<, <,X2 < 3 < ...--+

and a corresponding complete orthonormal set of eigenfunctions will be denoted by
{ui}=l. The Rayleigh-Ritz characterization of the eigenvalues will be an ever-present
tool. One has

(2.4) min fn IV[2dx
oH(t2)\(0} fgt 92dx

where Wi span {ul,..., ui} (with W0 {0}). Here dx represents the n-dimensional
Lebesgue measure in ]n. For our purposes no harm will be done by restricting consid-
eration to real-valued functions; thus we shall dismiss all complex conjugations from
our inner products. We shall be particularly concerned with trial functions of the
form Pui. For these it is useful to formulate (2.4) as

(2.5) )i- ,1 _< min f IVPlUudx
=p=l#o fn p2udx

There is also a trace version of the Rayleigh-Ritz principle which we refer to as the
extended Rayleigh-Ritz principle:

m

(2.6) Ak <_ Tr A(, ,),
k--1

where A(I,... ,m) denotes the matrix whose (i,j)th entry is (i, (-A)j) and
{i}n=l is any orthonormal set of m vectors from the underlying Hilbert space.

We shall be particularly concerned with trial functions

Pi g(r)xi/r fori=l,2,...,n,

where the xi’s are the standard Cartesian coordinates and r Ixl. A simple topolog-
ical argument based on the Brouwer fixed point theorem guarantees that the origin
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can be chosen so that Piul _l_ Ul for all i 1,... n if g is nonnegative. This argument
is due originally to Weinberger [49] who used it in an analogous situation for the Neu-
mann eigenvalue problem. A further topological argument based on the Borsuk-Ulam
theorem will be developed below. It will allow us to rotate axes so that various higher
orthogonality constraints are satisfied for at least some of the Pi’s (in particular, it
will guarantee Pkul E W for k 1, 2,... n if the axes are ordered appropriately).
Often we take g(r) r. In that case Pi x and the Rayleigh quotients in (2.5)
become simply

(e.s) f u2dx
fa 2 2dx"X U

In this case the Brouwer fixed point theorem argument can be replaced simply by a
center of mass argument. When we can sum the inequalities arising from all the Pi’s
(where Pi g(r)xi/r again) it is useful to note that

n

(2.9) EP/2 =g(r)2

i--1

and
n

(2.10) E IVPil2 g’(r)2 + (n- 1)g(r)2
i=1

In particular, when Piu W for all i 1,... n this gives the basic gap inequality

(2.11) )2 1

_
ft [g’(r) 2 - (- 1)g(r)2/r2] udx

fa g(r)2u21dx

We shall also need Bessel functions and their zeros. We use the standard nota-
tion of Abramowitz and Stegun [1]. The standard Bessel function of the first kind of
order p will be denoted Jp(x), and its kth positive zero will be denoted jp,k. For an
n-dimensional ball of radius R the low Dirichlet eigenvalues are A j2,/2_,/R2 and
,2 ,n+l j2n/2,1/R2. Corresponding (unnormalized but orthogonal) eigen-
functions are Ul r-n/2Jn/2_l(jn/2_,lr/R) and Ui+l r-n/2Jn/2(j,/2,r/R)xi/r
for i-- 1,2,... ,n. In particular, the bound in (1.1) is (j,/2,1/jn/2_,)2.

Rearrangement results will be used as needed. For most of the technical details for
these and related matters we refer to [6] and the references therein. A sampling of these
references includes [11], [19], and [38]; in particular, [38] is largely devoted to applying
rearrangement results to the eigenvalue problems of mathematical physics (see also
Bandle’s book [11] for much useful information on rearrangement inequalities and
eigenvalue problems). Chavel’s book [14] also contains related material, particularly
with reference to generalizing various results to Riemannian manifolds (usually with
constraints of some sort on their curvature).

3. A second conjecture of Payne, P61ya, and Weinberger: Proof for
domains with symmetry of order 4. A second conjecture of Payne, P61ya, and
Weinberger, contained in [35], is that for the Dirichlet Laplacian on a bounded domain
C2,

(3.1)
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with equality if and only if is a disk. In [35], the bound 6 was established for
(A2 + A3)/A1, whereas the conjectured bound given above has a numerical value of
approximately 5.077. Various authors have brought the constant here down as follows:
Brands [12] 5.646, Hile and Protter [23] 5.622, and Marcellini [27] 5.596. Here we show
how our method of proof for the first PPW conjecture can be extended to prove (3.1)
in the case that has a center of symmetry of order 4. That is, we establish the
following.

THEOREM 3.1. Let be a bounded domain in R2 with 4-fold rotational symmetry
about a point. Then inequality (3.1) holds between the first three eigenvalues of the
Laplacian on this domain with Dirichlet boundary conditions. Equality occurs if and
only if is a disk.

Proof. The proof proceeds much like our proof [5], [6] of the Payne-PSlya-Wein-
berger conjecture for A2/A1. We start from the extended Rayleigh-Ritz inequality

(3.2) 2 -" ,3 2,1 < fi) IVPll2Udx f IVP21u21dx+

where now P1 and P2 must be nontrivial functions such that PlUl and P2ul are both
orthogonal to ul and to each other. Taking P1 and P2 as in the prior proof (i.e., of
the form given by (2.7) with g(r) chosen to be a particular ratio of Bessel functions),
orthogonality to u is assured by the symmetry of F (which is shared by u1). To
establish orthogonality to each other note that

(3.3) Jn P1P2udx= /g2(r) [ sin20] u21dx=O

since rotation by 90 leaves g(r) and Ul alone, whereas sin 20 is changed to its negative.
A second (crucial) fact deriving from the 4-fold symmetry of is

(a.4) PlUldX Pudx

(the numerators in (3.2) above are equal also). This follows by considering the behavior
of fn(P- P)udx fng2(r)cos2Oudx under rotation by 90. This allows us to
replace the right-hand side in (3.2) by

fc g(r)2u21dx

and then proceed through to the conclusion of the proof exactly as in [5] and [6],
except now we have the extra factor of 2 on the right-hand side.

Remark. One could also have proceeded by arguing from the Rayleigh-Ritz in-
equality in a slightly different fashion. We can obtain the two inequalities

(3.5) A2 AI _< ffl IVPII2udx

and

(3.6) A3 AI _< f IVP212udx
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if we choose P1 and P2 as before and also use rotational freedom to fix our coordinate
axes so that P2ul is orthogonal to u2. This is possible because under 180 rotation u2
can be taken to be either even or odd. In the even case orthogonality is automatic (i.e.,
no choice of axes is required). In the odd case we observe that if f P2ulu2dx O, then
after a 180 rotation of axes this quantity will change signs and hence, by continuity,
for some intermediate rotation orthogonality will obtain. Having established (3.5)
and (3.6) we can sum them and proceed as before. The 4-fold rotational symmetry
is needed to establish (3.4); thus, in a certain sense the consequence (3.4) of the 4-
fold rotational symmetry is more crucial to establishing (3.1) than the orthogonality
condition (3.3).

In fact, from the alternative approach presented in the preceding remark we can
actually obtain the separate inequalities given by the following.

THEOREM 3.2. With hypotheses as in Theorem 3.1,

For the proof one simply observes that

(3.8) IVPil2udx [IVP112 + IVP212] udx for i 1, 2

and

(3.9) p2udx - [P21 + P22] udx for i- 1, 2.

The results above have a connection to a celebrated conjecture concerning the
nodal line of the second eigenfunction for the Dirichlet problem in two dimensions.
The conjecture states that the nodal line of u2 must cross t, i.e., that u: cannot have
a closed nodal line not touching 0 (for statements and discussion see [32], [40], [50],
and [51]). Throughout our discussion of the nodal line conjecture and its implications
for our problem we shall assume that has a C boundary, i.e., that each component
of the boundary is given by a simple, closed curve having a continuously turning unit
tangent vector. Though partial results have been obtained for this problem they have
all required additional assumptions of symmetry and/or convexity [24], [25], [29], [33],
[42]. Examples of these results are that u2 cannot have a closed interior nodal line if

is convex and symmetric with respect to a line (Payne [33]) or if gt is convex and
has a discrete rotational symmetry (Lin [25]). Other results relating to this conjecture
are contained in the papers of Shen [42] and Jerison [24]. Very recently, Melas [29]
has obtained the strongest result to date, requiring only convexity. His work is based
on the prior work of Lin [25] and Payne [33].

Based on Lin’s result (now a special case of Melas’ result [29]) and an observation
of Weinberger (made in connection with our work on Neumann eigenvalues in [9]) we
can prove

THEOREM 3.3. Let C ]12 be a bounded convex domain with a smooth bound-
ary and having k-fold rotational symmetry with k >_ 3. Then 2 3 and hence
inequalities (3.1) and (3.7) also hold.

Proof. Aside from the condition k _> 3, the hypotheses here are those of Lin
[25]. Therefore, u2 must have a nodal line which touches the boundary at exactly two
points. This shows that u2 cannot be invariant under rotation by 2/k radians and
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hence that A2 is at least doubly degenerate (since U2 rotated by 2zr/k radians must be
an independent eigenfunction for 2). r-1

We note that Theorem 3.3 renders Theorems 3.1 and 3.2 somewhat trivial for
the cases that it covers (and also that it goes beyond these theorems in the respect
that it allows k’s not divisible by 4). On the other hand, Theorems 3.1 and 3.2 are
more general in that 12 is allowed to be nonconvex and even nonsimply connected. In
addition, one can go beyond what we have done above in the following way, which
might actually be of use in establishing the nodal line conjecture for all domains with
4-fold rotational symmetry.

THEOREM 3.4. Let C ]2 have 4-fold rotational symmetry and suppose that u2
is even, i.e., u2(-x) u2(x) for all x e f. Then

(3.10) )li/l < "2 "2 for i 3, 4,/0,

and hence also (A3 4- A4)/A1 _< 2j,1 j2
Note. This theorem makes no assumptions concerning the connectivity of f or

the smoothness of its boundary.
Proof. One simply observes that if u2 is even, then both Pu and P2ul will be

orthogonal to it (see, in particular, the arguments given in the remark following The-
orem 3.1). Then all the estimates given above are seen to apply to Pul and P2u
as trial functions for u3 and u4 (the latter by virtue of a rotation, if necessary). In
particular, (3.5) and (3.6) can be applied, with A3 and Aa replacing A2 and A3 in
their left-hand sides, and together with (3.8) and (3.9) these yield (3.10) of our
theorem.

Therefore, if there were a domain with 4-fold symmetry for which the nodal line
conjecture were false we would have A4/A < j2 j21,/0, (since in this context it is clear
that if u2 h a closed interior nodal line, then u2 can be taken to be even). This may
perhaps be a useful result to have in working to show that u2 cannot have a closed
interior nodal line (and hence must be odd). In fact, it seems reonable to believe
that u2 for a nonconvex domain would be more likely to have a crossing nodal line
than u2 for a convex domain. This certainly suggests that the nodal line conjecture
should hold for all domains with 4-fold rotational symmetry but we repeat that this
h not yet been proved. It seems that we are in the somewhat paradoxical situation
that the harder (convex) ce is proved while the nonconvex ce remains unproved.
If the nodal line conjecture turns out to be true, then for simply connected domains
having 4-fold rotational symmetry and smooth boundaries our Theorem 3.4 above
would hold vacuously.

The n-dimensional analog of Theorem 3.1 concerns the quantity

()2 + )3 +... + A,+)/)

(but see also our comments near the end of 5) and deals with bounded domains C
]t(n for which there is a choice of Cartesian coordinates such that is invariant with
respect to 90 rotation in each of the () coordinate planes. We have the following.

THEOREM 3.5. Let be a bounded domain in Rn and suppose is invariant with
respect to 90 rotations in the coordinate planes spanned by each pair of (Cartesian)
coordinate axes. Then

(3.11) (A2 4- A3 4-’" 4- An+I)/A1
_
n (jn/2,1/jn/2_l,1) 2
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holds and, furthermore, equality obtains if and only if is an n-dimensional ball.
Proof. The proof here is essentially identical to our previous one. One takes Pi

g(r)xi/r, where xi is a Cartesian coordinate. Orthogonality of each of the functions
Piul (1 _< i _< n) to ul is assured by the symmetry of . Pairwise orthogonality of
the Pu’s (1 _< i _< n) follows as for (3.3) above by making a 90 rotation in the
xixj-plane, where i and j are the indices of the relevant P’s. Finally,

P22u2dx ] 2 2PuldX

the analog of (3.4) above, also follows from the 4-fold rotational symmetry of fl in
each coordinate plane.

By the extended Rayleigh-Ritz inequality one then has

and, as in our previous papers [5], [6], this ultimately yields

(/2 "- 3 -}-"""-}- ,’n-F1)- n,l

__
/1 [(jn/2,1/jn/2--1,1) 2 -1],

which is equivalent to (3.11). Characterization of the cases of equality also follows our
prior work. [:]

For weaker inequalities than (3.11) but which hold for general domains (i.e., no
symmetry hypothesis required) see 5. There we discuss the relations between these
weaker inequalities, the conjectured inequality (3.11) for arbitrary domains fl C ]Rn,
and an intermediate inequality (also conjectural except under our 4-fold symmetry
hypothesis, at this point). Also, in 6 we obtain (nonoptimal) bounds on (2 +

/ An+)/A which are the n-dimensional analogs of the two-dimensional results
(,2 "" 3)/1 6 of PPW and (A2 + 3)/1

_
5 - )1/2 of Brands and investigate

some of their consequences.
The results of this section have obvious extensions to the case of Schrhdinger

operators and quite general second-order elliptic equations (as discussed in 4 of [6])
under suitable symmetry conditions, i.e., if all the coefficient functions share the 4-fold
symmetries of .

4. Other isoperimetric results implied by our result. In this section we
give two isoperimetric inequalities which follow from our main result and previously
known results. These have been discussed in the previous literature as conjectures. In
particular, we recommend the article of Hersch [21] and also his comments and updates
to P61ya’s papers in [22] (see the comments to papers 202 and 203, specifically).

In [36], P61ya asked for the least upper bound for the quantity
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and for the shape of domain for which this bound is attained or approximated (see
question 5(c) on p. 336 of [36]). Here / denotes the maximum inner conformal radius
of the domain fl c R2, which is here supposed to be a simply connected domain (we
use our notation for A2 here rather than P61ya’s). By virtue of our bound on A2/A1
and the P61ya-Szeg5 bound [38, pp. 97-98]
(4.1) AI?2 --< J,l 5.7832

(which is isoperimetric, with equality only for disks), the isoperimetric inequality

(4.2) A2/2 < j2 14.68201,1

follows directly (with equality if and only if t is a disk), thus answering PSlya’s
question in its entirety. PSlya himself only explicitly gave the bound J,2 30.4713.
With the PPW result A2/A1 _< 3 this value could be reduced to 3j02,1 17.3496, and
obviously the improvements in the bound for A2/A1 as found by Brands, de Vries,
and Chiti all lead to further reductions. One can even do slightly better each time
if instead of using the bound for A2/1 with the PSlya-Szeg5 bound (4.1) above one
uses it with the isoperimetric bound (equality if and only if is a disk)

(1 __) 1 1 1
(4.3) 1 + g > + "=,0,1 ,1,1
of PSlya and Schiffer [37], a fact which appears to have first been utilized by Hersch
[21]. Hersch, using A2/A1 _< 3, then derived the bound A2/2 _< 16.5957. Using Chiti’s
bound, A2/A1 _< 2.585965, the constant here would improve to 14.8779, which is
the best value derivable prior to our proof of the PPW conjecture. Of course, our
isoperimetric bound (4.2) follows by combining our bound A2/A1 < j2 /J,l with1,1
either of the bounds (4.1) or (4.3).

A second result of this nature which follows from our proof of Payne, PSlya, and
Weinberger’s second conjecture for the case of domains possessing symmetry of order
4 (see 3 above) is the bound

(4.4) (A2 + A3)/"2 _< 2/12,1 29.3639.

This holds for any simply connected domain in the plane having symmetry of order
4. The best general result of this type (i.e., without symmetry assumptions) known
at present is

(4.5) (A2 -- ,3)?2 32.36095+,
which follows from Marcellini’s bound (A2 + A3)/AI _< (15 + 3x/--)/6 5.5957. Ob-
viously, (4.5) is not expected to be isoperimetric.

In addition, for convex domains in 1R2 having smooth boundary and k-fold rota-
tional symmetry with k _> 3 one has, by Theorem 3.3 above, A2 A3 so that (4.4)
and also the stronger inequalities

(4.6) Ai/2 < j2 14.6820 for 2, 31,1

hold in this case. From Theorem 3.2 one sees that the inequalities (4.6) also hold for
any simply connected domain having 4-fold rotational symmetry, whether or not it is
convex with a smooth boundary.

Further inequalities with / replaced by d, where d is defined as the radius of the
largest disk contained in f, follow from the inequality d _< / _< 4d of Koebe. Another
useful inequality for such considerations is /2 _< A/r _< 2 [38, p.8], where is the
outer conformal radius of f and A is its area.

Note that the entire discussion in this section is confined to the two-dimensional
case
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5. Large n asymptotics and Chiti’s bound. In this section we give an asymp-
totic expansion for our bound (jn/2,1/jn/2-1,1 for large dimension n and compare
it with the bounds of PPW/Thompson [34], [35], [47] and Chiti [17]. We also prove
some (nonisoperimetric) bounds which are extensions of Chiti’s bound and examine
various ramifications with respect to certain further conjectures of Payne, PSlya, and
Weinberger (see 3 also).

Using the asymptotic development for jp, for large p as given by Abramowitz
and Stegun [1, p. 371, eq. 9.5.14] it is easy to work out that

J’/’ )(5.1)
\jn/2-,

1 / (1.8557571)
25/3 12

+ + o

(The value 1.8557571 appearing here represents la1/2/3, where al is the first negative
zero of the Airy function Ai(x); see Olver [31, p. 408, Ex. 6.4] or Abramowitz and
Stegun [1, p. 371, eq. 9.5.22 and p. 368, eq. 9.3.39].) Incidentally, this shows that the
PPW/Thompson bound 1 / 4In is the best possible of the form 1 / c/n: that is, if
one seeks a constant c (independent of n) such that A2/A1 _< 1 / c/n holds for all
dimensions n, then the value c 4 of PPW/Thompson is the best possible.

In arbitrary dimension n the bound of Chiti is

n J2n/2(J,/2-,) )(5.2) )2 <_ 1 - 2 .2 f r3J2 (jn/2-1,1r) dr)
/

-n/2--1,1 n/2--1

as given in [17] and reproducedin [41]. The integral occurring here is not too difficult
to work out (see Appendix A), and one finds that (5.2) takes the much simpler form

(5.3) ,2//1 __< 1 +
6n

2 + n(n- 4)"27n/2-1,1
Again, the asymptotics of the right-hand side of this inequality may be worked out,
yielding

6n
1 + 2jn2/2_1,1 + n(n- 4) ---1+

4 4 25/3 16
n 5 (1"8557571) + -5 + 0(n-7/3)"

A comparison with the best bound as given by (5.1) shows that Chiti’s bound gets
the next term beyond 4In in the asymptotic expansion "right."

It is clear from the asymptotic formulas that

(5.5) (jn/2,1)2 6n 4

\in
< 1 + 2j2/2_, + n(n 4) < 1 +-n

for large dimension n. Indeed, the first of these inequalities holds for all n as follows
from Chiti’s bound. The second would hold for all n if the inequality

(5.6) jp,1 > V/(P + 1)(p + 5)

were to hold for p -1/2, 0, 1/2, 1, 3/2, This inequality has recently been shown
to hold by Lorch [26] for all p > -1. Watson’s book gives only

> vg( + e)
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2 (p / 1)(p + 5) increases from[48, p. 486, ineq. (5)]. Lorch in fact shows that Yp,1
zero to infinity as p runs from -1 to infinity. Lorch also has shown that the bound
(n + 3 + x/n2 + 10n + 9 )/2n due to Brands [12] (for n 2) and Hile and Protter
[23] (for general dimension n) is intermediate between Chiti’s bound and the bound
1 + 4/n of eayne, P61ya, and Weinberger (cf. (5.5)). We discuss the nrands/Hile-
Protter bound and Lorch’s result concerning it in more detail in 6 below.

Finally, we observe that the arguments of Chiti in [16] and [17] as used in this
paper allow one to prove the bound

This is an improvement upon the two-dimensional case of (5.2) and also upon Chiti’s
bound

1 1 1
(5 /

which follows directly from [16] and rearrangement inequalities (since A >_ A where

A is defined as the Rayleigh quotient for -A on * with u as trial function; here
t2* denotes the disk of the same volume as f/and u denotes the "spherical decreas-
ing rearrangement" of u; see [5] and [6] for more details and references) because
(j, 2)/3 . 1.2611 > 1. The lower bounds of Chiti [16], 1/A and fn udx/2ru2M,
where u/ (max of u), are not directly comparable to the bound in (5.7) above,
though in any event they are less accessible as they require knowledge of u or u.

If the second conjecture (see 3 above),

(5.9)

of Payne-P61ya-Weinberger were to hold, then (5.7) could be improved to

1 2j), 21
(5.10)

A2-/1
-]-
/3- 1 (j12,1- J,l)/1 [(jl,1/jo,1) 2- 1] A

where now the constant on the right-hand side has the value 2/[ (j1,1/j0,1) 2 1]
1.2998. The inequalities (5.9) and (5.10), if true, would be isoperimetric with equality
only for the disk. In any event, (5.9) would imply (5.10) but not conversely so (5.10)
is of intermediate strength between the known result (5.7) and the second inequality
(5.9) conjectured by Payne, P61ya, and Weinberger. Note that either of the inequalities
(5.9) or (5.10) would imply our result (1.1), i.e., the (first) PPW conjecture. Similarly,
the bound (5.7) implies the two-dimensional bound that Chiti gave explicitly in [17]
for A2/A1.

We now show how we arrive at (5.7) and then go on to its analog in higher
dimensions. As in [12], [16], and [27] we observe that we can choose coordinate axes
so that
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by suitable translation and rotation of our axes. It then follows by the Rayleigh-Ritz
inequality with XUl and yul as trial functions for u3 and u2 that

fa u21dx2 A1 <_
ff y2udx

and

From these,

fa udx3 A1 <_
fa x2udx"

1 1 fa(x2 -b y2)udx f r2udx(5.12)
2 1 + 3 1 >- fn udx f udx

follows immediately and then rearrangement inequalities and Chiti’s comparison result
(see [5] and [6], including Appendix A of [6], for more on this) do the rest to yield

In higher dimensions the analog of (5.7) is

1 1 1 2jn2/2_1,1 -+- n(n 4)
(5.13)

A2 A1 - A3 ,1 +’’" + An-I-1 A1 - 6A1

where n denotes the dimension. This inequality follows in exact analogy to the two-
dimensional case once one shows that by a proper choice of origin and axes one can
arrange for the orthogonality conditions

(5.14) f xiulujdx 0 for i 1, 2,... n and j=l,...,n+l-i

to be simultaneously satisfied. That this is possible follows in stages. First, that

xiu21dx 0 for i 1,... ,n

can be satisfied by an appropriate choice of origin follows from the Brouwer fixed point
theorem as alluded to in 2; or, more simply, one can view this as choosing the origin
to lie at the center of mass of a mass distribution in f having mass density u. Next,
one considers

ujdx for j 2,... nUl

as a function on Sn-l, the unit sphere in Nn, where the variable a E Sn-1 represents
the direction of the positive Xl axis. This is a mapping fl from Sn-1 to Nn-1 (the
index j gives the component) which is antipode preserving, i.e., fl(-a) -fl(a).
It now. follows from the norsuk-Ulam theorem (see [46, p. 266], [28, p. 170], or [30,
p. 361]) that there is aal E Sn-1 at which fl vanishes (fl also vanishes at -al). We
can, therefore, fix the Xl axis in the direction of al to guarantee that fa xlulu.idx 0
for j 2,... n. Having achieved this we now repeat the process by considering

X2UlUjdx for j 2,...,n- 1
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as a function on the sphere Sn-2, which is the equator of Sn-1 consisting of those
vectors in S’-1 that are perpendicular to the (now fixed) direction of the Xl axis,
i.e., to al. Again, this gives a mapping f2 Sn-2 Rn-2 which is antipode-
preserving, and the Borsuk-Ulam theorem tells us that there is a a2 E ’n-2 at which
f2(a2) 0. If we take the x2 axis to lie in this direction, then fa X2UlUjdx 0 for
j 2,..., n- 1. Obviously, this process may be continued until we have fixed the
directions of all the coordinate axes such that all the orthogonality conditions (5.14)
hold. Using the Rayleigh-Ritz inequality with xiul as a trial function for u,+2-i one
finds easily that

(5.15) fa u2dx
Xn.+.2_iUldX

for i 2, 3,... n -t- 1,

and then (5.13) follows directly as in the two-dimensional case.
If one computes the large n asymptotic expansion of the bound (5.13) and com-

pares it to that of the conjectured bound

1 1 1 n
(5.16)

A2 )1 jn/2,1/jn/2-1,1 1 ,1

(the extension to n dimensions of (5.10); all comments above following (5.10) apply
to (5.16) as well if generalized to the n-dimensional setting; see also 3 on the second
Payne-Pdlya-Weinberger conjecture), one finds - O(n-4/3(5.17) 2j2/2_1,1 + n(n 4) 6 -- 1 + g(1.8557571) n2/3 n

whereas

(5.18)
n2

[(jn/2,1/jn/2-1,1) 2

2
(1.8557571)

22/3 2
1 + - n2/3 n

t" 0(n-4/3)]
From this it seems that the Chiti bound has a relative error of only O(1/n) for large
n (assuming that (5.16) is indeed true).

Of course, any of the bounds (5.13), (5.16), or

(5.19) (,’2 -t-- .’3 +’’" + ,’n+l)/,’1
_
n (jn/2,1/jn/2_1,1) 2

(the last two of which are only conjectures, in general, at this point) implies a corre-
sponding bound for the eigenvalues A2,... Ak for any integer k, 2 _< k _< n + 1. in
particular, (5.13) leads to

2 + n(n 4)1 1 1 k- 1 23n/2-1,1(5.20)
A2-A1 +A3-AI+’’" +Ak-A1 >- n 6A1

(5.16) would lead to

1 1 1 k-1>(5.21) ) .1 + .3 ,’1 --"’" + .k .1
[’ /’[(J’/’l/J’/-l’1
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and (5.19) would lead to

(,2 -’’"-- ,’k)/)il
__

(k 1) [jn/2,1/jj/2_1,1] 2

for 2 _< k <_ n / 1. These follow by just using the obvious facts that

and

1 < 1 l 1 1 1 )q-
A3 A1 --"" -- Ak-1 A1

and by working inductively. For k 2 the inequalities (5.20), (5.21), and (5.22)
reduce to the known inequalities for A2/A1. The second conjecture of Payne, Pdlya,
and Weinberger concerning (A2 + A3)/A1 in two dimensions could be considered to
generalize to either (5.19) or the k 3 case of (5.22) in n dimensions; we prefer to
think of (5.19) as the proper generalization since it seems the more natural of the two
(nevertheless, in our next section we work to bound (A2 + A3)/A in all dimensions n).

Finally, we remark that every bound developed above holds unchanged for the
Schrhdinger operator H -A + V(x) acting on a bounded domain D c Rn with
Dirichlet boundary conditions and with a positive potential V. With minor changes
(see 4 of [6]) these bounds also extend to rather general elliptic eigenvalue prob-
lems. There are also many Schrhdinger problems on unbounded domains to which our
bounds apply (see [4] for a discussion in one dimension which applies without change
here; see also Simon [43], [44] and Ashbaugh-Exner [10] for some more exotic problems
where this extension has interesting applications).

6. Bounds on (,k2 + Aa +’" + ,n-t-1 )/’1 and their implications for
and ()2 + Xa)/Xl in n dimensions. In this section we return to consideration of
bounds for (A2 + 3)/1 and, most especially, to their extension to n dimensions. We
shall begin by looking at bounds on (A2 + A3 +’" "+An+)/A in n dimensions and then
turn to their implications for A3/A and (A2 + 3)/1. We again examine asymptotics
in n as n goes to infinity to help judge the effectiveness of our bounds.

We begin by remarking that the bound

(6.1) (A2 + A3)/A1 _< 6

of Payne, Phlya, and Weinberger [35] readily extends to n dimensions as

(6.2) (,2 -- )13 "-"""-- ,’n/l)/)il

_
n + 4 n(1 + 4/n).

This is easily arrived at by using trial functions Pi xi with the adjustments using
the Brouwer fixed point (or simply a center of mass argument) and Borsuk-Ulam
theorems already effected so that

f udx(6.3) A+ _< A1 + f x2udx2
for 1, 2,..., n

(this is just (5.15) with the order of the x’s reversed) and hence, by summing,

(6.4) Ai+l <_ nA1 + 2 2dx
i:1 ": Xi ul
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One then uses integration by parts

and the Cauchy-Schwarz inequality

o.o,
to arrive at

(/o4 xiululx, dx <_ 4 xu2dx u21, dx

Substituting this into (6.4) yields

(6.8) A2 +... + An+l

_
nAl + 4 ff IVull2dx (n +

and (6.2) is proved. This is essentially the route used by Payne, Pblya, and Weinberger
in the two-dimensional case except that rather than obtaining the individual inequal-
ities (6.3) they used the extended Rayleigh-Ritz principle to bound the sum A2 +
by the trace of a 2 x 2 matrix with matrix elements (i,-Aj), where the ’s are
chosen to be orthonormal and also orthogonal to ul. Of course, their i’s are nothing
but xiul, and the required orthogonality conditions are obtained via translation and
rotation of the coordinate axes as in the argument above.

Similarly, the bound

(6.9)
of Brands [12] extends easily to n dimensions as

(6.10) ()2 "[- 3 -[" -[- n+1)/,1 _( n -[- 3 + A1/A2.
To obtain this one follows Brands or PPW (as given above) to (6.4), but then one
estimates the sum on the right-hand side via

(6.11) f udx (a + 1)2< A1A(a)
xi u dx 2a 1ff’t 2 2

where

(6.12) (i,
(

with a a parameter larger than 1/2 (setting a 1 recovers the argument of PPW).
Brands then finds, with/1 A2/A1, that

(6.13) (2a- 1)(/1- 1)A(a) <_
(2a 1)/1 a2

if 1 < a </1 + %////2 /1. Therefore we have

(6.14) (A2 "- A3 --""" "- An+I)/A1 __< n - (2a- 1)u- a2’

and since the minimum of the right-hand side occurs at a 2/1/(/1 + 1) (which is
between 1 and/1 + x//12 -/1) (6.10) follows. It is clear from their remarks [23, p. 538]
that Hile and Protter knew of the generalization (6.10) of Brands’ bound (6.9).

We turn now to deriving the consequences of the Brands bound (6.10) for A3/A1
and (A2 + A3)/A1. We obtain the following theorem.

fa udx 4 ffl u21x, dx(6.7) fa 2 2 <
xiuldx ffudx
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THEOREM 6.1. The eigenvalue ratios )3/)1 and (2--,3)/1 for the n-dimensional
Dirichlet Laplacian on a bounded domain c IRn (n >_ 2) obey

2 (n + 2) (n2 / n + 2 + x/n + 6n3 + 13n2 4n + 4)(6.15) )3/)1 < -/
n 2n(n2 + 2n- 2)

and, for n >_ 3,

(6.16) (A2 + A3)/A1 _< 1 +
3 + v/n2 + 10n + 9

Proof. Brands’ bound (6.10) yields

(A2 + (n 1)3)/A1 < n + 3 +

which, with x _= A2/A1 and y A3/A1, becomes

u < + 3 +
We shall use this bound in conjunction with the bound A3 A2 <_ 2(A1 + A2)/n of
Payne, Pblya, and Weinberger [35], which, in our new notation, reads

(6.19) y_<-+ 1+- x.
n n

(While this bound has been improved upon by Hile and Protter [23] their bound
would lead to much additional complication; (6.19) is more than adequate for our
purposes here.) We shall examine what the region in the xy-plane satisfying (6.18)
and (6.19), along with the two trivial inequalities x > 1 and y >_ x, says about )3/)1
and (A2+A3)/A1. First we observe that since the right-hand side of (6.18) is decreasing
in x while that of (6.19) is increasing, the maximum value of y for this region is the
y corresponding to the intersection of the right-hand sides. The point (x0, Y0) of
intersection has

(6.20) x0
n2 -+- n + 2 -+- v/n4 + 6n3 -+- 13n2 4n -{- 4

2(n2 + 2n- 2)

and so

A3 2 n/2
(6.21) A-- y <- Y0 -n + n

x0

for all points in the region, i.e., (6.15) holds. Note that the n 2 case of this gives
the bound A3/A1 < (7 / 2/)/3 4.097, found originally by Brands.

For (6.16) we begin by observing that the largest value of x in the region occurs
at the intersection of (6.18) with y x. Solving for x yields the value

(6.22) Xl- (n-+-3-+- v/n2 + 10n + 9)/2n,
so that we obtain the bound

(6.23) n+ 3 + v/n2 + 10n + 9
2n
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This bound was derived earlier from Brands’ work by Hile and Protter [23, p. 538].
Next observe from (6.18) that

x + y < [n + 3 + 1Ix + (n 1)

and that to find an upper bound to x / y on the region of interest we only need to
find the maximum of the right-hand side for x0 _< x <_ xl. This latter fact is obvious
from the fact that, aside from intersections with the boundary determined by (6.18),
none of the other boundary curves x 1, y x, or y x + 2(1 + x)/n can contain a
point in the region with maximal value of x + y. Since the right-hand side of (6.24)
has a minimum at x 1/v/n- 2 (for n _> 3; for n 2 it is decreasing for all x > 0)
and this number is less than or equal to 1 for n _> 3 it is clear that for n _> 3 the
right-hand side of (6.24) is increasing for all x’s of interest. Thus, an upper bound
for (A2 / A3)/A1 will be given by evaluating the right-hand side of (6.24) at xl and,
since at the point of our region that this singles out we also have y x, this leads to
(A2 -- A3)/,l X -- y _< 2X 1 / (3 -{- v/n2 -+- 10n / 9 )In, which is (6.16). [3

Remarks. (1) If n 2, then the completion of the argument for x + y would yield
(A2 + A3)/A x -}- y _< x0 -t- y0 3 + v/ 5.646, the result found earlier by Brands.

(2) Our result (6.16) shows that the result (6.23) of Hile and Protter found by
generalizing Brands’ argument to n dimensions is actually true in the stronger form
that twice the bound on A2/A1 is in fact a bound on (A2 -t- A3)/A1, except perhaps
in two dimensions. This same duplication effect and more also holds for the PPW
upper bound of 1 +4In even beginning at two dimensions, i.e., (A2 +...-1-Ak+)/A1 _<
k(1-1-4In) for n _> 2 and 1 _< k _< n. In two dimensions Brands’ argument yields only
()2 -{- ,3)/,1 _< 5.646, whereas for ,2/,1 he obtains ,2/,1 _< (5 - )/4 2.686,
and 2(2.686) 5.372 < 5.646.

(3) Arguments similar to those in our proof above can be made by replacing the
bound (6.17) with the bound

(2 -+- (n 1)3)/1 _< n + 4,

which derives from the PPW bound (6.2). The analogous, but slightly weaker, results
are then

(6.26) 3/)1 _< -+2 (n + 2)(n2 + 2n + 2) for n > 2
n n(n2 + 2n- 2)

and

(6.27) (A2 + A3)/A _< 2(1 -{- 4In) for n _> 2.

(The second of these, of course, follows directly from the PPW bound (6.2) and even
generalizes as in the previous remark.)

(4) The bound (6.16) could even be improved further by including the inequality

2/1 x <_ (jn/2,1/jn/2-1,1)2
_
gn (from our proof of the Payne-P61ya-Weinberger

conjecture [5], [6]) as a boundary curve for our region. This gives

(A2 + A3)/A1 x -+- y <_ In + 3 +K + (n 2)Kn]/(n 1)
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for n _> 3 in place of (6.16) (with (6.25) as in Remark (3) we would obtain only
In q- 4 q- (n 2)gn]/(n 1) as the upper bound). Similarly, by taking into account
the inequality

(n-1)(x-1) forx>lq-C-1(6.29) y _< 1 q-
Cn(x- 1)- 1

2 q-n(n- 4)]/6, which derives from (5.13) above, and finding thewhere Cn [2jn/2_1,
point of intersection of its right-hand side with (6.17) or (6.25) and with the boundary
curve y x or x gn, we could get further improvements, though at the expense of
more complication (see Theorems 6.2 and 6.3 below).

We now turn to comparison of the large n asymptotics of our various upper bounds
for ,3/)il and (A2 q- ,3)/)1. We begin with 3/,1. One finds that the right-hand side
of (6.15) behaves like

4 4 4
(.0) + O(-)

n /t2 3

while that of (6.26) behaves like

4 4
(6.31) 1 + + + O(n-4)

n -These bear comparison to the iarge n asymptotics of the bounds on A2/A found here
and in the previous section. In order of accuracy we have the bounds 1 / 4In (Payne,
Pblya, and Weinberger/Whompson), 1 + 4In- 4In2 + 20/n3 + O(1/n4) (Brands as
generalized by Hilt and Protter (6.23)), 1 + 4In- c/nb/3 + 16/n2 + O(n-7/3) (Chiti,
as evaluated by us (5.3)), and 1 + 4In- c/nb/3 + 12/n2 + O(n-7/3) (Ashbaugh and
Benguria (1.1)). Here c 21/3[a1/3 7.85555, where a first negative zero of
the Airy function Ai(x) as discussed in 5 (for even more details, see our discussion
following (6.53) below).

At this point we could obtain, via combination of our separate results for A3/A
and A2/A1, a bound for (A2 + A3)/A1 having asymptotic form 2 + Sin c/n53 +
16/n2 + O(n-7/3) 2(1 + 4In c/2n5/3 + 8/n2) + 0(n-7/3). Using only bounds
deriving from Brands’ work we would get only 2 + 8In + 16/n3 + O(1/n4) 2(1 +
4In / 8/n3) / O(1/n4). However, we can get better bounds out of our work above
since it dealt directly with the combination (A2 + A3)/A1. In particular, (6.16) behaves
like 2 + 8In 8In2 + 40/n3 + O(1/n4) 2(1 + 4In 4In2 + 20/n3) + O(1/n4),
which gives a better result than combining the separate Brands-type bounds for A2/A
and A3/A1, though it still falls short of the result which made use of our bound
A2/A1 _< (j,/2,/j,,/2_,l)2, at least asymptotically. To beat the bound that goes as

2+8/n-c/n5/3 / 16/n2 we need to investigate the asymptotics of the bound in (6.28).
This gives the somewhat better asymptotic form

(6.32) 2 + 8In c/nb/3 + 8In2 + 0(n-7/3).

While this is still not the last word on the large n asymptotics of bounds for
A3)/A, we defer further discussion until after our next two theorems. These theorems
take into account the additional bound (6.29). We give these theorems in a form that
would be of use for any dimension n and also in their asymptotic form for large n.
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THEOREM 6.2. With hypotheses as given previously, the eigenvalue ratio

A3)/1 obeys the bound

(/2--)3)//I _< max([n+4+(n-2)x]/(n-1), l+gn+(n-1)(gn-1)/[cn(gn-1)-l]},

where Ca -[23n/2-1,1"2 + n(n 4)]/6, Kn (jn/2,1/jn/2-1,1)2, and

xi 1 + {4Cn n2 + 2n [(4Cn n2 / 2n)2 16Cn]I/2}/2Cn.

Moreover, for sufficiently large n the second expression on the right-hand side of (6.33)
prevails, and hence

(A2 + A3)/A1 _< 2 -+- 8In 2c/n5/3 / 28/n2 + O(n-7/3)

for large n.
Note. If it occurs that x > gn, then (6.33) can be replaced by (A2 / A3)/A1 <_

[n + 4 + (n 2)gn]/(n 1). However, we do not think this possibility ever actually
occurs, so we have chosen not to clutter the theorem with additional cases. The
theorem is, of course, correct without this extra case.

Proof. The approach is as in the proof of Theorem 6.1. We consider the region
determined by the inequalities x > 1, y >_ x, (6.19), (6.25), (6.29), and x <_ gn and
show that the maximum of x + y must occur at one of two vertices of this region.
These two vertices are (1) the vertex where the boundary curves determined by (6.25)
and (6.29) meet and (2) the vertex where the boundary curves determined by (6.29)
and x <_ Kn meet. To see this one observes that the curves

(n- 1)(x- 1)(6.36) y 1 + for x > 1 + C-1

and

(6.37) y
n+4-x
n-1

have points of intersection for

x+ {6Cn n2 + 2n +/- [(4C, n2 + 2n)2 16cn]l/2}/2Cn.
To see that these roots are real one uses a recent result of Lorch [26] which says that
Chiti’s bound for A2/A1, 1 / n/C, is less than the PPW/Thompson bound, 1 / 4In,
for all n (i.e., C > n2/4 for all n 1,2,3,... ;cf. (5.5) and (5.6)). From this it
follows that (6.37) intersects y x farther out along y x than does (6.36), and then
the asymptotics of the two curves tell us that they must cross at the values x+ as
determined above. Hence the curve determined by (6.36) lies above that determined
by (6.37) for 1 + C-1 < x < x_ and for x > x+ while the opposite is true on the
intermediate interval x_ < x < x+. To continue it is enough to observe as before that
the maximum value of x / y attained on the allowed region must occur either along
(6.36) or (6.37). Since (6.33) yields the PPW bound of 6 for n 2 we can assume
henceforth that n > 2. From (6.36) and (6.37) we define the related functions

(6.38) F(x) x + n + 4- x n + 4 + (n- 2)x
n-1 n-1
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and

(6.39) G(x) 1 -+- x + (n- 1)(x- 1)
Cn(x-1)-i

As in our previous proof we note that F(x) is an increasing function. Hence the
maximum of x + y on the interval [1,x_] must be F(x_) which is the first expression
found in our bound (6.33) (even if x_ > Kn this expression will serve as an upper
bound).

For the other part of the bound we concentrate on G(x) on the interval [x_, gn]
(where we admit for the time being the possibility that this set vanishes if x_ > Kn in
which case the second expression on the right in (6.33) can be dropped). We compute
easily that G’(x) 0 at

x2 1 + cg-l(1 + v/n- 1)

and that this gives a relative minimum with G decreasing on (1 +C-1, x2] and increas-
ing on [x2, cx)). Thus, no matter where x2 is located with respect to Kn the maximum
value of G(x) (hence x + y) on the interval [x_,g,] is given by max{G(x_), G(gn)},
and this is the conclusion of the theorem (note that F(x) G(x) since x x_

gives a point of intersection of the graphs of F and G).
The proof thus far is a little unsatisfying in that we haven’t pinned down where

x_,x+,x2, and gn lie with respect to each other and hence the thought may linger
that our bound could be imprOved if we were to investigate the locations of these
points in greater detail. We now do this in the large n regime, where we show that
X2 < X-- < Kn < x+, and hence that, at least for large n, the bound G(K,) is the
best to be had within the context of our argument. (That Kn < x+ for all n already
follows from the result of Lorch used above.)

Asymptotic formulas for x2, x-, Kn, and x+ are as follows:

4 4
(6.41) x2 1 + + - + 0(n-5/2),

16 128
(6.42) x_ 1 + On4/a -t c2nh/a I- O(n-2),

4 c 12
(6.43) gn 1 + 1/,5/3 - + O(n-7/3)

n -and

c 8
(6.44) x+ 1- ?-/,2/3 0(n-4/3)"

These show that the relevant bound for (A2 + A3)/A1 in the large n regime is G(Kn)
and asymptotically we have

8 2c 28
G(K,) 2 - n5/3 - + O(n-r/3)

n -which proves the last part of our theorem.
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Remark. One could add to the statement of the theorem the fact that if X2 (_

x (- x_) then one has immediately the bound (A2 / A3)/A1 _< G(ga).
A slight, additional improvement to Theorem 6.2 can be obtained by using the

bound (6.18) instead of (6.25) to define the allowed region. When solving for the
intersection points of G(x) and F(x) =_ In + 3/ x-1 + (n 2)x]/(n 1) one encounters
a cubic of which the second and third roots play the roles of x_ and x+, respectively
(the first root is less than 1 +C1 and, therefore, is of no relevance here). Specifically,
one encounters the cubic

(6.45) Ca(x 1)3 (2Ca n2 / 2n)(x 1)2 (4Ca n2 / 2n 3)(x 1) / 4 0,

and since Cn n2/4 + cn4/3/16 n + O(n2/3) the roots rl, r2, and r3 (rl _< r2 _< r3)
behave asymptotically for large n as

rl-l, r21+16/cna/3, r31+c/2n2/3.

That these three roots are real for all n 1, 2, 3,... follows from a second result of
Lorch [26] which says that Chiti’s bound for A2/A1 is less than the Brands/Hile-Protter
bound as given in (6.23) above, i.e., that 1 / n/Ca < (n / 3 + x/n2 + 10n + 9 )/2n for
n 1, 2, 3, Just as Lorch’s first result could be stated as the lower bound (5.6)
for the Bessel function zero jp,, we can state this result as

3p,1"2 > (p+ + 2p+

Again, this is valid for all p > -1 though we only use it for p n/2- 1 with n
2, 3, 4, Conclusions analogous to Theorem 6.2 can now be drawn by following the
same approach (again, asymptotically it is G(gn) that matters, not G(r2) (-/(r2)),
and therefore the asymptotic result is that of (6.35) in Theorem 6.2 and will not be
repeated). This proves the following.

THEOREM 6.3. With hypotheses and notation as before, for n >_ 3 the eigenvalue
ratio (2 + ,3)/,1 obeys the bound

(A2 + A3)/A _< max{In + 3 + r - (n 2)r2]/(n 1), G(Kn)},

where r2 is the intermediate root of the cubic (6.45).
Remark. For n 2 our approach above yields again the result of Brands (2 +

A3)/A _< 3 + x/. This is because in that one case /(x) is decreasing across the
entire interval of interest instead of increasing as happens for all other cases. (Note
that when n 2, F(x) is constantly 6. This explains why the bound in Theorem 6.2
worked even for n-- 2.)

The asymptotic expansion for our bound (see (6.35)) begins like that of 2Kn, the
conjectured best possible bound. This can be taken as additional evidence in support
of this conjecture. Moreover, if one replaces the bound G(Ka) by G(1 +n/Cn) (which
is certainly permissible for large n since G will then be increasing over the interval of
interest and Ka < 1 / n/Ca is true for all n; 1 + n/Cn here is the constant occurring
in Chiti’s bound for A2/A), then one gets (A2 / 3)//1

_
2(1 / n/Cn). That is,

Chiti’s bound has the duplication property for n sufficiently large that G(1 + n/C)
is greater than or equal to either of G(x_) or G(r2). The asymptotic expansion of
2(1 + n/C) differs from (6.35) only in terms O(n-2) and beyond; in particular (see
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(5.4)), the term 28/n2 in (6.35) gets replaced by 32/n2, while the conjectured best
bound has 24/n2 (see (5.1)).

If one applies the arguments we use in this section to the conjectured bound
(/2 --"""-- /nq-1)/)l

_
ngn, then (,2 -- A3)//1 _ 2gn of course follows as well as

2 (n + 2)[n2Kn 2(n- 1)];a/l _<- +
n n(n2 + 2n- 2)

4 c 16 kl 17c
=1 - n5/3 - -n - nT/3 3nS/3

k2- - + O(n-/3).

Here the constant c has already been defined, while k and k2 are positive constants
which will be explained more fully in connection with (6.52) and (6.53) below. A
comparison with (6.30) (or (6.31)) shows that the bound (6.15) that we have proved
here is only slightly worse than this for large n (cf. also (6.55) below).

There is one more improvement that we can make to some of the results in this
section. That is to incorporate the bound 3/A2 < Kn (i.e., y < Knx) which was
recently proved by us [7] (see also [8]) into our constraints on the allowed region. It
turns out that this bound effectively supersedes the bound (6.19) of Payne, Pblya,
and Weinberger at least in the matter of bounding A3/A for large dimension n (and
probably for all n 2, 3, 4,... ). We begin by examining the intersection point of the
lines y gnx and y 2In + (1 + 2/n)x. This point is

2 c 6
0(n-4/3).(6.48) xo nK, -(n + 2)

1 - 2n2/3 n

At least asymptotically, this point is larger than

x0 {n2 + n + 2 + In4 + 6n3 + 13n2 4n + 411/2}/2(n2 + 2n- 2),

corresponding to the point of intersection of y 2In + (1 + 2/n)x and y (n / 3 +
x-1 -x)/(n- 1), which behaves as 1 / 4In2 12/n3 + O(n-4). Since at x 1 gnx <
2In+ (1 + 2In)x, this means that Knx is the controlling bound in the region of interest
for maxA3/A1. Thus we go back and find the points of intersection of y Kx with
y (n + 3 + x- x)/(n 1) and y (n / 4 x)/(n 1), and proceeding in the now
familiar way we arrive at the following theorem.

THEOREM 6.4. With hypotheses and notation as above the ratio A3/A obeys

(6.49) ,3/1 < K
n + 3 + [(n + 3)2 + 4(n 1)K + 4] 1/2

2(n- 1)K, + 2

This is a better bound than (6.15) if and only ifxo < 50, where 5o 2/[nK (n + 2)]
and xo is given by (6.20). In particular, (6.49) is better than (6.15) .for sufficiently
large n.

Proof. The relevant point of intersection of y Knx with y (n + 3 + x-x)/(n 1) is easily found to be

n + 3 + [(n + 3)2 + 4(n 1)Kn + 4] 1/2

2(n- 1)Kn / 2

and that with y (n + 4- x)/(n- 1) is

(6.51) n+4xg
(n- 1)K, + 1
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These have the asymptotic expansions

c 8 kl c 52- k2 10/3)(6.52) x 1 - r5/3 n2 n7/3 3n8/3 n3
T O(n-

and

c 8 kl 2c 44- k2 10/3),(6.53) x 1- n5/3 n2 n7/3 - 3n.)3 + n3 -O(n-

where c is a positive constant as defined above and kl and k2 are higher coefficients in
the asymptotic expansion of Kn; specifically, we have K 1 +4/n-c/nb/3
kl/nT/3 17c/3n8/3 / k2/n3 + O(n-l/3) with kl and k2 being positive constants
with values kl 9.256, k2 25.31, which are determined from the coefficients in
the asymptotic expansion of the Bessel function zero jp, for large p as given by
Abramowitz and Stegun [1, p. 371, eq. 9.5.14]. (These coefficients can all be related to
the first negative zero al -2.33810741 of the Airy function Ai(x); in particular, c

-21/3al/3 .. 7.85555, kl 21a/3a2/15, and k2 16(16a3 + 1035)/525.) Equations
(6.52) and (6.53) show already that asymptotically x0 < x < x < 50. (It is also
clear that for sufficiently large n, xg is less than both x_ and r2 so the bound y < Kx
will not give improvements to the bounds for (A2 / )3)/A1 found previously, at least
for large n.) By the same arguments used previously one now has A3/A1 < Knxo and
Knxg, with KXo being a slightly better bound (for all n; the only advantage that xg
has to recommend it over .x is its relative simplicity).

Remarks. (1) The condition for when (6.49) is better than (6.15) can be given
in other equivalent terms. We have x0 < 50 = x < 50 x0 < x (so that either

x0 < < < < or
(2) The quantity gnxo (the bound for A3/) in (6.49)) has asymptotic behavior

4 4 2c 20
(6.54) 1 / d - / O(n-l/3

n
)’

which is slightly better than the asymptotic form (6.30) found for our best previous
bound.

(3) If one uses y < g,x to improve the conjectured result (6.47) for the bound
on A3/)l that would follow from the conjecture (A2 /... + An+l)/)l _< ng,, one
obtains

4 c 16 kl 20c k2 / 12nK2
1

n5/3 + O(n-/3)3/ <_
(n- 1)gn + 1 n - nT/3 3uS/3 n3

As can be seen, this would be marginally better than (6.47). Equations (6.47) and
(6.55) give us something to shoot for in trying to improve upon (6.49) and its as-
ymptotic form (6.54), though it is by no means clear that even (6.55) could not be
improved upon.

It might also be noted that our best bounds on (A2 + A3)/A for large n, at least,
depended on the inequality (5.13) through y _< 1 + (n-1)(x-1)/[C(x-1)- 1]. One
can consider the consequences if (5.13) could be replaced by the stronger inequality
(5.16) which is itself weaker than (5.19) (see our discussion in 5). This would amount
to replacing the constant Cn by n/(Kn 1) in the operative inequalities and would
imply that (2 / 3)/1 <_ 2Kn for all sufficiently large n. Thus the relatively weak
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but optimal conjectured inequality (5.16) would imply the best possible bound on
(A2 + A3)/A1 for large dimensions (perhaps this approach could be made to yield
(A2 / A3)/A1 _< 2Kn for all dimensions higher than three; it cannot work in two
dimensions because 5 + 1Ix is decreasing and also x2, the point where G(x) reaches
its minimum, is larger than K2).

We conclude by briefly summarizing what we have accomplished in this sec-
tion and by applying our work to obtain numerical bounds in the three- and four-
dimensional cases. We also make some final observations concerning the two-di-
mensional case. For n >_ 2 the boundary curves that matter for 3/1 are y
[n + 3 + x-1 x]/(n 1) and whichever of y gnx or y 2In + (1 + 2/n)x
gives a lower intersection point with the first. This is because the first function
is decreasing while the latter two are increasing. Theorems 6.1 and 6.4 cover the
two possibilities. For (A2 / A3)/A1 the boundary curves that matter for n _> 3 are
x+y [n+3+x-l+(n-2)x]/(n-1)again, x+y l+x+(n-1)(x-1)/[Cn(x-1)-l],
and x Kn, and hence the bounds that we obtain are the values of x+y corresponding
to certain points of intersection of these curves (at most two of these points of inter-
section ever matter at the same time). The relevant facts are now that the right-hand
side of the first equation is an increasing function of x (for n _> 3 and x _> 1) while that
of the second is convex. Thus if the second equation matters its endpoint values over
the interval on which it matters determine an upper bound for (A2 + A3)/A1 and if it
does not, then In / 3+g + (n- 2)gn]/(n- 1) is an upper bound. This information
is included in (6.28) and Theorem 6.3. In all cases for both A3/A1 and (A2 + A3)/A1,
except that of (2 + 3)/1 when n 2, the boundary curve y In / 4 x]/(n 1)
can replace y In / 3 + x-1 x]/(n- 1) without changing this qualitative picture; it
will give slightly worse results but the expressions giving them may be somewhat sim-
pler. This explains the origins of our results concerning (A2 / A3)/1 in Theorems 6.1
(which used only y x and not x Kn as one of the boundary curves) and 6.2.

It may in fact be true that of all the bounds derived above for A3/A1, Theorem 6.4
is always the best for n >_ 2 and that for (2--,3)/1, G(K,) is always the best
bound for n >_ 4. Certainly for large enough n this is what happens. It only remains
to determine at what value of n this occurs. It is because this matter is not easy to
settle that we stated our theorems in terms of the various contingencies that we did.
However, indications from low order cases (see below for the cases n 2, 3, and 4) are
that already by n- 4 these bounds predominate.

For n 3 our work above gives the numerical results

(6.56) A3/A < K3(3 + v/2K3 + 10)
2.7137

2K3+1

and

(6.57) (A2 + A3)/A _< 4.1499.

We also note the bounds

A2/)1 __< K3 2.0457,

which is best possible, and

(6.59)
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The conjectured best possible bounds for (A2 + A3)/A1 and (A2 + A3 + A4)/A1 are

2K3 4.0915 and 3K3 6.1372, respectively. There is no reasonable guess as to
what the best bound for A3/A1 might be. The bound in (6.56) derives from the point
of intersection of y K3x and y (6+x-1 -x)/2 while that in (6.57) comes from the
intersection point of y (6+x-1 -x)/2 and y 1 /2(x- 1)/[C3(x- 1)- 1] which has
x coordinate 1.717614 (specifically, this value of x is the middle root of the cubic
C3x3 (5C3 3)x2 -+- 3C3x q-- (63 -- 1) 0 with 63 (272 3)/6 2.789868). To
see how close G(K3) comes to taking over in (6.46) (and hence in (6.57)) we note that
G(K3) 4.1365, which is only slightly smaller than the value 4.1499 found in (6.57).
For n 4, G(K4) 3.6209 does in fact prevail and it is likely that this trend continues
so that G(Kn) prevails for all n _> 4. Also for n 4 one finds A2/A1 <_ K4 1.7964
and A3/,1 < K4(7 + v/12K4 + 53 )/2(3K4 + 1) , 2.1979, the latter coming from the
point of intersection of y- K4x and y (7 + 1Ix- x)/3.

For n 2 our work in this section gives only the bounds

A3/AI < K2(5 + v/4K2 + 29 )/2(K2 -+- I) 4.0381

(better than PPW and Brands, not as good as Hile and Protter or Marcellini) and

(,2 - ,3)/,1 _< (5 -- v/4K2 -{- 29 )/2 5.6287

(which has the same position relative to the bounds of the others). Hile and Protter
[23] and Marcellini [27] both went beyond our results by working with an additional
inequality which takes the place of y _< 1-+- 2x (as used by Brands) or y < K2x (as used
in our work here). For Hile and Protter it is the bound y _< 1 / x / v/1 x + x2 and
for Marcellini it is y _< {1 + 3x q- 4x2 [(1 + 3x + 4x2)2 58x3 -4x2 + 2x]l/2}/2x.
While Hile and Protter’s inequality has the n-dimensional generalization

(6.60) y_< ((n + 2)(1 +x)+ [(n + 2)2x2 -2(n2 -t-4n- 4)x + (n + 2)2] 1/2)/2n,
it seems to be less effective than y < K,x for higher dimensions than two (at least
this is so for n 3 and n 4; it is also significantly more complicated than y < K,x).
Similarly, while we have obtained

(6.61) y _< A- [A2 -4n(n- 1)x{(n2 + 7n + ll)x2 + 2x- 1}]1/2
2n(n- 1)x

where

(6.62) A (n2 + 4n 4)x2 + n(n + 1)x + n

as the n-dimensional generalization of Marcellini’s bound, the bounds we have devel-
oped above would appear to yield better bounds for A3/A1 in four and more dimensions

(in three dimensions the generalized Marcellini bound yields A3/A1 <_ 2(3 + /)/5
2.6967, a modest improvement upon (6.56)). All bounds in two dimensions for both
A3/A1 and (A2 + A3)/A1 correspond to the vertex point of the allowed region at the left
end of the interval of validity of y _< 5 + x-1 x (or y _< 6 x for the PPW bound);
when n _> 3 this is still the case for A3/A1 but not for (A2 + A3)/A1.

We summarize the best results for A3/A1 and (A2 + A3)/A1 found to date in Table
1. Note that for n _> 3 the bounds for (A2 + A3)/A1 are already in very good agreement
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TABLE 1
Best upper bounds to date for ,3/1 and (A2 + ,3)/1 in dimensions 2, 3, and 4 (rounded to

4 places beyond the decimaO.

n bound for 3/1 bound for (A2 + A3)/A1 (A2,+ Aa)/A1 for an n-ball
2 3.9170 5.5957 5.0775
3 2.6967 4.1499 4.0915
4 2.1979 3.6209 3.5928

with the conjectured optimal bound of 2Kn (which is the value of (A2 + A3)/A1 for an
n-ball).

An analysis similar to that for general n above could be employed to bound Aa/A1
and (A2 + A3 + Aa)/A1 in three and more dimensions. One would then have to study
the allowed region in xyz-space for x _= A2/A1, y )3/A1, and z _= Aa/A1, much as we
have done above for A2/A1 and A3/)l. In such an analysis one would use the natural
analogs of the inequalities we used above; our recently proved bound )a/A2 < Kn (see
[8]) would replace 3/,2 < Kn.

7. Improvements to the upper bound of Singer Wong Yau and Yau. In
[45], Singer, Wong, Yau, and Yau considered the problem of bounding the fundamental
gap A2-A1 for a SchrSdinger operator -A+V(x) acting on L2 (f) for bounded domains
f C Rn with Dirichlet boundary conditions imposed on 0f. They were able to find
natural upper and lower bounds to A2 1. For their lower bound they impose con-
vexity on both f and V, while their upper bound, which is just the PPW/Thompson
bound 1 + 4In generalized to SchrSdinger operators and viewed as an upper bound
on the difference ,2 1, applies under much less stringent hypotheses. In its most
general form their upper bound reads

(7.1) A2 A1

_
4
(A1 m) <_ 4

(#1 + M m)
n n

where m and M are lower and upper bounds for the potential V, i.e., m

_
V(x)

_
M

for all x E f, and #1 represents the first Dirichlet eigenvalue of-A on f. This bound
follows immediately by observing that the original argument of Payne, PSlya, and
Weinberger carries over essentially unchanged to SchrSdinger operators with V _> 0
on t. Thus the operator -A + V m has eigenvalues 1 m and 2 m satisfying

(4)(2 m)

_
1 + (.1 m)

n

so that the first part of (7.1) holds. To improve upon (7.1) it suffices to note (see The-
orem 4.2 of [6]) that our upper bound for A2/A1 also carries over intact to SchrSdinger
operators with nonnegative potentials. We therefore obtain

)2 )1 <_ [(j,/2,1/jn/2-1,1)2 1] (1 -m) <_ [(jn/2,1/jn/2_l,1)2 1] (#1 q- M- m)

as a better upper bound than (7.1). In two dimensions, for example, the multiplicative
factor 2 from (7.1) is improved to approximately 1.539.

One can obtain more explicit upper bounds by using estimates for #1. One such
bound is simply

(7.3) #1 __( 4jn2/2_1,1/D2,
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where D is the diameter of the largest ball that can be inscribed within . As noted
by Singer, Wong, Yau, and Yau, Cheng [15] gave the further bound

2 n271.2#1 <__ 4j,v2_l,1/D2 < /D2.

This comes from considering the first eigenvalue of the n-cube inscribed in the ball of
diameter D, which has sides of length D/v/-d. Certainly for large n this bound loses
a lot with respect to (7.3), specifically, n2r2/D2 is worse by a factor of r2 as n goes
to infinity. To do somewhat better (for n > 2) one can employ the inequality

jp2,1 < 2(p + 1)(p + 3)

(see Watson [48, p. 486, ineq. (5)]). This gives

(7.6) #1 < 2n(n + 4)/D2,

which is still high by a factor of 2 in the large n limit. With reference to the subject
matter of this paper it is perhaps worth noting that (7.5) follows for p -1/2,0, 1/2, 1,...
from the fact that

(7.7)
1 +

3
[A2/A1 for the n-cube < Chiti’s bound for A2/A1]

n
6n

1 --,2jn2/2_1,1 -4- n(n 4)

(see (5.3)in 5 above).
Beyond (7.5), there is the bound of Chambers [13]

(7.8) jp2,1 < (p+ 1)[p+3+ 2V/P+2]

which is both better than (7.5) for all p > -1 and asymptotically correct to leading
order as p goes to infinity. This yields

(7.9) #1 < n (n + 4 + 2x/2n + 4)/D2

as an improvement to the last part of (7.4) for all n > 2.

8. Concluding remarks. As mentioned in our previous paper, our results and
techniques can probably be used to obtain improved results for related problems from
differential geometry and possibly for the other problems considered in the original
paper of Payne, Phlya, and Weinberger.

Mention might also be made of the fact that our upper bound for A2/A1 can be
used to provide lower bounds on A1 provided A2 or a lower bound for A2 is known.
This observation is a key ingredient in finding lower bounds to A1 for bent tubes [10].

Improvements in the constant in Marcellini’s bound [27] for )3/A1 in two dimen-
sions,

(8.1) 3/)kl < 3.917,

or in his inequality (2+3)/A1 _< 5.596 might well follow from some of our techniques,
our extension (5.7) of Chiti’s bound, and other known results. We intend to make a
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more extensive investigation of bounds on ,k3/,kl and (,k2 / ,k3)/,kl in two dimensions
and report on them elsewhere.

Finally, we mention that all our bounds can be extended to operators (Dirichlet
Laplacians, Schrhdinger operators, or general elliptic operators as discussed in 4
of [6]) on unbounded domains f c Rn so long as the operator has a form core of
compactly supported functions, for in that case we can approximate all eigenvalues
(defined via the Min-Max principle) in terms of appropriate Rayleigh quotients of
compactly supported functions and then our known bounds for bounded domains f
apply (see our discussion on p. 412 of [4] for more details on this). For example, our
results apply to the n-dimensional isotropic harmonic oscillator, H -A + Ix12 in
]Rn, where one can also compute explicitly that ,k2/,kl 1 / 2In.

Recently we have successfully applied many of the ideas used in this paper and
its predecessors to the Neumann eigenvalues of -A (we admit Ifl, the volume of Ft,
into our formulas, however). These results will be presented in [9].

Appendix A: Some integrals of Bessel functions. We present here the an-
tidifferentiatio formula necessary for the explicit evaluation of the integral occurring
in (5.2) and certain closely related antidifferentiation formulas.

We have, where Zp(x) represents any solution to Bessel’s equation of order p,

(A.1) xZp(x)2dx (x2 p2)Zp(x)2 + x2Z,(x)2 + c,

1
x3Zp(x)2dx g[(x4 + p2x2 2p2(p2 1)) Zp(x)2 2x3Zp(x)Z(x)

+ (xa + 2(p2 1)x2)Z(x)2] + c,

(A.3)
x5Zp(x)2dx 0 [(3x6 + (p2 + 8)x4 + 4p2(p2 4)x2

8p2(p2 1)(p2 4))Zp(x)2 4(3x5 + 2(p2 4)x3)Zp(x)Z,(x)

+ (3x6 + 4(,2 4)xa + 8(p2 1)(,2 4)x2)Z,(x)2] + c.

Of these, only (A.2) is needed for simplifying (5.2). Equation (A.1) is well known and
was in fact already employed by Chiti in arriving at (5.2). We include (A.3) simply
to indicate that further explicit antidifferentiation formulas can be found. In fact, one
can obtain explicit formulas for f x2m+1Zp(x)2dx for m 0, 1, 2,... as well as related
integrals involving Zp(x)Z(x) or Z(x)2 via a recursive procedure.
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Note added in proof (July 19, 1993). Since completing this paper we have im-
proved upon Marcellini’s bounds for A3/A1 and (A2 + A3)/A1 in the two-dimensional
case (as alluded to in 8 above). Marcellini’s bounds were 3.9170 and 5.5957, respec-
tively, while ours are 3.9051 and 5.5249. The derivations of these bounds and other
inequalities of interest will appear in our forthcoming paper, "The Range of Values of
A2/A and )3/1 for the Fixed Membrane Problem."
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Abstract. A recent result (see [Canad. J. Math., 44 (1992), pp. 924-940]) has bridged the gap
between the Timan-type pointwise estimate and the norm estimate for polynomial approximation in
C[-1, 1]. Here, the authors show that for f E C(S)[-1, 1] the function and its derivatives of order
j, 0 _< j <_ s, can be simultaneously approximated by polynomials of degree n and their derivatives
in the appropriate manner.
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AMS subject classifications. 41A28, 41A10

1. Introduction. It is known (see [6]) that for f E C[-1, 1], 0 _< _< 1 and an
integer r there exists a polynomial Pn Hn, where Hn is the class of polynomials of
degree n, such that

(1.1) If(x) P,(x)l <_ Cw (f ?-ln(X)l-’k),

where (x) 1 x2, n(X) n- + (x), and w;(f,t) is given by

(1.2) w(f, t) sup IAr I [-1,1].

This meure of smoothness related to the step-weight function w introduced
and investigated in [8]. (For the ce treated here w(f, t) w already introduced
in [5, 3].) We note that when A 0, (1.1) yields the Wiman-type estimate for
polynomial approximation and when A 1, (1.1) yields the norm estimate (only
for n[-1, 1]) for best polynomial approximation (see [8, Chap. 7] for the result in
Lp[-1, 1], 1 p ).

For r 2 it w shown (see [7]) that Pn e Hn can be found such that

(1.a) (/,

In this paper we investigate the situation in which f() C[-1, 1]. We will show
the following.

THEOREM 1.1. Suppose s, r, and k are integers, s O, r 1, 0 A 1 f(S)(x)
e C[-1, 1], and (x) ffl z2 Then, for n s + 1 there exists P, e Hn for which

(1.4) If(J)(x) PJ)(x)I C(n-(x)) Jw (f(),n-lh,(x)l-X), 0 j s,

and

k
The construction used for Theorem 1.1 can be refined to prove the following

sharper result for r 1, 2.
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THEOREM 1.2. Under the assumptions of Theorem 1.1, .for n >_ s + 1 there exists
a polynomial Pn E 1-In such that

(1.6) [f(J)(x) P(J)(x)[ < C(n-lo(x))8-Jwtx (f(8),n-o(x)1-)
for g- l,2 and O <_j <_ s, and

(1.7) Ip(+k)(x)l < CnkSn(X)-kWt (f(s) n-o(x)-:)
fork >_g.

Remark 1.3. In the preceding theorem it is sufficient to prove the result for 2
in (1.6) and (1.7)since

(1.8) w (g, t) _< iw (g, t) for 0 _< t <_ to

(see [7, Thin. 4.1.3]). The remaining case, i.e., k - 1 can be treated similarly (see
also the remark after (3.13)).

For the special case A 0 a great part (but not all) of the above theorems were
proved in a series of articles spread out from the early fifties to the last decade. For
A > 0 the results are new. The earlier investigation of this type of estimate seems to
go back to Timan [17] in 1951, and his work was extended in the sixties by Trigub
[18] and Brudny[ [1] who achieved a special case of (1.4) for A 0. Improving the
estimates by replacing 5n(x) by V(x) is due to Teljakovski[ [16] and Gopengauz [11]
who got (1.6) with g-- 1 and A 0. Gopengauz [12] made an attempt at (1.6) for
A 0 and other g but he claimed that the result is valid for all g which is known to be
incorrect for t > 3. It seems that the first proof of (1.6) for g 2 (under the conditions
A 0 and s 0) is due to DeVore [3], [4]. This result was further extended by Gonska
and Hinnemann [10] who proved (1.6) for A 0, g- 1, 2,..., and 0 _< j <_ s- t; and
finally, independently, by eahlhaus [2] and Li [14], who showed that for A 0, (1.6)
holds for some g- 1,2,... if and only if0 _< j _< rain{s-g+2, s}. In our proof of (1.6)
we rely heavily on our previous construction in [7], which is valid only for g 1, 2.
Therefore, we have to limit ourselves to g 1, 2, but we do get the full range of j,
namely, 0 _< j <_ s. Note that we also obtain (1.7), which provides estimates on higher
derivatives of the approximating polynomials. We would like to thank the referee for
bringing to our attention references [2] and [14].

2. Some preliminary lemmas. We will prove here some lemmas needed for
the proof of the main result.

LEMMA 2.1. Suppose Pn 1-In, m >_ O, 0 <_ ) <_ 1, and 5n(x) - + v/1- x2

and that the increasing function w(t) satisfies
(2.1) 0 < w(#t) <_ Mr(# + 1)w(t)

for some positive integer r. Then

(2.2) [P(x)l <_ A(n-5(x))’w(n-5(x)-), -1 <_ x <_ 1,

implies for k >_ 0

(2.3) IP()(x)l _< C(n-5(x))m-kw(n-Sn(x)-), --1 <_ x <_ 1.

Proof. For k _> m + r(1 A), (2.3) follows from Theorem 4.1 of [6]. For 0 < k <
m + r(1 A) we apply Lemma 2.1 of [5] and ideas from [6] or ideas from the proof of
Theorem 5.3 of [15] applied to tmw(n-t-). We leave details to the reader. [:]

We now prove what will constitute the crucial step in the inductive proof of our
main result.
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LEMMA 2.2. Suppose is an integer, . >_ -1, 0 _< A <_ 1, w(t) is an increasing

function satisfying (2.1) .for some integer r, 5,(x) n-1 + v/1 x2, and g, satisfies

Ign(X)l

_
C(n-ltn(X))o2(-ln(x)l-A).

Then there exists a polynomial Qn E H satisfying

Ig(x) Q(x)l <_ M(n-15(x))t+w(n-5(x)-)
and

(2.6) iQ’ (x)I _< M(n-15n(x))ew (n-lSn(X)-)
with M M(C, , r, ) independent of n and gn.

Proof. We construct the algebraic polynomial Qn Hn by

Q,(x) =_ g( cos((arccos x) t))T(t)dt,

where T(t) is the trigonometric polynomial of order n given by

(e.s)
T= (t) =_ L[n/.],m (t),

Lk,m(t)dt= 1

sin kt/2 )
2m

Lk,,(t) Ak
sin t/2

and m=/+r+2.

To prove (2.5) we write

la (x)
s ((arccos x)--t)

g(u)du] Tn (t)dt

We denote the interval between cos ((arccos x)- t) and x by J(x, t) and its length by
m(J(x,t)). Using straightforward computation, we have (see [8, p. 80])

(2.9) m(J(x, :l:t)) -Ix cos ((arccos x) + t)l <_ A1/t(x) ------Itl (Itl-- v/1 x2).
Hence,

IN(X)<_ m(J(x,t)) (,t)

<-Cn-t m(J(x,t)) (,t)

Obviously,

A1/t(x)

_
Itl(nltl + 1)5(x).
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Using (2.1), we have

(M(f’n--ln(U)l--)) < (((n(u)r(1-A) + 1) w(f,n-ln(x)l-’X).

Some computations following [8, Chap. 7] and the proof of Theorem 2.1 of [6] imply
form>r+g+2

In(x)

_
C2(n-ln(x))t+lwr(f,n-ln(x)l-’).

We now follow [9, pp. 127-128] to prove (2.6). Using (2.7), Tn(u) T(-u), and [9,
p. 128], we have

Q(x) g(cos )2 sin uT(u)du,

with cos e J(x, u). Following [8, p. 128], we have

(2.10) IQn(x)l <_ C3 Ign(cos)lL[/m],,_l(u)du.

Earlier considerations in this proof yield

Ig n(cos )l _< C ?- n COS ),o) (ft- (n COS 1- "k )
2 + 2 + + 1).

Since

/ ltlTL[n/m],m_ (t)dt <_ Ln- for /< 2m- 3,

the result is valid if 2g + 2r < 2m- 3, which is evident from (2.8). [3

Remark 2.3. Examining the proof of Lemma 2.2, we can replace the integer g
satisfying g _> -1 by any real number satisfying >_ -1. In this case the choice
m [] + r / 3 in (2.8) will do.

LEMMA 2.4 (Trigub). For any two integers > 0 and m > 0 we have a polynomial
P, H, such that

II(1 x2)t (1 x2)+mpn(x)llc[_,] <_ C(, m)n-2.

This lemma is a corollary of Lemma 2" of [18]. The proof in [18] is computational
and long (via Lemma 2 and Lemma 2’ there). We will give a different, more accessible
and, we hope, more transparent, proof below.

Proof of Lemma 2.4. For f(x) v/1 x we have wv(f, t) t (see [8, p. 109(1)]).
Hence (see IS, Thm. 7.2.1]), there is Q IIn for which

< Cn-1

Writing

Q,(x) Q(x) (1 x) (1 + x)
2

Q(-1)
2

Q(1),
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we have Qn,1(4-1) 0, Q,,l(X) (1 x2)Qn,2(x) and therefore,_
3Cn-1.(2 12)

For -1 +n-2 < x < 1--n-2

I(1 x2)l/2Qn,2(x)l _< 1 + 3Cn-(1 x=)-/ <_ 1 + 3C.

Using [8, Thm. 8.4.8], we have

II(1-x2)l/2Q,,2(x)llc[_l,1] <_ AIl(1-x2)l/2Qn,2(x)llC[_l+(1/n2),l_(1/n2)] <_ A(I+3C).

We now use (2.12) 2m times to obtain

The desired estimate is that of (v/1 x2- v/1 x2 --’(1-x2mo2m(x))2t’n,2
the polynomial

The fact that

2t

j--1

is not of degree n but rather of degree 4im(n- 1) 2m does not matter since g and
m are fixed. []

3. The main result. In this section we will prove Theorems 1.1 and 1.2, which
together constitute our main result. It turns out that it is advantageous to prove both
theorems simultaneously.

Proof of Theorems 1.1 and 1.2. We use Theorem 2.1 of [6] applied to f(8)(x) to
ascertain the existence of a polynomial qn E Hn satisfying

If(s)(x) qn(X)[ <_ Cw; (f(S), n-lhn(x)l-).

We also use Theorem 1.1 of [7] to obtain a polynomial qn(x) E H satisfying

[f(s)(x) qn(x)l <_ Co): (f(s), 72-1(x)1-).

In the construction of P it will make no difference whether we choose qn (x) to satisfy
(3.1)

%2 (f(), n-199(x)l_A)<_ wox2 (f(s), n-lhn(x)l-,X)

The difference will emerge in the proofs of (1.4), (1.5), (1.6), and (1.7) as a result of
that construction. Our construction will yield a polynomial Pn such that Pn IILn
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with some fixed integer L. This will not change the result as, in the right-hand side of
(1.4),..., (1.7), replacing n by Ln would just change the constant.

With no loss of generality we may assume that

as f(x) may differ from the above only by a polynomial of degree s- 1, which can be
absorbed by Pn (x).

We recall from [8, Whm. 4.1.2] that w (f, t) satisfies condition (2.1). This follows
from the equivalence

wrx (f t) gx,r(f tr),
where

Kx,r(f,tr) inf (]If g]] + tr ]]qaXrg(r) ]]),
g

and the basic properties of any K-functional, i.e., K(f, t) is increasing and K(f, tr) <
a-rg(f, (at)r) for 0 < a < 1. Hence, using Lemma 2.2 with 0 and

fo
x

fo
x

gn(x) =-- (f(s)(u) qn(u))du f(s-1)(x) qn(u)du,

we have a polynomial qn,l(U) E H, such that

f(s-1)(x) qn(u)du qn,(X)

and

This implies

(I() -(x)-)Iq’,(x)l <c

If(8)(x) q,(x) q’,l(x)l <_ (C + C)oaox (f(S),n-lhn(x)l-).

We now proceed (in case s > 1), using Lemma 2.2, with 1 and

gn(x) =/(-2)(x) q,(u)du du q,,(u)du.

In general we assume by induction that for some j < s we have already constructed
q,,o(x), qn,(x),..., q,,j(x) H, (q,,o =- q,) such that for 0 _< i <_ j,

(3.3)

We now use Lemma 2.2 with ? j and with g=(x) given by

/o /o /og,(x) f(s-i-1)(x) qn(u)du dul dui qnh(u)du
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to obtain qn,j+l that satisfies (3.3) for f(s--j--1) and i j + 1. Moreover, Lemma 2.2
implies

Iq’,+(x)l < M(r-lSn(X))3w;x (f(S),n-lSn(x)l-A).
Using Lemma 2.1 with m j and Pn(x) q’n,j+ X we have

q,j+l(X)l <_ M1 (r-lSn(X))j-k r (f(s) n-lSn(x)l-X)px

Hence, (3.3) is valid for j + 1 and 0 < i < j + 1, and by induction we construct
qn, qn,1, qn,8. We define

Qn,o(x) qn(x)du

and

(3.6) Qn, (x) qn,1 (x)du du duB-2 +’" + qn,8(X).

The construction above yields

(3.7) If(’) (x) ,0(x)(’) n,lt(i) (x)[ _< A(n-15n(x)) 8-iooxr (f(8),/t-l(n (x) l-X)

(8)for 0 <_ i <_ s, Qn,o(X) qn(x) for q,(x) given in (3.1) or (3.2), and

(3.8) t(8+k)I’n, (x)[ <_ A(k)(n-6n(X)) k r (f(8) n--6n(X)i--)) for k-----0, 1,(Mo

We follow Gopengauz [11] (see also [13]) with some changes and construct a
polynomial Q,2 (x),

(3.9)
8

Qn,2(x) E(1 x2)i (c,(1 x) +/3i(1 + x)),
i=0

such that

(3.10) Q(i) t-l) f(i)(+/-l) t(i) (+/-1) t(i) (+/-1) for 0 < < s.n,2 ’n,0 "n,1

The fact that n-28+2i is increasing in i,

f() (+/-1) ,0(+/-1)() Q(0n, (+/-1)[ _< _Cn-2+2wx (f() n-2+)

for 0 < i < s, and induction imply

(3.11)

We now use (2.11) (Trigub’s lemma) to write

I1(1 (1 <_
n2e

g,m 1,2,
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We construct

8

Qn,3(x) (1 x2)i+’ (ci(1 x) 4-/i(1 4- x))P,,i(x)

with some m, m _> s 4- 1. Showing that Pn(x), given by

P() Q,0(z) + Q,() + Q,() Q,(),

satisfies both (1.4) and (1.5) when qn (which defines Qn,o) is given by (3.1) and both
(1.6) and (1.7) when qn is given by (3.2) will complete the proof. (Slight modifications

should replace 2 in (3.2).)are needed for (1.7) and 1, i.e., w w
We now prove Theorem 1.1. Using (3.11) and (3.12), we have

(3.14) IIQ.,a(x) Q.,u(x)ll <_ Cn-@(f(), n-+’).

Using the Markov inequality, we deduce from (3.14) that

(3.15) i,(,) Q!2(x .n-2,+2,w," (f(8)n-2+),)l"gn,3(x) <

For-14-n-2 _< x <_ 1-n-2, (1.4)is valid. For-1 _< x <_ -14-n-2 (or 1-n-2 _< x _< 1)
we use f(i)(-1)- P(i)(-1) 0 for 0 _< i _< s (or f(i)(+l)- Pn(i)(+I) 0) and the
Taylor formula to obtain

(3.16) f(i)(x)_p(O (x) (1 4- x)8-i
(-i)!

for -1 _< ( < x _< -l+n-2.

Hence, (3.7)and (3.15)for i= s imply

If(0(x) P(’)()1 -< C(1 + x) iw;x (f(s), n-2+) for 1 _< x _< -1 + n-2,

which in turn implies (1.4) as (1 4- x) <_ (x)/n for -1 _< x _< -1 4- n-2. Using the
Markov-Bernstein inequality, that is,

IP(’)(x)l Cn,Sn(X)-llP,llc[_l,1], Pn EHn,

we now deduce from (3.14) the inequality

I(i) O(i) Cn-2s+ihn (f(s) n-2+A),(x)- (x)l < ()-"n,2 (M:

This inequality together ’with (3.8) implies that we have to prove (1.5) only for
Q(8+k) q(k) For k r we recall that the estimate of q(r) is given by Theorem 6.3n0
of [5], that is, we have

(3.17) Iq() (x)l _< Cn’5,(x)-w; (f(), n-lhn(x)l-)).

The estimate of Iq() ()1 for k > r follows the same method. For k > r we use the Bern-
stein and the Markov inequalities on the intervals [(-1-x)/2, (14-x)/2], observing that
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6n(u)-moax (f(s), n-16n(u)l-)‘) is bounded by C(m)6n(x)-moax (f(s), n-16n(x)l-)‘)
for u in that interval.

For the proof of (1.6) we may use (3.2) and hence f(s)(+l) qn(-t-1). Further-
o(s) (+1) 0, and therefore (3.10) reduces tomore, n,3

(3.18) Q(S) (+/-1) + r)(s) (+/-1) O.n,1

We can now prove the inequality (1.6). Note that for -1 + n-2 < x < 1- n-2,
(1.6) has already been proved as in this case; there is no difference between (1.4) and
(1.6) but the constant. For -1 <_ x <_ -1 / n-2 (or 1- n-2 < x <_ 1) we use both
(3.16) and (3.17) and write

f(Q (x) P(i)(x) (1 + x)s-i (f(s)() pn(s) ())
(1 + x)s-i (f(s)() qn())

+ (1 + x)s-
(s-i)! (l+)(-n,1 ()

O(s+l) o(s+l) (r/)) I1 -+- I2

for -1 < v] < < x _< -1 + n-2. Using (3.2) and () _< (x), we conclude that
11 is smaller than the right-hand side of (1.6). Using (3.8) for k 1 and (3.15) for
i s + 1, we have

1121 < C(1 + x)s-i+ln2,.,2 (f(s)_
C(n-lqo(x))S-i(1 -q- x)n2w),

We now note that for any F, w (F, t) satisfies

wx2 (F t) _< Cla-2wx (F at)

)) 1-)‘
for a < 1. Setting F f(), t n-+)‘, and a no(x we have

s -2+2), 2 (f(s)n-lqo(x)l-)‘)I1 1- C1 (n-l(x)) -’(1 + x)n2(nqa(x)) wo
)

This completes the proof of (1.6). The estimate (1.7) follows that of Theorem 6.3
of [6] almost word for word.
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A NOTE ON THE GENERALISED KATZENELSONS METHOD FOR
PIECEWISE LINEAR RESISTIVE NETWORKS*

V. C. PRASADt AND P. B. L. GAUR$

Abstract. Ohtsuki, Fijisawa, and Kumagai [SIAM J. Math. Anal., 8 (1977), pp. 69-99] proposed
a generalisation of Katzenelson’s method that is useful for a large class of piecewise linear resistive
networks. In this note, errors are pointed out and the correct proof is presented.

Key words, generalised Katzenelson’s method, piecewise linear resistive networks, nonlinear
equations, numerical methods

1. Introduction. Katzenelson [1] proposed an algorithm which is guaranteed to
converge to a solution starting from any initial point, provided that the correspond-
ing piecewise linear resistive network has a unique solution. In a significant paper,
Ohtsuki, Fujisawa, and Kumagai [3] extended this method to a large class of piece-
wise linear resistive networks, particularly those containing diodes, especially tunnel
diodes, Ebers-Moll transistors, etc. Their method chooses an initial point satisfying
what is called the "l-degree condition." Starting from such an initial point, they
showed that their generalisation of the Katznelson’s method (they called it the "gen-
eralised Katzendson’s method") is guaranteed to converge to a solution. It is the
purpose of this paper to correct some errors in their paper.

2. Deficiencies in the proof of the generalised Katzenelson’s method.
The reader is referred to [3] for notation and other details not given here. Let x() be
an initial point satisfying the 1-degree condition. (This essentially means that x() is

the only solution of the y(O) = f(x(O)), where f(x) y, x e R", y e Rn and f is a
continuous piecewise linear function.) Let y(f) be a point whose solution is required.
Starting from x(), trace the inverse image (i.e., the solution curve L-l), of the line
L, joining y(O) and y(f) using "generalised Katzenelson’s method" [3]. In Theorem
6 of [3] Ohtsuki et al. stated that this method always converges to a solution. The
proof of this theorem is wrong as explained in the following.

(1) Whenever the solution curve hits a corner point, it may or may not be ex-
tendable into a new region. To overcome this, they used Theorem 2 (page 81, last line
of [3]). In the proof of Theorem 2 they stated that "The degree preserves a constant
value, say d." This is incorrect. It is possible to show through an example that even
though f is norm-coercive, the restriction of this function at a corner point may not
be norm-coercive [4]. Consequently, although the degree is a constant value globally,
it is not so locally at a corner point. Thus the assumption that the degree is a con-
stant locally in the proof of their Theorem 2 is wrong. Since Theorem 2 is incorrect,
it cannot be used in the proof of Theorem 6.

(2) They have not considered the following possibilities.
(a) In Fig. l(a), the solution curve ends abruptly at a corner point. Even if

their Theorem 2 is assumed to be correct, their Remark 8 cannot guarantee that the
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solution curve can be extended into a new region. (They used Remark 8 on page 82
to prove Theorem 6.)

(b) The solution curve shown in Fig. l(b) satisfies their Remark 8. Similarly, Fig.
1(c) is another possibility. But their arguments do not consider these situations.

(a) (b)

/’
2

’[1/

(c)

FTG. 1. Some theoretically possible situations of the solution Curve. The solution curve is shown
in thick lines. Its perturbation is shown in dotted lines.

3. Correct proof of Theorem 6. The above situations do not occur if the
initial point x() satisfies the 1-degree condition and an additional condition (to be
explained later) is satisfied. This can be proved using the perturbation technique of
Fujisawa and Kuh [2]. For this purpose we need the following definitions. A point,
Z E Rn, is said to be a point at infinity if and only if there exists at least one
i, 1 _< i _< n, such that Zi is arbitrarily large. The line segment of a solution curve
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in a region R is said to be an end segment if there is a point at infinity on the line
segment.

Let L y y(O) + )(y(.f) y(O), -c < A < oc be the doubly infinite line joining
y() to y(l). Trace the solution curve starting from x(). Let x() lie in a region R1.
If L-1 lies entirely in R, then a solution of y(l) is obtained anyway and there is
nothing to prove (case A of [3]). The solution curve being traced from x() in R may
eventually come back to x(), i.e., the solution curve containing x() is a loop. This is
not possible if x() satisfies the 1-degree condition (case B of [3]). This leaves us with
only one possibility.

FIG. 2. A situation in which the generalised Katzenelson’s method may not give a solution:
x() satisfies 1-degree condition.

The solution curve being traced from x() has one end segment in some regions
but does not eventually terminate in another unbounded region having another end
segment. (The possibilities in Fig. 1 depict this.) In such a case L is perturbed. As
explained in Fujisawa and Kuh [2], it is always possible to find a perturbation of L
such that the perturbed solution curve does not hit a corner point. Therefore the
perturbed solution curve must have two end segments. If the original solution curve
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has only one end segment (as A -o), say, in the interior of the region R, then the
two end segments of the perturbed solution curve also lie in R. If R contains x(),
then its Jacobian is nonsingular. Therefore there cannot be two parallel line segments
in a region mapped on to the same line segment in the y-space. Even if x() does
not lie in R, this statement is still true. This is because the Jacobian of R must be
nonsingular as f is norm-coercive.

As A --. -cx, if the end segment of the solution curve starting from x() does
not lie in the interior of a region, then the generalised Katzenelson’s method may not
give a solution, at least in theory. Fig. 2 depicts such a possibility. From a practical
point of view, since every point in a small open neighborhood of a point satisfying the
1-degree condition also satisfies the 1-degree condition, it is, in general, possible to
choose an initial point in that neighborhood such that as A -c, the end segment
of L-1 lies in the interior of a region. Thus Fig. 2, even if it is true, can be avoided
in practice.
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